ASTContext.cpp revision d5532b6cfff2977e0c59fa6ead7f7973984a620d
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "RecordLayoutBuilder.h"
30
31using namespace clang;
32
33enum FloatingRank {
34  FloatRank, DoubleRank, LongDoubleRank
35};
36
37ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
38                       const TargetInfo &t,
39                       IdentifierTable &idents, SelectorTable &sels,
40                       Builtin::Context &builtins,
41                       bool FreeMem, unsigned size_reserve) :
42  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
43  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
44  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
45  SourceMgr(SM), LangOpts(LOpts),
46  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
49  ObjCIdRedefinitionType = QualType();
50  ObjCClassRedefinitionType = QualType();
51  ObjCSELRedefinitionType = QualType();
52  if (size_reserve > 0) Types.reserve(size_reserve);
53  TUDecl = TranslationUnitDecl::Create(*this);
54  InitBuiltinTypes();
55}
56
57ASTContext::~ASTContext() {
58  // Deallocate all the types.
59  while (!Types.empty()) {
60    Types.back()->Destroy(*this);
61    Types.pop_back();
62  }
63
64  {
65    llvm::FoldingSet<ExtQuals>::iterator
66      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
67    while (I != E)
68      Deallocate(&*I++);
69  }
70
71  {
72    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
73      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
74    while (I != E) {
75      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
76      delete R;
77    }
78  }
79
80  {
81    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
82      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
83    while (I != E) {
84      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85      delete R;
86    }
87  }
88
89  // Destroy nested-name-specifiers.
90  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
91         NNS = NestedNameSpecifiers.begin(),
92         NNSEnd = NestedNameSpecifiers.end();
93       NNS != NNSEnd;
94       /* Increment in loop */)
95    (*NNS++).Destroy(*this);
96
97  if (GlobalNestedNameSpecifier)
98    GlobalNestedNameSpecifier->Destroy(*this);
99
100  TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105  ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109  fprintf(stderr, "*** AST Context Stats:\n");
110  fprintf(stderr, "  %d types total.\n", (int)Types.size());
111
112  unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116    0 // Extra
117  };
118
119  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120    Type *T = Types[i];
121    counts[(unsigned)T->getTypeClass()]++;
122  }
123
124  unsigned Idx = 0;
125  unsigned TotalBytes = 0;
126#define TYPE(Name, Parent)                                              \
127  if (counts[Idx])                                                      \
128    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
129  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
130  ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136  if (ExternalSource.get()) {
137    fprintf(stderr, "\n");
138    ExternalSource->PrintStats();
139  }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146  Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150  assert(VoidTy.isNull() && "Context reinitialized?");
151
152  // C99 6.2.5p19.
153  InitBuiltinType(VoidTy,              BuiltinType::Void);
154
155  // C99 6.2.5p2.
156  InitBuiltinType(BoolTy,              BuiltinType::Bool);
157  // C99 6.2.5p3.
158  if (LangOpts.CharIsSigned)
159    InitBuiltinType(CharTy,            BuiltinType::Char_S);
160  else
161    InitBuiltinType(CharTy,            BuiltinType::Char_U);
162  // C99 6.2.5p4.
163  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
164  InitBuiltinType(ShortTy,             BuiltinType::Short);
165  InitBuiltinType(IntTy,               BuiltinType::Int);
166  InitBuiltinType(LongTy,              BuiltinType::Long);
167  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
168
169  // C99 6.2.5p6.
170  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
171  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
172  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
173  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
174  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
175
176  // C99 6.2.5p10.
177  InitBuiltinType(FloatTy,             BuiltinType::Float);
178  InitBuiltinType(DoubleTy,            BuiltinType::Double);
179  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
180
181  // GNU extension, 128-bit integers.
182  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
183  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
184
185  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186    InitBuiltinType(WCharTy,           BuiltinType::WChar);
187  else // C99
188    WCharTy = getFromTargetType(Target.getWCharType());
189
190  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
192  else // C99
193    Char16Ty = getFromTargetType(Target.getChar16Type());
194
195  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
197  else // C99
198    Char32Ty = getFromTargetType(Target.getChar32Type());
199
200  // Placeholder type for functions.
201  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
202
203  // Placeholder type for type-dependent expressions whose type is
204  // completely unknown. No code should ever check a type against
205  // DependentTy and users should never see it; however, it is here to
206  // help diagnose failures to properly check for type-dependent
207  // expressions.
208  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
209
210  // Placeholder type for C++0x auto declarations whose real type has
211  // not yet been deduced.
212  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214  // C99 6.2.5p11.
215  FloatComplexTy      = getComplexType(FloatTy);
216  DoubleComplexTy     = getComplexType(DoubleTy);
217  LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219  BuiltinVaListType = QualType();
220
221  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222  ObjCIdTypedefType = QualType();
223  ObjCClassTypedefType = QualType();
224  ObjCSelTypedefType = QualType();
225
226  // Builtin types for 'id', 'Class', and 'SEL'.
227  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231  ObjCConstantStringType = QualType();
232
233  // void * type
234  VoidPtrTy = getPointerType(VoidTy);
235
236  // nullptr type (C++0x 2.14.7)
237  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242  assert(Var->isStaticDataMember() && "Not a static data member");
243  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244    = InstantiatedFromStaticDataMember.find(Var);
245  if (Pos == InstantiatedFromStaticDataMember.end())
246    return 0;
247
248  return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253                                                TemplateSpecializationKind TSK) {
254  assert(Inst->isStaticDataMember() && "Not a static data member");
255  assert(Tmpl->isStaticDataMember() && "Not a static data member");
256  assert(!InstantiatedFromStaticDataMember[Inst] &&
257         "Already noted what static data member was instantiated from");
258  InstantiatedFromStaticDataMember[Inst]
259    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
264  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
266  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
274                                                   NamedDecl *UUD) {
275  assert((isa<UnresolvedUsingValueDecl>(UUD) ||
276          isa<UnresolvedUsingTypenameDecl>(UUD)) &&
277         "original declaration is not an unresolved using decl");
278  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
279         "Already noted what using decl what instantiated from");
280  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
281}
282
283FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
284  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
285    = InstantiatedFromUnnamedFieldDecl.find(Field);
286  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
287    return 0;
288
289  return Pos->second;
290}
291
292void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
293                                                     FieldDecl *Tmpl) {
294  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
295  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
296  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
297         "Already noted what unnamed field was instantiated from");
298
299  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
300}
301
302namespace {
303  class BeforeInTranslationUnit
304    : std::binary_function<SourceRange, SourceRange, bool> {
305    SourceManager *SourceMgr;
306
307  public:
308    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
309
310    bool operator()(SourceRange X, SourceRange Y) {
311      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
312    }
313  };
314}
315
316/// \brief Determine whether the given comment is a Doxygen-style comment.
317///
318/// \param Start the start of the comment text.
319///
320/// \param End the end of the comment text.
321///
322/// \param Member whether we want to check whether this is a member comment
323/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
324/// we only return true when we find a non-member comment.
325static bool
326isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
327                 bool Member = false) {
328  const char *BufferStart
329    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
330  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
331  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
332
333  if (End - Start < 4)
334    return false;
335
336  assert(Start[0] == '/' && "Not a comment?");
337  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
338    return false;
339  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
340    return false;
341
342  return (Start[3] == '<') == Member;
343}
344
345/// \brief Retrieve the comment associated with the given declaration, if
346/// it has one.
347const char *ASTContext::getCommentForDecl(const Decl *D) {
348  if (!D)
349    return 0;
350
351  // Check whether we have cached a comment string for this declaration
352  // already.
353  llvm::DenseMap<const Decl *, std::string>::iterator Pos
354    = DeclComments.find(D);
355  if (Pos != DeclComments.end())
356    return Pos->second.c_str();
357
358  // If we have an external AST source and have not yet loaded comments from
359  // that source, do so now.
360  if (ExternalSource && !LoadedExternalComments) {
361    std::vector<SourceRange> LoadedComments;
362    ExternalSource->ReadComments(LoadedComments);
363
364    if (!LoadedComments.empty())
365      Comments.insert(Comments.begin(), LoadedComments.begin(),
366                      LoadedComments.end());
367
368    LoadedExternalComments = true;
369  }
370
371  // If there are no comments anywhere, we won't find anything.
372  if (Comments.empty())
373    return 0;
374
375  // If the declaration doesn't map directly to a location in a file, we
376  // can't find the comment.
377  SourceLocation DeclStartLoc = D->getLocStart();
378  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
379    return 0;
380
381  // Find the comment that occurs just before this declaration.
382  std::vector<SourceRange>::iterator LastComment
383    = std::lower_bound(Comments.begin(), Comments.end(),
384                       SourceRange(DeclStartLoc),
385                       BeforeInTranslationUnit(&SourceMgr));
386
387  // Decompose the location for the start of the declaration and find the
388  // beginning of the file buffer.
389  std::pair<FileID, unsigned> DeclStartDecomp
390    = SourceMgr.getDecomposedLoc(DeclStartLoc);
391  const char *FileBufferStart
392    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
393
394  // First check whether we have a comment for a member.
395  if (LastComment != Comments.end() &&
396      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
397      isDoxygenComment(SourceMgr, *LastComment, true)) {
398    std::pair<FileID, unsigned> LastCommentEndDecomp
399      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
400    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
401        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
402          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
403                                     LastCommentEndDecomp.second)) {
404      // The Doxygen member comment comes after the declaration starts and
405      // is on the same line and in the same file as the declaration. This
406      // is the comment we want.
407      std::string &Result = DeclComments[D];
408      Result.append(FileBufferStart +
409                      SourceMgr.getFileOffset(LastComment->getBegin()),
410                    FileBufferStart + LastCommentEndDecomp.second + 1);
411      return Result.c_str();
412    }
413  }
414
415  if (LastComment == Comments.begin())
416    return 0;
417  --LastComment;
418
419  // Decompose the end of the comment.
420  std::pair<FileID, unsigned> LastCommentEndDecomp
421    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
422
423  // If the comment and the declaration aren't in the same file, then they
424  // aren't related.
425  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
426    return 0;
427
428  // Check that we actually have a Doxygen comment.
429  if (!isDoxygenComment(SourceMgr, *LastComment))
430    return 0;
431
432  // Compute the starting line for the declaration and for the end of the
433  // comment (this is expensive).
434  unsigned DeclStartLine
435    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
436  unsigned CommentEndLine
437    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
438                              LastCommentEndDecomp.second);
439
440  // If the comment does not end on the line prior to the declaration, then
441  // the comment is not associated with the declaration at all.
442  if (CommentEndLine + 1 != DeclStartLine)
443    return 0;
444
445  // We have a comment, but there may be more comments on the previous lines.
446  // Keep looking so long as the comments are still Doxygen comments and are
447  // still adjacent.
448  unsigned ExpectedLine
449    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
450  std::vector<SourceRange>::iterator FirstComment = LastComment;
451  while (FirstComment != Comments.begin()) {
452    // Look at the previous comment
453    --FirstComment;
454    std::pair<FileID, unsigned> Decomp
455      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
456
457    // If this previous comment is in a different file, we're done.
458    if (Decomp.first != DeclStartDecomp.first) {
459      ++FirstComment;
460      break;
461    }
462
463    // If this comment is not a Doxygen comment, we're done.
464    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
465      ++FirstComment;
466      break;
467    }
468
469    // If the line number is not what we expected, we're done.
470    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
471    if (Line != ExpectedLine) {
472      ++FirstComment;
473      break;
474    }
475
476    // Set the next expected line number.
477    ExpectedLine
478      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
479  }
480
481  // The iterator range [FirstComment, LastComment] contains all of the
482  // BCPL comments that, together, are associated with this declaration.
483  // Form a single comment block string for this declaration that concatenates
484  // all of these comments.
485  std::string &Result = DeclComments[D];
486  while (FirstComment != LastComment) {
487    std::pair<FileID, unsigned> DecompStart
488      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
489    std::pair<FileID, unsigned> DecompEnd
490      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
491    Result.append(FileBufferStart + DecompStart.second,
492                  FileBufferStart + DecompEnd.second + 1);
493    ++FirstComment;
494  }
495
496  // Append the last comment line.
497  Result.append(FileBufferStart +
498                  SourceMgr.getFileOffset(LastComment->getBegin()),
499                FileBufferStart + LastCommentEndDecomp.second + 1);
500  return Result.c_str();
501}
502
503//===----------------------------------------------------------------------===//
504//                         Type Sizing and Analysis
505//===----------------------------------------------------------------------===//
506
507/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
508/// scalar floating point type.
509const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
510  const BuiltinType *BT = T->getAs<BuiltinType>();
511  assert(BT && "Not a floating point type!");
512  switch (BT->getKind()) {
513  default: assert(0 && "Not a floating point type!");
514  case BuiltinType::Float:      return Target.getFloatFormat();
515  case BuiltinType::Double:     return Target.getDoubleFormat();
516  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
517  }
518}
519
520/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
521/// specified decl.  Note that bitfields do not have a valid alignment, so
522/// this method will assert on them.
523unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
524  unsigned Align = Target.getCharWidth();
525
526  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
527    Align = std::max(Align, AA->getMaxAlignment());
528
529  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
530    QualType T = VD->getType();
531    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
532      unsigned AS = RT->getPointeeType().getAddressSpace();
533      Align = Target.getPointerAlign(AS);
534    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
535      // Incomplete or function types default to 1.
536      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
537        T = cast<ArrayType>(T)->getElementType();
538
539      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
540    }
541  }
542
543  return Align / Target.getCharWidth();
544}
545
546/// getTypeSize - Return the size of the specified type, in bits.  This method
547/// does not work on incomplete types.
548///
549/// FIXME: Pointers into different addr spaces could have different sizes and
550/// alignment requirements: getPointerInfo should take an AddrSpace, this
551/// should take a QualType, &c.
552std::pair<uint64_t, unsigned>
553ASTContext::getTypeInfo(const Type *T) {
554  uint64_t Width=0;
555  unsigned Align=8;
556  switch (T->getTypeClass()) {
557#define TYPE(Class, Base)
558#define ABSTRACT_TYPE(Class, Base)
559#define NON_CANONICAL_TYPE(Class, Base)
560#define DEPENDENT_TYPE(Class, Base) case Type::Class:
561#include "clang/AST/TypeNodes.def"
562    assert(false && "Should not see dependent types");
563    break;
564
565  case Type::FunctionNoProto:
566  case Type::FunctionProto:
567    // GCC extension: alignof(function) = 32 bits
568    Width = 0;
569    Align = 32;
570    break;
571
572  case Type::IncompleteArray:
573  case Type::VariableArray:
574    Width = 0;
575    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
576    break;
577
578  case Type::ConstantArray: {
579    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
580
581    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
582    Width = EltInfo.first*CAT->getSize().getZExtValue();
583    Align = EltInfo.second;
584    break;
585  }
586  case Type::ExtVector:
587  case Type::Vector: {
588    const VectorType *VT = cast<VectorType>(T);
589    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
590    Width = EltInfo.first*VT->getNumElements();
591    Align = Width;
592    // If the alignment is not a power of 2, round up to the next power of 2.
593    // This happens for non-power-of-2 length vectors.
594    if (VT->getNumElements() & (VT->getNumElements()-1)) {
595      Align = llvm::NextPowerOf2(Align);
596      Width = llvm::RoundUpToAlignment(Width, Align);
597    }
598    break;
599  }
600
601  case Type::Builtin:
602    switch (cast<BuiltinType>(T)->getKind()) {
603    default: assert(0 && "Unknown builtin type!");
604    case BuiltinType::Void:
605      // GCC extension: alignof(void) = 8 bits.
606      Width = 0;
607      Align = 8;
608      break;
609
610    case BuiltinType::Bool:
611      Width = Target.getBoolWidth();
612      Align = Target.getBoolAlign();
613      break;
614    case BuiltinType::Char_S:
615    case BuiltinType::Char_U:
616    case BuiltinType::UChar:
617    case BuiltinType::SChar:
618      Width = Target.getCharWidth();
619      Align = Target.getCharAlign();
620      break;
621    case BuiltinType::WChar:
622      Width = Target.getWCharWidth();
623      Align = Target.getWCharAlign();
624      break;
625    case BuiltinType::Char16:
626      Width = Target.getChar16Width();
627      Align = Target.getChar16Align();
628      break;
629    case BuiltinType::Char32:
630      Width = Target.getChar32Width();
631      Align = Target.getChar32Align();
632      break;
633    case BuiltinType::UShort:
634    case BuiltinType::Short:
635      Width = Target.getShortWidth();
636      Align = Target.getShortAlign();
637      break;
638    case BuiltinType::UInt:
639    case BuiltinType::Int:
640      Width = Target.getIntWidth();
641      Align = Target.getIntAlign();
642      break;
643    case BuiltinType::ULong:
644    case BuiltinType::Long:
645      Width = Target.getLongWidth();
646      Align = Target.getLongAlign();
647      break;
648    case BuiltinType::ULongLong:
649    case BuiltinType::LongLong:
650      Width = Target.getLongLongWidth();
651      Align = Target.getLongLongAlign();
652      break;
653    case BuiltinType::Int128:
654    case BuiltinType::UInt128:
655      Width = 128;
656      Align = 128; // int128_t is 128-bit aligned on all targets.
657      break;
658    case BuiltinType::Float:
659      Width = Target.getFloatWidth();
660      Align = Target.getFloatAlign();
661      break;
662    case BuiltinType::Double:
663      Width = Target.getDoubleWidth();
664      Align = Target.getDoubleAlign();
665      break;
666    case BuiltinType::LongDouble:
667      Width = Target.getLongDoubleWidth();
668      Align = Target.getLongDoubleAlign();
669      break;
670    case BuiltinType::NullPtr:
671      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
672      Align = Target.getPointerAlign(0); //   == sizeof(void*)
673      break;
674    }
675    break;
676  case Type::FixedWidthInt:
677    // FIXME: This isn't precisely correct; the width/alignment should depend
678    // on the available types for the target
679    Width = cast<FixedWidthIntType>(T)->getWidth();
680    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
681    Align = Width;
682    break;
683  case Type::ObjCObjectPointer:
684    Width = Target.getPointerWidth(0);
685    Align = Target.getPointerAlign(0);
686    break;
687  case Type::BlockPointer: {
688    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
689    Width = Target.getPointerWidth(AS);
690    Align = Target.getPointerAlign(AS);
691    break;
692  }
693  case Type::Pointer: {
694    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
695    Width = Target.getPointerWidth(AS);
696    Align = Target.getPointerAlign(AS);
697    break;
698  }
699  case Type::LValueReference:
700  case Type::RValueReference:
701    // "When applied to a reference or a reference type, the result is the size
702    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
703    // FIXME: This is wrong for struct layout: a reference in a struct has
704    // pointer size.
