ASTContext.cpp revision e6db3b09a79d4affaa5c7becbfb6bba3c08430c1
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/Bitcode/Serialize.h"
22#include "llvm/Bitcode/Deserialize.h"
23
24using namespace clang;
25
26enum FloatingRank {
27  FloatRank, DoubleRank, LongDoubleRank
28};
29
30ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
31                       TargetInfo &t,
32                       IdentifierTable &idents, SelectorTable &sels,
33                       unsigned size_reserve) :
34  CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
35  SourceMgr(SM), LangOpts(LOpts), Target(t),
36  Idents(idents), Selectors(sels)
37{
38  if (size_reserve > 0) Types.reserve(size_reserve);
39  InitBuiltinTypes();
40  BuiltinInfo.InitializeBuiltins(idents, Target);
41  TUDecl = TranslationUnitDecl::Create(*this);
42}
43
44ASTContext::~ASTContext() {
45  // Deallocate all the types.
46  while (!Types.empty()) {
47    Types.back()->Destroy(*this);
48    Types.pop_back();
49  }
50
51  TUDecl->Destroy(*this);
52}
53
54void ASTContext::PrintStats() const {
55  fprintf(stderr, "*** AST Context Stats:\n");
56  fprintf(stderr, "  %d types total.\n", (int)Types.size());
57  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
58  unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
59  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
60
61  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
62  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
63  unsigned NumObjCQualifiedIds = 0;
64  unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
65
66  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
67    Type *T = Types[i];
68    if (isa<BuiltinType>(T))
69      ++NumBuiltin;
70    else if (isa<PointerType>(T))
71      ++NumPointer;
72    else if (isa<BlockPointerType>(T))
73      ++NumBlockPointer;
74    else if (isa<ReferenceType>(T))
75      ++NumReference;
76    else if (isa<ComplexType>(T))
77      ++NumComplex;
78    else if (isa<ArrayType>(T))
79      ++NumArray;
80    else if (isa<VectorType>(T))
81      ++NumVector;
82    else if (isa<FunctionTypeNoProto>(T))
83      ++NumFunctionNP;
84    else if (isa<FunctionTypeProto>(T))
85      ++NumFunctionP;
86    else if (isa<TypedefType>(T))
87      ++NumTypeName;
88    else if (TagType *TT = dyn_cast<TagType>(T)) {
89      ++NumTagged;
90      switch (TT->getDecl()->getTagKind()) {
91      default: assert(0 && "Unknown tagged type!");
92      case TagDecl::TK_struct: ++NumTagStruct; break;
93      case TagDecl::TK_union:  ++NumTagUnion; break;
94      case TagDecl::TK_class:  ++NumTagClass; break;
95      case TagDecl::TK_enum:   ++NumTagEnum; break;
96      }
97    } else if (isa<ObjCInterfaceType>(T))
98      ++NumObjCInterfaces;
99    else if (isa<ObjCQualifiedInterfaceType>(T))
100      ++NumObjCQualifiedInterfaces;
101    else if (isa<ObjCQualifiedIdType>(T))
102      ++NumObjCQualifiedIds;
103    else if (isa<TypeOfType>(T))
104      ++NumTypeOfTypes;
105    else if (isa<TypeOfExpr>(T))
106      ++NumTypeOfExprs;
107    else {
108      QualType(T, 0).dump();
109      assert(0 && "Unknown type!");
110    }
111  }
112
113  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
114  fprintf(stderr, "    %d pointer types\n", NumPointer);
115  fprintf(stderr, "    %d block pointer types\n", NumBlockPointer);
116  fprintf(stderr, "    %d reference types\n", NumReference);
117  fprintf(stderr, "    %d complex types\n", NumComplex);
118  fprintf(stderr, "    %d array types\n", NumArray);
119  fprintf(stderr, "    %d vector types\n", NumVector);
120  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
121  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
122  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
123  fprintf(stderr, "    %d tagged types\n", NumTagged);
124  fprintf(stderr, "      %d struct types\n", NumTagStruct);
125  fprintf(stderr, "      %d union types\n", NumTagUnion);
126  fprintf(stderr, "      %d class types\n", NumTagClass);
127  fprintf(stderr, "      %d enum types\n", NumTagEnum);
128  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
129  fprintf(stderr, "    %d protocol qualified interface types\n",
130          NumObjCQualifiedInterfaces);
131  fprintf(stderr, "    %d protocol qualified id types\n",
132          NumObjCQualifiedIds);
133  fprintf(stderr, "    %d typeof types\n", NumTypeOfTypes);
134  fprintf(stderr, "    %d typeof exprs\n", NumTypeOfExprs);
135
136  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
137    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
138    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
139    NumFunctionP*sizeof(FunctionTypeProto)+
140    NumFunctionNP*sizeof(FunctionTypeNoProto)+
141    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
142    NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
143}
144
145
146void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
147  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
148}
149
150void ASTContext::InitBuiltinTypes() {
151  assert(VoidTy.isNull() && "Context reinitialized?");
152
153  // C99 6.2.5p19.
154  InitBuiltinType(VoidTy,              BuiltinType::Void);
155
156  // C99 6.2.5p2.
157  InitBuiltinType(BoolTy,              BuiltinType::Bool);
158  // C99 6.2.5p3.
159  if (Target.isCharSigned())
160    InitBuiltinType(CharTy,            BuiltinType::Char_S);
161  else
162    InitBuiltinType(CharTy,            BuiltinType::Char_U);
163  // C99 6.2.5p4.
164  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
165  InitBuiltinType(ShortTy,             BuiltinType::Short);
166  InitBuiltinType(IntTy,               BuiltinType::Int);
167  InitBuiltinType(LongTy,              BuiltinType::Long);
168  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
169
170  // C99 6.2.5p6.
171  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
172  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
173  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
174  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
175  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
176
177  // C99 6.2.5p10.
178  InitBuiltinType(FloatTy,             BuiltinType::Float);
179  InitBuiltinType(DoubleTy,            BuiltinType::Double);
180  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
181
182  // C++ 3.9.1p5
183  InitBuiltinType(WCharTy,             BuiltinType::WChar);
184
185  // Placeholder type for functions.
186  InitBuiltinType(OverloadTy,         BuiltinType::Overload);
187
188  // C99 6.2.5p11.
189  FloatComplexTy      = getComplexType(FloatTy);
190  DoubleComplexTy     = getComplexType(DoubleTy);
191  LongDoubleComplexTy = getComplexType(LongDoubleTy);
192
193  BuiltinVaListType = QualType();
194  ObjCIdType = QualType();
195  IdStructType = 0;
196  ObjCClassType = QualType();
197  ClassStructType = 0;
198
199  ObjCConstantStringType = QualType();
200
201  // void * type
202  VoidPtrTy = getPointerType(VoidTy);
203}
204
205//===----------------------------------------------------------------------===//
206//                         Type Sizing and Analysis
207//===----------------------------------------------------------------------===//
208
209/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
210/// scalar floating point type.
211const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
212  const BuiltinType *BT = T->getAsBuiltinType();
213  assert(BT && "Not a floating point type!");
214  switch (BT->getKind()) {
215  default: assert(0 && "Not a floating point type!");
216  case BuiltinType::Float:      return Target.getFloatFormat();
217  case BuiltinType::Double:     return Target.getDoubleFormat();
218  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
219  }
220}
221
222
223/// getTypeSize - Return the size of the specified type, in bits.  This method
224/// does not work on incomplete types.
225std::pair<uint64_t, unsigned>
226ASTContext::getTypeInfo(const Type *T) {
227  T = getCanonicalType(T);
228  uint64_t Width;
229  unsigned Align;
230  switch (T->getTypeClass()) {
231  case Type::TypeName: assert(0 && "Not a canonical type!");
232  case Type::FunctionNoProto:
233  case Type::FunctionProto:
234  default:
235    assert(0 && "Incomplete types have no size!");
236  case Type::VariableArray:
237    assert(0 && "VLAs not implemented yet!");
238  case Type::ConstantArray: {
239    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
240
241    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
242    Width = EltInfo.first*CAT->getSize().getZExtValue();
243    Align = EltInfo.second;
244    break;
245  }
246  case Type::ExtVector:
247  case Type::Vector: {
248    std::pair<uint64_t, unsigned> EltInfo =
249      getTypeInfo(cast<VectorType>(T)->getElementType());
250    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
251    // FIXME: This isn't right for unusual vectors
252    Align = Width;
253    break;
254  }
255
256  case Type::Builtin:
257    switch (cast<BuiltinType>(T)->getKind()) {
258    default: assert(0 && "Unknown builtin type!");
259    case BuiltinType::Void:
260      assert(0 && "Incomplete types have no size!");
261    case BuiltinType::Bool:
262      Width = Target.getBoolWidth();
263      Align = Target.getBoolAlign();
264      break;
265    case BuiltinType::Char_S:
266    case BuiltinType::Char_U:
267    case BuiltinType::UChar:
268    case BuiltinType::SChar:
269      Width = Target.getCharWidth();
270      Align = Target.getCharAlign();
271      break;
272    case BuiltinType::WChar:
273      Width = Target.getWCharWidth();
274      Align = Target.getWCharAlign();
275      break;
276    case BuiltinType::UShort:
277    case BuiltinType::Short:
278      Width = Target.getShortWidth();
279      Align = Target.getShortAlign();
280      break;
281    case BuiltinType::UInt:
282    case BuiltinType::Int:
283      Width = Target.getIntWidth();
284      Align = Target.getIntAlign();
285      break;
286    case BuiltinType::ULong:
287    case BuiltinType::Long:
288      Width = Target.getLongWidth();
289      Align = Target.getLongAlign();
290      break;
291    case BuiltinType::ULongLong:
292    case BuiltinType::LongLong:
293      Width = Target.getLongLongWidth();
294      Align = Target.getLongLongAlign();
295      break;
296    case BuiltinType::Float:
297      Width = Target.getFloatWidth();
298      Align = Target.getFloatAlign();
299      break;
300    case BuiltinType::Double:
301      Width = Target.getDoubleWidth();
302      Align = Target.getDoubleAlign();
303      break;
304    case BuiltinType::LongDouble:
305      Width = Target.getLongDoubleWidth();
306      Align = Target.getLongDoubleAlign();
307      break;
308    }
309    break;
310  case Type::ASQual:
311    // FIXME: Pointers into different addr spaces could have different sizes and
312    // alignment requirements: getPointerInfo should take an AddrSpace.
