ASTContext.cpp revision f62f9cd5a78e5445a02e37b277f7a2df9c19b7a3
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Bitcode/Serialize.h"
21#include "llvm/Bitcode/Deserialize.h"
22
23using namespace clang;
24
25enum FloatingRank {
26  FloatRank, DoubleRank, LongDoubleRank
27};
28
29ASTContext::~ASTContext() {
30  // Deallocate all the types.
31  while (!Types.empty()) {
32    if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) {
33      // Destroy the object, but don't call delete.  These are malloc'd.
34      FT->~FunctionTypeProto();
35      free(FT);
36    } else {
37      delete Types.back();
38    }
39    Types.pop_back();
40  }
41}
42
43void ASTContext::PrintStats() const {
44  fprintf(stderr, "*** AST Context Stats:\n");
45  fprintf(stderr, "  %d types total.\n", (int)Types.size());
46  unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
47  unsigned NumVector = 0, NumComplex = 0;
48  unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
49
50  unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
51  unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
52  unsigned NumObjCQualifiedIds = 0;
53
54  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
55    Type *T = Types[i];
56    if (isa<BuiltinType>(T))
57      ++NumBuiltin;
58    else if (isa<PointerType>(T))
59      ++NumPointer;
60    else if (isa<ReferenceType>(T))
61      ++NumReference;
62    else if (isa<ComplexType>(T))
63      ++NumComplex;
64    else if (isa<ArrayType>(T))
65      ++NumArray;
66    else if (isa<VectorType>(T))
67      ++NumVector;
68    else if (isa<FunctionTypeNoProto>(T))
69      ++NumFunctionNP;
70    else if (isa<FunctionTypeProto>(T))
71      ++NumFunctionP;
72    else if (isa<TypedefType>(T))
73      ++NumTypeName;
74    else if (TagType *TT = dyn_cast<TagType>(T)) {
75      ++NumTagged;
76      switch (TT->getDecl()->getKind()) {
77      default: assert(0 && "Unknown tagged type!");
78      case Decl::Struct: ++NumTagStruct; break;
79      case Decl::Union:  ++NumTagUnion; break;
80      case Decl::Class:  ++NumTagClass; break;
81      case Decl::Enum:   ++NumTagEnum; break;
82      }
83    } else if (isa<ObjCInterfaceType>(T))
84      ++NumObjCInterfaces;
85    else if (isa<ObjCQualifiedInterfaceType>(T))
86      ++NumObjCQualifiedInterfaces;
87    else if (isa<ObjCQualifiedIdType>(T))
88      ++NumObjCQualifiedIds;
89    else {
90      QualType(T, 0).dump();
91      assert(0 && "Unknown type!");
92    }
93  }
94
95  fprintf(stderr, "    %d builtin types\n", NumBuiltin);
96  fprintf(stderr, "    %d pointer types\n", NumPointer);
97  fprintf(stderr, "    %d reference types\n", NumReference);
98  fprintf(stderr, "    %d complex types\n", NumComplex);
99  fprintf(stderr, "    %d array types\n", NumArray);
100  fprintf(stderr, "    %d vector types\n", NumVector);
101  fprintf(stderr, "    %d function types with proto\n", NumFunctionP);
102  fprintf(stderr, "    %d function types with no proto\n", NumFunctionNP);
103  fprintf(stderr, "    %d typename (typedef) types\n", NumTypeName);
104  fprintf(stderr, "    %d tagged types\n", NumTagged);
105  fprintf(stderr, "      %d struct types\n", NumTagStruct);
106  fprintf(stderr, "      %d union types\n", NumTagUnion);
107  fprintf(stderr, "      %d class types\n", NumTagClass);
108  fprintf(stderr, "      %d enum types\n", NumTagEnum);
109  fprintf(stderr, "    %d interface types\n", NumObjCInterfaces);
110  fprintf(stderr, "    %d protocol qualified interface types\n",
111          NumObjCQualifiedInterfaces);
112  fprintf(stderr, "    %d protocol qualified id types\n",
113          NumObjCQualifiedIds);
114  fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
115    NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+
116    NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
117    NumFunctionP*sizeof(FunctionTypeProto)+
118    NumFunctionNP*sizeof(FunctionTypeNoProto)+
119    NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)));
120}
121
122
123void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
124  Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
125}
126
127void ASTContext::InitBuiltinTypes() {
128  assert(VoidTy.isNull() && "Context reinitialized?");
129
130  // C99 6.2.5p19.
131  InitBuiltinType(VoidTy,              BuiltinType::Void);
132
133  // C99 6.2.5p2.
134  InitBuiltinType(BoolTy,              BuiltinType::Bool);
135  // C99 6.2.5p3.
136  if (Target.isCharSigned())
137    InitBuiltinType(CharTy,            BuiltinType::Char_S);
138  else
139    InitBuiltinType(CharTy,            BuiltinType::Char_U);
140  // C99 6.2.5p4.
141  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
142  InitBuiltinType(ShortTy,             BuiltinType::Short);
143  InitBuiltinType(IntTy,               BuiltinType::Int);
144  InitBuiltinType(LongTy,              BuiltinType::Long);
145  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
146
147  // C99 6.2.5p6.
148  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
149  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
150  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
151  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
152  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
153
154  // C99 6.2.5p10.
155  InitBuiltinType(FloatTy,             BuiltinType::Float);
156  InitBuiltinType(DoubleTy,            BuiltinType::Double);
157  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
158
159  // C99 6.2.5p11.
160  FloatComplexTy      = getComplexType(FloatTy);
161  DoubleComplexTy     = getComplexType(DoubleTy);
162  LongDoubleComplexTy = getComplexType(LongDoubleTy);
163
164  BuiltinVaListType = QualType();
165  ObjCIdType = QualType();
166  IdStructType = 0;
167  ObjCClassType = QualType();
168  ClassStructType = 0;
169
170  ObjCConstantStringType = QualType();
171
172  // void * type
173  VoidPtrTy = getPointerType(VoidTy);
174}
175
176//===----------------------------------------------------------------------===//
177//                         Type Sizing and Analysis
178//===----------------------------------------------------------------------===//
179
180/// getTypeSize - Return the size of the specified type, in bits.  This method
181/// does not work on incomplete types.