705    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
706  case Type::MemberPointer: {
707    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
708    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
709    // If we ever want to support other ABIs this needs to be abstracted.
710
711    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
712    std::pair<uint64_t, unsigned> PtrDiffInfo =
713      getTypeInfo(getPointerDiffType());
714    Width = PtrDiffInfo.first;
715    if (Pointee->isFunctionType())
716      Width *= 2;
717    Align = PtrDiffInfo.second;
718    break;
719  }
720  case Type::Complex: {
721    // Complex types have the same alignment as their elements, but twice the
722    // size.
723    std::pair<uint64_t, unsigned> EltInfo =
724      getTypeInfo(cast<ComplexType>(T)->getElementType());
725    Width = EltInfo.first*2;
726    Align = EltInfo.second;
727    break;
728  }
729  case Type::ObjCInterface: {
730    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
731    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
732    Width = Layout.getSize();
733    Align = Layout.getAlignment();
734    break;
735  }
736  case Type::Record:
737  case Type::Enum: {
738    const TagType *TT = cast<TagType>(T);
739
740    if (TT->getDecl()->isInvalidDecl()) {
741      Width = 1;
742      Align = 1;
743      break;
744    }
745
746    if (const EnumType *ET = dyn_cast<EnumType>(TT))
747      return getTypeInfo(ET->getDecl()->getIntegerType());
748
749    const RecordType *RT = cast<RecordType>(TT);
750    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
751    Width = Layout.getSize();
752    Align = Layout.getAlignment();
753    break;
754  }
755
756  case Type::SubstTemplateTypeParm:
757    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
758                       getReplacementType().getTypePtr());
759
760  case Type::Elaborated:
761    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
762                         .getTypePtr());
763
764  case Type::Typedef: {
765    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
766    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
767      Align = std::max(Aligned->getMaxAlignment(),
768                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
769      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
770    } else
771      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
772    break;
773  }
774
775  case Type::TypeOfExpr:
776    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
777                         .getTypePtr());
778
779  case Type::TypeOf:
780    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
781
782  case Type::Decltype:
783    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
784                        .getTypePtr());
785
786  case Type::QualifiedName:
787    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
788
789  case Type::TemplateSpecialization:
790    assert(getCanonicalType(T) != T &&
791           "Cannot request the size of a dependent type");
792    // FIXME: this is likely to be wrong once we support template
793    // aliases, since a template alias could refer to a typedef that
794    // has an __aligned__ attribute on it.
795    return getTypeInfo(getCanonicalType(T));
796  }
797
798  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
799  return std::make_pair(Width, Align);
800}
801
802/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
803/// type for the current target in bits.  This can be different than the ABI
804/// alignment in cases where it is beneficial for performance to overalign
805/// a data type.
806unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
807  unsigned ABIAlign = getTypeAlign(T);
808
809  // Double and long long should be naturally aligned if possible.
810  if (const ComplexType* CT = T->getAs<ComplexType>())
811    T = CT->getElementType().getTypePtr();
812  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
813      T->isSpecificBuiltinType(BuiltinType::LongLong))
814    return std::max(ABIAlign, (unsigned)getTypeSize(T));
815
816  return ABIAlign;
817}
818
819static void CollectLocalObjCIvars(ASTContext *Ctx,
820                                  const ObjCInterfaceDecl *OI,
821                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
822  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
823       E = OI->ivar_end(); I != E; ++I) {
824    ObjCIvarDecl *IVDecl = *I;
825    if (!IVDecl->isInvalidDecl())
826      Fields.push_back(cast<FieldDecl>(IVDecl));
827  }
828}
829
830void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
831                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
832  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
833    CollectObjCIvars(SuperClass, Fields);
834  CollectLocalObjCIvars(this, OI, Fields);
835}
836
837/// ShallowCollectObjCIvars -
838/// Collect all ivars, including those synthesized, in the current class.
839///
840void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
841                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
842                                 bool CollectSynthesized) {
843  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
844         E = OI->ivar_end(); I != E; ++I) {
845     Ivars.push_back(*I);
846  }
847  if (CollectSynthesized)
848    CollectSynthesizedIvars(OI, Ivars);
849}
850
851void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
852                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
853  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
854       E = PD->prop_end(); I != E; ++I)
855    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
856      Ivars.push_back(Ivar);
857
858  // Also look into nested protocols.
859  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
860       E = PD->protocol_end(); P != E; ++P)
861    CollectProtocolSynthesizedIvars(*P, Ivars);
862}
863
864/// CollectSynthesizedIvars -
865/// This routine collect synthesized ivars for the designated class.
866///
867void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
868                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
869  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
870       E = OI->prop_end(); I != E; ++I) {
871    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
872      Ivars.push_back(Ivar);
873  }
874  // Also look into interface's protocol list for properties declared
875  // in the protocol and whose ivars are synthesized.
876  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
877       PE = OI->protocol_end(); P != PE; ++P) {
878    ObjCProtocolDecl *PD = (*P);
879    CollectProtocolSynthesizedIvars(PD, Ivars);
880  }
881}
882
883/// CollectInheritedProtocols - Collect all protocols in current class and
884/// those inherited by it.
885void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
886                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
887  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
888    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
889         PE = OI->protocol_end(); P != PE; ++P) {
890      ObjCProtocolDecl *Proto = (*P);
891      Protocols.push_back(Proto);
892      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
893           PE = Proto->protocol_end(); P != PE; ++P)
894        CollectInheritedProtocols(*P, Protocols);
895      }
896
897    // Categories of this Interface.
898    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
899         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
900      CollectInheritedProtocols(CDeclChain, Protocols);
901    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
902      while (SD) {
903        CollectInheritedProtocols(SD, Protocols);
904        SD = SD->getSuperClass();
905      }
906    return;
907  }
908  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
909    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
910         PE = OC->protocol_end(); P != PE; ++P) {
911      ObjCProtocolDecl *Proto = (*P);
912      Protocols.push_back(Proto);
913      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
914           PE = Proto->protocol_end(); P != PE; ++P)
915        CollectInheritedProtocols(*P, Protocols);
916    }
917    return;
918  }
919  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
920    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
921         PE = OP->protocol_end(); P != PE; ++P) {
922      ObjCProtocolDecl *Proto = (*P);
923      Protocols.push_back(Proto);
924      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
925           PE = Proto->protocol_end(); P != PE; ++P)
926        CollectInheritedProtocols(*P, Protocols);
927    }
928    return;
929  }
930}
931
932unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
933  unsigned count = 0;
934  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
935       E = PD->prop_end(); I != E; ++I)
936    if ((*I)->getPropertyIvarDecl())
937      ++count;
938
939  // Also look into nested protocols.
940  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
941       E = PD->protocol_end(); P != E; ++P)
942    count += CountProtocolSynthesizedIvars(*P);
943  return count;
944}
945
946unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
947  unsigned count = 0;
948  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
949       E = OI->prop_end(); I != E; ++I) {
950    if ((*I)->getPropertyIvarDecl())
951      ++count;
952  }
953  // Also look into interface's protocol list for properties declared
954  // in the protocol and whose ivars are synthesized.
955  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
956       PE = OI->protocol_end(); P != PE; ++P) {
957    ObjCProtocolDecl *PD = (*P);
958    count += CountProtocolSynthesizedIvars(PD);
959  }
960  return count;
961}
962
963/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
964ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
965  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
966    I = ObjCImpls.find(D);
967  if (I != ObjCImpls.end())
968    return cast<ObjCImplementationDecl>(I->second);
969  return 0;
970}
971/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
972ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
973  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
974    I = ObjCImpls.find(D);
975  if (I != ObjCImpls.end())
976    return cast<ObjCCategoryImplDecl>(I->second);
977  return 0;
978}
979
980/// \brief Set the implementation of ObjCInterfaceDecl.
981void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
982                           ObjCImplementationDecl *ImplD) {
983  assert(IFaceD && ImplD && "Passed null params");
984  ObjCImpls[IFaceD] = ImplD;
985}
986/// \brief Set the implementation of ObjCCategoryDecl.
987void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
988                           ObjCCategoryImplDecl *ImplD) {
989  assert(CatD && ImplD && "Passed null params");
990  ObjCImpls[CatD] = ImplD;
991}
992
993/// \brief Allocate an uninitialized DeclaratorInfo.
994///
995/// The caller should initialize the memory held by DeclaratorInfo using
996/// the TypeLoc wrappers.
997///
998/// \param T the type that will be the basis for type source info. This type
999/// should refer to how the declarator was written in source code, not to
1000/// what type semantic analysis resolved the declarator to.
1001DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
1002                                                 unsigned DataSize) {
1003  if (!DataSize)
1004    DataSize = TypeLoc::getFullDataSizeForType(T);
1005  else
1006    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1007           "incorrect data size provided to CreateDeclaratorInfo!");
1008
1009  DeclaratorInfo *DInfo =
1010    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
1011  new (DInfo) DeclaratorInfo(T);
1012  return DInfo;
1013}
1014
1015DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
1016                                                     SourceLocation L) {
1017  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
1018  DI->getTypeLoc().initialize(L);
1019  return DI;
1020}
1021
1022/// getInterfaceLayoutImpl - Get or compute information about the
1023/// layout of the given interface.
1024///
1025/// \param Impl - If given, also include the layout of the interface's
1026/// implementation. This may differ by including synthesized ivars.
1027const ASTRecordLayout &
1028ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1029                          const ObjCImplementationDecl *Impl) {
1030  assert(!D->isForwardDecl() && "Invalid interface decl!");
1031
1032  // Look up this layout, if already laid out, return what we have.
1033  ObjCContainerDecl *Key =
1034    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1035  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1036    return *Entry;
1037
1038  // Add in synthesized ivar count if laying out an implementation.
1039  if (Impl) {
1040    unsigned FieldCount = D->ivar_size();
1041    unsigned SynthCount = CountSynthesizedIvars(D);
1042    FieldCount += SynthCount;
1043    // If there aren't any sythesized ivars then reuse the interface
1044    // entry. Note we can't cache this because we simply free all
1045    // entries later; however we shouldn't look up implementations
1046    // frequently.
1047    if (SynthCount == 0)
1048      return getObjCLayout(D, 0);
1049  }
1050
1051  const ASTRecordLayout *NewEntry =
1052    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1053  ObjCLayouts[Key] = NewEntry;
1054
1055  return *NewEntry;
1056}
1057
1058const ASTRecordLayout &
1059ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1060  return getObjCLayout(D, 0);
1061}
1062
1063const ASTRecordLayout &
1064ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1065  return getObjCLayout(D->getClassInterface(), D);
1066}
1067
1068/// getASTRecordLayout - Get or compute information about the layout of the
1069/// specified record (struct/union/class), which indicates its size and field
1070/// position information.
1071const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1072  D = D->getDefinition(*this);
1073  assert(D && "Cannot get layout of forward declarations!");
1074
1075  // Look up this layout, if already laid out, return what we have.
1076  // Note that we can't save a reference to the entry because this function
1077  // is recursive.
1078  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1079  if (Entry) return *Entry;
1080
1081  const ASTRecordLayout *NewEntry =
1082    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1083  ASTRecordLayouts[D] = NewEntry;
1084
1085  return *NewEntry;
1086}
1087
1088//===----------------------------------------------------------------------===//
1089//                   Type creation/memoization methods
1090//===----------------------------------------------------------------------===//
1091
1092QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1093  unsigned Fast = Quals.getFastQualifiers();
1094  Quals.removeFastQualifiers();
1095
1096  // Check if we've already instantiated this type.
1097  llvm::FoldingSetNodeID ID;
1098  ExtQuals::Profile(ID, TypeNode, Quals);
1099  void *InsertPos = 0;
1100  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1101    assert(EQ->getQualifiers() == Quals);
1102    QualType T = QualType(EQ, Fast);
1103    return T;
1104  }
1105
1106  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1107  ExtQualNodes.InsertNode(New, InsertPos);
1108  QualType T = QualType(New, Fast);
1109  return T;
1110}
1111
1112QualType ASTContext::getVolatileType(QualType T) {
1113  QualType CanT = getCanonicalType(T);
1114  if (CanT.isVolatileQualified()) return T;
1115
1116  QualifierCollector Quals;
1117  const Type *TypeNode = Quals.strip(T);
1118  Quals.addVolatile();
1119
1120  return getExtQualType(TypeNode, Quals);
1121}
1122
1123QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1124  QualType CanT = getCanonicalType(T);
1125  if (CanT.getAddressSpace() == AddressSpace)
1126    return T;
1127
1128  // If we are composing extended qualifiers together, merge together
1129  // into one ExtQuals node.
1130  QualifierCollector Quals;
1131  const Type *TypeNode = Quals.strip(T);
1132
1133  // If this type already has an address space specified, it cannot get
1134  // another one.
1135  assert(!Quals.hasAddressSpace() &&
1136         "Type cannot be in multiple addr spaces!");
1137  Quals.addAddressSpace(AddressSpace);
1138
1139  return getExtQualType(TypeNode, Quals);
1140}
1141
1142QualType ASTContext::getObjCGCQualType(QualType T,
1143                                       Qualifiers::GC GCAttr) {
1144  QualType CanT = getCanonicalType(T);
1145  if (CanT.getObjCGCAttr() == GCAttr)
1146    return T;
1147
1148  if (T->isPointerType()) {
1149    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1150    if (Pointee->isAnyPointerType()) {
1151      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1152      return getPointerType(ResultType);
1153    }
1154  }
1155
1156  // If we are composing extended qualifiers together, merge together
1157  // into one ExtQuals node.
1158  QualifierCollector Quals;
1159  const Type *TypeNode = Quals.strip(T);
1160
1161  // If this type already has an ObjCGC specified, it cannot get
1162  // another one.
1163  assert(!Quals.hasObjCGCAttr() &&
1164         "Type cannot have multiple ObjCGCs!");
1165  Quals.addObjCGCAttr(GCAttr);
1166
1167  return getExtQualType(TypeNode, Quals);
1168}
1169
1170QualType ASTContext::getNoReturnType(QualType T) {
1171  QualType ResultType;
1172  if (T->isPointerType()) {
1173    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1174    ResultType = getNoReturnType(Pointee);
1175    ResultType = getPointerType(ResultType);
1176  } else if (T->isBlockPointerType()) {
1177    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1178    ResultType = getNoReturnType(Pointee);
1179    ResultType = getBlockPointerType(ResultType);
1180  } else {
1181    assert (T->isFunctionType()
1182            && "can't noreturn qualify non-pointer to function or block type");
1183
1184    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1185      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1186    } else {
1187      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1188      ResultType
1189        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1190                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1191                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1192                          F->getNumExceptions(), F->exception_begin(), true);
1193    }
1194  }
1195
1196  return getQualifiedType(ResultType, T.getLocalQualifiers());
1197}
1198
1199/// getComplexType - Return the uniqued reference to the type for a complex
1200/// number with the specified element type.
1201QualType ASTContext::getComplexType(QualType T) {
1202  // Unique pointers, to guarantee there is only one pointer of a particular
1203  // structure.
1204  llvm::FoldingSetNodeID ID;
1205  ComplexType::Profile(ID, T);
1206
1207  void *InsertPos = 0;
1208  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1209    return QualType(CT, 0);
1210
1211  // If the pointee type isn't canonical, this won't be a canonical type either,
1212  // so fill in the canonical type field.
1213  QualType Canonical;
1214  if (!T.isCanonical()) {
1215    Canonical = getComplexType(getCanonicalType(T));
1216
1217    // Get the new insert position for the node we care about.
1218    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1219    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1220  }
1221  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1222  Types.push_back(New);
1223  ComplexTypes.InsertNode(New, InsertPos);
1224  return QualType(New, 0);
1225}
1226
1227QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1228  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1229     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1230  FixedWidthIntType *&Entry = Map[Width];
1231  if (!Entry)
1232    Entry = new FixedWidthIntType(Width, Signed);
1233  return QualType(Entry, 0);
1234}
1235
1236/// getPointerType - Return the uniqued reference to the type for a pointer to
1237/// the specified type.
1238QualType ASTContext::getPointerType(QualType T) {
1239  // Unique pointers, to guarantee there is only one pointer of a particular
1240  // structure.
1241  llvm::FoldingSetNodeID ID;
1242  PointerType::Profile(ID, T);
1243
1244  void *InsertPos = 0;
1245  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1246    return QualType(PT, 0);
1247
1248  // If the pointee type isn't canonical, this won't be a canonical type either,
1249  // so fill in the canonical type field.
1250  QualType Canonical;
1251  if (!T.isCanonical()) {
1252    Canonical = getPointerType(getCanonicalType(T));
1253
1254    // Get the new insert position for the node we care about.
1255    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1256    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1257  }
1258  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1259  Types.push_back(New);
1260  PointerTypes.InsertNode(New, InsertPos);
1261  return QualType(New, 0);
1262}
1263
1264/// getBlockPointerType - Return the uniqued reference to the type for
1265/// a pointer to the specified block.
1266QualType ASTContext::getBlockPointerType(QualType T) {
1267  assert(T->isFunctionType() && "block of function types only");
1268  // Unique pointers, to guarantee there is only one block of a particular
1269  // structure.
1270  llvm::FoldingSetNodeID ID;
1271  BlockPointerType::Profile(ID, T);
1272
1273  void *InsertPos = 0;
1274  if (BlockPointerType *PT =
1275        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1276    return QualType(PT, 0);
1277
1278  // If the block pointee type isn't canonical, this won't be a canonical
1279  // type either so fill in the canonical type field.
1280  QualType Canonical;
1281  if (!T.isCanonical()) {
1282    Canonical = getBlockPointerType(getCanonicalType(T));
1283
1284    // Get the new insert position for the node we care about.
1285    BlockPointerType *NewIP =
1286      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1287    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1288  }
1289  BlockPointerType *New
1290    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1291  Types.push_back(New);
1292  BlockPointerTypes.InsertNode(New, InsertPos);
1293  return QualType(New, 0);
1294}
1295
1296/// getLValueReferenceType - Return the uniqued reference to the type for an
1297/// lvalue reference to the specified type.
1298QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1299  // Unique pointers, to guarantee there is only one pointer of a particular
1300  // structure.