313    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
314  case Type::ObjCQualifiedId:
315    Width = Target.getPointerWidth(0);
316    Align = Target.getPointerAlign(0);
317    break;
318  case Type::BlockPointer: {
319    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
320    Width = Target.getPointerWidth(AS);
321    Align = Target.getPointerAlign(AS);
322    break;
323  }
324  case Type::Pointer: {
325    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
326    Width = Target.getPointerWidth(AS);
327    Align = Target.getPointerAlign(AS);
328    break;
329  }
330  case Type::Reference:
331    // "When applied to a reference or a reference type, the result is the size
332    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
333    // FIXME: This is wrong for struct layout: a reference in a struct has
334    // pointer size.
335    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
336
337  case Type::Complex: {
338    // Complex types have the same alignment as their elements, but twice the
339    // size.
340    std::pair<uint64_t, unsigned> EltInfo =
341      getTypeInfo(cast<ComplexType>(T)->getElementType());
342    Width = EltInfo.first*2;
343    Align = EltInfo.second;
344    break;
345  }
346  case Type::ObjCInterface: {
347    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
348    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
349    Width = Layout.getSize();
350    Align = Layout.getAlignment();
351    break;
352  }
353  case Type::Tagged: {
354    const TagType *TT = cast<TagType>(T);
355
356    if (TT->getDecl()->isInvalidDecl()) {
357      Width = 1;
358      Align = 1;
359      break;
360    }
361
362    if (const EnumType *ET = dyn_cast<EnumType>(TT))
363      return getTypeInfo(ET->getDecl()->getIntegerType());
364
365    const RecordType *RT = cast<RecordType>(TT);
366    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
367    Width = Layout.getSize();
368    Align = Layout.getAlignment();
369    break;
370  }
371  }
372
373  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
374  return std::make_pair(Width, Align);
375}
376
377/// LayoutField - Field layout.
378void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
379                                  bool IsUnion, unsigned StructPacking,
380                                  ASTContext &Context) {
381  unsigned FieldPacking = StructPacking;
382  uint64_t FieldOffset = IsUnion ? 0 : Size;
383  uint64_t FieldSize;
384  unsigned FieldAlign;
385
386  // FIXME: Should this override struct packing? Probably we want to
387  // take the minimum?
388  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
389    FieldPacking = PA->getAlignment();
390
391  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
392    // TODO: Need to check this algorithm on other targets!
393    //       (tested on Linux-X86)
394    FieldSize =
395      BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
396
397    std::pair<uint64_t, unsigned> FieldInfo =
398      Context.getTypeInfo(FD->getType());
399    uint64_t TypeSize = FieldInfo.first;
400
401    // Determine the alignment of this bitfield. The packing
402    // attributes define a maximum and the alignment attribute defines
403    // a minimum.
404    // FIXME: What is the right behavior when the specified alignment
405    // is smaller than the specified packing?
406    FieldAlign = FieldInfo.second;
407    if (FieldPacking)
408      FieldAlign = std::min(FieldAlign, FieldPacking);
409    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
410      FieldAlign = std::max(FieldAlign, AA->getAlignment());
411
412    // Check if we need to add padding to give the field the correct
413    // alignment.
414    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
415      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
416
417    // Padding members don't affect overall alignment
418    if (!FD->getIdentifier())
419      FieldAlign = 1;
420  } else {
421    if (FD->getType()->isIncompleteArrayType()) {
422      // This is a flexible array member; we can't directly
423      // query getTypeInfo about these, so we figure it out here.
424      // Flexible array members don't have any size, but they
425      // have to be aligned appropriately for their element type.
426      FieldSize = 0;
427      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
428      FieldAlign = Context.getTypeAlign(ATy->getElementType());
429    } else {
430      std::pair<uint64_t, unsigned> FieldInfo =
431        Context.getTypeInfo(FD->getType());
432      FieldSize = FieldInfo.first;
433      FieldAlign = FieldInfo.second;
434    }
435
436    // Determine the alignment of this bitfield. The packing
437    // attributes define a maximum and the alignment attribute defines
438    // a minimum. Additionally, the packing alignment must be at least
439    // a byte for non-bitfields.
440    //
441    // FIXME: What is the right behavior when the specified alignment
442    // is smaller than the specified packing?
443    if (FieldPacking)
444      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
445    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
446      FieldAlign = std::max(FieldAlign, AA->getAlignment());
447
448    // Round up the current record size to the field's alignment boundary.
449    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
450  }
451
452  // Place this field at the current location.
453  FieldOffsets[FieldNo] = FieldOffset;
454
455  // Reserve space for this field.
456  if (IsUnion) {
457    Size = std::max(Size, FieldSize);
458  } else {
459    Size = FieldOffset + FieldSize;
460  }
461
462  // Remember max struct/class alignment.
463  Alignment = std::max(Alignment, FieldAlign);
464}
465
466
467/// getASTObjcInterfaceLayout - Get or compute information about the layout of
468/// the specified Objective C, which indicates its size and ivar
469/// position information.
470const ASTRecordLayout &
471ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
472  // Look up this layout, if already laid out, return what we have.
473  const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
474  if (Entry) return *Entry;
475
476  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
477  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
478  ASTRecordLayout *NewEntry = NULL;
479  unsigned FieldCount = D->ivar_size();
480  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
481    FieldCount++;
482    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
483    unsigned Alignment = SL.getAlignment();
484    uint64_t Size = SL.getSize();
485    NewEntry = new ASTRecordLayout(Size, Alignment);
486    NewEntry->InitializeLayout(FieldCount);
487    // Super class is at the beginning of the layout.
488    NewEntry->SetFieldOffset(0, 0);
489  } else {
490    NewEntry = new ASTRecordLayout();
491    NewEntry->InitializeLayout(FieldCount);
492  }
493  Entry = NewEntry;
494
495  unsigned StructPacking = 0;
496  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
497    StructPacking = PA->getAlignment();
498
499  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
500    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
501                                    AA->getAlignment()));
502
503  // Layout each ivar sequentially.
504  unsigned i = 0;
505  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
506       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
507    const ObjCIvarDecl* Ivar = (*IVI);
508    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
509  }
510
511  // Finally, round the size of the total struct up to the alignment of the
512  // struct itself.
513  NewEntry->FinalizeLayout();
514  return *NewEntry;
515}
516
517/// getASTRecordLayout - Get or compute information about the layout of the
518/// specified record (struct/union/class), which indicates its size and field
519/// position information.
520const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
521  D = D->getDefinition(*this);
522  assert(D && "Cannot get layout of forward declarations!");
523
524  // Look up this layout, if already laid out, return what we have.
525  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
526  if (Entry) return *Entry;
527
528  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
529  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
530  ASTRecordLayout *NewEntry = new ASTRecordLayout();
531  Entry = NewEntry;
532
533  NewEntry->InitializeLayout(D->getNumMembers());
534  bool IsUnion = D->isUnion();
535
536  unsigned StructPacking = 0;
537  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
538    StructPacking = PA->getAlignment();
539
540  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
541    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
542                                    AA->getAlignment()));
543
544  // Layout each field, for now, just sequentially, respecting alignment.  In
545  // the future, this will need to be tweakable by targets.
546  for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
547    const FieldDecl *FD = D->getMember(i);
548    NewEntry->LayoutField(FD, i, IsUnion, StructPacking, *this);
549  }
550
551  // Finally, round the size of the total struct up to the alignment of the
552  // struct itself.
553  NewEntry->FinalizeLayout();
554  return *NewEntry;
555}
556
557//===----------------------------------------------------------------------===//
558//                   Type creation/memoization methods
559//===----------------------------------------------------------------------===//
560
561QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
562  QualType CanT = getCanonicalType(T);
563  if (CanT.getAddressSpace() == AddressSpace)
564    return T;
565
566  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
567  // with CVR qualifiers from here on out.
568  assert(CanT.getAddressSpace() == 0 &&
569         "Type is already address space qualified");
570
571  // Check if we've already instantiated an address space qual'd type of this
572  // type.
573  llvm::FoldingSetNodeID ID;
574  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
575  void *InsertPos = 0;
576  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
577    return QualType(ASQy, 0);
578
579  // If the base type isn't canonical, this won't be a canonical type either,
580  // so fill in the canonical type field.
581  QualType Canonical;
582  if (!T->isCanonical()) {
583    Canonical = getASQualType(CanT, AddressSpace);
584
585    // Get the new insert position for the node we care about.
586    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
587    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
588  }
589  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
590  ASQualTypes.InsertNode(New, InsertPos);
591  Types.push_back(New);
592  return QualType(New, T.getCVRQualifiers());
593}
594
595
596/// getComplexType - Return the uniqued reference to the type for a complex
597/// number with the specified element type.