182std::pair<uint64_t, unsigned>
183ASTContext::getTypeInfo(QualType T) {
184  T = getCanonicalType(T);
185  uint64_t Width;
186  unsigned Align;
187  switch (T->getTypeClass()) {
188  case Type::TypeName: assert(0 && "Not a canonical type!");
189  case Type::FunctionNoProto:
190  case Type::FunctionProto:
191  default:
192    assert(0 && "Incomplete types have no size!");
193  case Type::VariableArray:
194    assert(0 && "VLAs not implemented yet!");
195  case Type::ConstantArray: {
196    ConstantArrayType *CAT = cast<ConstantArrayType>(T);
197
198    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
199    Width = EltInfo.first*CAT->getSize().getZExtValue();
200    Align = EltInfo.second;
201    break;
202  }
203  case Type::OCUVector:
204  case Type::Vector: {
205    std::pair<uint64_t, unsigned> EltInfo =
206      getTypeInfo(cast<VectorType>(T)->getElementType());
207    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
208    // FIXME: Vector alignment is not the alignment of its elements.
209    Align = EltInfo.second;
210    break;
211  }
212
213  case Type::Builtin:
214    // FIXME: need to use TargetInfo to derive the target specific sizes. This
215    // implementation will suffice for play with vector support.
216    switch (cast<BuiltinType>(T)->getKind()) {
217    default: assert(0 && "Unknown builtin type!");
218    case BuiltinType::Void:
219      assert(0 && "Incomplete types have no size!");
220    case BuiltinType::Bool:
221      Width = Target.getBoolWidth();
222      Align = Target.getBoolAlign();
223      break;
224    case BuiltinType::Char_S:
225    case BuiltinType::Char_U:
226    case BuiltinType::UChar:
227    case BuiltinType::SChar:
228      Width = Target.getCharWidth();
229      Align = Target.getCharAlign();
230      break;
231    case BuiltinType::UShort:
232    case BuiltinType::Short:
233      Width = Target.getShortWidth();
234      Align = Target.getShortAlign();
235      break;
236    case BuiltinType::UInt:
237    case BuiltinType::Int:
238      Width = Target.getIntWidth();
239      Align = Target.getIntAlign();
240      break;
241    case BuiltinType::ULong:
242    case BuiltinType::Long:
243      Width = Target.getLongWidth();
244      Align = Target.getLongAlign();
245      break;
246    case BuiltinType::ULongLong:
247    case BuiltinType::LongLong:
248      Width = Target.getLongLongWidth();
249      Align = Target.getLongLongAlign();
250      break;
251    case BuiltinType::Float:
252      Width = Target.getFloatWidth();
253      Align = Target.getFloatAlign();
254      break;
255    case BuiltinType::Double:
256        Width = Target.getDoubleWidth();
257        Align = Target.getDoubleAlign();
258      break;
259    case BuiltinType::LongDouble:
260      Width = Target.getLongDoubleWidth();
261      Align = Target.getLongDoubleAlign();
262      break;
263    }
264    break;
265  case Type::ASQual:
266    // FIXME: Pointers into different addr spaces could have different sizes and
267    // alignment requirements: getPointerInfo should take an AddrSpace.
268    return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
269  case Type::ObjCQualifiedId:
270    Width  = Target.getPointerWidth(0);
271    Align = Target.getPointerAlign(0);
272    break;
273  case Type::Pointer: {
274    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
275    Width  = Target.getPointerWidth(AS);
276    Align = Target.getPointerAlign(AS);
277    break;
278  }
279  case Type::Reference:
280    // "When applied to a reference or a reference type, the result is the size
281    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
282    // FIXME: This is wrong for struct layout: a reference in a struct has
283    // pointer size.
284    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
285
286  case Type::Complex: {
287    // Complex types have the same alignment as their elements, but twice the
288    // size.
289    std::pair<uint64_t, unsigned> EltInfo =
290      getTypeInfo(cast<ComplexType>(T)->getElementType());
291    Width = EltInfo.first*2;
292    Align = EltInfo.second;
293    break;
294  }
295  case Type::Tagged: {
296    if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
297      return getTypeInfo(ET->getDecl()->getIntegerType());
298
299    RecordType *RT = cast<RecordType>(T);
300    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
301    Width = Layout.getSize();
302    Align = Layout.getAlignment();
303    break;
304  }
305  }
306
307  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
308  return std::make_pair(Width, Align);
309}
310
311/// getASTRecordLayout - Get or compute information about the layout of the
312/// specified record (struct/union/class), which indicates its size and field
313/// position information.
314const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
315  assert(D->isDefinition() && "Cannot get layout of forward declarations!");
316
317  // Look up this layout, if already laid out, return what we have.
318  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
319  if (Entry) return *Entry;
320
321  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
322  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
323  ASTRecordLayout *NewEntry = new ASTRecordLayout();
324  Entry = NewEntry;
325
326  uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()];
327  uint64_t RecordSize = 0;
328  unsigned RecordAlign = 8;  // Default alignment = 1 byte = 8 bits.
329
330  if (D->getKind() != Decl::Union) {
331    if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
332      RecordAlign = std::max(RecordAlign, AA->getAlignment());
333
334    bool StructIsPacked = D->getAttr<PackedAttr>();
335
336    // Layout each field, for now, just sequentially, respecting alignment.  In
337    // the future, this will need to be tweakable by targets.