1301  llvm::FoldingSetNodeID ID;
1302  ReferenceType::Profile(ID, T, SpelledAsLValue);
1303
1304  void *InsertPos = 0;
1305  if (LValueReferenceType *RT =
1306        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1307    return QualType(RT, 0);
1308
1309  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1310
1311  // If the referencee type isn't canonical, this won't be a canonical type
1312  // either, so fill in the canonical type field.
1313  QualType Canonical;
1314  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1315    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1316    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1317
1318    // Get the new insert position for the node we care about.
1319    LValueReferenceType *NewIP =
1320      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1321    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1322  }
1323
1324  LValueReferenceType *New
1325    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1326                                                     SpelledAsLValue);
1327  Types.push_back(New);
1328  LValueReferenceTypes.InsertNode(New, InsertPos);
1329
1330  return QualType(New, 0);
1331}
1332
1333/// getRValueReferenceType - Return the uniqued reference to the type for an
1334/// rvalue reference to the specified type.
1335QualType ASTContext::getRValueReferenceType(QualType T) {
1336  // Unique pointers, to guarantee there is only one pointer of a particular
1337  // structure.
1338  llvm::FoldingSetNodeID ID;
1339  ReferenceType::Profile(ID, T, false);
1340
1341  void *InsertPos = 0;
1342  if (RValueReferenceType *RT =
1343        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1344    return QualType(RT, 0);
1345
1346  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1347
1348  // If the referencee type isn't canonical, this won't be a canonical type
1349  // either, so fill in the canonical type field.
1350  QualType Canonical;
1351  if (InnerRef || !T.isCanonical()) {
1352    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1353    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1354
1355    // Get the new insert position for the node we care about.
1356    RValueReferenceType *NewIP =
1357      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1358    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1359  }
1360
1361  RValueReferenceType *New
1362    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1363  Types.push_back(New);
1364  RValueReferenceTypes.InsertNode(New, InsertPos);
1365  return QualType(New, 0);
1366}
1367
1368/// getMemberPointerType - Return the uniqued reference to the type for a
1369/// member pointer to the specified type, in the specified class.
1370QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1371  // Unique pointers, to guarantee there is only one pointer of a particular
1372  // structure.
1373  llvm::FoldingSetNodeID ID;
1374  MemberPointerType::Profile(ID, T, Cls);
1375
1376  void *InsertPos = 0;
1377  if (MemberPointerType *PT =
1378      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1379    return QualType(PT, 0);
1380
1381  // If the pointee or class type isn't canonical, this won't be a canonical
1382  // type either, so fill in the canonical type field.
1383  QualType Canonical;
1384  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1385    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1386
1387    // Get the new insert position for the node we care about.
1388    MemberPointerType *NewIP =
1389      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1390    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1391  }
1392  MemberPointerType *New
1393    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1394  Types.push_back(New);
1395  MemberPointerTypes.InsertNode(New, InsertPos);
1396  return QualType(New, 0);
1397}
1398
1399/// getConstantArrayType - Return the unique reference to the type for an
1400/// array of the specified element type.
1401QualType ASTContext::getConstantArrayType(QualType EltTy,
1402                                          const llvm::APInt &ArySizeIn,
1403                                          ArrayType::ArraySizeModifier ASM,
1404                                          unsigned EltTypeQuals) {
1405  assert((EltTy->isDependentType() ||
1406          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1407         "Constant array of VLAs is illegal!");
1408
1409  // Convert the array size into a canonical width matching the pointer size for
1410  // the target.
1411  llvm::APInt ArySize(ArySizeIn);
1412  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1413
1414  llvm::FoldingSetNodeID ID;
1415  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1416
1417  void *InsertPos = 0;
1418  if (ConstantArrayType *ATP =
1419      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1420    return QualType(ATP, 0);
1421
1422  // If the element type isn't canonical, this won't be a canonical type either,
1423  // so fill in the canonical type field.
1424  QualType Canonical;
1425  if (!EltTy.isCanonical()) {
1426    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1427                                     ASM, EltTypeQuals);
1428    // Get the new insert position for the node we care about.
1429    ConstantArrayType *NewIP =
1430      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1431    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1432  }
1433
1434  ConstantArrayType *New = new(*this,TypeAlignment)
1435    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1436  ConstantArrayTypes.InsertNode(New, InsertPos);
1437  Types.push_back(New);
1438  return QualType(New, 0);
1439}
1440
1441/// getVariableArrayType - Returns a non-unique reference to the type for a
1442/// variable array of the specified element type.
1443QualType ASTContext::getVariableArrayType(QualType EltTy,
1444                                          Expr *NumElts,
1445                                          ArrayType::ArraySizeModifier ASM,
1446                                          unsigned EltTypeQuals,
1447                                          SourceRange Brackets) {
1448  // Since we don't unique expressions, it isn't possible to unique VLA's
1449  // that have an expression provided for their size.
1450
1451  VariableArrayType *New = new(*this, TypeAlignment)
1452    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1453
1454  VariableArrayTypes.push_back(New);
1455  Types.push_back(New);
1456  return QualType(New, 0);
1457}
1458
1459/// getDependentSizedArrayType - Returns a non-unique reference to
1460/// the type for a dependently-sized array of the specified element
1461/// type.
1462QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1463                                                Expr *NumElts,
1464                                                ArrayType::ArraySizeModifier ASM,
1465                                                unsigned EltTypeQuals,
1466                                                SourceRange Brackets) {
1467  assert((!NumElts || NumElts->isTypeDependent() ||
1468          NumElts->isValueDependent()) &&
1469         "Size must be type- or value-dependent!");
1470
1471  void *InsertPos = 0;
1472  DependentSizedArrayType *Canon = 0;
1473
1474  if (NumElts) {
1475    // Dependently-sized array types that do not have a specified
1476    // number of elements will have their sizes deduced from an
1477    // initializer.
1478    llvm::FoldingSetNodeID ID;
1479    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1480                                     EltTypeQuals, NumElts);
1481
1482    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1483  }
1484
1485  DependentSizedArrayType *New;
1486  if (Canon) {
1487    // We already have a canonical version of this array type; use it as
1488    // the canonical type for a newly-built type.
1489    New = new (*this, TypeAlignment)
1490      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1491                              NumElts, ASM, EltTypeQuals, Brackets);
1492  } else {
1493    QualType CanonEltTy = getCanonicalType(EltTy);
1494    if (CanonEltTy == EltTy) {
1495      New = new (*this, TypeAlignment)
1496        DependentSizedArrayType(*this, EltTy, QualType(),
1497                                NumElts, ASM, EltTypeQuals, Brackets);
1498
1499      if (NumElts)
1500        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1501    } else {
1502      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1503                                                  ASM, EltTypeQuals,
1504                                                  SourceRange());
1505      New = new (*this, TypeAlignment)
1506        DependentSizedArrayType(*this, EltTy, Canon,
1507                                NumElts, ASM, EltTypeQuals, Brackets);
1508    }
1509  }
1510
1511  Types.push_back(New);
1512  return QualType(New, 0);
1513}
1514
1515QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1516                                            ArrayType::ArraySizeModifier ASM,
1517                                            unsigned EltTypeQuals) {
1518  llvm::FoldingSetNodeID ID;
1519  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1520
1521  void *InsertPos = 0;
1522  if (IncompleteArrayType *ATP =
1523       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1524    return QualType(ATP, 0);
1525
1526  // If the element type isn't canonical, this won't be a canonical type
1527  // either, so fill in the canonical type field.
1528  QualType Canonical;
1529
1530  if (!EltTy.isCanonical()) {
1531    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1532                                       ASM, EltTypeQuals);
1533
1534    // Get the new insert position for the node we care about.
1535    IncompleteArrayType *NewIP =
1536      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1537    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1538  }
1539
1540  IncompleteArrayType *New = new (*this, TypeAlignment)
1541    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1542
1543  IncompleteArrayTypes.InsertNode(New, InsertPos);
1544  Types.push_back(New);
1545  return QualType(New, 0);
1546}
1547
1548/// getVectorType - Return the unique reference to a vector type of
1549/// the specified element type and size. VectorType must be a built-in type.
1550QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1551  BuiltinType *baseType;
1552
1553  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1554  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1555
1556  // Check if we've already instantiated a vector of this type.
1557  llvm::FoldingSetNodeID ID;
1558  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1559  void *InsertPos = 0;
1560  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1561    return QualType(VTP, 0);
1562
1563  // If the element type isn't canonical, this won't be a canonical type either,
1564  // so fill in the canonical type field.
1565  QualType Canonical;
1566  if (!vecType.isCanonical()) {
1567    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1568
1569    // Get the new insert position for the node we care about.
1570    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1571    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1572  }
1573  VectorType *New = new (*this, TypeAlignment)
1574    VectorType(vecType, NumElts, Canonical);
1575  VectorTypes.InsertNode(New, InsertPos);
1576  Types.push_back(New);
1577  return QualType(New, 0);
1578}
1579
1580/// getExtVectorType - Return the unique reference to an extended vector type of
1581/// the specified element type and size. VectorType must be a built-in type.
1582QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1583  BuiltinType *baseType;
1584
1585  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1586  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1587
1588  // Check if we've already instantiated a vector of this type.
1589  llvm::FoldingSetNodeID ID;
1590  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1591  void *InsertPos = 0;
1592  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1593    return QualType(VTP, 0);
1594
1595  // If the element type isn't canonical, this won't be a canonical type either,
1596  // so fill in the canonical type field.
1597  QualType Canonical;
1598  if (!vecType.isCanonical()) {
1599    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1600
1601    // Get the new insert position for the node we care about.
1602    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1603    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1604  }
1605  ExtVectorType *New = new (*this, TypeAlignment)
1606    ExtVectorType(vecType, NumElts, Canonical);
1607  VectorTypes.InsertNode(New, InsertPos);
1608  Types.push_back(New);
1609  return QualType(New, 0);
1610}
1611
1612QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1613                                                    Expr *SizeExpr,
1614                                                    SourceLocation AttrLoc) {
1615  llvm::FoldingSetNodeID ID;
1616  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1617                                       SizeExpr);
1618
1619  void *InsertPos = 0;
1620  DependentSizedExtVectorType *Canon
1621    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1622  DependentSizedExtVectorType *New;
1623  if (Canon) {
1624    // We already have a canonical version of this array type; use it as
1625    // the canonical type for a newly-built type.
1626    New = new (*this, TypeAlignment)
1627      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1628                                  SizeExpr, AttrLoc);
1629  } else {
1630    QualType CanonVecTy = getCanonicalType(vecType);
1631    if (CanonVecTy == vecType) {
1632      New = new (*this, TypeAlignment)
1633        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1634                                    AttrLoc);
1635      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1636    } else {
1637      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1638                                                      SourceLocation());
1639      New = new (*this, TypeAlignment)
1640        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1641    }
1642  }
1643
1644  Types.push_back(New);
1645  return QualType(New, 0);
1646}
1647
1648/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1649///
1650QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1651  // Unique functions, to guarantee there is only one function of a particular
1652  // structure.
1653  llvm::FoldingSetNodeID ID;
1654  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1655
1656  void *InsertPos = 0;
1657  if (FunctionNoProtoType *FT =
1658        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1659    return QualType(FT, 0);
1660
1661  QualType Canonical;
1662  if (!ResultTy.isCanonical()) {
1663    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1664
1665    // Get the new insert position for the node we care about.
1666    FunctionNoProtoType *NewIP =
1667      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1668    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1669  }
1670
1671  FunctionNoProtoType *New = new (*this, TypeAlignment)
1672    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1673  Types.push_back(New);
1674  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1675  return QualType(New, 0);
1676}
1677
1678/// getFunctionType - Return a normal function type with a typed argument
1679/// list.  isVariadic indicates whether the argument list includes '...'.
1680QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1681                                     unsigned NumArgs, bool isVariadic,
1682                                     unsigned TypeQuals, bool hasExceptionSpec,
1683                                     bool hasAnyExceptionSpec, unsigned NumExs,
1684                                     const QualType *ExArray, bool NoReturn) {
1685  // Unique functions, to guarantee there is only one function of a particular
1686  // structure.
1687  llvm::FoldingSetNodeID ID;
1688  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1689                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1690                             NumExs, ExArray, NoReturn);
1691
1692  void *InsertPos = 0;
1693  if (FunctionProtoType *FTP =
1694        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1695    return QualType(FTP, 0);
1696
1697  // Determine whether the type being created is already canonical or not.
1698  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1699  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1700    if (!ArgArray[i].isCanonicalAsParam())
1701      isCanonical = false;
1702
1703  // If this type isn't canonical, get the canonical version of it.
1704  // The exception spec is not part of the canonical type.
1705  QualType Canonical;
1706  if (!isCanonical) {
1707    llvm::SmallVector<QualType, 16> CanonicalArgs;
1708    CanonicalArgs.reserve(NumArgs);
1709    for (unsigned i = 0; i != NumArgs; ++i)
1710      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1711
1712    Canonical = getFunctionType(getCanonicalType(ResultTy),
1713                                CanonicalArgs.data(), NumArgs,
1714                                isVariadic, TypeQuals, false,
1715                                false, 0, 0, NoReturn);
1716
1717    // Get the new insert position for the node we care about.
1718    FunctionProtoType *NewIP =
1719      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1720    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1721  }
1722
1723  // FunctionProtoType objects are allocated with extra bytes after them
1724  // for two variable size arrays (for parameter and exception types) at the
1725  // end of them.
1726  FunctionProtoType *FTP =
1727    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1728                                 NumArgs*sizeof(QualType) +
1729                                 NumExs*sizeof(QualType), TypeAlignment);
1730  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1731                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1732                              ExArray, NumExs, Canonical, NoReturn);
1733  Types.push_back(FTP);
1734  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1735  return QualType(FTP, 0);
1736}
1737
1738/// getTypeDeclType - Return the unique reference to the type for the
1739/// specified type declaration.
1740QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1741  assert(Decl && "Passed null for Decl param");
1742  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1743
1744  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1745    return getTypedefType(Typedef);
1746  else if (isa<TemplateTypeParmDecl>(Decl)) {
1747    assert(false && "Template type parameter types are always available.");
1748  } else if (ObjCInterfaceDecl *ObjCInterface
1749               = dyn_cast<ObjCInterfaceDecl>(Decl))
1750    return getObjCInterfaceType(ObjCInterface);
1751
1752  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1753    if (PrevDecl)
1754      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1755    else
1756      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1757  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1758    if (PrevDecl)
1759      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1760    else
1761      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1762  } else
1763    assert(false && "TypeDecl without a type?");
1764
1765  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1766  return QualType(Decl->TypeForDecl, 0);
1767}
1768
1769/// getTypedefType - Return the unique reference to the type for the
1770/// specified typename decl.
1771QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1772  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1773
1774  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1775  Decl->TypeForDecl = new(*this, TypeAlignment)
1776    TypedefType(Type::Typedef, Decl, Canonical);
1777  Types.push_back(Decl->TypeForDecl);
1778  return QualType(Decl->TypeForDecl, 0);
1779}
1780
1781/// \brief Retrieve a substitution-result type.
1782QualType
1783ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1784                                         QualType Replacement) {
1785  assert(Replacement.isCanonical()
1786         && "replacement types must always be canonical");
1787
1788  llvm::FoldingSetNodeID ID;
1789  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1790  void *InsertPos = 0;
1791  SubstTemplateTypeParmType *SubstParm
1792    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1793
1794  if (!SubstParm) {
1795    SubstParm = new (*this, TypeAlignment)
1796      SubstTemplateTypeParmType(Parm, Replacement);
1797    Types.push_back(SubstParm);
1798    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1799  }
1800
1801  return QualType(SubstParm, 0);
1802}
1803
1804/// \brief Retrieve the template type parameter type for a template
1805/// parameter or parameter pack with the given depth, index, and (optionally)
1806/// name.
1807QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1808                                             bool ParameterPack,
1809                                             IdentifierInfo *Name) {
1810  llvm::FoldingSetNodeID ID;
1811  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1812  void *InsertPos = 0;
1813  TemplateTypeParmType *TypeParm
1814    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1815
1816  if (TypeParm)
1817    return QualType(TypeParm, 0);
1818
1819  if (Name) {
1820    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1821    TypeParm = new (*this, TypeAlignment)
1822      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1823  } else
1824    TypeParm = new (*this, TypeAlignment)
1825      TemplateTypeParmType(Depth, Index, ParameterPack);
1826
1827  Types.push_back(TypeParm);
1828  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1829
1830  return QualType(TypeParm, 0);
1831}
1832
1833QualType
1834ASTContext::getTemplateSpecializationType(TemplateName Template,
1835                                          const TemplateArgumentListInfo &Args,
1836                                          QualType Canon) {
1837  unsigned NumArgs = Args.size();
1838
1839  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1840  ArgVec.reserve(NumArgs);
1841  for (unsigned i = 0; i != NumArgs; ++i)
1842    ArgVec.push_back(Args[i].getArgument());
1843
1844  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1845}
1846
1847QualType
1848ASTContext::getTemplateSpecializationType(TemplateName Template,
1849                                          const TemplateArgument *Args,
1850                                          unsigned NumArgs,
1851                                          QualType Canon) {
1852  if (!Canon.isNull())
1853    Canon = getCanonicalType(Canon);
1854  else {
1855    // Build the canonical template specialization type.
1856    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1857    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1858    CanonArgs.reserve(NumArgs);
1859    for (unsigned I = 0; I != NumArgs; ++I)
1860      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1861
1862    // Determine whether this canonical template specialization type already
1863    // exists.
1864    llvm::FoldingSetNodeID ID;
1865    TemplateSpecializationType::Profile(ID, CanonTemplate,
1866                                        CanonArgs.data(), NumArgs, *this);
1867
1868    void *InsertPos = 0;
1869    TemplateSpecializationType *Spec
1870      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1871
1872    if (!Spec) {
1873      // Allocate a new canonical template specialization type.
1874      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1875                            sizeof(TemplateArgument) * NumArgs),
1876                           TypeAlignment);
1877      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1878                                                  CanonArgs.data(), NumArgs,
1879                                                  Canon);
1880      Types.push_back(Spec);
1881      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1882    }
1883
1884    if (Canon.isNull())
1885      Canon = QualType(Spec, 0);
1886    assert(Canon->isDependentType() &&
1887           "Non-dependent template-id type must have a canonical type");
1888  }
1889
1890  // Allocate the (non-canonical) template specialization type, but don't
1891  // try to unique it: these types typically have location information that
1892  // we don't unique and don't want to lose.