598QualType ASTContext::getComplexType(QualType T) {
599  // Unique pointers, to guarantee there is only one pointer of a particular
600  // structure.
601  llvm::FoldingSetNodeID ID;
602  ComplexType::Profile(ID, T);
603
604  void *InsertPos = 0;
605  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
606    return QualType(CT, 0);
607
608  // If the pointee type isn't canonical, this won't be a canonical type either,
609  // so fill in the canonical type field.
610  QualType Canonical;
611  if (!T->isCanonical()) {
612    Canonical = getComplexType(getCanonicalType(T));
613
614    // Get the new insert position for the node we care about.
615    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
616    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
617  }
618  ComplexType *New = new ComplexType(T, Canonical);
619  Types.push_back(New);
620  ComplexTypes.InsertNode(New, InsertPos);
621  return QualType(New, 0);
622}
623
624
625/// getPointerType - Return the uniqued reference to the type for a pointer to
626/// the specified type.
627QualType ASTContext::getPointerType(QualType T) {
628  // Unique pointers, to guarantee there is only one pointer of a particular
629  // structure.
630  llvm::FoldingSetNodeID ID;
631  PointerType::Profile(ID, T);
632
633  void *InsertPos = 0;
634  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
635    return QualType(PT, 0);
636
637  // If the pointee type isn't canonical, this won't be a canonical type either,
638  // so fill in the canonical type field.
639  QualType Canonical;
640  if (!T->isCanonical()) {
641    Canonical = getPointerType(getCanonicalType(T));
642
643    // Get the new insert position for the node we care about.
644    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
645    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
646  }
647  PointerType *New = new PointerType(T, Canonical);
648  Types.push_back(New);
649  PointerTypes.InsertNode(New, InsertPos);
650  return QualType(New, 0);
651}
652
653/// getBlockPointerType - Return the uniqued reference to the type for
654/// a pointer to the specified block.
655QualType ASTContext::getBlockPointerType(QualType T) {
656  assert(T->isFunctionType() && "block of function types only");
657  // Unique pointers, to guarantee there is only one block of a particular
658  // structure.
659  llvm::FoldingSetNodeID ID;
660  BlockPointerType::Profile(ID, T);
661
662  void *InsertPos = 0;
663  if (BlockPointerType *PT =
664        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
665    return QualType(PT, 0);
666
667  // If the block pointee type isn't canonical, this won't be a canonical
668  // type either so fill in the canonical type field.
669  QualType Canonical;
670  if (!T->isCanonical()) {
671    Canonical = getBlockPointerType(getCanonicalType(T));
672
673    // Get the new insert position for the node we care about.
674    BlockPointerType *NewIP =
675      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
676    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
677  }
678  BlockPointerType *New = new BlockPointerType(T, Canonical);
679  Types.push_back(New);
680  BlockPointerTypes.InsertNode(New, InsertPos);
681  return QualType(New, 0);
682}
683
684/// getReferenceType - Return the uniqued reference to the type for a reference
685/// to the specified type.
686QualType ASTContext::getReferenceType(QualType T) {
687  // Unique pointers, to guarantee there is only one pointer of a particular
688  // structure.
689  llvm::FoldingSetNodeID ID;
690  ReferenceType::Profile(ID, T);
691
692  void *InsertPos = 0;
693  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
694    return QualType(RT, 0);
695
696  // If the referencee type isn't canonical, this won't be a canonical type
697  // either, so fill in the canonical type field.
698  QualType Canonical;
699  if (!T->isCanonical()) {
700    Canonical = getReferenceType(getCanonicalType(T));
701
702    // Get the new insert position for the node we care about.
703    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
704    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
705  }
706
707  ReferenceType *New = new ReferenceType(T, Canonical);
708  Types.push_back(New);
709  ReferenceTypes.InsertNode(New, InsertPos);
710  return QualType(New, 0);
711}
712
713/// getConstantArrayType - Return the unique reference to the type for an
714/// array of the specified element type.
715QualType ASTContext::getConstantArrayType(QualType EltTy,
716                                          const llvm::APInt &ArySize,
717                                          ArrayType::ArraySizeModifier ASM,
718                                          unsigned EltTypeQuals) {
719  llvm::FoldingSetNodeID ID;
720  ConstantArrayType::Profile(ID, EltTy, ArySize);
721
722  void *InsertPos = 0;
723  if (ConstantArrayType *ATP =
724      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
725    return QualType(ATP, 0);
726
727  // If the element type isn't canonical, this won't be a canonical type either,
728  // so fill in the canonical type field.
729  QualType Canonical;
730  if (!EltTy->isCanonical()) {
731    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
732                                     ASM, EltTypeQuals);
733    // Get the new insert position for the node we care about.
734    ConstantArrayType *NewIP =
735      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
736    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
737  }
738
739  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
740                                                 ASM, EltTypeQuals);
741  ConstantArrayTypes.InsertNode(New, InsertPos);
742  Types.push_back(New);
743  return QualType(New, 0);
744}
745
746/// getVariableArrayType - Returns a non-unique reference to the type for a
747/// variable array of the specified element type.
748QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
749                                          ArrayType::ArraySizeModifier ASM,
750                                          unsigned EltTypeQuals) {
751  // Since we don't unique expressions, it isn't possible to unique VLA's
752  // that have an expression provided for their size.
753
754  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
755                                                 ASM, EltTypeQuals);
756
757  VariableArrayTypes.push_back(New);
758  Types.push_back(New);
759  return QualType(New, 0);
760}
761
762QualType ASTContext::getIncompleteArrayType(QualType EltTy,
763                                            ArrayType::ArraySizeModifier ASM,
764                                            unsigned EltTypeQuals) {
765  llvm::FoldingSetNodeID ID;
766  IncompleteArrayType::Profile(ID, EltTy);
767
768  void *InsertPos = 0;
769  if (IncompleteArrayType *ATP =
770       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
771    return QualType(ATP, 0);
772
773  // If the element type isn't canonical, this won't be a canonical type
774  // either, so fill in the canonical type field.
775  QualType Canonical;
776
777  if (!EltTy->isCanonical()) {
778    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
779                                       ASM, EltTypeQuals);
780
781    // Get the new insert position for the node we care about.
782    IncompleteArrayType *NewIP =
783      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
784    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
785  }
786
787  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
788                                                     ASM, EltTypeQuals);
789
790  IncompleteArrayTypes.InsertNode(New, InsertPos);
791  Types.push_back(New);
792  return QualType(New, 0);
793}
794
795/// getVectorType - Return the unique reference to a vector type of
796/// the specified element type and size. VectorType must be a built-in type.
797QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
798  BuiltinType *baseType;
799
800  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
801  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
802
803  // Check if we've already instantiated a vector of this type.
804  llvm::FoldingSetNodeID ID;
805  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
806  void *InsertPos = 0;
807  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
808    return QualType(VTP, 0);
809
810  // If the element type isn't canonical, this won't be a canonical type either,
811  // so fill in the canonical type field.
812  QualType Canonical;
813  if (!vecType->isCanonical()) {
814    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
815
816    // Get the new insert position for the node we care about.
817    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
818    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
819  }
820  VectorType *New = new VectorType(vecType, NumElts, Canonical);
821  VectorTypes.InsertNode(New, InsertPos);
822  Types.push_back(New);
823  return QualType(New, 0);
824}
825
826/// getExtVectorType - Return the unique reference to an extended vector type of
827/// the specified element type and size. VectorType must be a built-in type.
828QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
829  BuiltinType *baseType;
830
831  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
832  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
833
834  // Check if we've already instantiated a vector of this type.
835  llvm::FoldingSetNodeID ID;
836  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
837  void *InsertPos = 0;
838  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
839    return QualType(VTP, 0);
840
841  // If the element type isn't canonical, this won't be a canonical type either,
842  // so fill in the canonical type field.
843  QualType Canonical;
844  if (!vecType->isCanonical()) {
845    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
846
847    // Get the new insert position for the node we care about.
848    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
849    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
850  }
851  ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical);
852  VectorTypes.InsertNode(New, InsertPos);
853  Types.push_back(New);
854  return QualType(New, 0);
855}
856
857/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
858///
859QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
860  // Unique functions, to guarantee there is only one function of a particular
861  // structure.
862  llvm::FoldingSetNodeID ID;
863  FunctionTypeNoProto::Profile(ID, ResultTy);
864
865  void *InsertPos = 0;
866  if (FunctionTypeNoProto *FT =
867        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
868    return QualType(FT, 0);
869
870  QualType Canonical;
871  if (!ResultTy->isCanonical()) {
872    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
873
874    // Get the new insert position for the node we care about.
875    FunctionTypeNoProto *NewIP =
876      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
877    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
878  }
879
880  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
881  Types.push_back(New);
882  FunctionTypeNoProtos.InsertNode(New, InsertPos);
883  return QualType(New, 0);
884}
885
886/// getFunctionType - Return a normal function type with a typed argument
887/// list.  isVariadic indicates whether the argument list includes '...'.
888QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
889                                     unsigned NumArgs, bool isVariadic,
890                                     unsigned TypeQuals) {
891  // Unique functions, to guarantee there is only one function of a particular
892  // structure.
893  llvm::FoldingSetNodeID ID;
894  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
895                             TypeQuals);
896
897  void *InsertPos = 0;
898  if (FunctionTypeProto *FTP =
899        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
900    return QualType(FTP, 0);
901
902  // Determine whether the type being created is already canonical or not.