338    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
339      const FieldDecl *FD = D->getMember(i);
340      bool FieldIsPacked = StructIsPacked || FD->getAttr<PackedAttr>();
341      uint64_t FieldSize;
342      unsigned FieldAlign;
343
344      if (const Expr *BitWidthExpr = FD->getBitWidth()) {
345        llvm::APSInt I(32);
346        bool BitWidthIsICE =
347          BitWidthExpr->isIntegerConstantExpr(I, *this);
348        assert (BitWidthIsICE  && "Invalid BitField size expression");
349        FieldSize = I.getZExtValue();
350
351        std::pair<uint64_t, unsigned> TypeInfo = getTypeInfo(FD->getType());
352        uint64_t TypeSize = TypeInfo.first;
353
354        if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
355          FieldAlign = AA->getAlignment();
356        else if (FieldIsPacked)
357          FieldAlign = 8;
358        else {
359          // FIXME: This is X86 specific, use 32-bit alignment for long long.
360          if (FD->getType()->isIntegerType() && TypeInfo.second > 32)
361            FieldAlign = 32;
362          else
363            FieldAlign = TypeInfo.second;
364        }
365
366        // Check if we need to add padding to give the field the correct
367        // alignment.
368        if (RecordSize % FieldAlign + FieldSize > TypeSize)
369          RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
370
371      } else {
372        if (FD->getType()->isIncompleteType()) {
373          // This must be a flexible array member; we can't directly
374          // query getTypeInfo about these, so we figure it out here.
375          // Flexible array members don't have any size, but they
376          // have to be aligned appropriately for their element type.
377
378          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
379            FieldAlign = AA->getAlignment();
380          else if (FieldIsPacked)
381            FieldAlign = 8;
382          else {
383            const ArrayType* ATy = FD->getType()->getAsArrayType();
384            FieldAlign = getTypeAlign(ATy->getElementType());
385          }
386          FieldSize = 0;
387        } else {
388          std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
389          FieldSize = FieldInfo.first;
390
391          if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
392            FieldAlign = AA->getAlignment();
393          else if (FieldIsPacked)
394            FieldAlign = 8;
395          else
396            FieldAlign = FieldInfo.second;
397        }
398
399        // Round up the current record size to the field's alignment boundary.
400        RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1);
401      }
402
403      // Place this field at the current location.
404      FieldOffsets[i] = RecordSize;
405
406      // Reserve space for this field.
407      RecordSize += FieldSize;
408
409      // Remember max struct/class alignment.
410      RecordAlign = std::max(RecordAlign, FieldAlign);
411    }
412
413    // Finally, round the size of the total struct up to the alignment of the
414    // struct itself.
415    RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1);
416  } else {
417    // Union layout just puts each member at the start of the record.
418    for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
419      const FieldDecl *FD = D->getMember(i);
420      std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType());
421      uint64_t FieldSize = FieldInfo.first;
422      unsigned FieldAlign = FieldInfo.second;
423
424      // FIXME: This is X86 specific, use 32-bit alignment for long long.
425      if (FD->getType()->isIntegerType() && FieldAlign > 32)
426        FieldAlign = 32;
427
428      // Round up the current record size to the field's alignment boundary.
429      RecordSize = std::max(RecordSize, FieldSize);
430
431      // Place this field at the start of the record.
432      FieldOffsets[i] = 0;
433
434      // Remember max struct/class alignment.
435      RecordAlign = std::max(RecordAlign, FieldAlign);
436    }
437  }
438
439  NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets);
440  return *NewEntry;
441}
442
443//===----------------------------------------------------------------------===//
444//                   Type creation/memoization methods
445//===----------------------------------------------------------------------===//
446
447QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
448  QualType CanT = getCanonicalType(T);
449  if (CanT.getAddressSpace() == AddressSpace)
450    return T;
451
452  // Type's cannot have multiple ASQuals, therefore we know we only have to deal
453  // with CVR qualifiers from here on out.
454  assert(CanT.getAddressSpace() == 0 &&
455         "Type is already address space qualified");
456
457  // Check if we've already instantiated an address space qual'd type of this
458  // type.
459  llvm::FoldingSetNodeID ID;
460  ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
461  void *InsertPos = 0;
462  if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
463    return QualType(ASQy, 0);
464
465  // If the base type isn't canonical, this won't be a canonical type either,
466  // so fill in the canonical type field.
467  QualType Canonical;
468  if (!T->isCanonical()) {
469    Canonical = getASQualType(CanT, AddressSpace);
470
471    // Get the new insert position for the node we care about.
472    ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
473    assert(NewIP == 0 && "Shouldn't be in the map!");
474  }
475  ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
476  ASQualTypes.InsertNode(New, InsertPos);
477  Types.push_back(New);
478  return QualType(New, T.getCVRQualifiers());
479}
480
481
482/// getComplexType - Return the uniqued reference to the type for a complex
483/// number with the specified element type.
484QualType ASTContext::getComplexType(QualType T) {
485  // Unique pointers, to guarantee there is only one pointer of a particular
486  // structure.
487  llvm::FoldingSetNodeID ID;
488  ComplexType::Profile(ID, T);
489
490  void *InsertPos = 0;
491  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
492    return QualType(CT, 0);
493
494  // If the pointee type isn't canonical, this won't be a canonical type either,
495  // so fill in the canonical type field.
496  QualType Canonical;
497  if (!T->isCanonical()) {
498    Canonical = getComplexType(getCanonicalType(T));
499
500    // Get the new insert position for the node we care about.
501    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
502    assert(NewIP == 0 && "Shouldn't be in the map!");
503  }
504  ComplexType *New = new ComplexType(T, Canonical);
505  Types.push_back(New);
506  ComplexTypes.InsertNode(New, InsertPos);
507  return QualType(New, 0);
508}
509
510
511/// getPointerType - Return the uniqued reference to the type for a pointer to
512/// the specified type.
513QualType ASTContext::getPointerType(QualType T) {
514  // Unique pointers, to guarantee there is only one pointer of a particular
515  // structure.
516  llvm::FoldingSetNodeID ID;
517  PointerType::Profile(ID, T);
518
519  void *InsertPos = 0;
520  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
521    return QualType(PT, 0);
522
523  // If the pointee type isn't canonical, this won't be a canonical type either,
524  // so fill in the canonical type field.
525  QualType Canonical;
526  if (!T->isCanonical()) {
527    Canonical = getPointerType(getCanonicalType(T));
528
529    // Get the new insert position for the node we care about.