1893  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1894                        sizeof(TemplateArgument) * NumArgs),
1895                       TypeAlignment);
1896  TemplateSpecializationType *Spec
1897    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1898                                           Canon);
1899
1900  Types.push_back(Spec);
1901  return QualType(Spec, 0);
1902}
1903
1904QualType
1905ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1906                                 QualType NamedType) {
1907  llvm::FoldingSetNodeID ID;
1908  QualifiedNameType::Profile(ID, NNS, NamedType);
1909
1910  void *InsertPos = 0;
1911  QualifiedNameType *T
1912    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1913  if (T)
1914    return QualType(T, 0);
1915
1916  T = new (*this) QualifiedNameType(NNS, NamedType,
1917                                    getCanonicalType(NamedType));
1918  Types.push_back(T);
1919  QualifiedNameTypes.InsertNode(T, InsertPos);
1920  return QualType(T, 0);
1921}
1922
1923QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1924                                     const IdentifierInfo *Name,
1925                                     QualType Canon) {
1926  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1927
1928  if (Canon.isNull()) {
1929    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1930    if (CanonNNS != NNS)
1931      Canon = getTypenameType(CanonNNS, Name);
1932  }
1933
1934  llvm::FoldingSetNodeID ID;
1935  TypenameType::Profile(ID, NNS, Name);
1936
1937  void *InsertPos = 0;
1938  TypenameType *T
1939    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1940  if (T)
1941    return QualType(T, 0);
1942
1943  T = new (*this) TypenameType(NNS, Name, Canon);
1944  Types.push_back(T);
1945  TypenameTypes.InsertNode(T, InsertPos);
1946  return QualType(T, 0);
1947}
1948
1949QualType
1950ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1951                            const TemplateSpecializationType *TemplateId,
1952                            QualType Canon) {
1953  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1954
1955  if (Canon.isNull()) {
1956    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1957    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1958    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1959      const TemplateSpecializationType *CanonTemplateId
1960        = CanonType->getAs<TemplateSpecializationType>();
1961      assert(CanonTemplateId &&
1962             "Canonical type must also be a template specialization type");
1963      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1964    }
1965  }
1966
1967  llvm::FoldingSetNodeID ID;
1968  TypenameType::Profile(ID, NNS, TemplateId);
1969
1970  void *InsertPos = 0;
1971  TypenameType *T
1972    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1973  if (T)
1974    return QualType(T, 0);
1975
1976  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1977  Types.push_back(T);
1978  TypenameTypes.InsertNode(T, InsertPos);
1979  return QualType(T, 0);
1980}
1981
1982QualType
1983ASTContext::getElaboratedType(QualType UnderlyingType,
1984                              ElaboratedType::TagKind Tag) {
1985  llvm::FoldingSetNodeID ID;
1986  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1987
1988  void *InsertPos = 0;
1989  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1990  if (T)
1991    return QualType(T, 0);
1992
1993  QualType Canon = getCanonicalType(UnderlyingType);
1994
1995  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1996  Types.push_back(T);
1997  ElaboratedTypes.InsertNode(T, InsertPos);
1998  return QualType(T, 0);
1999}
2000
2001/// CmpProtocolNames - Comparison predicate for sorting protocols
2002/// alphabetically.
2003static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2004                            const ObjCProtocolDecl *RHS) {
2005  return LHS->getDeclName() < RHS->getDeclName();
2006}
2007
2008static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2009                                unsigned NumProtocols) {
2010  if (NumProtocols == 0) return true;
2011
2012  for (unsigned i = 1; i != NumProtocols; ++i)
2013    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2014      return false;
2015  return true;
2016}
2017
2018static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2019                                   unsigned &NumProtocols) {
2020  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2021
2022  // Sort protocols, keyed by name.
2023  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2024
2025  // Remove duplicates.
2026  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2027  NumProtocols = ProtocolsEnd-Protocols;
2028}
2029
2030/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2031/// the given interface decl and the conforming protocol list.
2032QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2033                                              ObjCProtocolDecl **Protocols,
2034                                              unsigned NumProtocols) {
2035  llvm::FoldingSetNodeID ID;
2036  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2037
2038  void *InsertPos = 0;
2039  if (ObjCObjectPointerType *QT =
2040              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2041    return QualType(QT, 0);
2042
2043  // Sort the protocol list alphabetically to canonicalize it.
2044  QualType Canonical;
2045  if (!InterfaceT.isCanonical() ||
2046      !areSortedAndUniqued(Protocols, NumProtocols)) {
2047    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2048      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2049      unsigned UniqueCount = NumProtocols;
2050
2051      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2052      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2053
2054      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2055                                           &Sorted[0], UniqueCount);
2056    } else {
2057      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2058                                           Protocols, NumProtocols);
2059    }
2060
2061    // Regenerate InsertPos.
2062    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2063  }
2064
2065  // No Match;
2066  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2067    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2068
2069  Types.push_back(QType);
2070  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2071  return QualType(QType, 0);
2072}
2073
2074/// getObjCInterfaceType - Return the unique reference to the type for the
2075/// specified ObjC interface decl. The list of protocols is optional.
2076QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2077                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2078  llvm::FoldingSetNodeID ID;
2079  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2080
2081  void *InsertPos = 0;
2082  if (ObjCInterfaceType *QT =
2083      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2084    return QualType(QT, 0);
2085
2086  // Sort the protocol list alphabetically to canonicalize it.
2087  QualType Canonical;
2088  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2089    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2090    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2091
2092    unsigned UniqueCount = NumProtocols;
2093    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2094
2095    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2096
2097    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2098  }
2099
2100  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2101    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2102                      Protocols, NumProtocols);
2103
2104  Types.push_back(QType);
2105  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2106  return QualType(QType, 0);
2107}
2108
2109/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2110/// TypeOfExprType AST's (since expression's are never shared). For example,
2111/// multiple declarations that refer to "typeof(x)" all contain different
2112/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2113/// on canonical type's (which are always unique).
2114QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2115  TypeOfExprType *toe;
2116  if (tofExpr->isTypeDependent()) {
2117    llvm::FoldingSetNodeID ID;
2118    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2119
2120    void *InsertPos = 0;
2121    DependentTypeOfExprType *Canon
2122      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2123    if (Canon) {
2124      // We already have a "canonical" version of an identical, dependent
2125      // typeof(expr) type. Use that as our canonical type.
2126      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2127                                          QualType((TypeOfExprType*)Canon, 0));
2128    }
2129    else {
2130      // Build a new, canonical typeof(expr) type.
2131      Canon
2132        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2133      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2134      toe = Canon;
2135    }
2136  } else {
2137    QualType Canonical = getCanonicalType(tofExpr->getType());
2138    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2139  }
2140  Types.push_back(toe);
2141  return QualType(toe, 0);
2142}
2143
2144/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2145/// TypeOfType AST's. The only motivation to unique these nodes would be
2146/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2147/// an issue. This doesn't effect the type checker, since it operates
2148/// on canonical type's (which are always unique).
2149QualType ASTContext::getTypeOfType(QualType tofType) {
2150  QualType Canonical = getCanonicalType(tofType);
2151  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2152  Types.push_back(tot);
2153  return QualType(tot, 0);
2154}
2155
2156/// getDecltypeForExpr - Given an expr, will return the decltype for that
2157/// expression, according to the rules in C++0x [dcl.type.simple]p4
2158static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2159  if (e->isTypeDependent())
2160    return Context.DependentTy;
2161
2162  // If e is an id expression or a class member access, decltype(e) is defined
2163  // as the type of the entity named by e.
2164  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2165    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2166      return VD->getType();
2167  }
2168  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2169    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2170      return FD->getType();
2171  }
2172  // If e is a function call or an invocation of an overloaded operator,
2173  // (parentheses around e are ignored), decltype(e) is defined as the
2174  // return type of that function.
2175  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2176    return CE->getCallReturnType();
2177
2178  QualType T = e->getType();
2179
2180  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2181  // defined as T&, otherwise decltype(e) is defined as T.
2182  if (e->isLvalue(Context) == Expr::LV_Valid)
2183    T = Context.getLValueReferenceType(T);
2184
2185  return T;
2186}
2187
2188/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2189/// DecltypeType AST's. The only motivation to unique these nodes would be
2190/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2191/// an issue. This doesn't effect the type checker, since it operates
2192/// on canonical type's (which are always unique).
2193QualType ASTContext::getDecltypeType(Expr *e) {
2194  DecltypeType *dt;
2195  if (e->isTypeDependent()) {
2196    llvm::FoldingSetNodeID ID;
2197    DependentDecltypeType::Profile(ID, *this, e);
2198
2199    void *InsertPos = 0;
2200    DependentDecltypeType *Canon
2201      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2202    if (Canon) {
2203      // We already have a "canonical" version of an equivalent, dependent
2204      // decltype type. Use that as our canonical type.
2205      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2206                                       QualType((DecltypeType*)Canon, 0));
2207    }
2208    else {
2209      // Build a new, canonical typeof(expr) type.
2210      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2211      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2212      dt = Canon;
2213    }
2214  } else {
2215    QualType T = getDecltypeForExpr(e, *this);
2216    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2217  }
2218  Types.push_back(dt);
2219  return QualType(dt, 0);
2220}
2221
2222/// getTagDeclType - Return the unique reference to the type for the
2223/// specified TagDecl (struct/union/class/enum) decl.
2224QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2225  assert (Decl);
2226  // FIXME: What is the design on getTagDeclType when it requires casting
2227  // away const?  mutable?
2228  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2229}
2230
2231/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2232/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2233/// needs to agree with the definition in <stddef.h>.
2234QualType ASTContext::getSizeType() const {
2235  return getFromTargetType(Target.getSizeType());
2236}
2237
2238/// getSignedWCharType - Return the type of "signed wchar_t".
2239/// Used when in C++, as a GCC extension.
2240QualType ASTContext::getSignedWCharType() const {
2241  // FIXME: derive from "Target" ?
2242  return WCharTy;
2243}
2244
2245/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2246/// Used when in C++, as a GCC extension.
2247QualType ASTContext::getUnsignedWCharType() const {
2248  // FIXME: derive from "Target" ?
2249  return UnsignedIntTy;
2250}
2251
2252/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2253/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2254QualType ASTContext::getPointerDiffType() const {
2255  return getFromTargetType(Target.getPtrDiffType(0));
2256}
2257
2258//===----------------------------------------------------------------------===//
2259//                              Type Operators
2260//===----------------------------------------------------------------------===//
2261
2262CanQualType ASTContext::getCanonicalParamType(QualType T) {
2263  // Push qualifiers into arrays, and then discard any remaining
2264  // qualifiers.
2265  T = getCanonicalType(T);
2266  const Type *Ty = T.getTypePtr();
2267
2268  QualType Result;
2269  if (isa<ArrayType>(Ty)) {
2270    Result = getArrayDecayedType(QualType(Ty,0));
2271  } else if (isa<FunctionType>(Ty)) {
2272    Result = getPointerType(QualType(Ty, 0));
2273  } else {
2274    Result = QualType(Ty, 0);
2275  }
2276
2277  return CanQualType::CreateUnsafe(Result);
2278}
2279
2280/// getCanonicalType - Return the canonical (structural) type corresponding to
2281/// the specified potentially non-canonical type.  The non-canonical version
2282/// of a type may have many "decorated" versions of types.  Decorators can
2283/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2284/// to be free of any of these, allowing two canonical types to be compared
2285/// for exact equality with a simple pointer comparison.
2286CanQualType ASTContext::getCanonicalType(QualType T) {
2287  QualifierCollector Quals;
2288  const Type *Ptr = Quals.strip(T);
2289  QualType CanType = Ptr->getCanonicalTypeInternal();
2290
2291  // The canonical internal type will be the canonical type *except*
2292  // that we push type qualifiers down through array types.
2293
2294  // If there are no new qualifiers to push down, stop here.
2295  if (!Quals.hasQualifiers())
2296    return CanQualType::CreateUnsafe(CanType);
2297
2298  // If the type qualifiers are on an array type, get the canonical
2299  // type of the array with the qualifiers applied to the element
2300  // type.
2301  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2302  if (!AT)
2303    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2304
2305  // Get the canonical version of the element with the extra qualifiers on it.
2306  // This can recursively sink qualifiers through multiple levels of arrays.
2307  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2308  NewEltTy = getCanonicalType(NewEltTy);
2309
2310  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2311    return CanQualType::CreateUnsafe(
2312             getConstantArrayType(NewEltTy, CAT->getSize(),
2313                                  CAT->getSizeModifier(),
2314                                  CAT->getIndexTypeCVRQualifiers()));
2315  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2316    return CanQualType::CreateUnsafe(
2317             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2318                                    IAT->getIndexTypeCVRQualifiers()));
2319
2320  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2321    return CanQualType::CreateUnsafe(
2322             getDependentSizedArrayType(NewEltTy,
2323                                        DSAT->getSizeExpr() ?
2324                                          DSAT->getSizeExpr()->Retain() : 0,
2325                                        DSAT->getSizeModifier(),
2326                                        DSAT->getIndexTypeCVRQualifiers(),
2327                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2328
2329  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2330  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2331                                                        VAT->getSizeExpr() ?
2332                                              VAT->getSizeExpr()->Retain() : 0,
2333                                                        VAT->getSizeModifier(),
2334                                              VAT->getIndexTypeCVRQualifiers(),
2335                                                     VAT->getBracketsRange()));
2336}
2337
2338TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2339  // If this template name refers to a template, the canonical
2340  // template name merely stores the template itself.
2341  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2342    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2343
2344  // If this template name refers to a set of overloaded function templates,
2345  /// the canonical template name merely stores the set of function templates.
2346  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2347    OverloadedFunctionDecl *CanonOvl = 0;
2348    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2349                                                FEnd = Ovl->function_end();
2350         F != FEnd; ++F) {
2351      Decl *Canon = F->get()->getCanonicalDecl();
2352      if (CanonOvl || Canon != F->get()) {
2353        if (!CanonOvl)
2354          CanonOvl = OverloadedFunctionDecl::Create(*this,
2355                                                    Ovl->getDeclContext(),
2356                                                    Ovl->getDeclName());
2357
2358        CanonOvl->addOverload(
2359                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2360      }
2361    }
2362
2363    return TemplateName(CanonOvl? CanonOvl : Ovl);
2364  }
2365
2366  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2367  assert(DTN && "Non-dependent template names must refer to template decls.");
2368  return DTN->CanonicalTemplateName;
2369}
2370
2371bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2372  X = getCanonicalTemplateName(X);
2373  Y = getCanonicalTemplateName(Y);
2374  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2375}
2376
2377TemplateArgument
2378ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2379  switch (Arg.getKind()) {
2380    case TemplateArgument::Null:
2381      return Arg;
2382
2383    case TemplateArgument::Expression:
2384      return Arg;
2385
2386    case TemplateArgument::Declaration:
2387      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2388
2389    case TemplateArgument::Template:
2390      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2391
2392    case TemplateArgument::Integral:
2393      return TemplateArgument(*Arg.getAsIntegral(),
2394                              getCanonicalType(Arg.getIntegralType()));
2395
2396    case TemplateArgument::Type:
2397      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2398
2399    case TemplateArgument::Pack: {
2400      // FIXME: Allocate in ASTContext
2401      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2402      unsigned Idx = 0;
2403      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2404                                        AEnd = Arg.pack_end();
2405           A != AEnd; (void)++A, ++Idx)
2406        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2407
2408      TemplateArgument Result;
2409      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2410      return Result;
2411    }
2412  }
2413
2414  // Silence GCC warning
2415  assert(false && "Unhandled template argument kind");
2416  return TemplateArgument();
2417}
2418
2419NestedNameSpecifier *
2420ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2421  if (!NNS)
2422    return 0;
2423
2424  switch (NNS->getKind()) {
2425  case NestedNameSpecifier::Identifier:
2426    // Canonicalize the prefix but keep the identifier the same.
2427    return NestedNameSpecifier::Create(*this,
2428                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2429                                       NNS->getAsIdentifier());
2430
2431  case NestedNameSpecifier::Namespace:
2432    // A namespace is canonical; build a nested-name-specifier with
2433    // this namespace and no prefix.
2434    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2435
2436  case NestedNameSpecifier::TypeSpec:
2437  case NestedNameSpecifier::TypeSpecWithTemplate: {
2438    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2439    return NestedNameSpecifier::Create(*this, 0,
2440                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2441                                       T.getTypePtr());
2442  }
2443
2444  case NestedNameSpecifier::Global:
2445    // The global specifier is canonical and unique.
2446    return NNS;
2447  }
2448
2449  // Required to silence a GCC warning
2450  return 0;
2451}
2452
2453
2454const ArrayType *ASTContext::getAsArrayType(QualType T) {
2455  // Handle the non-qualified case efficiently.
2456  if (!T.hasLocalQualifiers()) {
2457    // Handle the common positive case fast.
2458    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2459      return AT;
2460  }
2461
2462  // Handle the common negative case fast.
2463  QualType CType = T->getCanonicalTypeInternal();
2464  if (!isa<ArrayType>(CType))
2465    return 0;
2466
2467  // Apply any qualifiers from the array type to the element type.  This
2468  // implements C99 6.7.3p8: "If the specification of an array type includes
2469  // any type qualifiers, the element type is so qualified, not the array type."
2470
2471  // If we get here, we either have type qualifiers on the type, or we have
2472  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2473  // we must propagate them down into the element type.
2474
2475  QualifierCollector Qs;
2476  const Type *Ty = Qs.strip(T.getDesugaredType());
2477
2478  // If we have a simple case, just return now.
2479  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2480  if (ATy == 0 || Qs.empty())
2481    return ATy;
2482
2483  // Otherwise, we have an array and we have qualifiers on it.  Push the
2484  // qualifiers into the array element type and return a new array type.
2485  // Get the canonical version of the element with the extra qualifiers on it.
2486  // This can recursively sink qualifiers through multiple levels of arrays.
2487  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2488
2489  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2490    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2491                                                CAT->getSizeModifier(),
2492                                           CAT->getIndexTypeCVRQualifiers()));
2493  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2494    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2495                                                  IAT->getSizeModifier(),
2496                                           IAT->getIndexTypeCVRQualifiers()));
2497
2498  if (const DependentSizedArrayType *DSAT
2499        = dyn_cast<DependentSizedArrayType>(ATy))
2500    return cast<ArrayType>(
2501                     getDependentSizedArrayType(NewEltTy,
2502                                                DSAT->getSizeExpr() ?
2503                                              DSAT->getSizeExpr()->Retain() : 0,
2504                                                DSAT->getSizeModifier(),
2505                                              DSAT->getIndexTypeCVRQualifiers(),
2506                                                DSAT->getBracketsRange()));
2507
2508  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2509  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2510                                              VAT->getSizeExpr() ?