903  bool isCanonical = ResultTy->isCanonical();
904  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
905    if (!ArgArray[i]->isCanonical())
906      isCanonical = false;
907
908  // If this type isn't canonical, get the canonical version of it.
909  QualType Canonical;
910  if (!isCanonical) {
911    llvm::SmallVector<QualType, 16> CanonicalArgs;
912    CanonicalArgs.reserve(NumArgs);
913    for (unsigned i = 0; i != NumArgs; ++i)
914      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
915
916    Canonical = getFunctionType(getCanonicalType(ResultTy),
917                                &CanonicalArgs[0], NumArgs,
918                                isVariadic, TypeQuals);
919
920    // Get the new insert position for the node we care about.
921    FunctionTypeProto *NewIP =
922      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
923    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
924  }
925
926  // FunctionTypeProto objects are not allocated with new because they have a
927  // variable size array (for parameter types) at the end of them.
928  FunctionTypeProto *FTP =
929    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
930                               NumArgs*sizeof(QualType));
931  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
932                              TypeQuals, Canonical);
933  Types.push_back(FTP);
934  FunctionTypeProtos.InsertNode(FTP, InsertPos);
935  return QualType(FTP, 0);
936}
937
938/// getTypeDeclType - Return the unique reference to the type for the
939/// specified type declaration.
940QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
941  assert(Decl && "Passed null for Decl param");
942  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
943
944  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
945    return getTypedefType(Typedef);
946  else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
947    return getObjCInterfaceType(ObjCInterface);
948
949  if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Decl)) {
950    Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
951                                 : new CXXRecordType(CXXRecord);
952  }
953  else if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
954    Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
955                                 : new RecordType(Record);
956  }
957  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl))
958    Decl->TypeForDecl = new EnumType(Enum);
959  else
960    assert(false && "TypeDecl without a type?");
961
962  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
963  return QualType(Decl->TypeForDecl, 0);
964}
965
966/// setTagDefinition - Used by RecordDecl::defineBody to inform ASTContext
967///  about which RecordDecl serves as the definition of a particular
968///  struct/union/class.  This will eventually be used by enums as well.
969void ASTContext::setTagDefinition(TagDecl* D) {
970  assert (D->isDefinition());
971  cast<TagType>(D->TypeForDecl)->decl = D;
972}
973
974/// getTypedefType - Return the unique reference to the type for the
975/// specified typename decl.
976QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
977  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
978
979  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
980  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
981  Types.push_back(Decl->TypeForDecl);
982  return QualType(Decl->TypeForDecl, 0);
983}
984
985/// getObjCInterfaceType - Return the unique reference to the type for the
986/// specified ObjC interface decl.
987QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
988  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
989
990  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
991  Types.push_back(Decl->TypeForDecl);
992  return QualType(Decl->TypeForDecl, 0);
993}
994
995/// CmpProtocolNames - Comparison predicate for sorting protocols
996/// alphabetically.
997static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
998                            const ObjCProtocolDecl *RHS) {
999  return LHS->getDeclName() < RHS->getDeclName();
1000}
1001
1002static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1003                                   unsigned &NumProtocols) {
1004  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1005
1006  // Sort protocols, keyed by name.
1007  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1008
1009  // Remove duplicates.
1010  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1011  NumProtocols = ProtocolsEnd-Protocols;
1012}
1013
1014
1015/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1016/// the given interface decl and the conforming protocol list.
1017QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1018                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1019  // Sort the protocol list alphabetically to canonicalize it.
1020  SortAndUniqueProtocols(Protocols, NumProtocols);
1021
1022  llvm::FoldingSetNodeID ID;
1023  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1024
1025  void *InsertPos = 0;
1026  if (ObjCQualifiedInterfaceType *QT =
1027      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1028    return QualType(QT, 0);
1029
1030  // No Match;
1031  ObjCQualifiedInterfaceType *QType =
1032    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1033  Types.push_back(QType);
1034  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1035  return QualType(QType, 0);
1036}
1037
1038/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1039/// and the conforming protocol list.
1040QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1041                                            unsigned NumProtocols) {
1042  // Sort the protocol list alphabetically to canonicalize it.
1043  SortAndUniqueProtocols(Protocols, NumProtocols);
1044
1045  llvm::FoldingSetNodeID ID;
1046  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1047
1048  void *InsertPos = 0;
1049  if (ObjCQualifiedIdType *QT =
1050        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1051    return QualType(QT, 0);
1052
1053  // No Match;
1054  ObjCQualifiedIdType *QType = new ObjCQualifiedIdType(Protocols, NumProtocols);
1055  Types.push_back(QType);
1056  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1057  return QualType(QType, 0);
1058}
1059
1060/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
1061/// TypeOfExpr AST's (since expression's are never shared). For example,
1062/// multiple declarations that refer to "typeof(x)" all contain different
1063/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1064/// on canonical type's (which are always unique).
1065QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
1066  QualType Canonical = getCanonicalType(tofExpr->getType());
1067  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
1068  Types.push_back(toe);
1069  return QualType(toe, 0);
1070}
1071
1072/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1073/// TypeOfType AST's. The only motivation to unique these nodes would be
1074/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1075/// an issue. This doesn't effect the type checker, since it operates
1076/// on canonical type's (which are always unique).
1077QualType ASTContext::getTypeOfType(QualType tofType) {
1078  QualType Canonical = getCanonicalType(tofType);
1079  TypeOfType *tot = new TypeOfType(tofType, Canonical);
1080  Types.push_back(tot);
1081  return QualType(tot, 0);
1082}
1083
1084/// getTagDeclType - Return the unique reference to the type for the
1085/// specified TagDecl (struct/union/class/enum) decl.
1086QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1087  assert (Decl);
1088  return getTypeDeclType(Decl);
1089}
1090
1091/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1092/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1093/// needs to agree with the definition in <stddef.h>.
1094QualType ASTContext::getSizeType() const {
1095  return getFromTargetType(Target.getSizeType());
1096}
1097
1098/// getWCharType - Return the unique type for "wchar_t" (C99 7.17), the
1099/// width of characters in wide strings, The value is target dependent and
1100/// needs to agree with the definition in <stddef.h>.
1101QualType ASTContext::getWCharType() const {
1102  if (LangOpts.CPlusPlus)
1103    return WCharTy;
1104
1105  // FIXME: In C, shouldn't WCharTy just be a typedef of the target's
1106  // wide-character type?
1107  return getFromTargetType(Target.getWCharType());
1108}
1109
1110/// getSignedWCharType - Return the type of "signed wchar_t".
1111/// Used when in C++, as a GCC extension.
1112QualType ASTContext::getSignedWCharType() const {
1113  // FIXME: derive from "Target" ?
1114  return WCharTy;
1115}
1116
1117/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1118/// Used when in C++, as a GCC extension.
1119QualType ASTContext::getUnsignedWCharType() const {
1120  // FIXME: derive from "Target" ?
1121  return UnsignedIntTy;
1122}
1123
1124/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1125/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1126QualType ASTContext::getPointerDiffType() const {
1127  return getFromTargetType(Target.getPtrDiffType(0));
1128}
1129
1130//===----------------------------------------------------------------------===//
1131//                              Type Operators
1132//===----------------------------------------------------------------------===//
1133
1134/// getCanonicalType - Return the canonical (structural) type corresponding to
1135/// the specified potentially non-canonical type.  The non-canonical version
1136/// of a type may have many "decorated" versions of types.  Decorators can
1137/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1138/// to be free of any of these, allowing two canonical types to be compared
1139/// for exact equality with a simple pointer comparison.
1140QualType ASTContext::getCanonicalType(QualType T) {
1141  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1142
1143  // If the result has type qualifiers, make sure to canonicalize them as well.
1144  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1145  if (TypeQuals == 0) return CanType;
1146
1147  // If the type qualifiers are on an array type, get the canonical type of the
1148  // array with the qualifiers applied to the element type.
1149  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1150  if (!AT)
1151    return CanType.getQualifiedType(TypeQuals);
1152
1153  // Get the canonical version of the element with the extra qualifiers on it.
1154  // This can recursively sink qualifiers through multiple levels of arrays.
1155  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1156  NewEltTy = getCanonicalType(NewEltTy);
1157
1158  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1159    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1160                                CAT->getIndexTypeQualifier());
1161  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1162    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1163                                  IAT->getIndexTypeQualifier());
1164
1165  // FIXME: What is the ownership of size expressions in VLAs?
1166  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1167  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1168                              VAT->getSizeModifier(),
1169                              VAT->getIndexTypeQualifier());
1170}
1171
1172
1173const ArrayType *ASTContext::getAsArrayType(QualType T) {
1174  // Handle the non-qualified case efficiently.
1175  if (T.getCVRQualifiers() == 0) {
1176    // Handle the common positive case fast.
1177    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1178      return AT;
1179  }
1180
1181  // Handle the common negative case fast, ignoring CVR qualifiers.
1182  QualType CType = T->getCanonicalTypeInternal();
1183
1184  // Make sure to look through type qualifiers (like ASQuals) for the negative
1185  // test.
1186  if (!isa<ArrayType>(CType) &&
1187      !isa<ArrayType>(CType.getUnqualifiedType()))
1188    return 0;
1189
1190  // Apply any CVR qualifiers from the array type to the element type.  This
1191  // implements C99 6.7.3p8: "If the specification of an array type includes
1192  // any type qualifiers, the element type is so qualified, not the array type."
1193
1194  // If we get here, we either have type qualifiers on the type, or we have
1195  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1196  // we must propagate them down into the elemeng type.