530    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
531    assert(NewIP == 0 && "Shouldn't be in the map!");
532  }
533  PointerType *New = new PointerType(T, Canonical);
534  Types.push_back(New);
535  PointerTypes.InsertNode(New, InsertPos);
536  return QualType(New, 0);
537}
538
539/// getReferenceType - Return the uniqued reference to the type for a reference
540/// to the specified type.
541QualType ASTContext::getReferenceType(QualType T) {
542  // Unique pointers, to guarantee there is only one pointer of a particular
543  // structure.
544  llvm::FoldingSetNodeID ID;
545  ReferenceType::Profile(ID, T);
546
547  void *InsertPos = 0;
548  if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
549    return QualType(RT, 0);
550
551  // If the referencee type isn't canonical, this won't be a canonical type
552  // either, so fill in the canonical type field.
553  QualType Canonical;
554  if (!T->isCanonical()) {
555    Canonical = getReferenceType(getCanonicalType(T));
556
557    // Get the new insert position for the node we care about.
558    ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
559    assert(NewIP == 0 && "Shouldn't be in the map!");
560  }
561
562  ReferenceType *New = new ReferenceType(T, Canonical);
563  Types.push_back(New);
564  ReferenceTypes.InsertNode(New, InsertPos);
565  return QualType(New, 0);
566}
567
568/// getConstantArrayType - Return the unique reference to the type for an
569/// array of the specified element type.
570QualType ASTContext::getConstantArrayType(QualType EltTy,
571                                          const llvm::APInt &ArySize,
572                                          ArrayType::ArraySizeModifier ASM,
573                                          unsigned EltTypeQuals) {
574  llvm::FoldingSetNodeID ID;
575  ConstantArrayType::Profile(ID, EltTy, ArySize);
576
577  void *InsertPos = 0;
578  if (ConstantArrayType *ATP =
579      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
580    return QualType(ATP, 0);
581
582  // If the element type isn't canonical, this won't be a canonical type either,
583  // so fill in the canonical type field.
584  QualType Canonical;
585  if (!EltTy->isCanonical()) {
586    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
587                                     ASM, EltTypeQuals);
588    // Get the new insert position for the node we care about.
589    ConstantArrayType *NewIP =
590      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
591
592    assert(NewIP == 0 && "Shouldn't be in the map!");
593  }
594
595  ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
596                                                 ASM, EltTypeQuals);
597  ConstantArrayTypes.InsertNode(New, InsertPos);
598  Types.push_back(New);
599  return QualType(New, 0);
600}
601
602/// getVariableArrayType - Returns a non-unique reference to the type for a
603/// variable array of the specified element type.
604QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
605                                          ArrayType::ArraySizeModifier ASM,
606                                          unsigned EltTypeQuals) {
607  // Since we don't unique expressions, it isn't possible to unique VLA's
608  // that have an expression provided for their size.
609
610  VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
611                                                 ASM, EltTypeQuals);
612
613  VariableArrayTypes.push_back(New);
614  Types.push_back(New);
615  return QualType(New, 0);
616}
617
618QualType ASTContext::getIncompleteArrayType(QualType EltTy,
619                                            ArrayType::ArraySizeModifier ASM,
620                                            unsigned EltTypeQuals) {
621  llvm::FoldingSetNodeID ID;
622  IncompleteArrayType::Profile(ID, EltTy);
623
624  void *InsertPos = 0;
625  if (IncompleteArrayType *ATP =
626       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
627    return QualType(ATP, 0);
628
629  // If the element type isn't canonical, this won't be a canonical type
630  // either, so fill in the canonical type field.
631  QualType Canonical;
632
633  if (!EltTy->isCanonical()) {
634    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
635                                       ASM, EltTypeQuals);
636
637    // Get the new insert position for the node we care about.
638    IncompleteArrayType *NewIP =
639      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
640
641    assert(NewIP == 0 && "Shouldn't be in the map!");
642  }
643
644  IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
645                                                     ASM, EltTypeQuals);
646
647  IncompleteArrayTypes.InsertNode(New, InsertPos);
648  Types.push_back(New);
649  return QualType(New, 0);
650}
651
652/// getVectorType - Return the unique reference to a vector type of
653/// the specified element type and size. VectorType must be a built-in type.
654QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
655  BuiltinType *baseType;
656
657  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
658  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
659
660  // Check if we've already instantiated a vector of this type.
661  llvm::FoldingSetNodeID ID;
662  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
663  void *InsertPos = 0;
664  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
665    return QualType(VTP, 0);
666
667  // If the element type isn't canonical, this won't be a canonical type either,
668  // so fill in the canonical type field.
669  QualType Canonical;
670  if (!vecType->isCanonical()) {
671    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
672
673    // Get the new insert position for the node we care about.
674    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
675    assert(NewIP == 0 && "Shouldn't be in the map!");
676  }
677  VectorType *New = new VectorType(vecType, NumElts, Canonical);
678  VectorTypes.InsertNode(New, InsertPos);
679  Types.push_back(New);
680  return QualType(New, 0);
681}
682
683/// getOCUVectorType - Return the unique reference to an OCU vector type of
684/// the specified element type and size. VectorType must be a built-in type.
685QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) {
686  BuiltinType *baseType;
687
688  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
689  assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type");
690
691  // Check if we've already instantiated a vector of this type.
692  llvm::FoldingSetNodeID ID;
693  VectorType::Profile(ID, vecType, NumElts, Type::OCUVector);
694  void *InsertPos = 0;
695  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
696    return QualType(VTP, 0);
697
698  // If the element type isn't canonical, this won't be a canonical type either,
699  // so fill in the canonical type field.
700  QualType Canonical;
701  if (!vecType->isCanonical()) {
702    Canonical = getOCUVectorType(getCanonicalType(vecType), NumElts);
703
704    // Get the new insert position for the node we care about.