2511                                              VAT->getSizeExpr()->Retain() : 0,
2512                                              VAT->getSizeModifier(),
2513                                              VAT->getIndexTypeCVRQualifiers(),
2514                                              VAT->getBracketsRange()));
2515}
2516
2517
2518/// getArrayDecayedType - Return the properly qualified result of decaying the
2519/// specified array type to a pointer.  This operation is non-trivial when
2520/// handling typedefs etc.  The canonical type of "T" must be an array type,
2521/// this returns a pointer to a properly qualified element of the array.
2522///
2523/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2524QualType ASTContext::getArrayDecayedType(QualType Ty) {
2525  // Get the element type with 'getAsArrayType' so that we don't lose any
2526  // typedefs in the element type of the array.  This also handles propagation
2527  // of type qualifiers from the array type into the element type if present
2528  // (C99 6.7.3p8).
2529  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2530  assert(PrettyArrayType && "Not an array type!");
2531
2532  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2533
2534  // int x[restrict 4] ->  int *restrict
2535  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2536}
2537
2538QualType ASTContext::getBaseElementType(QualType QT) {
2539  QualifierCollector Qs;
2540  while (true) {
2541    const Type *UT = Qs.strip(QT);
2542    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2543      QT = AT->getElementType();
2544    } else {
2545      return Qs.apply(QT);
2546    }
2547  }
2548}
2549
2550QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2551  QualType ElemTy = AT->getElementType();
2552
2553  if (const ArrayType *AT = getAsArrayType(ElemTy))
2554    return getBaseElementType(AT);
2555
2556  return ElemTy;
2557}
2558
2559/// getConstantArrayElementCount - Returns number of constant array elements.
2560uint64_t
2561ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2562  uint64_t ElementCount = 1;
2563  do {
2564    ElementCount *= CA->getSize().getZExtValue();
2565    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2566  } while (CA);
2567  return ElementCount;
2568}
2569
2570/// getFloatingRank - Return a relative rank for floating point types.
2571/// This routine will assert if passed a built-in type that isn't a float.
2572static FloatingRank getFloatingRank(QualType T) {
2573  if (const ComplexType *CT = T->getAs<ComplexType>())
2574    return getFloatingRank(CT->getElementType());
2575
2576  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2577  switch (T->getAs<BuiltinType>()->getKind()) {
2578  default: assert(0 && "getFloatingRank(): not a floating type");
2579  case BuiltinType::Float:      return FloatRank;
2580  case BuiltinType::Double:     return DoubleRank;
2581  case BuiltinType::LongDouble: return LongDoubleRank;
2582  }
2583}
2584
2585/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2586/// point or a complex type (based on typeDomain/typeSize).
2587/// 'typeDomain' is a real floating point or complex type.
2588/// 'typeSize' is a real floating point or complex type.
2589QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2590                                                       QualType Domain) const {
2591  FloatingRank EltRank = getFloatingRank(Size);
2592  if (Domain->isComplexType()) {
2593    switch (EltRank) {
2594    default: assert(0 && "getFloatingRank(): illegal value for rank");
2595    case FloatRank:      return FloatComplexTy;
2596    case DoubleRank:     return DoubleComplexTy;
2597    case LongDoubleRank: return LongDoubleComplexTy;
2598    }
2599  }
2600
2601  assert(Domain->isRealFloatingType() && "Unknown domain!");
2602  switch (EltRank) {
2603  default: assert(0 && "getFloatingRank(): illegal value for rank");
2604  case FloatRank:      return FloatTy;
2605  case DoubleRank:     return DoubleTy;
2606  case LongDoubleRank: return LongDoubleTy;
2607  }
2608}
2609
2610/// getFloatingTypeOrder - Compare the rank of the two specified floating
2611/// point types, ignoring the domain of the type (i.e. 'double' ==
2612/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2613/// LHS < RHS, return -1.
2614int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2615  FloatingRank LHSR = getFloatingRank(LHS);
2616  FloatingRank RHSR = getFloatingRank(RHS);
2617
2618  if (LHSR == RHSR)
2619    return 0;
2620  if (LHSR > RHSR)
2621    return 1;
2622  return -1;
2623}
2624
2625/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2626/// routine will assert if passed a built-in type that isn't an integer or enum,
2627/// or if it is not canonicalized.
2628unsigned ASTContext::getIntegerRank(Type *T) {
2629  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2630  if (EnumType* ET = dyn_cast<EnumType>(T))
2631    T = ET->getDecl()->getIntegerType().getTypePtr();
2632
2633  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2634    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2635
2636  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2637    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2638
2639  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2640    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2641
2642  // There are two things which impact the integer rank: the width, and
2643  // the ordering of builtins.  The builtin ordering is encoded in the
2644  // bottom three bits; the width is encoded in the bits above that.
2645  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2646    return FWIT->getWidth() << 3;
2647
2648  switch (cast<BuiltinType>(T)->getKind()) {
2649  default: assert(0 && "getIntegerRank(): not a built-in integer");
2650  case BuiltinType::Bool:
2651    return 1 + (getIntWidth(BoolTy) << 3);
2652  case BuiltinType::Char_S:
2653  case BuiltinType::Char_U:
2654  case BuiltinType::SChar:
2655  case BuiltinType::UChar:
2656    return 2 + (getIntWidth(CharTy) << 3);
2657  case BuiltinType::Short:
2658  case BuiltinType::UShort:
2659    return 3 + (getIntWidth(ShortTy) << 3);
2660  case BuiltinType::Int:
2661  case BuiltinType::UInt:
2662    return 4 + (getIntWidth(IntTy) << 3);
2663  case BuiltinType::Long:
2664  case BuiltinType::ULong:
2665    return 5 + (getIntWidth(LongTy) << 3);
2666  case BuiltinType::LongLong:
2667  case BuiltinType::ULongLong:
2668    return 6 + (getIntWidth(LongLongTy) << 3);
2669  case BuiltinType::Int128:
2670  case BuiltinType::UInt128:
2671    return 7 + (getIntWidth(Int128Ty) << 3);
2672  }
2673}
2674
2675/// \brief Whether this is a promotable bitfield reference according
2676/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2677///
2678/// \returns the type this bit-field will promote to, or NULL if no
2679/// promotion occurs.
2680QualType ASTContext::isPromotableBitField(Expr *E) {
2681  FieldDecl *Field = E->getBitField();
2682  if (!Field)
2683    return QualType();
2684
2685  QualType FT = Field->getType();
2686
2687  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2688  uint64_t BitWidth = BitWidthAP.getZExtValue();
2689  uint64_t IntSize = getTypeSize(IntTy);
2690  // GCC extension compatibility: if the bit-field size is less than or equal
2691  // to the size of int, it gets promoted no matter what its type is.
2692  // For instance, unsigned long bf : 4 gets promoted to signed int.
2693  if (BitWidth < IntSize)
2694    return IntTy;
2695
2696  if (BitWidth == IntSize)
2697    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2698
2699  // Types bigger than int are not subject to promotions, and therefore act
2700  // like the base type.
2701  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2702  // is ridiculous.
2703  return QualType();
2704}
2705
2706/// getPromotedIntegerType - Returns the type that Promotable will
2707/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2708/// integer type.
2709QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2710  assert(!Promotable.isNull());
2711  assert(Promotable->isPromotableIntegerType());
2712  if (Promotable->isSignedIntegerType())
2713    return IntTy;
2714  uint64_t PromotableSize = getTypeSize(Promotable);
2715  uint64_t IntSize = getTypeSize(IntTy);
2716  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2717  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2718}
2719
2720/// getIntegerTypeOrder - Returns the highest ranked integer type:
2721/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2722/// LHS < RHS, return -1.
2723int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2724  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2725  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2726  if (LHSC == RHSC) return 0;
2727
2728  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2729  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2730
2731  unsigned LHSRank = getIntegerRank(LHSC);
2732  unsigned RHSRank = getIntegerRank(RHSC);
2733
2734  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2735    if (LHSRank == RHSRank) return 0;
2736    return LHSRank > RHSRank ? 1 : -1;
2737  }
2738
2739  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2740  if (LHSUnsigned) {
2741    // If the unsigned [LHS] type is larger, return it.
2742    if (LHSRank >= RHSRank)
2743      return 1;
2744
2745    // If the signed type can represent all values of the unsigned type, it
2746    // wins.  Because we are dealing with 2's complement and types that are
2747    // powers of two larger than each other, this is always safe.
2748    return -1;
2749  }
2750
2751  // If the unsigned [RHS] type is larger, return it.
2752  if (RHSRank >= LHSRank)
2753    return -1;
2754
2755  // If the signed type can represent all values of the unsigned type, it
2756  // wins.  Because we are dealing with 2's complement and types that are
2757  // powers of two larger than each other, this is always safe.
2758  return 1;
2759}
2760
2761static RecordDecl *
2762CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2763                 SourceLocation L, IdentifierInfo *Id) {
2764  if (Ctx.getLangOptions().CPlusPlus)
2765    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2766  else
2767    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2768}
2769
2770// getCFConstantStringType - Return the type used for constant CFStrings.
2771QualType ASTContext::getCFConstantStringType() {
2772  if (!CFConstantStringTypeDecl) {
2773    CFConstantStringTypeDecl =
2774      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2775                       &Idents.get("NSConstantString"));
2776
2777    QualType FieldTypes[4];
2778
2779    // const int *isa;
2780    FieldTypes[0] = getPointerType(IntTy.withConst());
2781    // int flags;
2782    FieldTypes[1] = IntTy;
2783    // const char *str;
2784    FieldTypes[2] = getPointerType(CharTy.withConst());
2785    // long length;
2786    FieldTypes[3] = LongTy;
2787
2788    // Create fields
2789    for (unsigned i = 0; i < 4; ++i) {
2790      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2791                                           SourceLocation(), 0,
2792                                           FieldTypes[i], /*DInfo=*/0,
2793                                           /*BitWidth=*/0,
2794                                           /*Mutable=*/false);
2795      CFConstantStringTypeDecl->addDecl(Field);
2796    }
2797
2798    CFConstantStringTypeDecl->completeDefinition(*this);
2799  }
2800
2801  return getTagDeclType(CFConstantStringTypeDecl);
2802}
2803
2804void ASTContext::setCFConstantStringType(QualType T) {
2805  const RecordType *Rec = T->getAs<RecordType>();
2806  assert(Rec && "Invalid CFConstantStringType");
2807  CFConstantStringTypeDecl = Rec->getDecl();
2808}
2809
2810QualType ASTContext::getObjCFastEnumerationStateType() {
2811  if (!ObjCFastEnumerationStateTypeDecl) {
2812    ObjCFastEnumerationStateTypeDecl =
2813      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2814                       &Idents.get("__objcFastEnumerationState"));
2815
2816    QualType FieldTypes[] = {
2817      UnsignedLongTy,
2818      getPointerType(ObjCIdTypedefType),
2819      getPointerType(UnsignedLongTy),
2820      getConstantArrayType(UnsignedLongTy,
2821                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2822    };
2823
2824    for (size_t i = 0; i < 4; ++i) {
2825      FieldDecl *Field = FieldDecl::Create(*this,
2826                                           ObjCFastEnumerationStateTypeDecl,
2827                                           SourceLocation(), 0,
2828                                           FieldTypes[i], /*DInfo=*/0,
2829                                           /*BitWidth=*/0,
2830                                           /*Mutable=*/false);
2831      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2832    }
2833
2834    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2835  }
2836
2837  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2838}
2839
2840QualType ASTContext::getBlockDescriptorType() {
2841  if (BlockDescriptorType)
2842    return getTagDeclType(BlockDescriptorType);
2843
2844  RecordDecl *T;
2845  // FIXME: Needs the FlagAppleBlock bit.
2846  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2847                       &Idents.get("__block_descriptor"));
2848
2849  QualType FieldTypes[] = {
2850    UnsignedLongTy,
2851    UnsignedLongTy,
2852  };
2853
2854  const char *FieldNames[] = {
2855    "reserved",
2856    "Size"
2857  };
2858
2859  for (size_t i = 0; i < 2; ++i) {
2860    FieldDecl *Field = FieldDecl::Create(*this,
2861                                         T,
2862                                         SourceLocation(),
2863                                         &Idents.get(FieldNames[i]),
2864                                         FieldTypes[i], /*DInfo=*/0,
2865                                         /*BitWidth=*/0,
2866                                         /*Mutable=*/false);
2867    T->addDecl(Field);
2868  }
2869
2870  T->completeDefinition(*this);
2871
2872  BlockDescriptorType = T;
2873
2874  return getTagDeclType(BlockDescriptorType);
2875}
2876
2877void ASTContext::setBlockDescriptorType(QualType T) {
2878  const RecordType *Rec = T->getAs<RecordType>();
2879  assert(Rec && "Invalid BlockDescriptorType");
2880  BlockDescriptorType = Rec->getDecl();
2881}
2882
2883QualType ASTContext::getBlockDescriptorExtendedType() {
2884  if (BlockDescriptorExtendedType)
2885    return getTagDeclType(BlockDescriptorExtendedType);
2886
2887  RecordDecl *T;
2888  // FIXME: Needs the FlagAppleBlock bit.
2889  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2890                       &Idents.get("__block_descriptor_withcopydispose"));
2891
2892  QualType FieldTypes[] = {
2893    UnsignedLongTy,
2894    UnsignedLongTy,
2895    getPointerType(VoidPtrTy),
2896    getPointerType(VoidPtrTy)
2897  };
2898
2899  const char *FieldNames[] = {
2900    "reserved",
2901    "Size",
2902    "CopyFuncPtr",
2903    "DestroyFuncPtr"
2904  };
2905
2906  for (size_t i = 0; i < 4; ++i) {
2907    FieldDecl *Field = FieldDecl::Create(*this,
2908                                         T,
2909                                         SourceLocation(),
2910                                         &Idents.get(FieldNames[i]),
2911                                         FieldTypes[i], /*DInfo=*/0,
2912                                         /*BitWidth=*/0,
2913                                         /*Mutable=*/false);
2914    T->addDecl(Field);
2915  }
2916
2917  T->completeDefinition(*this);
2918
2919  BlockDescriptorExtendedType = T;
2920
2921  return getTagDeclType(BlockDescriptorExtendedType);
2922}
2923
2924void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2925  const RecordType *Rec = T->getAs<RecordType>();
2926  assert(Rec && "Invalid BlockDescriptorType");
2927  BlockDescriptorExtendedType = Rec->getDecl();
2928}
2929
2930bool ASTContext::BlockRequiresCopying(QualType Ty) {
2931  if (Ty->isBlockPointerType())
2932    return true;
2933  if (isObjCNSObjectType(Ty))
2934    return true;
2935  if (Ty->isObjCObjectPointerType())
2936    return true;
2937  return false;
2938}
2939
2940QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2941  //  type = struct __Block_byref_1_X {
2942  //    void *__isa;
2943  //    struct __Block_byref_1_X *__forwarding;
2944  //    unsigned int __flags;
2945  //    unsigned int __size;
2946  //    void *__copy_helper;		// as needed
2947  //    void *__destroy_help		// as needed
2948  //    int X;
2949  //  } *
2950
2951  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2952
2953  // FIXME: Move up
2954  static unsigned int UniqueBlockByRefTypeID = 0;
2955  llvm::SmallString<36> Name;
2956  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2957                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2958  RecordDecl *T;
2959  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2960                       &Idents.get(Name.str()));
2961  T->startDefinition();
2962  QualType Int32Ty = IntTy;
2963  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2964  QualType FieldTypes[] = {
2965    getPointerType(VoidPtrTy),
2966    getPointerType(getTagDeclType(T)),
2967    Int32Ty,
2968    Int32Ty,
2969    getPointerType(VoidPtrTy),
2970    getPointerType(VoidPtrTy),
2971    Ty
2972  };
2973
2974  const char *FieldNames[] = {
2975    "__isa",
2976    "__forwarding",
2977    "__flags",
2978    "__size",
2979    "__copy_helper",
2980    "__destroy_helper",
2981    DeclName,
2982  };
2983
2984  for (size_t i = 0; i < 7; ++i) {
2985    if (!HasCopyAndDispose && i >=4 && i <= 5)
2986      continue;
2987    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2988                                         &Idents.get(FieldNames[i]),
2989                                         FieldTypes[i], /*DInfo=*/0,
2990                                         /*BitWidth=*/0, /*Mutable=*/false);
2991    T->addDecl(Field);
2992  }
2993
2994  T->completeDefinition(*this);
2995
2996  return getPointerType(getTagDeclType(T));
2997}
2998
2999
3000QualType ASTContext::getBlockParmType(
3001  bool BlockHasCopyDispose,
3002  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3003  // FIXME: Move up
3004  static unsigned int UniqueBlockParmTypeID = 0;
3005  llvm::SmallString<36> Name;
3006  llvm::raw_svector_ostream(Name) << "__block_literal_"
3007                                  << ++UniqueBlockParmTypeID;
3008  RecordDecl *T;
3009  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3010                       &Idents.get(Name.str()));
3011  QualType FieldTypes[] = {
3012    getPointerType(VoidPtrTy),
3013    IntTy,
3014    IntTy,
3015    getPointerType(VoidPtrTy),
3016    (BlockHasCopyDispose ?
3017     getPointerType(getBlockDescriptorExtendedType()) :
3018     getPointerType(getBlockDescriptorType()))
3019  };
3020
3021  const char *FieldNames[] = {
3022    "__isa",
3023    "__flags",
3024    "__reserved",
3025    "__FuncPtr",
3026    "__descriptor"
3027  };
3028
3029  for (size_t i = 0; i < 5; ++i) {
3030    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3031                                         &Idents.get(FieldNames[i]),
3032                                         FieldTypes[i], /*DInfo=*/0,
3033                                         /*BitWidth=*/0, /*Mutable=*/false);
3034    T->addDecl(Field);
3035  }
3036
3037  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3038    const Expr *E = BlockDeclRefDecls[i];
3039    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3040    clang::IdentifierInfo *Name = 0;
3041    if (BDRE) {
3042      const ValueDecl *D = BDRE->getDecl();
3043      Name = &Idents.get(D->getName());
3044    }
3045    QualType FieldType = E->getType();
3046
3047    if (BDRE && BDRE->isByRef())
3048      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3049                                 FieldType);
3050
3051    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3052                                         Name, FieldType, /*DInfo=*/0,
3053                                         /*BitWidth=*/0, /*Mutable=*/false);
3054    T->addDecl(Field);
3055  }
3056
3057  T->completeDefinition(*this);
3058
3059  return getPointerType(getTagDeclType(T));
3060}
3061
3062void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3063  const RecordType *Rec = T->getAs<RecordType>();
3064  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3065  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3066}
3067
3068// This returns true if a type has been typedefed to BOOL:
3069// typedef <type> BOOL;
3070static bool isTypeTypedefedAsBOOL(QualType T) {
3071  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3072    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3073      return II->isStr("BOOL");
3074
3075  return false;
3076}
3077
3078/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3079/// purpose.