1197  unsigned CVRQuals = T.getCVRQualifiers();
1198  unsigned AddrSpace = 0;
1199  Type *Ty = T.getTypePtr();
1200
1201  // Rip through ASQualType's and typedefs to get to a concrete type.
1202  while (1) {
1203    if (const ASQualType *ASQT = dyn_cast<ASQualType>(Ty)) {
1204      AddrSpace = ASQT->getAddressSpace();
1205      Ty = ASQT->getBaseType();
1206    } else {
1207      T = Ty->getDesugaredType();
1208      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1209        break;
1210      CVRQuals |= T.getCVRQualifiers();
1211      Ty = T.getTypePtr();
1212    }
1213  }
1214
1215  // If we have a simple case, just return now.
1216  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1217  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1218    return ATy;
1219
1220  // Otherwise, we have an array and we have qualifiers on it.  Push the
1221  // qualifiers into the array element type and return a new array type.
1222  // Get the canonical version of the element with the extra qualifiers on it.
1223  // This can recursively sink qualifiers through multiple levels of arrays.
1224  QualType NewEltTy = ATy->getElementType();
1225  if (AddrSpace)
1226    NewEltTy = getASQualType(NewEltTy, AddrSpace);
1227  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1228
1229  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1230    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1231                                                CAT->getSizeModifier(),
1232                                                CAT->getIndexTypeQualifier()));
1233  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1234    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1235                                                  IAT->getSizeModifier(),
1236                                                 IAT->getIndexTypeQualifier()));
1237
1238  // FIXME: What is the ownership of size expressions in VLAs?
1239  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1240  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1241                                              VAT->getSizeModifier(),
1242                                              VAT->getIndexTypeQualifier()));
1243}
1244
1245
1246/// getArrayDecayedType - Return the properly qualified result of decaying the
1247/// specified array type to a pointer.  This operation is non-trivial when
1248/// handling typedefs etc.  The canonical type of "T" must be an array type,
1249/// this returns a pointer to a properly qualified element of the array.
1250///
1251/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1252QualType ASTContext::getArrayDecayedType(QualType Ty) {
1253  // Get the element type with 'getAsArrayType' so that we don't lose any
1254  // typedefs in the element type of the array.  This also handles propagation
1255  // of type qualifiers from the array type into the element type if present
1256  // (C99 6.7.3p8).
1257  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1258  assert(PrettyArrayType && "Not an array type!");
1259
1260  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1261
1262  // int x[restrict 4] ->  int *restrict
1263  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1264}
1265
1266/// getFloatingRank - Return a relative rank for floating point types.
1267/// This routine will assert if passed a built-in type that isn't a float.
1268static FloatingRank getFloatingRank(QualType T) {
1269  if (const ComplexType *CT = T->getAsComplexType())
1270    return getFloatingRank(CT->getElementType());
1271
1272  switch (T->getAsBuiltinType()->getKind()) {
1273  default: assert(0 && "getFloatingRank(): not a floating type");
1274  case BuiltinType::Float:      return FloatRank;
1275  case BuiltinType::Double:     return DoubleRank;
1276  case BuiltinType::LongDouble: return LongDoubleRank;
1277  }
1278}
1279
1280/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1281/// point or a complex type (based on typeDomain/typeSize).
1282/// 'typeDomain' is a real floating point or complex type.
1283/// 'typeSize' is a real floating point or complex type.
1284QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1285                                                       QualType Domain) const {
1286  FloatingRank EltRank = getFloatingRank(Size);
1287  if (Domain->isComplexType()) {
1288    switch (EltRank) {
1289    default: assert(0 && "getFloatingRank(): illegal value for rank");
1290    case FloatRank:      return FloatComplexTy;
1291    case DoubleRank:     return DoubleComplexTy;
1292    case LongDoubleRank: return LongDoubleComplexTy;
1293    }
1294  }
1295
1296  assert(Domain->isRealFloatingType() && "Unknown domain!");
1297  switch (EltRank) {
1298  default: assert(0 && "getFloatingRank(): illegal value for rank");
1299  case FloatRank:      return FloatTy;
1300  case DoubleRank:     return DoubleTy;
1301  case LongDoubleRank: return LongDoubleTy;
1302  }
1303}
1304
1305/// getFloatingTypeOrder - Compare the rank of the two specified floating
1306/// point types, ignoring the domain of the type (i.e. 'double' ==
1307/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1308/// LHS < RHS, return -1.
1309int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1310  FloatingRank LHSR = getFloatingRank(LHS);
1311  FloatingRank RHSR = getFloatingRank(RHS);
1312
1313  if (LHSR == RHSR)
1314    return 0;
1315  if (LHSR > RHSR)
1316    return 1;
1317  return -1;
1318}
1319
1320/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1321/// routine will assert if passed a built-in type that isn't an integer or enum,
1322/// or if it is not canonicalized.
1323static unsigned getIntegerRank(Type *T) {
1324  assert(T->isCanonical() && "T should be canonicalized");
1325  if (isa<EnumType>(T))
1326    return 4;
1327
1328  switch (cast<BuiltinType>(T)->getKind()) {
1329  default: assert(0 && "getIntegerRank(): not a built-in integer");
1330  case BuiltinType::Bool:
1331    return 1;
1332  case BuiltinType::Char_S:
1333  case BuiltinType::Char_U:
1334  case BuiltinType::SChar:
1335  case BuiltinType::UChar:
1336    return 2;
1337  case BuiltinType::Short:
1338  case BuiltinType::UShort:
1339    return 3;
1340  case BuiltinType::Int:
1341  case BuiltinType::UInt:
1342    return 4;
1343  case BuiltinType::Long:
1344  case BuiltinType::ULong:
1345    return 5;
1346  case BuiltinType::LongLong:
1347  case BuiltinType::ULongLong:
1348    return 6;
1349  }
1350}
1351
1352/// getIntegerTypeOrder - Returns the highest ranked integer type:
1353/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1354/// LHS < RHS, return -1.
1355int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1356  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1357  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1358  if (LHSC == RHSC) return 0;
1359
1360  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1361  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1362
1363  unsigned LHSRank = getIntegerRank(LHSC);
1364  unsigned RHSRank = getIntegerRank(RHSC);
1365
1366  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1367    if (LHSRank == RHSRank) return 0;
1368    return LHSRank > RHSRank ? 1 : -1;
1369  }
1370
1371  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1372  if (LHSUnsigned) {
1373    // If the unsigned [LHS] type is larger, return it.
1374    if (LHSRank >= RHSRank)
1375      return 1;
1376
1377    // If the signed type can represent all values of the unsigned type, it
1378    // wins.  Because we are dealing with 2's complement and types that are
1379    // powers of two larger than each other, this is always safe.
1380    return -1;
1381  }
1382
1383  // If the unsigned [RHS] type is larger, return it.
1384  if (RHSRank >= LHSRank)
1385    return -1;
1386
1387  // If the signed type can represent all values of the unsigned type, it
1388  // wins.  Because we are dealing with 2's complement and types that are
1389  // powers of two larger than each other, this is always safe.
1390  return 1;
1391}
1392
1393// getCFConstantStringType - Return the type used for constant CFStrings.
1394QualType ASTContext::getCFConstantStringType() {
1395  if (!CFConstantStringTypeDecl) {
1396    CFConstantStringTypeDecl =
1397      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1398                         &Idents.get("NSConstantString"));
1399    QualType FieldTypes[4];
1400
1401    // const int *isa;
1402    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1403    // int flags;
1404    FieldTypes[1] = IntTy;
1405    // const char *str;
1406    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1407    // long length;
1408    FieldTypes[3] = LongTy;
1409    // Create fields
1410    FieldDecl *FieldDecls[4];
1411
1412    for (unsigned i = 0; i < 4; ++i)
1413      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1414                                        FieldTypes[i]);
1415
1416    CFConstantStringTypeDecl->defineBody(*this, FieldDecls, 4);
1417  }
1418
1419  return getTagDeclType(CFConstantStringTypeDecl);
1420}
1421
1422QualType ASTContext::getObjCFastEnumerationStateType()
1423{
1424  if (!ObjCFastEnumerationStateTypeDecl) {
1425    QualType FieldTypes[] = {
1426      UnsignedLongTy,
1427      getPointerType(ObjCIdType),
1428      getPointerType(UnsignedLongTy),
1429      getConstantArrayType(UnsignedLongTy,
1430                           llvm::APInt(32, 5), ArrayType::Normal, 0)
1431    };
1432
1433    FieldDecl *FieldDecls[4];
1434    for (size_t i = 0; i < 4; ++i)
1435      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1436                                        FieldTypes[i]);
1437
1438    ObjCFastEnumerationStateTypeDecl =
1439      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
1440                         &Idents.get("__objcFastEnumerationState"));
1441
1442    ObjCFastEnumerationStateTypeDecl->defineBody(*this, FieldDecls, 4);
1443  }
1444
1445  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
1446}
1447
1448// This returns true if a type has been typedefed to BOOL:
1449// typedef <type> BOOL;
1450static bool isTypeTypedefedAsBOOL(QualType T) {
1451  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1452    return !strcmp(TT->getDecl()->getIdentifierName(), "BOOL");
1453
1454  return false;
1455}
1456
1457/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1458/// purpose.
1459int ASTContext::getObjCEncodingTypeSize(QualType type) {
1460  uint64_t sz = getTypeSize(type);
1461
1462  // Make all integer and enum types at least as large as an int
1463  if (sz > 0 && type->isIntegralType())
1464    sz = std::max(sz, getTypeSize(IntTy));
1465  // Treat arrays as pointers, since that's how they're passed in.