705    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
706    assert(NewIP == 0 && "Shouldn't be in the map!");
707  }
708  OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical);
709  VectorTypes.InsertNode(New, InsertPos);
710  Types.push_back(New);
711  return QualType(New, 0);
712}
713
714/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
715///
716QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) {
717  // Unique functions, to guarantee there is only one function of a particular
718  // structure.
719  llvm::FoldingSetNodeID ID;
720  FunctionTypeNoProto::Profile(ID, ResultTy);
721
722  void *InsertPos = 0;
723  if (FunctionTypeNoProto *FT =
724        FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
725    return QualType(FT, 0);
726
727  QualType Canonical;
728  if (!ResultTy->isCanonical()) {
729    Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
730
731    // Get the new insert position for the node we care about.
732    FunctionTypeNoProto *NewIP =
733      FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
734    assert(NewIP == 0 && "Shouldn't be in the map!");
735  }
736
737  FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
738  Types.push_back(New);
739  FunctionTypeNoProtos.InsertNode(New, InsertPos);
740  return QualType(New, 0);
741}
742
743/// getFunctionType - Return a normal function type with a typed argument
744/// list.  isVariadic indicates whether the argument list includes '...'.
745QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray,
746                                     unsigned NumArgs, bool isVariadic) {
747  // Unique functions, to guarantee there is only one function of a particular
748  // structure.
749  llvm::FoldingSetNodeID ID;
750  FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
751
752  void *InsertPos = 0;
753  if (FunctionTypeProto *FTP =
754        FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
755    return QualType(FTP, 0);
756
757  // Determine whether the type being created is already canonical or not.
758  bool isCanonical = ResultTy->isCanonical();
759  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
760    if (!ArgArray[i]->isCanonical())
761      isCanonical = false;
762
763  // If this type isn't canonical, get the canonical version of it.
764  QualType Canonical;
765  if (!isCanonical) {
766    llvm::SmallVector<QualType, 16> CanonicalArgs;
767    CanonicalArgs.reserve(NumArgs);
768    for (unsigned i = 0; i != NumArgs; ++i)
769      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
770
771    Canonical = getFunctionType(getCanonicalType(ResultTy),
772                                &CanonicalArgs[0], NumArgs,
773                                isVariadic);
774
775    // Get the new insert position for the node we care about.
776    FunctionTypeProto *NewIP =
777      FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
778    assert(NewIP == 0 && "Shouldn't be in the map!");
779  }
780
781  // FunctionTypeProto objects are not allocated with new because they have a
782  // variable size array (for parameter types) at the end of them.
783  FunctionTypeProto *FTP =
784    (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
785                               NumArgs*sizeof(QualType));
786  new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
787                              Canonical);
788  Types.push_back(FTP);
789  FunctionTypeProtos.InsertNode(FTP, InsertPos);
790  return QualType(FTP, 0);
791}
792
793/// getTypedefType - Return the unique reference to the type for the
794/// specified typename decl.
795QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
796  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
797
798  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
799  Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
800  Types.push_back(Decl->TypeForDecl);
801  return QualType(Decl->TypeForDecl, 0);
802}
803
804/// getObjCInterfaceType - Return the unique reference to the type for the
805/// specified ObjC interface decl.
806QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
807  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
808
809  Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
810  Types.push_back(Decl->TypeForDecl);
811  return QualType(Decl->TypeForDecl, 0);
812}
813
814/// CmpProtocolNames - Comparison predicate for sorting protocols
815/// alphabetically.
816static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
817                            const ObjCProtocolDecl *RHS) {
818  return strcmp(LHS->getName(), RHS->getName()) < 0;
819}
820
821static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
822                                   unsigned &NumProtocols) {
823  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
824
825  // Sort protocols, keyed by name.
826  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
827
828  // Remove duplicates.
829  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
830  NumProtocols = ProtocolsEnd-Protocols;
831}
832
833
834/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
835/// the given interface decl and the conforming protocol list.
836QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
837                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
838  // Sort the protocol list alphabetically to canonicalize it.
839  SortAndUniqueProtocols(Protocols, NumProtocols);
840
841  llvm::FoldingSetNodeID ID;
842  ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols);
843
844  void *InsertPos = 0;
845  if (ObjCQualifiedInterfaceType *QT =
846      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
847    return QualType(QT, 0);
848
849  // No Match;
850  ObjCQualifiedInterfaceType *QType =
851    new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
852  Types.push_back(QType);
853  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
854  return QualType(QType, 0);
855}
856
857/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
858/// and the conforming protocol list.
859QualType ASTContext::getObjCQualifiedIdType(QualType idType,
860                                            ObjCProtocolDecl **Protocols,
861                                            unsigned NumProtocols) {
862  // Sort the protocol list alphabetically to canonicalize it.
863  SortAndUniqueProtocols(Protocols, NumProtocols);
864
865  llvm::FoldingSetNodeID ID;
866  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
867
868  void *InsertPos = 0;
869  if (ObjCQualifiedIdType *QT =
870      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
871    return QualType(QT, 0);
872
873  // No Match;
874  QualType Canonical;
875  if (!idType->isCanonical()) {
876    Canonical = getObjCQualifiedIdType(getCanonicalType(idType),
877                                       Protocols, NumProtocols);
878    ObjCQualifiedIdType *NewQT =
879      ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos);
880    assert(NewQT == 0 && "Shouldn't be in the map!");
881  }
882
883  ObjCQualifiedIdType *QType =
884    new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols);
885  Types.push_back(QType);
886  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
887  return QualType(QType, 0);
888}
889
890/// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique
891/// TypeOfExpr AST's (since expression's are never shared). For example,
892/// multiple declarations that refer to "typeof(x)" all contain different
893/// DeclRefExpr's. This doesn't effect the type checker, since it operates
894/// on canonical type's (which are always unique).
895QualType ASTContext::getTypeOfExpr(Expr *tofExpr) {
896  QualType Canonical = getCanonicalType(tofExpr->getType());
897  TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical);
898  Types.push_back(toe);
899  return QualType(toe, 0);
900}
901
902/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
903/// TypeOfType AST's. The only motivation to unique these nodes would be
904/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
905/// an issue. This doesn't effect the type checker, since it operates
906/// on canonical type's (which are always unique).