3080int ASTContext::getObjCEncodingTypeSize(QualType type) {
3081  uint64_t sz = getTypeSize(type);
3082
3083  // Make all integer and enum types at least as large as an int
3084  if (sz > 0 && type->isIntegralType())
3085    sz = std::max(sz, getTypeSize(IntTy));
3086  // Treat arrays as pointers, since that's how they're passed in.
3087  else if (type->isArrayType())
3088    sz = getTypeSize(VoidPtrTy);
3089  return sz / getTypeSize(CharTy);
3090}
3091
3092/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3093/// declaration.
3094void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3095                                             std::string& S) {
3096  const BlockDecl *Decl = Expr->getBlockDecl();
3097  QualType BlockTy =
3098      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3099  // Encode result type.
3100  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3101  // Compute size of all parameters.
3102  // Start with computing size of a pointer in number of bytes.
3103  // FIXME: There might(should) be a better way of doing this computation!
3104  SourceLocation Loc;
3105  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3106  int ParmOffset = PtrSize;
3107  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3108       E = Decl->param_end(); PI != E; ++PI) {
3109    QualType PType = (*PI)->getType();
3110    int sz = getObjCEncodingTypeSize(PType);
3111    assert (sz > 0 && "BlockExpr - Incomplete param type");
3112    ParmOffset += sz;
3113  }
3114  // Size of the argument frame
3115  S += llvm::utostr(ParmOffset);
3116  // Block pointer and offset.
3117  S += "@?0";
3118  ParmOffset = PtrSize;
3119
3120  // Argument types.
3121  ParmOffset = PtrSize;
3122  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3123       Decl->param_end(); PI != E; ++PI) {
3124    ParmVarDecl *PVDecl = *PI;
3125    QualType PType = PVDecl->getOriginalType();
3126    if (const ArrayType *AT =
3127          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3128      // Use array's original type only if it has known number of
3129      // elements.
3130      if (!isa<ConstantArrayType>(AT))
3131        PType = PVDecl->getType();
3132    } else if (PType->isFunctionType())
3133      PType = PVDecl->getType();
3134    getObjCEncodingForType(PType, S);
3135    S += llvm::utostr(ParmOffset);
3136    ParmOffset += getObjCEncodingTypeSize(PType);
3137  }
3138}
3139
3140/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3141/// declaration.
3142void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3143                                              std::string& S) {
3144  // FIXME: This is not very efficient.
3145  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3146  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3147  // Encode result type.
3148  getObjCEncodingForType(Decl->getResultType(), S);
3149  // Compute size of all parameters.
3150  // Start with computing size of a pointer in number of bytes.
3151  // FIXME: There might(should) be a better way of doing this computation!
3152  SourceLocation Loc;
3153  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3154  // The first two arguments (self and _cmd) are pointers; account for
3155  // their size.
3156  int ParmOffset = 2 * PtrSize;
3157  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3158       E = Decl->param_end(); PI != E; ++PI) {
3159    QualType PType = (*PI)->getType();
3160    int sz = getObjCEncodingTypeSize(PType);
3161    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3162    ParmOffset += sz;
3163  }
3164  S += llvm::utostr(ParmOffset);
3165  S += "@0:";
3166  S += llvm::utostr(PtrSize);
3167
3168  // Argument types.
3169  ParmOffset = 2 * PtrSize;
3170  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3171       E = Decl->param_end(); PI != E; ++PI) {
3172    ParmVarDecl *PVDecl = *PI;
3173    QualType PType = PVDecl->getOriginalType();
3174    if (const ArrayType *AT =
3175          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3176      // Use array's original type only if it has known number of
3177      // elements.
3178      if (!isa<ConstantArrayType>(AT))
3179        PType = PVDecl->getType();
3180    } else if (PType->isFunctionType())
3181      PType = PVDecl->getType();
3182    // Process argument qualifiers for user supplied arguments; such as,
3183    // 'in', 'inout', etc.
3184    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3185    getObjCEncodingForType(PType, S);
3186    S += llvm::utostr(ParmOffset);
3187    ParmOffset += getObjCEncodingTypeSize(PType);
3188  }
3189}
3190
3191/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3192/// property declaration. If non-NULL, Container must be either an
3193/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3194/// NULL when getting encodings for protocol properties.
3195/// Property attributes are stored as a comma-delimited C string. The simple
3196/// attributes readonly and bycopy are encoded as single characters. The
3197/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3198/// encoded as single characters, followed by an identifier. Property types
3199/// are also encoded as a parametrized attribute. The characters used to encode
3200/// these attributes are defined by the following enumeration:
3201/// @code
3202/// enum PropertyAttributes {
3203/// kPropertyReadOnly = 'R',   // property is read-only.
3204/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3205/// kPropertyByref = '&',  // property is a reference to the value last assigned
3206/// kPropertyDynamic = 'D',    // property is dynamic
3207/// kPropertyGetter = 'G',     // followed by getter selector name
3208/// kPropertySetter = 'S',     // followed by setter selector name
3209/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3210/// kPropertyType = 't'              // followed by old-style type encoding.
3211/// kPropertyWeak = 'W'              // 'weak' property
3212/// kPropertyStrong = 'P'            // property GC'able
3213/// kPropertyNonAtomic = 'N'         // property non-atomic
3214/// };
3215/// @endcode
3216void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3217                                                const Decl *Container,
3218                                                std::string& S) {
3219  // Collect information from the property implementation decl(s).
3220  bool Dynamic = false;
3221  ObjCPropertyImplDecl *SynthesizePID = 0;
3222
3223  // FIXME: Duplicated code due to poor abstraction.
3224  if (Container) {
3225    if (const ObjCCategoryImplDecl *CID =
3226        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3227      for (ObjCCategoryImplDecl::propimpl_iterator
3228             i = CID->propimpl_begin(), e = CID->propimpl_end();
3229           i != e; ++i) {
3230        ObjCPropertyImplDecl *PID = *i;
3231        if (PID->getPropertyDecl() == PD) {
3232          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3233            Dynamic = true;
3234          } else {
3235            SynthesizePID = PID;
3236          }
3237        }
3238      }
3239    } else {
3240      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3241      for (ObjCCategoryImplDecl::propimpl_iterator
3242             i = OID->propimpl_begin(), e = OID->propimpl_end();
3243           i != e; ++i) {
3244        ObjCPropertyImplDecl *PID = *i;
3245        if (PID->getPropertyDecl() == PD) {
3246          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3247            Dynamic = true;
3248          } else {
3249            SynthesizePID = PID;
3250          }
3251        }
3252      }
3253    }
3254  }
3255
3256  // FIXME: This is not very efficient.
3257  S = "T";
3258
3259  // Encode result type.
3260  // GCC has some special rules regarding encoding of properties which
3261  // closely resembles encoding of ivars.
3262  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3263                             true /* outermost type */,
3264                             true /* encoding for property */);
3265
3266  if (PD->isReadOnly()) {
3267    S += ",R";
3268  } else {
3269    switch (PD->getSetterKind()) {
3270    case ObjCPropertyDecl::Assign: break;
3271    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3272    case ObjCPropertyDecl::Retain: S += ",&"; break;
3273    }
3274  }
3275
3276  // It really isn't clear at all what this means, since properties
3277  // are "dynamic by default".
3278  if (Dynamic)
3279    S += ",D";
3280
3281  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3282    S += ",N";
3283
3284  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3285    S += ",G";
3286    S += PD->getGetterName().getAsString();
3287  }
3288
3289  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3290    S += ",S";
3291    S += PD->getSetterName().getAsString();
3292  }
3293
3294  if (SynthesizePID) {
3295    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3296    S += ",V";
3297    S += OID->getNameAsString();
3298  }
3299
3300  // FIXME: OBJCGC: weak & strong
3301}
3302
3303/// getLegacyIntegralTypeEncoding -
3304/// Another legacy compatibility encoding: 32-bit longs are encoded as
3305/// 'l' or 'L' , but not always.  For typedefs, we need to use
3306/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3307///
3308void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3309  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3310    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3311      if (BT->getKind() == BuiltinType::ULong &&
3312          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3313        PointeeTy = UnsignedIntTy;
3314      else
3315        if (BT->getKind() == BuiltinType::Long &&
3316            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3317          PointeeTy = IntTy;
3318    }
3319  }
3320}
3321
3322void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3323                                        const FieldDecl *Field) {
3324  // We follow the behavior of gcc, expanding structures which are
3325  // directly pointed to, and expanding embedded structures. Note that
3326  // these rules are sufficient to prevent recursive encoding of the
3327  // same type.
3328  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3329                             true /* outermost type */);
3330}
3331
3332static void EncodeBitField(const ASTContext *Context, std::string& S,
3333                           const FieldDecl *FD) {
3334  const Expr *E = FD->getBitWidth();
3335  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3336  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3337  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3338  S += 'b';
3339  S += llvm::utostr(N);
3340}
3341
3342// FIXME: Use SmallString for accumulating string.
3343void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3344                                            bool ExpandPointedToStructures,
3345                                            bool ExpandStructures,
3346                                            const FieldDecl *FD,
3347                                            bool OutermostType,
3348                                            bool EncodingProperty) {
3349  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3350    if (FD && FD->isBitField())
3351      return EncodeBitField(this, S, FD);
3352    char encoding;
3353    switch (BT->getKind()) {
3354    default: assert(0 && "Unhandled builtin type kind");
3355    case BuiltinType::Void:       encoding = 'v'; break;
3356    case BuiltinType::Bool:       encoding = 'B'; break;
3357    case BuiltinType::Char_U:
3358    case BuiltinType::UChar:      encoding = 'C'; break;
3359    case BuiltinType::UShort:     encoding = 'S'; break;
3360    case BuiltinType::UInt:       encoding = 'I'; break;
3361    case BuiltinType::ULong:
3362        encoding =
3363          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3364        break;
3365    case BuiltinType::UInt128:    encoding = 'T'; break;
3366    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3367    case BuiltinType::Char_S:
3368    case BuiltinType::SChar:      encoding = 'c'; break;
3369    case BuiltinType::Short:      encoding = 's'; break;
3370    case BuiltinType::Int:        encoding = 'i'; break;
3371    case BuiltinType::Long:
3372      encoding =
3373        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3374      break;
3375    case BuiltinType::LongLong:   encoding = 'q'; break;
3376    case BuiltinType::Int128:     encoding = 't'; break;
3377    case BuiltinType::Float:      encoding = 'f'; break;
3378    case BuiltinType::Double:     encoding = 'd'; break;
3379    case BuiltinType::LongDouble: encoding = 'd'; break;
3380    }
3381
3382    S += encoding;
3383    return;
3384  }
3385
3386  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3387    S += 'j';
3388    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3389                               false);
3390    return;
3391  }
3392
3393  if (const PointerType *PT = T->getAs<PointerType>()) {
3394    QualType PointeeTy = PT->getPointeeType();
3395    bool isReadOnly = false;
3396    // For historical/compatibility reasons, the read-only qualifier of the
3397    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3398    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3399    // Also, do not emit the 'r' for anything but the outermost type!
3400    if (isa<TypedefType>(T.getTypePtr())) {
3401      if (OutermostType && T.isConstQualified()) {
3402        isReadOnly = true;
3403        S += 'r';
3404      }
3405    } else if (OutermostType) {
3406      QualType P = PointeeTy;
3407      while (P->getAs<PointerType>())
3408        P = P->getAs<PointerType>()->getPointeeType();
3409      if (P.isConstQualified()) {
3410        isReadOnly = true;
3411        S += 'r';
3412      }
3413    }
3414    if (isReadOnly) {
3415      // Another legacy compatibility encoding. Some ObjC qualifier and type
3416      // combinations need to be rearranged.
3417      // Rewrite "in const" from "nr" to "rn"
3418      const char * s = S.c_str();
3419      int len = S.length();
3420      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3421        std::string replace = "rn";
3422        S.replace(S.end()-2, S.end(), replace);
3423      }
3424    }
3425    if (isObjCSelType(PointeeTy)) {
3426      S += ':';
3427      return;
3428    }
3429
3430    if (PointeeTy->isCharType()) {
3431      // char pointer types should be encoded as '*' unless it is a
3432      // type that has been typedef'd to 'BOOL'.
3433      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3434        S += '*';
3435        return;
3436      }
3437    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3438      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3439      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3440        S += '#';
3441        return;
3442      }
3443      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3444      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3445        S += '@';
3446        return;
3447      }
3448      // fall through...
3449    }
3450    S += '^';
3451    getLegacyIntegralTypeEncoding(PointeeTy);
3452
3453    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3454                               NULL);
3455    return;
3456  }
3457
3458  if (const ArrayType *AT =
3459      // Ignore type qualifiers etc.
3460        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3461    if (isa<IncompleteArrayType>(AT)) {
3462      // Incomplete arrays are encoded as a pointer to the array element.
3463      S += '^';
3464
3465      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3466                                 false, ExpandStructures, FD);
3467    } else {
3468      S += '[';
3469
3470      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3471        S += llvm::utostr(CAT->getSize().getZExtValue());
3472      else {
3473        //Variable length arrays are encoded as a regular array with 0 elements.
3474        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3475        S += '0';
3476      }
3477
3478      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3479                                 false, ExpandStructures, FD);
3480      S += ']';
3481    }
3482    return;
3483  }
3484
3485  if (T->getAs<FunctionType>()) {
3486    S += '?';
3487    return;
3488  }
3489
3490  if (const RecordType *RTy = T->getAs<RecordType>()) {
3491    RecordDecl *RDecl = RTy->getDecl();
3492    S += RDecl->isUnion() ? '(' : '{';
3493    // Anonymous structures print as '?'
3494    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3495      S += II->getName();
3496    } else {
3497      S += '?';
3498    }
3499    if (ExpandStructures) {
3500      S += '=';
3501      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3502                                   FieldEnd = RDecl->field_end();
3503           Field != FieldEnd; ++Field) {
3504        if (FD) {
3505          S += '"';
3506          S += Field->getNameAsString();
3507          S += '"';
3508        }
3509
3510        // Special case bit-fields.
3511        if (Field->isBitField()) {
3512          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3513                                     (*Field));
3514        } else {
3515          QualType qt = Field->getType();
3516          getLegacyIntegralTypeEncoding(qt);
3517          getObjCEncodingForTypeImpl(qt, S, false, true,
3518                                     FD);
3519        }
3520      }
3521    }
3522    S += RDecl->isUnion() ? ')' : '}';
3523    return;
3524  }
3525
3526  if (T->isEnumeralType()) {
3527    if (FD && FD->isBitField())
3528      EncodeBitField(this, S, FD);
3529    else
3530      S += 'i';
3531    return;
3532  }
3533
3534  if (T->isBlockPointerType()) {
3535    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3536    return;
3537  }
3538
3539  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3540    // @encode(class_name)
3541    ObjCInterfaceDecl *OI = OIT->getDecl();
3542    S += '{';
3543    const IdentifierInfo *II = OI->getIdentifier();
3544    S += II->getName();
3545    S += '=';
3546    llvm::SmallVector<FieldDecl*, 32> RecFields;
3547    CollectObjCIvars(OI, RecFields);
3548    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3549      if (RecFields[i]->isBitField())
3550        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3551                                   RecFields[i]);
3552      else
3553        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3554                                   FD);
3555    }
3556    S += '}';
3557    return;
3558  }
3559
3560  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3561    if (OPT->isObjCIdType()) {
3562      S += '@';
3563      return;
3564    }
3565
3566    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3567      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3568      // Since this is a binary compatibility issue, need to consult with runtime
3569      // folks. Fortunately, this is a *very* obsure construct.
3570      S += '#';
3571      return;
3572    }
3573
3574    if (OPT->isObjCQualifiedIdType()) {
3575      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3576                                 ExpandPointedToStructures,
3577                                 ExpandStructures, FD);
3578      if (FD || EncodingProperty) {
3579        // Note that we do extended encoding of protocol qualifer list
3580        // Only when doing ivar or property encoding.
3581        S += '"';
3582        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3583             E = OPT->qual_end(); I != E; ++I) {
3584          S += '<';
3585          S += (*I)->getNameAsString();
3586          S += '>';
3587        }
3588        S += '"';
3589      }
3590      return;
3591    }
3592
3593    QualType PointeeTy = OPT->getPointeeType();
3594    if (!EncodingProperty &&
3595        isa<TypedefType>(PointeeTy.getTypePtr())) {
3596      // Another historical/compatibility reason.
3597      // We encode the underlying type which comes out as
3598      // {...};
3599      S += '^';
3600      getObjCEncodingForTypeImpl(PointeeTy, S,
3601                                 false, ExpandPointedToStructures,
3602                                 NULL);
3603      return;
3604    }
3605
3606    S += '@';
3607    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3608      S += '"';
3609      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3610      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3611           E = OPT->qual_end(); I != E; ++I) {
3612        S += '<';
3613        S += (*I)->getNameAsString();
3614        S += '>';
3615      }
3616      S += '"';
3617    }
3618    return;
3619  }
3620
3621  assert(0 && "@encode for type not implemented!");
3622}
3623
3624void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3625                                                 std::string& S) const {
3626  if (QT & Decl::OBJC_TQ_In)
3627    S += 'n';
3628  if (QT & Decl::OBJC_TQ_Inout)
3629    S += 'N';
3630  if (QT & Decl::OBJC_TQ_Out)
3631    S += 'o';
3632  if (QT & Decl::OBJC_TQ_Bycopy)
3633    S += 'O';
3634  if (QT & Decl::OBJC_TQ_Byref)
3635    S += 'R';
3636  if (QT & Decl::OBJC_TQ_Oneway)
3637    S += 'V';
3638}
3639
3640void ASTContext::setBuiltinVaListType(QualType T) {
3641  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3642
3643  BuiltinVaListType = T;
3644}
3645
3646void ASTContext::setObjCIdType(QualType T) {
3647  ObjCIdTypedefType = T;
3648}
3649
3650void ASTContext::setObjCSelType(QualType T) {
3651  ObjCSelTypedefType = T;
3652}
3653
3654void ASTContext::setObjCProtoType(QualType QT) {
3655  ObjCProtoType = QT;
3656}
3657
3658void ASTContext::setObjCClassType(QualType T) {
3659  ObjCClassTypedefType = T;
3660}
3661
3662void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3663  assert(ObjCConstantStringType.isNull() &&
3664         "'NSConstantString' type already set!");
3665
3666  ObjCConstantStringType = getObjCInterfaceType(Decl);
3667}
3668
3669/// \brief Retrieve the template name that represents a qualified
3670/// template name such as \c std::vector.