1466  else if (type->isArrayType())
1467    sz = getTypeSize(VoidPtrTy);
1468  return sz / getTypeSize(CharTy);
1469}
1470
1471/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1472/// declaration.
1473void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1474                                              std::string& S) {
1475  // FIXME: This is not very efficient.
1476  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1477  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1478  // Encode result type.
1479  getObjCEncodingForType(Decl->getResultType(), S);
1480  // Compute size of all parameters.
1481  // Start with computing size of a pointer in number of bytes.
1482  // FIXME: There might(should) be a better way of doing this computation!
1483  SourceLocation Loc;
1484  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1485  // The first two arguments (self and _cmd) are pointers; account for
1486  // their size.
1487  int ParmOffset = 2 * PtrSize;
1488  int NumOfParams = Decl->getNumParams();
1489  for (int i = 0; i < NumOfParams; i++) {
1490    QualType PType = Decl->getParamDecl(i)->getType();
1491    int sz = getObjCEncodingTypeSize (PType);
1492    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1493    ParmOffset += sz;
1494  }
1495  S += llvm::utostr(ParmOffset);
1496  S += "@0:";
1497  S += llvm::utostr(PtrSize);
1498
1499  // Argument types.
1500  ParmOffset = 2 * PtrSize;
1501  for (int i = 0; i < NumOfParams; i++) {
1502    QualType PType = Decl->getParamDecl(i)->getType();
1503    // Process argument qualifiers for user supplied arguments; such as,
1504    // 'in', 'inout', etc.
1505    getObjCEncodingForTypeQualifier(
1506      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
1507    getObjCEncodingForType(PType, S);
1508    S += llvm::utostr(ParmOffset);
1509    ParmOffset += getObjCEncodingTypeSize(PType);
1510  }
1511}
1512
1513/// getObjCEncodingForPropertyDecl - Return the encoded type for this
1514/// method declaration. If non-NULL, Container must be either an
1515/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
1516/// NULL when getting encodings for protocol properties.
1517void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1518                                                const Decl *Container,
1519                                                std::string& S) {
1520  // Collect information from the property implementation decl(s).
1521  bool Dynamic = false;
1522  ObjCPropertyImplDecl *SynthesizePID = 0;
1523
1524  // FIXME: Duplicated code due to poor abstraction.
1525  if (Container) {
1526    if (const ObjCCategoryImplDecl *CID =
1527        dyn_cast<ObjCCategoryImplDecl>(Container)) {
1528      for (ObjCCategoryImplDecl::propimpl_iterator
1529             i = CID->propimpl_begin(), e = CID->propimpl_end(); i != e; ++i) {
1530        ObjCPropertyImplDecl *PID = *i;
1531        if (PID->getPropertyDecl() == PD) {
1532          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
1533            Dynamic = true;
1534          } else {
1535            SynthesizePID = PID;
1536          }
1537        }
1538      }
1539    } else {
1540      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
1541      for (ObjCCategoryImplDecl::propimpl_iterator
1542             i = OID->propimpl_begin(), e = OID->propimpl_end(); i != e; ++i) {
1543        ObjCPropertyImplDecl *PID = *i;
1544        if (PID->getPropertyDecl() == PD) {
1545          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
1546            Dynamic = true;
1547          } else {
1548            SynthesizePID = PID;
1549          }
1550        }
1551      }
1552    }
1553  }
1554
1555  // FIXME: This is not very efficient.
1556  S = "T";
1557
1558  // Encode result type.
1559  // FIXME: GCC uses a generating_property_type_encoding mode during
1560  // this part. Investigate.
1561  getObjCEncodingForType(PD->getType(), S);
1562
1563  if (PD->isReadOnly()) {
1564    S += ",R";
1565  } else {
1566    switch (PD->getSetterKind()) {
1567    case ObjCPropertyDecl::Assign: break;
1568    case ObjCPropertyDecl::Copy:   S += ",C"; break;
1569    case ObjCPropertyDecl::Retain: S += ",&"; break;
1570    }
1571  }
1572
1573  // It really isn't clear at all what this means, since properties
1574  // are "dynamic by default".
1575  if (Dynamic)
1576    S += ",D";
1577
1578  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
1579    S += ",G";
1580    S += PD->getGetterName().getName();
1581  }
1582
1583  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
1584    S += ",S";
1585    S += PD->getSetterName().getName();
1586  }
1587
1588  if (SynthesizePID) {
1589    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
1590    S += ",V";
1591    S += OID->getName();
1592  }
1593
1594  // FIXME: OBJCGC: weak & strong
1595}
1596
1597void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1598                                        bool NameFields) const {
1599  // We follow the behavior of gcc, expanding structures which are
1600  // directly pointed to, and expanding embedded structures. Note that
1601  // these rules are sufficient to prevent recursive encoding of the
1602  // same type.
1603  getObjCEncodingForTypeImpl(T, S, true, true, NameFields);
1604}
1605
1606void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
1607                                            bool ExpandPointedToStructures,
1608                                            bool ExpandStructures,
1609                                            bool NameFields) const {
1610  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1611    char encoding;
1612    switch (BT->getKind()) {
1613    default: assert(0 && "Unhandled builtin type kind");
1614    case BuiltinType::Void:       encoding = 'v'; break;
1615    case BuiltinType::Bool:       encoding = 'B'; break;
1616    case BuiltinType::Char_U:
1617    case BuiltinType::UChar:      encoding = 'C'; break;
1618    case BuiltinType::UShort:     encoding = 'S'; break;
1619    case BuiltinType::UInt:       encoding = 'I'; break;
1620    case BuiltinType::ULong:      encoding = 'L'; break;
1621    case BuiltinType::ULongLong:  encoding = 'Q'; break;
1622    case BuiltinType::Char_S:
1623    case BuiltinType::SChar:      encoding = 'c'; break;
1624    case BuiltinType::Short:      encoding = 's'; break;
1625    case BuiltinType::Int:        encoding = 'i'; break;
1626    case BuiltinType::Long:       encoding = 'l'; break;
1627    case BuiltinType::LongLong:   encoding = 'q'; break;
1628    case BuiltinType::Float:      encoding = 'f'; break;
1629    case BuiltinType::Double:     encoding = 'd'; break;
1630    case BuiltinType::LongDouble: encoding = 'd'; break;
1631    }
1632
1633    S += encoding;
1634  }
1635  else if (T->isObjCQualifiedIdType()) {
1636    // Treat id<P...> same as 'id' for encoding purposes.
1637    return getObjCEncodingForTypeImpl(getObjCIdType(), S,
1638                                      ExpandPointedToStructures,
1639                                      ExpandStructures, NameFields);
1640  }
1641  else if (const PointerType *PT = T->getAsPointerType()) {
1642    QualType PointeeTy = PT->getPointeeType();
1643    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
1644      S += '@';
1645      return;
1646    } else if (isObjCClassType(PointeeTy)) {
1647      S += '#';
1648      return;
1649    } else if (isObjCSelType(PointeeTy)) {
1650      S += ':';
1651      return;
1652    }
1653
1654    if (PointeeTy->isCharType()) {
1655      // char pointer types should be encoded as '*' unless it is a
1656      // type that has been typedef'd to 'BOOL'.
1657      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
1658        S += '*';
1659        return;
1660      }
1661    }
1662
1663    S += '^';
1664    getObjCEncodingForTypeImpl(PT->getPointeeType(), S,
1665                               false, ExpandPointedToStructures,
1666                               NameFields);
1667  } else if (const ArrayType *AT =
1668               // Ignore type qualifiers etc.
1669               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
1670    S += '[';
1671
1672    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1673      S += llvm::utostr(CAT->getSize().getZExtValue());
1674    else
1675      assert(0 && "Unhandled array type!");
1676
1677    getObjCEncodingForTypeImpl(AT->getElementType(), S,
1678                               false, ExpandStructures, NameFields);
1679    S += ']';
1680  } else if (T->getAsFunctionType()) {
1681    S += '?';
1682  } else if (const RecordType *RTy = T->getAsRecordType()) {
1683    RecordDecl *RDecl = RTy->getDecl();
1684    S += RDecl->isUnion() ? '(' : '{';
1685    // Anonymous structures print as '?'
1686    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
1687      S += II->getName();
1688    } else {
1689      S += '?';
1690    }
1691    if (ExpandStructures) {
1692      S += '=';
1693      for (int i = 0; i < RDecl->getNumMembers(); i++) {
1694        FieldDecl *FD = RDecl->getMember(i);
1695        if (NameFields) {
1696          S += '"';
1697          S += FD->getName();
1698          S += '"';
1699        }
1700
1701        // Special case bit-fields.
1702        if (const Expr *E = FD->getBitWidth()) {
1703          // FIXME: Fix constness.
1704          ASTContext *Ctx = const_cast<ASTContext*>(this);
1705          unsigned N = E->getIntegerConstantExprValue(*Ctx).getZExtValue();
1706          // FIXME: Obj-C is losing information about the type size
1707          // here. Investigate if this is a problem.