907QualType ASTContext::getTypeOfType(QualType tofType) {
908  QualType Canonical = getCanonicalType(tofType);
909  TypeOfType *tot = new TypeOfType(tofType, Canonical);
910  Types.push_back(tot);
911  return QualType(tot, 0);
912}
913
914/// getTagDeclType - Return the unique reference to the type for the
915/// specified TagDecl (struct/union/class/enum) decl.
916QualType ASTContext::getTagDeclType(TagDecl *Decl) {
917  assert (Decl);
918
919  // The decl stores the type cache.
920  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
921
922  TagType* T = new TagType(Decl, QualType());
923  Types.push_back(T);
924  Decl->TypeForDecl = T;
925
926  return QualType(T, 0);
927}
928
929/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
930/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
931/// needs to agree with the definition in <stddef.h>.
932QualType ASTContext::getSizeType() const {
933  // On Darwin, size_t is defined as a "long unsigned int".
934  // FIXME: should derive from "Target".
935  return UnsignedLongTy;
936}
937
938/// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the
939/// width of characters in wide strings, The value is target dependent and
940/// needs to agree with the definition in <stddef.h>.
941QualType ASTContext::getWcharType() const {
942  // On Darwin, wchar_t is defined as a "int".
943  // FIXME: should derive from "Target".
944  return IntTy;
945}
946
947/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
948/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
949QualType ASTContext::getPointerDiffType() const {
950  // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug...
951  // FIXME: should derive from "Target".
952  return IntTy;
953}
954
955//===----------------------------------------------------------------------===//
956//                              Type Operators
957//===----------------------------------------------------------------------===//
958
959/// getCanonicalType - Return the canonical (structural) type corresponding to
960/// the specified potentially non-canonical type.  The non-canonical version
961/// of a type may have many "decorated" versions of types.  Decorators can
962/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
963/// to be free of any of these, allowing two canonical types to be compared
964/// for exact equality with a simple pointer comparison.
965QualType ASTContext::getCanonicalType(QualType T) {
966  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
967  return QualType(CanType.getTypePtr(),
968                  T.getCVRQualifiers() | CanType.getCVRQualifiers());
969}
970
971
972/// getArrayDecayedType - Return the properly qualified result of decaying the
973/// specified array type to a pointer.  This operation is non-trivial when
974/// handling typedefs etc.  The canonical type of "T" must be an array type,
975/// this returns a pointer to a properly qualified element of the array.
976///
977/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
978QualType ASTContext::getArrayDecayedType(QualType Ty) {
979  // Handle the common case where typedefs are not involved directly.
980  QualType EltTy;
981  unsigned ArrayQuals = 0;
982  unsigned PointerQuals = 0;
983  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
984    // Since T "isa" an array type, it could not have had an address space
985    // qualifier, just CVR qualifiers.  The properly qualified element pointer
986    // gets the union of the CVR qualifiers from the element and the array, and
987    // keeps any address space qualifier on the element type if present.
988    EltTy = AT->getElementType();
989    ArrayQuals = Ty.getCVRQualifiers();
990    PointerQuals = AT->getIndexTypeQualifier();
991  } else {
992    // Otherwise, we have an ASQualType or a typedef, etc.  Make sure we don't
993    // lose qualifiers when dealing with typedefs. Example:
994    //   typedef int arr[10];
995    //   void test2() {
996    //     const arr b;
997    //     b[4] = 1;
998    //   }
999    //
1000    // The decayed type of b is "const int*" even though the element type of the
1001    // array is "int".
1002    QualType CanTy = getCanonicalType(Ty);
1003    const ArrayType *PrettyArrayType = Ty->getAsArrayType();
1004    assert(PrettyArrayType && "Not an array type!");
1005
1006    // Get the element type with 'getAsArrayType' so that we don't lose any
1007    // typedefs in the element type of the array.
1008    EltTy = PrettyArrayType->getElementType();
1009
1010    // If the array was address-space qualifier, make sure to ASQual the element
1011    // type.  We can just grab the address space from the canonical type.
1012    if (unsigned AS = CanTy.getAddressSpace())
1013      EltTy = getASQualType(EltTy, AS);
1014
1015    // To properly handle [multiple levels of] typedefs, typeof's etc, we take
1016    // the CVR qualifiers directly from the canonical type, which is guaranteed
1017    // to have the full set unioned together.
1018    ArrayQuals = CanTy.getCVRQualifiers();
1019    PointerQuals = PrettyArrayType->getIndexTypeQualifier();
1020  }
1021
1022  // Apply any CVR qualifiers from the array type to the element type.  This
1023  // implements C99 6.7.3p8: "If the specification of an array type includes
1024  // any type qualifiers, the element type is so qualified, not the array type."
1025  EltTy = EltTy.getQualifiedType(ArrayQuals | EltTy.getCVRQualifiers());
1026
1027  QualType PtrTy = getPointerType(EltTy);
1028
1029  // int x[restrict 4] ->  int *restrict
1030  PtrTy = PtrTy.getQualifiedType(PointerQuals);
1031
1032  return PtrTy;
1033}
1034
1035/// getFloatingRank - Return a relative rank for floating point types.
1036/// This routine will assert if passed a built-in type that isn't a float.
1037static FloatingRank getFloatingRank(QualType T) {
1038  if (const ComplexType *CT = T->getAsComplexType())
1039    return getFloatingRank(CT->getElementType());
1040
1041  switch (T->getAsBuiltinType()->getKind()) {
1042  default: assert(0 && "getFloatingRank(): not a floating type");
1043  case BuiltinType::Float:      return FloatRank;
1044  case BuiltinType::Double:     return DoubleRank;
1045  case BuiltinType::LongDouble: return LongDoubleRank;
1046  }
1047}
1048
1049/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1050/// point or a complex type (based on typeDomain/typeSize).
1051/// 'typeDomain' is a real floating point or complex type.