3671TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3672                                                  bool TemplateKeyword,
3673                                                  TemplateDecl *Template) {
3674  llvm::FoldingSetNodeID ID;
3675  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3676
3677  void *InsertPos = 0;
3678  QualifiedTemplateName *QTN =
3679    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3680  if (!QTN) {
3681    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3682    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3683  }
3684
3685  return TemplateName(QTN);
3686}
3687
3688/// \brief Retrieve the template name that represents a qualified
3689/// template name such as \c std::vector.
3690TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3691                                                  bool TemplateKeyword,
3692                                            OverloadedFunctionDecl *Template) {
3693  llvm::FoldingSetNodeID ID;
3694  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3695
3696  void *InsertPos = 0;
3697  QualifiedTemplateName *QTN =
3698  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3699  if (!QTN) {
3700    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3701    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3702  }
3703
3704  return TemplateName(QTN);
3705}
3706
3707/// \brief Retrieve the template name that represents a dependent
3708/// template name such as \c MetaFun::template apply.
3709TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3710                                                  const IdentifierInfo *Name) {
3711  assert((!NNS || NNS->isDependent()) &&
3712         "Nested name specifier must be dependent");
3713
3714  llvm::FoldingSetNodeID ID;
3715  DependentTemplateName::Profile(ID, NNS, Name);
3716
3717  void *InsertPos = 0;
3718  DependentTemplateName *QTN =
3719    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3720
3721  if (QTN)
3722    return TemplateName(QTN);
3723
3724  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3725  if (CanonNNS == NNS) {
3726    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3727  } else {
3728    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3729    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3730  }
3731
3732  DependentTemplateNames.InsertNode(QTN, InsertPos);
3733  return TemplateName(QTN);
3734}
3735
3736/// \brief Retrieve the template name that represents a dependent
3737/// template name such as \c MetaFun::template operator+.
3738TemplateName
3739ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3740                                     OverloadedOperatorKind Operator) {
3741  assert((!NNS || NNS->isDependent()) &&
3742         "Nested name specifier must be dependent");
3743
3744  llvm::FoldingSetNodeID ID;
3745  DependentTemplateName::Profile(ID, NNS, Operator);
3746
3747  void *InsertPos = 0;
3748  DependentTemplateName *QTN =
3749  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3750
3751  if (QTN)
3752    return TemplateName(QTN);
3753
3754  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3755  if (CanonNNS == NNS) {
3756    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3757  } else {
3758    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3759    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3760  }
3761
3762  DependentTemplateNames.InsertNode(QTN, InsertPos);
3763  return TemplateName(QTN);
3764}
3765
3766/// getFromTargetType - Given one of the integer types provided by
3767/// TargetInfo, produce the corresponding type. The unsigned @p Type
3768/// is actually a value of type @c TargetInfo::IntType.
3769CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3770  switch (Type) {
3771  case TargetInfo::NoInt: return CanQualType();
3772  case TargetInfo::SignedShort: return ShortTy;
3773  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3774  case TargetInfo::SignedInt: return IntTy;
3775  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3776  case TargetInfo::SignedLong: return LongTy;
3777  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3778  case TargetInfo::SignedLongLong: return LongLongTy;
3779  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3780  }
3781
3782  assert(false && "Unhandled TargetInfo::IntType value");
3783  return CanQualType();
3784}
3785
3786//===----------------------------------------------------------------------===//
3787//                        Type Predicates.
3788//===----------------------------------------------------------------------===//
3789
3790/// isObjCNSObjectType - Return true if this is an NSObject object using
3791/// NSObject attribute on a c-style pointer type.
3792/// FIXME - Make it work directly on types.
3793/// FIXME: Move to Type.
3794///
3795bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3796  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3797    if (TypedefDecl *TD = TDT->getDecl())
3798      if (TD->getAttr<ObjCNSObjectAttr>())
3799        return true;
3800  }
3801  return false;
3802}
3803
3804/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3805/// garbage collection attribute.
3806///
3807Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3808  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3809  if (getLangOptions().ObjC1 &&
3810      getLangOptions().getGCMode() != LangOptions::NonGC) {
3811    GCAttrs = Ty.getObjCGCAttr();
3812    // Default behavious under objective-c's gc is for objective-c pointers
3813    // (or pointers to them) be treated as though they were declared
3814    // as __strong.
3815    if (GCAttrs == Qualifiers::GCNone) {
3816      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3817        GCAttrs = Qualifiers::Strong;
3818      else if (Ty->isPointerType())
3819        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3820    }
3821    // Non-pointers have none gc'able attribute regardless of the attribute
3822    // set on them.
3823    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3824      return Qualifiers::GCNone;
3825  }
3826  return GCAttrs;
3827}
3828
3829//===----------------------------------------------------------------------===//
3830//                        Type Compatibility Testing
3831//===----------------------------------------------------------------------===//
3832
3833/// areCompatVectorTypes - Return true if the two specified vector types are
3834/// compatible.
3835static bool areCompatVectorTypes(const VectorType *LHS,
3836                                 const VectorType *RHS) {
3837  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3838  return LHS->getElementType() == RHS->getElementType() &&
3839         LHS->getNumElements() == RHS->getNumElements();
3840}
3841
3842//===----------------------------------------------------------------------===//
3843// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3844//===----------------------------------------------------------------------===//
3845
3846/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3847/// inheritance hierarchy of 'rProto'.
3848bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3849                                                ObjCProtocolDecl *rProto) {
3850  if (lProto == rProto)
3851    return true;
3852  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3853       E = rProto->protocol_end(); PI != E; ++PI)
3854    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3855      return true;
3856  return false;
3857}
3858
3859/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3860/// return true if lhs's protocols conform to rhs's protocol; false
3861/// otherwise.
3862bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3863  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3864    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3865  return false;
3866}
3867
3868/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3869/// ObjCQualifiedIDType.
3870bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3871                                                   bool compare) {
3872  // Allow id<P..> and an 'id' or void* type in all cases.
3873  if (lhs->isVoidPointerType() ||
3874      lhs->isObjCIdType() || lhs->isObjCClassType())
3875    return true;
3876  else if (rhs->isVoidPointerType() ||
3877           rhs->isObjCIdType() || rhs->isObjCClassType())
3878    return true;
3879
3880  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3881    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3882
3883    if (!rhsOPT) return false;
3884
3885    if (rhsOPT->qual_empty()) {
3886      // If the RHS is a unqualified interface pointer "NSString*",
3887      // make sure we check the class hierarchy.
3888      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3889        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3890             E = lhsQID->qual_end(); I != E; ++I) {
3891          // when comparing an id<P> on lhs with a static type on rhs,
3892          // see if static class implements all of id's protocols, directly or
3893          // through its super class and categories.
3894          if (!rhsID->ClassImplementsProtocol(*I, true))
3895            return false;
3896        }
3897      }
3898      // If there are no qualifiers and no interface, we have an 'id'.
3899      return true;
3900    }
3901    // Both the right and left sides have qualifiers.
3902    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3903         E = lhsQID->qual_end(); I != E; ++I) {
3904      ObjCProtocolDecl *lhsProto = *I;
3905      bool match = false;
3906
3907      // when comparing an id<P> on lhs with a static type on rhs,
3908      // see if static class implements all of id's protocols, directly or
3909      // through its super class and categories.
3910      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3911           E = rhsOPT->qual_end(); J != E; ++J) {
3912        ObjCProtocolDecl *rhsProto = *J;
3913        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3914            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3915          match = true;
3916          break;
3917        }
3918      }
3919      // If the RHS is a qualified interface pointer "NSString<P>*",
3920      // make sure we check the class hierarchy.
3921      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3922        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3923             E = lhsQID->qual_end(); I != E; ++I) {
3924          // when comparing an id<P> on lhs with a static type on rhs,
3925          // see if static class implements all of id's protocols, directly or
3926          // through its super class and categories.
3927          if (rhsID->ClassImplementsProtocol(*I, true)) {
3928            match = true;
3929            break;
3930          }
3931        }
3932      }
3933      if (!match)
3934        return false;
3935    }
3936
3937    return true;
3938  }
3939
3940  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3941  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3942
3943  if (const ObjCObjectPointerType *lhsOPT =
3944        lhs->getAsObjCInterfacePointerType()) {
3945    if (lhsOPT->qual_empty()) {
3946      bool match = false;
3947      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3948        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3949             E = rhsQID->qual_end(); I != E; ++I) {
3950          // when comparing an id<P> on lhs with a static type on rhs,
3951          // see if static class implements all of id's protocols, directly or
3952          // through its super class and categories.
3953          if (lhsID->ClassImplementsProtocol(*I, true)) {
3954            match = true;
3955            break;
3956          }
3957        }
3958        if (!match)
3959          return false;
3960      }
3961      return true;
3962    }
3963    // Both the right and left sides have qualifiers.
3964    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3965         E = lhsOPT->qual_end(); I != E; ++I) {
3966      ObjCProtocolDecl *lhsProto = *I;
3967      bool match = false;
3968
3969      // when comparing an id<P> on lhs with a static type on rhs,
3970      // see if static class implements all of id's protocols, directly or
3971      // through its super class and categories.
3972      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3973           E = rhsQID->qual_end(); J != E; ++J) {
3974        ObjCProtocolDecl *rhsProto = *J;
3975        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3976            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3977          match = true;
3978          break;
3979        }
3980      }
3981      if (!match)
3982        return false;
3983    }
3984    return true;
3985  }
3986  return false;
3987}
3988
3989/// canAssignObjCInterfaces - Return true if the two interface types are
3990/// compatible for assignment from RHS to LHS.  This handles validation of any
3991/// protocol qualifiers on the LHS or RHS.
3992///
3993bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3994                                         const ObjCObjectPointerType *RHSOPT) {
3995  // If either type represents the built-in 'id' or 'Class' types, return true.
3996  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3997    return true;
3998
3999  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4000    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4001                                             QualType(RHSOPT,0),
4002                                             false);
4003
4004  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4005  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4006  if (LHS && RHS) // We have 2 user-defined types.
4007    return canAssignObjCInterfaces(LHS, RHS);
4008
4009  return false;
4010}
4011
4012/// getIntersectionOfProtocols - This routine finds the intersection of set
4013/// of protocols inherited from two distinct objective-c pointer objects.
4014/// It is used to build composite qualifier list of the composite type of
4015/// the conditional expression involving two objective-c pointer objects.
4016static
4017void getIntersectionOfProtocols(ASTContext &Context,
4018                                const ObjCObjectPointerType *LHSOPT,
4019                                const ObjCObjectPointerType *RHSOPT,
4020      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4021
4022  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4023  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4024
4025  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4026  unsigned LHSNumProtocols = LHS->getNumProtocols();
4027  if (LHSNumProtocols > 0)
4028    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4029  else {
4030    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4031     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4032    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4033                                LHSInheritedProtocols.end());
4034  }
4035
4036  unsigned RHSNumProtocols = RHS->getNumProtocols();
4037  if (RHSNumProtocols > 0) {
4038    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4039    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4040      if (InheritedProtocolSet.count(RHSProtocols[i]))
4041        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4042  }
4043  else {
4044    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4045    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4046    // FIXME. This may cause duplication of protocols in the list, but should
4047    // be harmless.
4048    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4049      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4050        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4051  }
4052}
4053
4054/// areCommonBaseCompatible - Returns common base class of the two classes if
4055/// one found. Note that this is O'2 algorithm. But it will be called as the
4056/// last type comparison in a ?-exp of ObjC pointer types before a
4057/// warning is issued. So, its invokation is extremely rare.
4058QualType ASTContext::areCommonBaseCompatible(
4059                                          const ObjCObjectPointerType *LHSOPT,
4060                                          const ObjCObjectPointerType *RHSOPT) {
4061  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4062  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4063  if (!LHS || !RHS)
4064    return QualType();
4065
4066  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4067    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4068    LHS = LHSTy->getAs<ObjCInterfaceType>();
4069    if (canAssignObjCInterfaces(LHS, RHS)) {
4070      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4071      getIntersectionOfProtocols(*this,
4072                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4073      if (IntersectionOfProtocols.empty())
4074        LHSTy = getObjCObjectPointerType(LHSTy);
4075      else
4076        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4077                                                IntersectionOfProtocols.size());
4078      return LHSTy;
4079    }
4080  }
4081
4082  return QualType();
4083}
4084
4085bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4086                                         const ObjCInterfaceType *RHS) {
4087  // Verify that the base decls are compatible: the RHS must be a subclass of
4088  // the LHS.
4089  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4090    return false;
4091
4092  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4093  // protocol qualified at all, then we are good.
4094  if (LHS->getNumProtocols() == 0)
4095    return true;
4096
4097  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4098  // isn't a superset.
4099  if (RHS->getNumProtocols() == 0)
4100    return true;  // FIXME: should return false!
4101
4102  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4103                                        LHSPE = LHS->qual_end();
4104       LHSPI != LHSPE; LHSPI++) {
4105    bool RHSImplementsProtocol = false;
4106
4107    // If the RHS doesn't implement the protocol on the left, the types
4108    // are incompatible.
4109    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4110                                          RHSPE = RHS->qual_end();
4111         RHSPI != RHSPE; RHSPI++) {
4112      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4113        RHSImplementsProtocol = true;
4114        break;
4115      }
4116    }
4117    // FIXME: For better diagnostics, consider passing back the protocol name.
4118    if (!RHSImplementsProtocol)
4119      return false;
4120  }
4121  // The RHS implements all protocols listed on the LHS.
4122  return true;
4123}
4124
4125bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4126  // get the "pointed to" types
4127  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4128  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4129
4130  if (!LHSOPT || !RHSOPT)
4131    return false;
4132
4133  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4134         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4135}
4136
4137/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4138/// both shall have the identically qualified version of a compatible type.
4139/// C99 6.2.7p1: Two types have compatible types if their types are the
4140/// same. See 6.7.[2,3,5] for additional rules.
4141bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4142  return !mergeTypes(LHS, RHS).isNull();
4143}
4144
4145QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4146  const FunctionType *lbase = lhs->getAs<FunctionType>();
4147  const FunctionType *rbase = rhs->getAs<FunctionType>();
4148  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4149  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4150  bool allLTypes = true;
4151  bool allRTypes = true;
4152
4153  // Check return type
4154  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4155  if (retType.isNull()) return QualType();
4156  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4157    allLTypes = false;
4158  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4159    allRTypes = false;
4160  // FIXME: double check this
4161  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4162  if (NoReturn != lbase->getNoReturnAttr())
4163    allLTypes = false;
4164  if (NoReturn != rbase->getNoReturnAttr())
4165    allRTypes = false;
4166
4167  if (lproto && rproto) { // two C99 style function prototypes
4168    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4169           "C++ shouldn't be here");
4170    unsigned lproto_nargs = lproto->getNumArgs();
4171    unsigned rproto_nargs = rproto->getNumArgs();
4172
4173    // Compatible functions must have the same number of arguments
4174    if (lproto_nargs != rproto_nargs)
4175      return QualType();
4176
4177    // Variadic and non-variadic functions aren't compatible
4178    if (lproto->isVariadic() != rproto->isVariadic())
4179      return QualType();
4180
4181    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4182      return QualType();
4183
4184    // Check argument compatibility
4185    llvm::SmallVector<QualType, 10> types;
4186    for (unsigned i = 0; i < lproto_nargs; i++) {
4187      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4188      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4189      QualType argtype = mergeTypes(largtype, rargtype);
4190      if (argtype.isNull()) return QualType();
4191      types.push_back(argtype);
4192      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4193        allLTypes = false;
4194      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4195        allRTypes = false;
4196    }
4197    if (allLTypes) return lhs;
4198    if (allRTypes) return rhs;
4199    return getFunctionType(retType, types.begin(), types.size(),
4200                           lproto->isVariadic(), lproto->getTypeQuals(),
4201                           NoReturn);
4202  }
4203
4204  if (lproto) allRTypes = false;
4205  if (rproto) allLTypes = false;
4206
4207  const FunctionProtoType *proto = lproto ? lproto : rproto;
4208  if (proto) {
4209    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4210    if (proto->isVariadic()) return QualType();
4211    // Check that the types are compatible with the types that
4212    // would result from default argument promotions (C99 6.7.5.3p15).
4213    // The only types actually affected are promotable integer
4214    // types and floats, which would be passed as a different
4215    // type depending on whether the prototype is visible.
4216    unsigned proto_nargs = proto->getNumArgs();
4217    for (unsigned i = 0; i < proto_nargs; ++i) {
4218      QualType argTy = proto->getArgType(i);
4219      if (argTy->isPromotableIntegerType() ||
4220          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4221        return QualType();
4222    }
4223
4224    if (allLTypes) return lhs;
4225    if (allRTypes) return rhs;
4226    return getFunctionType(retType, proto->arg_type_begin(),
4227                           proto->getNumArgs(), proto->isVariadic(),
4228                           proto->getTypeQuals(), NoReturn);
4229  }
4230
4231  if (allLTypes) return lhs;
4232  if (allRTypes) return rhs;
4233  return getFunctionNoProtoType(retType, NoReturn);
4234}
4235
4236QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4237  // C++ [expr]: If an expression initially has the type "reference to T", the
4238  // type is adjusted to "T" prior to any further analysis, the expression
4239  // designates the object or function denoted by the reference, and the
4240  // expression is an lvalue unless the reference is an rvalue reference and
4241  // the expression is a function call (possibly inside parentheses).
4242  // FIXME: C++ shouldn't be going through here!  The rules are different
4243  // enough that they should be handled separately.
4244  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4245  // shouldn't be going through here!
4246  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4247    LHS = RT->getPointeeType();
4248  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4249    RHS = RT->getPointeeType();
4250
4251  QualType LHSCan = getCanonicalType(LHS),
4252           RHSCan = getCanonicalType(RHS);
4253
4254  // If two types are identical, they are compatible.