1708          S += 'b';
1709          S += llvm::utostr(N);
1710        } else {
1711          getObjCEncodingForTypeImpl(FD->getType(), S, false, true, NameFields);
1712        }
1713      }
1714    }
1715    S += RDecl->isUnion() ? ')' : '}';
1716  } else if (T->isEnumeralType()) {
1717    S += 'i';
1718  } else if (T->isBlockPointerType()) {
1719    S += '^'; // This type string is the same as general pointers.
1720  } else
1721    assert(0 && "@encode for type not implemented!");
1722}
1723
1724void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1725                                                 std::string& S) const {
1726  if (QT & Decl::OBJC_TQ_In)
1727    S += 'n';
1728  if (QT & Decl::OBJC_TQ_Inout)
1729    S += 'N';
1730  if (QT & Decl::OBJC_TQ_Out)
1731    S += 'o';
1732  if (QT & Decl::OBJC_TQ_Bycopy)
1733    S += 'O';
1734  if (QT & Decl::OBJC_TQ_Byref)
1735    S += 'R';
1736  if (QT & Decl::OBJC_TQ_Oneway)
1737    S += 'V';
1738}
1739
1740void ASTContext::setBuiltinVaListType(QualType T)
1741{
1742  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
1743
1744  BuiltinVaListType = T;
1745}
1746
1747void ASTContext::setObjCIdType(TypedefDecl *TD)
1748{
1749  ObjCIdType = getTypedefType(TD);
1750
1751  // typedef struct objc_object *id;
1752  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1753  assert(ptr && "'id' incorrectly typed");
1754  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1755  assert(rec && "'id' incorrectly typed");
1756  IdStructType = rec;
1757}
1758
1759void ASTContext::setObjCSelType(TypedefDecl *TD)
1760{
1761  ObjCSelType = getTypedefType(TD);
1762
1763  // typedef struct objc_selector *SEL;
1764  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1765  assert(ptr && "'SEL' incorrectly typed");
1766  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1767  assert(rec && "'SEL' incorrectly typed");
1768  SelStructType = rec;
1769}
1770
1771void ASTContext::setObjCProtoType(QualType QT)
1772{
1773  ObjCProtoType = QT;
1774}
1775
1776void ASTContext::setObjCClassType(TypedefDecl *TD)
1777{
1778  ObjCClassType = getTypedefType(TD);
1779
1780  // typedef struct objc_class *Class;
1781  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1782  assert(ptr && "'Class' incorrectly typed");
1783  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1784  assert(rec && "'Class' incorrectly typed");
1785  ClassStructType = rec;
1786}
1787
1788void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
1789  assert(ObjCConstantStringType.isNull() &&
1790         "'NSConstantString' type already set!");
1791
1792  ObjCConstantStringType = getObjCInterfaceType(Decl);
1793}
1794
1795/// getFromTargetType - Given one of the integer types provided by
1796/// TargetInfo, produce the corresponding type. The unsigned @p Type
1797/// is actually a value of type @c TargetInfo::IntType.
1798QualType ASTContext::getFromTargetType(unsigned Type) const {
1799  switch (Type) {
1800  case TargetInfo::NoInt: return QualType();
1801  case TargetInfo::SignedShort: return ShortTy;
1802  case TargetInfo::UnsignedShort: return UnsignedShortTy;
1803  case TargetInfo::SignedInt: return IntTy;
1804  case TargetInfo::UnsignedInt: return UnsignedIntTy;
1805  case TargetInfo::SignedLong: return LongTy;
1806  case TargetInfo::UnsignedLong: return UnsignedLongTy;
1807  case TargetInfo::SignedLongLong: return LongLongTy;
1808  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
1809  }
1810
1811  assert(false && "Unhandled TargetInfo::IntType value");
1812  return QualType();
1813}
1814
1815//===----------------------------------------------------------------------===//
1816//                        Type Predicates.
1817//===----------------------------------------------------------------------===//
1818
1819/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
1820/// to an object type.  This includes "id" and "Class" (two 'special' pointers
1821/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
1822/// ID type).
1823bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
1824  if (Ty->isObjCQualifiedIdType())
1825    return true;
1826
1827  // Blocks are objects.
1828  if (Ty->isBlockPointerType())
1829    return true;
1830
1831  // All other object types are pointers.
1832  if (!Ty->isPointerType())
1833    return false;
1834
1835  // Check to see if this is 'id' or 'Class', both of which are typedefs for
1836  // pointer types.  This looks for the typedef specifically, not for the
1837  // underlying type.
1838  if (Ty == getObjCIdType() || Ty == getObjCClassType())
1839    return true;
1840
1841  // If this a pointer to an interface (e.g. NSString*), it is ok.
1842  return Ty->getAsPointerType()->getPointeeType()->isObjCInterfaceType();
1843}
1844
1845//===----------------------------------------------------------------------===//
1846//                        Type Compatibility Testing
1847//===----------------------------------------------------------------------===//
1848
1849/// typesAreBlockCompatible - This routine is called when comparing two
1850/// block types. Types must be strictly compatible here. For example,
1851/// C unfortunately doesn't produce an error for the following:
1852///
1853///   int (*emptyArgFunc)();
1854///   int (*intArgList)(int) = emptyArgFunc;
1855///
1856/// For blocks, we will produce an error for the following (similar to C++):
1857///
1858///   int (^emptyArgBlock)();
1859///   int (^intArgBlock)(int) = emptyArgBlock;
1860///
1861/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
1862///
1863bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
1864 return getCanonicalType(lhs) == getCanonicalType(rhs);
1865}
1866
1867/// areCompatVectorTypes - Return true if the two specified vector types are
1868/// compatible.
1869static bool areCompatVectorTypes(const VectorType *LHS,
1870                                 const VectorType *RHS) {
1871  assert(LHS->isCanonical() && RHS->isCanonical());
1872  return LHS->getElementType() == RHS->getElementType() &&
1873         LHS->getNumElements() == RHS->getNumElements();
1874}
1875
1876/// canAssignObjCInterfaces - Return true if the two interface types are
1877/// compatible for assignment from RHS to LHS.  This handles validation of any
1878/// protocol qualifiers on the LHS or RHS.
1879///
1880bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1881                                         const ObjCInterfaceType *RHS) {
1882  // Verify that the base decls are compatible: the RHS must be a subclass of
1883  // the LHS.
1884  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
1885    return false;
1886
1887  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
1888  // protocol qualified at all, then we are good.
1889  if (!isa<ObjCQualifiedInterfaceType>(LHS))
1890    return true;
1891
1892  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
1893  // isn't a superset.
1894  if (!isa<ObjCQualifiedInterfaceType>(RHS))
1895    return true;  // FIXME: should return false!
1896
1897  // Finally, we must have two protocol-qualified interfaces.
1898  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
1899  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
1900  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin();
1901  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHSP->qual_end();
1902  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin();
1903  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHSP->qual_end();
1904
1905  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
1906  // are both sorted alphabetically and have no duplicates, we can scan RHS and
1907  // LHS in a single parallel scan until we run out of elements in LHS.
1908  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
1909  ObjCProtocolDecl *LHSProto = *LHSPI;
1910
1911  while (RHSPI != RHSPE) {
1912    ObjCProtocolDecl *RHSProto = *RHSPI++;
1913    // If the RHS has a protocol that the LHS doesn't, ignore it.
1914    if (RHSProto != LHSProto)
1915      continue;
1916
1917    // Otherwise, the RHS does have this element.
1918    ++LHSPI;
1919    if (LHSPI == LHSPE)
1920      return true;  // All protocols in LHS exist in RHS.
1921
1922    LHSProto = *LHSPI;
1923  }
1924
1925  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
1926  return false;
1927}
1928
1929/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
1930/// both shall have the identically qualified version of a compatible type.
1931/// C99 6.2.7p1: Two types have compatible types if their types are the
1932/// same. See 6.7.[2,3,5] for additional rules.
1933bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
1934  return !mergeTypes(LHS, RHS).isNull();
1935}
1936
1937QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
1938  const FunctionType *lbase = lhs->getAsFunctionType();
1939  const FunctionType *rbase = rhs->getAsFunctionType();
1940  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
1941  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
1942  bool allLTypes = true;
1943  bool allRTypes = true;
1944
1945  // Check return type
1946  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
1947  if (retType.isNull()) return QualType();
1948  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
1949    allLTypes = false;
1950  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
1951    allRTypes = false;
1952
1953  if (lproto && rproto) { // two C99 style function prototypes
1954    unsigned lproto_nargs = lproto->getNumArgs();
1955    unsigned rproto_nargs = rproto->getNumArgs();
1956
1957    // Compatible functions must have the same number of arguments
1958    if (lproto_nargs != rproto_nargs)
1959      return QualType();
1960
1961    // Variadic and non-variadic functions aren't compatible
1962    if (lproto->isVariadic() != rproto->isVariadic())
1963      return QualType();
1964
1965    if (lproto->getTypeQuals() != rproto->getTypeQuals())
1966      return QualType();
1967
1968    // Check argument compatibility
1969    llvm::SmallVector<QualType, 10> types;
1970    for (unsigned i = 0; i < lproto_nargs; i++) {
1971      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
1972      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
1973      QualType argtype = mergeTypes(largtype, rargtype);
1974      if (argtype.isNull()) return QualType();
1975      types.push_back(argtype);
1976      if (getCanonicalType(argtype) != getCanonicalType(largtype))
1977        allLTypes = false;
1978      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
1979        allRTypes = false;
1980    }
1981    if (allLTypes) return lhs;
1982    if (allRTypes) return rhs;
1983    return getFunctionType(retType, types.begin(), types.size(),
1984                           lproto->isVariadic(), lproto->getTypeQuals());
1985  }
1986
1987  if (lproto) allRTypes = false;
1988  if (rproto) allLTypes = false;
1989
1990  const FunctionTypeProto *proto = lproto ? lproto : rproto;
1991  if (proto) {
1992    if (proto->isVariadic()) return QualType();
1993    // Check that the types are compatible with the types that
1994    // would result from default argument promotions (C99 6.7.5.3p15).