1052/// 'typeSize' is a real floating point or complex type.
1053QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1054                                                       QualType Domain) const {
1055  FloatingRank EltRank = getFloatingRank(Size);
1056  if (Domain->isComplexType()) {
1057    switch (EltRank) {
1058    default: assert(0 && "getFloatingRank(): illegal value for rank");
1059    case FloatRank:      return FloatComplexTy;
1060    case DoubleRank:     return DoubleComplexTy;
1061    case LongDoubleRank: return LongDoubleComplexTy;
1062    }
1063  }
1064
1065  assert(Domain->isRealFloatingType() && "Unknown domain!");
1066  switch (EltRank) {
1067  default: assert(0 && "getFloatingRank(): illegal value for rank");
1068  case FloatRank:      return FloatTy;
1069  case DoubleRank:     return DoubleTy;
1070  case LongDoubleRank: return LongDoubleTy;
1071  }
1072}
1073
1074/// getFloatingTypeOrder - Compare the rank of the two specified floating
1075/// point types, ignoring the domain of the type (i.e. 'double' ==
1076/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1077/// LHS < RHS, return -1.
1078int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1079  FloatingRank LHSR = getFloatingRank(LHS);
1080  FloatingRank RHSR = getFloatingRank(RHS);
1081
1082  if (LHSR == RHSR)
1083    return 0;
1084  if (LHSR > RHSR)
1085    return 1;
1086  return -1;
1087}
1088
1089/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1090/// routine will assert if passed a built-in type that isn't an integer or enum,
1091/// or if it is not canonicalized.
1092static unsigned getIntegerRank(Type *T) {
1093  assert(T->isCanonical() && "T should be canonicalized");
1094  if (isa<EnumType>(T))
1095    return 4;
1096
1097  switch (cast<BuiltinType>(T)->getKind()) {
1098  default: assert(0 && "getIntegerRank(): not a built-in integer");
1099  case BuiltinType::Bool:
1100    return 1;
1101  case BuiltinType::Char_S:
1102  case BuiltinType::Char_U:
1103  case BuiltinType::SChar:
1104  case BuiltinType::UChar:
1105    return 2;
1106  case BuiltinType::Short:
1107  case BuiltinType::UShort:
1108    return 3;
1109  case BuiltinType::Int:
1110  case BuiltinType::UInt:
1111    return 4;
1112  case BuiltinType::Long:
1113  case BuiltinType::ULong:
1114    return 5;
1115  case BuiltinType::LongLong:
1116  case BuiltinType::ULongLong:
1117    return 6;
1118  }
1119}
1120
1121/// getIntegerTypeOrder - Returns the highest ranked integer type:
1122/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1123/// LHS < RHS, return -1.
1124int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
1125  Type *LHSC = getCanonicalType(LHS).getTypePtr();
1126  Type *RHSC = getCanonicalType(RHS).getTypePtr();
1127  if (LHSC == RHSC) return 0;
1128
1129  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
1130  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
1131
1132  unsigned LHSRank = getIntegerRank(LHSC);
1133  unsigned RHSRank = getIntegerRank(RHSC);
1134
1135  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
1136    if (LHSRank == RHSRank) return 0;
1137    return LHSRank > RHSRank ? 1 : -1;
1138  }
1139
1140  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
1141  if (LHSUnsigned) {
1142    // If the unsigned [LHS] type is larger, return it.
1143    if (LHSRank >= RHSRank)
1144      return 1;
1145
1146    // If the signed type can represent all values of the unsigned type, it
1147    // wins.  Because we are dealing with 2's complement and types that are
1148    // powers of two larger than each other, this is always safe.
1149    return -1;
1150  }
1151
1152  // If the unsigned [RHS] type is larger, return it.
1153  if (RHSRank >= LHSRank)
1154    return -1;
1155
1156  // If the signed type can represent all values of the unsigned type, it
1157  // wins.  Because we are dealing with 2's complement and types that are
1158  // powers of two larger than each other, this is always safe.
1159  return 1;
1160}
1161
1162// getCFConstantStringType - Return the type used for constant CFStrings.
1163QualType ASTContext::getCFConstantStringType() {
1164  if (!CFConstantStringTypeDecl) {
1165    CFConstantStringTypeDecl =
1166      RecordDecl::Create(*this, Decl::Struct, NULL, SourceLocation(),
1167                         &Idents.get("NSConstantString"), 0);
1168    QualType FieldTypes[4];
1169
1170    // const int *isa;
1171    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
1172    // int flags;
1173    FieldTypes[1] = IntTy;
1174    // const char *str;
1175    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
1176    // long length;
1177    FieldTypes[3] = LongTy;
1178    // Create fields
1179    FieldDecl *FieldDecls[4];
1180
1181    for (unsigned i = 0; i < 4; ++i)
1182      FieldDecls[i] = FieldDecl::Create(*this, SourceLocation(), 0,
1183                                        FieldTypes[i]);
1184
1185    CFConstantStringTypeDecl->defineBody(FieldDecls, 4);
1186  }
1187
1188  return getTagDeclType(CFConstantStringTypeDecl);
1189}
1190
1191// This returns true if a type has been typedefed to BOOL:
1192// typedef <type> BOOL;
1193static bool isTypeTypedefedAsBOOL(QualType T) {
1194  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1195    return !strcmp(TT->getDecl()->getName(), "BOOL");
1196
1197  return false;
1198}
1199
1200/// getObjCEncodingTypeSize returns size of type for objective-c encoding
1201/// purpose.
1202int ASTContext::getObjCEncodingTypeSize(QualType type) {
1203  uint64_t sz = getTypeSize(type);
1204
1205  // Make all integer and enum types at least as large as an int
1206  if (sz > 0 && type->isIntegralType())
1207    sz = std::max(sz, getTypeSize(IntTy));
1208  // Treat arrays as pointers, since that's how they're passed in.
1209  else if (type->isArrayType())
1210    sz = getTypeSize(VoidPtrTy);
1211  return sz / getTypeSize(CharTy);
1212}
1213
1214/// getObjCEncodingForMethodDecl - Return the encoded type for this method
1215/// declaration.