4255  if (LHSCan == RHSCan)
4256    return LHS;
4257
4258  // If the qualifiers are different, the types aren't compatible... mostly.
4259  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4260  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4261  if (LQuals != RQuals) {
4262    // If any of these qualifiers are different, we have a type
4263    // mismatch.
4264    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4265        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4266      return QualType();
4267
4268    // Exactly one GC qualifier difference is allowed: __strong is
4269    // okay if the other type has no GC qualifier but is an Objective
4270    // C object pointer (i.e. implicitly strong by default).  We fix
4271    // this by pretending that the unqualified type was actually
4272    // qualified __strong.
4273    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4274    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4275    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4276
4277    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4278      return QualType();
4279
4280    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4281      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4282    }
4283    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4284      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4285    }
4286    return QualType();
4287  }
4288
4289  // Okay, qualifiers are equal.
4290
4291  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4292  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4293
4294  // We want to consider the two function types to be the same for these
4295  // comparisons, just force one to the other.
4296  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4297  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4298
4299  // Same as above for arrays
4300  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4301    LHSClass = Type::ConstantArray;
4302  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4303    RHSClass = Type::ConstantArray;
4304
4305  // Canonicalize ExtVector -> Vector.
4306  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4307  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4308
4309  // If the canonical type classes don't match.
4310  if (LHSClass != RHSClass) {
4311    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4312    // a signed integer type, or an unsigned integer type.
4313    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4314      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4315        return RHS;
4316    }
4317    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4318      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4319        return LHS;
4320    }
4321
4322    return QualType();
4323  }
4324
4325  // The canonical type classes match.
4326  switch (LHSClass) {
4327#define TYPE(Class, Base)
4328#define ABSTRACT_TYPE(Class, Base)
4329#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4330#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4331#include "clang/AST/TypeNodes.def"
4332    assert(false && "Non-canonical and dependent types shouldn't get here");
4333    return QualType();
4334
4335  case Type::LValueReference:
4336  case Type::RValueReference:
4337  case Type::MemberPointer:
4338    assert(false && "C++ should never be in mergeTypes");
4339    return QualType();
4340
4341  case Type::IncompleteArray:
4342  case Type::VariableArray:
4343  case Type::FunctionProto:
4344  case Type::ExtVector:
4345    assert(false && "Types are eliminated above");
4346    return QualType();
4347
4348  case Type::Pointer:
4349  {
4350    // Merge two pointer types, while trying to preserve typedef info
4351    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4352    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4353    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4354    if (ResultType.isNull()) return QualType();
4355    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4356      return LHS;
4357    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4358      return RHS;
4359    return getPointerType(ResultType);
4360  }
4361  case Type::BlockPointer:
4362  {
4363    // Merge two block pointer types, while trying to preserve typedef info
4364    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4365    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4366    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4367    if (ResultType.isNull()) return QualType();
4368    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4369      return LHS;
4370    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4371      return RHS;
4372    return getBlockPointerType(ResultType);
4373  }
4374  case Type::ConstantArray:
4375  {
4376    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4377    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4378    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4379      return QualType();
4380
4381    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4382    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4383    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4384    if (ResultType.isNull()) return QualType();
4385    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4386      return LHS;
4387    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4388      return RHS;
4389    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4390                                          ArrayType::ArraySizeModifier(), 0);
4391    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4392                                          ArrayType::ArraySizeModifier(), 0);
4393    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4394    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4395    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4396      return LHS;
4397    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4398      return RHS;
4399    if (LVAT) {
4400      // FIXME: This isn't correct! But tricky to implement because
4401      // the array's size has to be the size of LHS, but the type
4402      // has to be different.
4403      return LHS;
4404    }
4405    if (RVAT) {
4406      // FIXME: This isn't correct! But tricky to implement because
4407      // the array's size has to be the size of RHS, but the type
4408      // has to be different.
4409      return RHS;
4410    }
4411    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4412    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4413    return getIncompleteArrayType(ResultType,
4414                                  ArrayType::ArraySizeModifier(), 0);
4415  }
4416  case Type::FunctionNoProto:
4417    return mergeFunctionTypes(LHS, RHS);
4418  case Type::Record:
4419  case Type::Enum:
4420    return QualType();
4421  case Type::Builtin:
4422    // Only exactly equal builtin types are compatible, which is tested above.
4423    return QualType();
4424  case Type::Complex:
4425    // Distinct complex types are incompatible.
4426    return QualType();
4427  case Type::Vector:
4428    // FIXME: The merged type should be an ExtVector!
4429    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4430      return LHS;
4431    return QualType();
4432  case Type::ObjCInterface: {
4433    // Check if the interfaces are assignment compatible.
4434    // FIXME: This should be type compatibility, e.g. whether
4435    // "LHS x; RHS x;" at global scope is legal.
4436    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4437    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4438    if (LHSIface && RHSIface &&
4439        canAssignObjCInterfaces(LHSIface, RHSIface))
4440      return LHS;
4441
4442    return QualType();
4443  }
4444  case Type::ObjCObjectPointer: {
4445    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4446                                RHS->getAs<ObjCObjectPointerType>()))
4447      return LHS;
4448
4449    return QualType();
4450  }
4451  case Type::FixedWidthInt:
4452    // Distinct fixed-width integers are not compatible.
4453    return QualType();
4454  case Type::TemplateSpecialization:
4455    assert(false && "Dependent types have no size");
4456    break;
4457  }
4458
4459  return QualType();
4460}
4461
4462//===----------------------------------------------------------------------===//
4463//                         Integer Predicates
4464//===----------------------------------------------------------------------===//
4465
4466unsigned ASTContext::getIntWidth(QualType T) {
4467  if (T->isBooleanType())
4468    return 1;
4469  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4470    return FWIT->getWidth();
4471  }
4472  // For builtin types, just use the standard type sizing method
4473  return (unsigned)getTypeSize(T);
4474}
4475
4476QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4477  assert(T->isSignedIntegerType() && "Unexpected type");
4478
4479  // Turn <4 x signed int> -> <4 x unsigned int>
4480  if (const VectorType *VTy = T->getAs<VectorType>())
4481    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4482                         VTy->getNumElements());
4483
4484  // For enums, we return the unsigned version of the base type.
4485  if (const EnumType *ETy = T->getAs<EnumType>())
4486    T = ETy->getDecl()->getIntegerType();
4487
4488  const BuiltinType *BTy = T->getAs<BuiltinType>();
4489  assert(BTy && "Unexpected signed integer type");
4490  switch (BTy->getKind()) {
4491  case BuiltinType::Char_S:
4492  case BuiltinType::SChar:
4493    return UnsignedCharTy;
4494  case BuiltinType::Short:
4495    return UnsignedShortTy;
4496  case BuiltinType::Int:
4497    return UnsignedIntTy;
4498  case BuiltinType::Long:
4499    return UnsignedLongTy;
4500  case BuiltinType::LongLong:
4501    return UnsignedLongLongTy;
4502  case BuiltinType::Int128:
4503    return UnsignedInt128Ty;
4504  default:
4505    assert(0 && "Unexpected signed integer type");
4506    return QualType();
4507  }
4508}
4509
4510ExternalASTSource::~ExternalASTSource() { }
4511
4512void ExternalASTSource::PrintStats() { }
4513
4514
4515//===----------------------------------------------------------------------===//
4516//                          Builtin Type Computation
4517//===----------------------------------------------------------------------===//
4518
4519/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4520/// pointer over the consumed characters.  This returns the resultant type.
4521static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4522                                  ASTContext::GetBuiltinTypeError &Error,
4523                                  bool AllowTypeModifiers = true) {
4524  // Modifiers.
4525  int HowLong = 0;
4526  bool Signed = false, Unsigned = false;
4527
4528  // Read the modifiers first.
4529  bool Done = false;
4530  while (!Done) {
4531    switch (*Str++) {
4532    default: Done = true; --Str; break;
4533    case 'S':
4534      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4535      assert(!Signed && "Can't use 'S' modifier multiple times!");
4536      Signed = true;
4537      break;
4538    case 'U':
4539      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4540      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4541      Unsigned = true;
4542      break;
4543    case 'L':
4544      assert(HowLong <= 2 && "Can't have LLLL modifier");
4545      ++HowLong;
4546      break;
4547    }
4548  }
4549
4550  QualType Type;
4551
4552  // Read the base type.
4553  switch (*Str++) {
4554  default: assert(0 && "Unknown builtin type letter!");
4555  case 'v':
4556    assert(HowLong == 0 && !Signed && !Unsigned &&
4557           "Bad modifiers used with 'v'!");
4558    Type = Context.VoidTy;
4559    break;
4560  case 'f':
4561    assert(HowLong == 0 && !Signed && !Unsigned &&
4562           "Bad modifiers used with 'f'!");
4563    Type = Context.FloatTy;
4564    break;
4565  case 'd':
4566    assert(HowLong < 2 && !Signed && !Unsigned &&
4567           "Bad modifiers used with 'd'!");
4568    if (HowLong)
4569      Type = Context.LongDoubleTy;
4570    else
4571      Type = Context.DoubleTy;
4572    break;
4573  case 's':
4574    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4575    if (Unsigned)
4576      Type = Context.UnsignedShortTy;
4577    else
4578      Type = Context.ShortTy;
4579    break;
4580  case 'i':
4581    if (HowLong == 3)
4582      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4583    else if (HowLong == 2)
4584      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4585    else if (HowLong == 1)
4586      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4587    else
4588      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4589    break;
4590  case 'c':
4591    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4592    if (Signed)
4593      Type = Context.SignedCharTy;
4594    else if (Unsigned)
4595      Type = Context.UnsignedCharTy;
4596    else
4597      Type = Context.CharTy;
4598    break;
4599  case 'b': // boolean
4600    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4601    Type = Context.BoolTy;
4602    break;
4603  case 'z':  // size_t.
4604    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4605    Type = Context.getSizeType();
4606    break;
4607  case 'F':
4608    Type = Context.getCFConstantStringType();
4609    break;
4610  case 'a':
4611    Type = Context.getBuiltinVaListType();
4612    assert(!Type.isNull() && "builtin va list type not initialized!");
4613    break;
4614  case 'A':
4615    // This is a "reference" to a va_list; however, what exactly
4616    // this means depends on how va_list is defined. There are two
4617    // different kinds of va_list: ones passed by value, and ones
4618    // passed by reference.  An example of a by-value va_list is
4619    // x86, where va_list is a char*. An example of by-ref va_list
4620    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4621    // we want this argument to be a char*&; for x86-64, we want
4622    // it to be a __va_list_tag*.
4623    Type = Context.getBuiltinVaListType();
4624    assert(!Type.isNull() && "builtin va list type not initialized!");
4625    if (Type->isArrayType()) {
4626      Type = Context.getArrayDecayedType(Type);
4627    } else {
4628      Type = Context.getLValueReferenceType(Type);
4629    }
4630    break;
4631  case 'V': {
4632    char *End;
4633    unsigned NumElements = strtoul(Str, &End, 10);
4634    assert(End != Str && "Missing vector size");
4635
4636    Str = End;
4637
4638    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4639    Type = Context.getVectorType(ElementType, NumElements);
4640    break;
4641  }
4642  case 'X': {
4643    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4644    Type = Context.getComplexType(ElementType);
4645    break;
4646  }
4647  case 'P':
4648    Type = Context.getFILEType();
4649    if (Type.isNull()) {
4650      Error = ASTContext::GE_Missing_stdio;
4651      return QualType();
4652    }
4653    break;
4654  case 'J':
4655    if (Signed)
4656      Type = Context.getsigjmp_bufType();
4657    else
4658      Type = Context.getjmp_bufType();
4659
4660    if (Type.isNull()) {
4661      Error = ASTContext::GE_Missing_setjmp;
4662      return QualType();
4663    }
4664    break;
4665  }
4666
4667  if (!AllowTypeModifiers)
4668    return Type;
4669
4670  Done = false;
4671  while (!Done) {
4672    switch (*Str++) {
4673      default: Done = true; --Str; break;
4674      case '*':
4675        Type = Context.getPointerType(Type);
4676        break;
4677      case '&':
4678        Type = Context.getLValueReferenceType(Type);
4679        break;
4680      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4681      case 'C':
4682        Type = Type.withConst();
4683        break;
4684    }
4685  }
4686
4687  return Type;
4688}
4689
4690/// GetBuiltinType - Return the type for the specified builtin.
4691QualType ASTContext::GetBuiltinType(unsigned id,
4692                                    GetBuiltinTypeError &Error) {
4693  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4694
4695  llvm::SmallVector<QualType, 8> ArgTypes;
4696
4697  Error = GE_None;
4698  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4699  if (Error != GE_None)
4700    return QualType();
4701  while (TypeStr[0] && TypeStr[0] != '.') {
4702    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4703    if (Error != GE_None)
4704      return QualType();
4705
4706    // Do array -> pointer decay.  The builtin should use the decayed type.
4707    if (Ty->isArrayType())
4708      Ty = getArrayDecayedType(Ty);
4709
4710    ArgTypes.push_back(Ty);
4711  }
4712
4713  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4714         "'.' should only occur at end of builtin type list!");
4715
4716  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4717  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4718    return getFunctionNoProtoType(ResType);
4719  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4720                         TypeStr[0] == '.', 0);
4721}
4722
4723QualType
4724ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4725  // Perform the usual unary conversions. We do this early so that
4726  // integral promotions to "int" can allow us to exit early, in the
4727  // lhs == rhs check. Also, for conversion purposes, we ignore any
4728  // qualifiers.  For example, "const float" and "float" are
4729  // equivalent.
4730  if (lhs->isPromotableIntegerType())
4731    lhs = getPromotedIntegerType(lhs);
4732  else
4733    lhs = lhs.getUnqualifiedType();
4734  if (rhs->isPromotableIntegerType())
4735    rhs = getPromotedIntegerType(rhs);
4736  else
4737    rhs = rhs.getUnqualifiedType();
4738
4739  // If both types are identical, no conversion is needed.
4740  if (lhs == rhs)
4741    return lhs;
4742
4743  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4744  // The caller can deal with this (e.g. pointer + int).
4745  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4746    return lhs;
4747
4748  // At this point, we have two different arithmetic types.
4749
4750  // Handle complex types first (C99 6.3.1.8p1).
4751  if (lhs->isComplexType() || rhs->isComplexType()) {
4752    // if we have an integer operand, the result is the complex type.
4753    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4754      // convert the rhs to the lhs complex type.
4755      return lhs;
4756    }
4757    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4758      // convert the lhs to the rhs complex type.
4759      return rhs;
4760    }
4761    // This handles complex/complex, complex/float, or float/complex.
4762    // When both operands are complex, the shorter operand is converted to the
4763    // type of the longer, and that is the type of the result. This corresponds
4764    // to what is done when combining two real floating-point operands.
4765    // The fun begins when size promotion occur across type domains.
4766    // From H&S 6.3.4: When one operand is complex and the other is a real
4767    // floating-point type, the less precise type is converted, within it's
4768    // real or complex domain, to the precision of the other type. For example,
4769    // when combining a "long double" with a "double _Complex", the
4770    // "double _Complex" is promoted to "long double _Complex".
4771    int result = getFloatingTypeOrder(lhs, rhs);
4772
4773    if (result > 0) { // The left side is bigger, convert rhs.
4774      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4775    } else if (result < 0) { // The right side is bigger, convert lhs.
4776      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4777    }
4778    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4779    // domains match. This is a requirement for our implementation, C99
4780    // does not require this promotion.
4781    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4782      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4783        return rhs;
4784      } else { // handle "_Complex double, double".
4785        return lhs;
4786      }
4787    }
4788    return lhs; // The domain/size match exactly.
4789  }
4790  // Now handle "real" floating types (i.e. float, double, long double).
4791  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4792    // if we have an integer operand, the result is the real floating type.
4793    if (rhs->isIntegerType()) {
4794      // convert rhs to the lhs floating point type.
4795      return lhs;
4796    }
4797    if (rhs->isComplexIntegerType()) {
4798      // convert rhs to the complex floating point type.
4799      return getComplexType(lhs);
4800    }
4801    if (lhs->isIntegerType()) {
4802      // convert lhs to the rhs floating point type.
4803      return rhs;
4804    }
4805    if (lhs->isComplexIntegerType()) {
4806      // convert lhs to the complex floating point type.
4807      return getComplexType(rhs);
4808    }
4809    // We have two real floating types, float/complex combos were handled above.
4810    // Convert the smaller operand to the bigger result.
4811    int result = getFloatingTypeOrder(lhs, rhs);
4812    if (result > 0) // convert the rhs
4813      return lhs;
4814    assert(result < 0 && "illegal float comparison");
4815    return rhs;   // convert the lhs
4816  }
4817  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4818    // Handle GCC complex int extension.
4819    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4820    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4821
4822    if (lhsComplexInt && rhsComplexInt) {
4823      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4824                              rhsComplexInt->getElementType()) >= 0)
4825        return lhs; // convert the rhs
4826      return rhs;
4827    } else if (lhsComplexInt && rhs->isIntegerType()) {
4828      // convert the rhs to the lhs complex type.
4829      return lhs;
4830    } else if (rhsComplexInt && lhs->isIntegerType()) {
4831      // convert the lhs to the rhs complex type.
4832      return rhs;
4833    }
4834  }
4835  // Finally, we have two differing integer types.
4836  // The rules for this case are in C99 6.3.1.8
4837  int compare = getIntegerTypeOrder(lhs, rhs);
4838  bool lhsSigned = lhs->isSignedIntegerType(),
4839       rhsSigned = rhs->isSignedIntegerType();
4840  QualType destType;
4841  if (lhsSigned == rhsSigned) {
4842    // Same signedness; use the higher-ranked type
4843    destType = compare >= 0 ? lhs : rhs;
4844  } else if (compare != (lhsSigned ? 1 : -1)) {
4845    // The unsigned type has greater than or equal rank to the
4846    // signed type, so use the unsigned type
4847    destType = lhsSigned ? rhs : lhs;
4848  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4849    // The two types are different widths; if we are here, that
4850    // means the signed type is larger than the unsigned type, so
4851    // use the signed type.
4852    destType = lhsSigned ? lhs : rhs;
4853  } else {
4854    // The signed type is higher-ranked than the unsigned type,
4855    // but isn't actually any bigger (like unsigned int and long
4856    // on most 32-bit systems).  Use the unsigned type corresponding
4857    // to the signed type.
4858    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4859  }
4860  return destType;
4861}
4862