1995    // The only types actually affected are promotable integer
1996    // types and floats, which would be passed as a different
1997    // type depending on whether the prototype is visible.
1998    unsigned proto_nargs = proto->getNumArgs();
1999    for (unsigned i = 0; i < proto_nargs; ++i) {
2000      QualType argTy = proto->getArgType(i);
2001      if (argTy->isPromotableIntegerType() ||
2002          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
2003        return QualType();
2004    }
2005
2006    if (allLTypes) return lhs;
2007    if (allRTypes) return rhs;
2008    return getFunctionType(retType, proto->arg_type_begin(),
2009                           proto->getNumArgs(), lproto->isVariadic(),
2010                           lproto->getTypeQuals());
2011  }
2012
2013  if (allLTypes) return lhs;
2014  if (allRTypes) return rhs;
2015  return getFunctionTypeNoProto(retType);
2016}
2017
2018QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
2019  // C++ [expr]: If an expression initially has the type "reference to T", the
2020  // type is adjusted to "T" prior to any further analysis, the expression
2021  // designates the object or function denoted by the reference, and the
2022  // expression is an lvalue.
2023  // FIXME: C++ shouldn't be going through here!  The rules are different
2024  // enough that they should be handled separately.
2025  if (const ReferenceType *RT = LHS->getAsReferenceType())
2026    LHS = RT->getPointeeType();
2027  if (const ReferenceType *RT = RHS->getAsReferenceType())
2028    RHS = RT->getPointeeType();
2029
2030  QualType LHSCan = getCanonicalType(LHS),
2031           RHSCan = getCanonicalType(RHS);
2032
2033  // If two types are identical, they are compatible.
2034  if (LHSCan == RHSCan)
2035    return LHS;
2036
2037  // If the qualifiers are different, the types aren't compatible
2038  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers() ||
2039      LHSCan.getAddressSpace() != RHSCan.getAddressSpace())
2040    return QualType();
2041
2042  Type::TypeClass LHSClass = LHSCan->getTypeClass();
2043  Type::TypeClass RHSClass = RHSCan->getTypeClass();
2044
2045  // We want to consider the two function types to be the same for these
2046  // comparisons, just force one to the other.
2047  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
2048  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
2049
2050  // Same as above for arrays
2051  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
2052    LHSClass = Type::ConstantArray;
2053  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
2054    RHSClass = Type::ConstantArray;
2055
2056  // Canonicalize ExtVector -> Vector.
2057  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
2058  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
2059
2060  // Consider qualified interfaces and interfaces the same.
2061  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
2062  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
2063
2064  // If the canonical type classes don't match.
2065  if (LHSClass != RHSClass) {
2066    // ID is compatible with all qualified id types.
2067    if (LHS->isObjCQualifiedIdType()) {
2068      if (const PointerType *PT = RHS->getAsPointerType()) {
2069        QualType pType = PT->getPointeeType();
2070        if (isObjCIdType(pType))
2071          return LHS;
2072        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2073        // Unfortunately, this API is part of Sema (which we don't have access
2074        // to. Need to refactor. The following check is insufficient, since we
2075        // need to make sure the class implements the protocol.
2076        if (pType->isObjCInterfaceType())
2077          return LHS;
2078      }
2079    }
2080    if (RHS->isObjCQualifiedIdType()) {
2081      if (const PointerType *PT = LHS->getAsPointerType()) {
2082        QualType pType = PT->getPointeeType();
2083        if (isObjCIdType(pType))
2084          return RHS;
2085        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
2086        // Unfortunately, this API is part of Sema (which we don't have access
2087        // to. Need to refactor. The following check is insufficient, since we
2088        // need to make sure the class implements the protocol.
2089        if (pType->isObjCInterfaceType())
2090          return RHS;
2091      }
2092    }
2093
2094    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
2095    // a signed integer type, or an unsigned integer type.
2096    if (const EnumType* ETy = LHS->getAsEnumType()) {
2097      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
2098        return RHS;
2099    }
2100    if (const EnumType* ETy = RHS->getAsEnumType()) {
2101      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
2102        return LHS;
2103    }
2104
2105    return QualType();
2106  }
2107
2108  // The canonical type classes match.
2109  switch (LHSClass) {
2110  case Type::Pointer:
2111  {
2112    // Merge two pointer types, while trying to preserve typedef info
2113    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
2114    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
2115    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
2116    if (ResultType.isNull()) return QualType();
2117    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
2118      return LHS;
2119    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
2120      return RHS;
2121    return getPointerType(ResultType);
2122  }
2123  case Type::ConstantArray:
2124  {
2125    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
2126    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
2127    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
2128      return QualType();
2129
2130    QualType LHSElem = getAsArrayType(LHS)->getElementType();
2131    QualType RHSElem = getAsArrayType(RHS)->getElementType();
2132    QualType ResultType = mergeTypes(LHSElem, RHSElem);
2133    if (ResultType.isNull()) return QualType();
2134    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2135      return LHS;
2136    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2137      return RHS;
2138    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
2139                                          ArrayType::ArraySizeModifier(), 0);
2140    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
2141                                          ArrayType::ArraySizeModifier(), 0);
2142    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
2143    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
2144    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
2145      return LHS;
2146    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
2147      return RHS;
2148    if (LVAT) {
2149      // FIXME: This isn't correct! But tricky to implement because
2150      // the array's size has to be the size of LHS, but the type
2151      // has to be different.
2152      return LHS;
2153    }
2154    if (RVAT) {
2155      // FIXME: This isn't correct! But tricky to implement because
2156      // the array's size has to be the size of RHS, but the type
2157      // has to be different.
2158      return RHS;
2159    }
2160    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
2161    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
2162    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
2163  }
2164  case Type::FunctionNoProto:
2165    return mergeFunctionTypes(LHS, RHS);
2166  case Type::Tagged:
2167    // FIXME: Why are these compatible?
2168    if (isObjCIdType(LHS) && isObjCClassType(RHS)) return LHS;
2169    if (isObjCClassType(LHS) && isObjCIdType(RHS)) return LHS;
2170    return QualType();
2171  case Type::Builtin:
2172    // Only exactly equal builtin types are compatible, which is tested above.
2173    return QualType();
2174  case Type::Vector:
2175    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
2176      return LHS;
2177    return QualType();
2178  case Type::ObjCInterface:
2179    // Distinct ObjC interfaces are not compatible; see canAssignObjCInterfaces
2180    // for checking assignment/comparison safety
2181    return QualType();
2182  default:
2183    assert(0 && "unexpected type");
2184    return QualType();
2185  }
2186}
2187
2188//===----------------------------------------------------------------------===//
2189//                         Integer Predicates
2190//===----------------------------------------------------------------------===//
2191unsigned ASTContext::getIntWidth(QualType T) {
2192  if (T == BoolTy)
2193    return 1;
2194  // At the moment, only bool has padding bits
2195  return (unsigned)getTypeSize(T);
2196}
2197
2198QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
2199  assert(T->isSignedIntegerType() && "Unexpected type");
2200  if (const EnumType* ETy = T->getAsEnumType())
2201    T = ETy->getDecl()->getIntegerType();
2202  const BuiltinType* BTy = T->getAsBuiltinType();
2203  assert (BTy && "Unexpected signed integer type");
2204  switch (BTy->getKind()) {
2205  case BuiltinType::Char_S:
2206  case BuiltinType::SChar:
2207    return UnsignedCharTy;
2208  case BuiltinType::Short:
2209    return UnsignedShortTy;
2210  case BuiltinType::Int:
2211    return UnsignedIntTy;
2212  case BuiltinType::Long:
2213    return UnsignedLongTy;
2214  case BuiltinType::LongLong:
2215    return UnsignedLongLongTy;
2216  default:
2217    assert(0 && "Unexpected signed integer type");
2218    return QualType();
2219  }
2220}
2221
2222
2223//===----------------------------------------------------------------------===//
2224//                         Serialization Support
2225//===----------------------------------------------------------------------===//
2226
2227/// Emit - Serialize an ASTContext object to Bitcode.
2228void ASTContext::Emit(llvm::Serializer& S) const {
2229  S.Emit(LangOpts);
2230  S.EmitRef(SourceMgr);
2231  S.EmitRef(Target);
2232  S.EmitRef(Idents);
2233  S.EmitRef(Selectors);
2234
2235  // Emit the size of the type vector so that we can reserve that size
2236  // when we reconstitute the ASTContext object.
2237  S.EmitInt(Types.size());
2238
2239  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
2240                                          I!=E;++I)
2241    (*I)->Emit(S);
2242
2243  S.EmitOwnedPtr(TUDecl);
2244
2245  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
2246}
2247
2248ASTContext* ASTContext::Create(llvm::Deserializer& D) {
2249
2250  // Read the language options.
2251  LangOptions LOpts;
2252  LOpts.Read(D);
2253
2254  SourceManager &SM = D.ReadRef<SourceManager>();
2255  TargetInfo &t = D.ReadRef<TargetInfo>();
2256  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
2257  SelectorTable &sels = D.ReadRef<SelectorTable>();
2258
2259  unsigned size_reserve = D.ReadInt();
2260
2261  ASTContext* A = new ASTContext(LOpts, SM, t, idents, sels,
2262                                 size_reserve);
2263
2264  for (unsigned i = 0; i < size_reserve; ++i)
2265    Type::Create(*A,i,D);
2266
2267  A->TUDecl = cast<TranslationUnitDecl>(D.ReadOwnedPtr<Decl>(*A));
2268
2269  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
2270
2271  return A;
2272}
2273