1216void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl,
1217                                              std::string& S)
1218{
1219  // Encode type qualifer, 'in', 'inout', etc. for the return type.
1220  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
1221  // Encode result type.
1222  getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes);
1223  // Compute size of all parameters.
1224  // Start with computing size of a pointer in number of bytes.
1225  // FIXME: There might(should) be a better way of doing this computation!
1226  SourceLocation Loc;
1227  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
1228  // The first two arguments (self and _cmd) are pointers; account for
1229  // their size.
1230  int ParmOffset = 2 * PtrSize;
1231  int NumOfParams = Decl->getNumParams();
1232  for (int i = 0; i < NumOfParams; i++) {
1233    QualType PType = Decl->getParamDecl(i)->getType();
1234    int sz = getObjCEncodingTypeSize (PType);
1235    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
1236    ParmOffset += sz;
1237  }
1238  S += llvm::utostr(ParmOffset);
1239  S += "@0:";
1240  S += llvm::utostr(PtrSize);
1241
1242  // Argument types.
1243  ParmOffset = 2 * PtrSize;
1244  for (int i = 0; i < NumOfParams; i++) {
1245    QualType PType = Decl->getParamDecl(i)->getType();
1246    // Process argument qualifiers for user supplied arguments; such as,
1247    // 'in', 'inout', etc.
1248    getObjCEncodingForTypeQualifier(
1249      Decl->getParamDecl(i)->getObjCDeclQualifier(), S);
1250    getObjCEncodingForType(PType, S, EncodingRecordTypes);
1251    S += llvm::utostr(ParmOffset);
1252    ParmOffset += getObjCEncodingTypeSize(PType);
1253  }
1254}
1255
1256void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
1257       llvm::SmallVector<const RecordType *, 8> &ERType) const
1258{
1259  // FIXME: This currently doesn't encode:
1260  // @ An object (whether statically typed or typed id)
1261  // # A class object (Class)
1262  // : A method selector (SEL)
1263  // {name=type...} A structure
1264  // (name=type...) A union
1265  // bnum A bit field of num bits
1266
1267  if (const BuiltinType *BT = T->getAsBuiltinType()) {
1268    char encoding;
1269    switch (BT->getKind()) {
1270    default: assert(0 && "Unhandled builtin type kind");
1271    case BuiltinType::Void:       encoding = 'v'; break;
1272    case BuiltinType::Bool:       encoding = 'B'; break;
1273    case BuiltinType::Char_U:
1274    case BuiltinType::UChar:      encoding = 'C'; break;
1275    case BuiltinType::UShort:     encoding = 'S'; break;
1276    case BuiltinType::UInt:       encoding = 'I'; break;
1277    case BuiltinType::ULong:      encoding = 'L'; break;
1278    case BuiltinType::ULongLong:  encoding = 'Q'; break;
1279    case BuiltinType::Char_S:
1280    case BuiltinType::SChar:      encoding = 'c'; break;
1281    case BuiltinType::Short:      encoding = 's'; break;
1282    case BuiltinType::Int:        encoding = 'i'; break;
1283    case BuiltinType::Long:       encoding = 'l'; break;
1284    case BuiltinType::LongLong:   encoding = 'q'; break;
1285    case BuiltinType::Float:      encoding = 'f'; break;
1286    case BuiltinType::Double:     encoding = 'd'; break;
1287    case BuiltinType::LongDouble: encoding = 'd'; break;
1288    }
1289
1290    S += encoding;
1291  }
1292  else if (T->isObjCQualifiedIdType()) {
1293    // Treat id<P...> same as 'id' for encoding purposes.
1294    return getObjCEncodingForType(getObjCIdType(), S, ERType);
1295
1296  }
1297  else if (const PointerType *PT = T->getAsPointerType()) {
1298    QualType PointeeTy = PT->getPointeeType();
1299    if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) {
1300      S += '@';
1301      return;
1302    } else if (isObjCClassType(PointeeTy)) {
1303      S += '#';
1304      return;
1305    } else if (isObjCSelType(PointeeTy)) {
1306      S += ':';
1307      return;
1308    }
1309
1310    if (PointeeTy->isCharType()) {
1311      // char pointer types should be encoded as '*' unless it is a
1312      // type that has been typedef'd to 'BOOL'.
1313      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
1314        S += '*';
1315        return;
1316      }
1317    }
1318
1319    S += '^';
1320    getObjCEncodingForType(PT->getPointeeType(), S, ERType);
1321  } else if (const ArrayType *AT = T->getAsArrayType()) {
1322    S += '[';
1323
1324    if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1325      S += llvm::utostr(CAT->getSize().getZExtValue());
1326    else
1327      assert(0 && "Unhandled array type!");
1328
1329    getObjCEncodingForType(AT->getElementType(), S, ERType);
1330    S += ']';
1331  } else if (T->getAsFunctionType()) {
1332    S += '?';
1333  } else if (const RecordType *RTy = T->getAsRecordType()) {
1334    RecordDecl *RDecl= RTy->getDecl();
1335    S += '{';
1336    S += RDecl->getName();
1337    bool found = false;
1338    for (unsigned i = 0, e = ERType.size(); i != e; ++i)
1339      if (ERType[i] == RTy) {
1340        found = true;
1341        break;
1342      }
1343    if (!found) {
1344      ERType.push_back(RTy);
1345      S += '=';
1346      for (int i = 0; i < RDecl->getNumMembers(); i++) {
1347        FieldDecl *field = RDecl->getMember(i);
1348        getObjCEncodingForType(field->getType(), S, ERType);
1349      }
1350      assert(ERType.back() == RTy && "Record Type stack mismatch.");
1351      ERType.pop_back();
1352    }
1353    S += '}';
1354  } else if (T->isEnumeralType()) {
1355    S += 'i';
1356  } else
1357    assert(0 && "@encode for type not implemented!");
1358}
1359
1360void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1361                                                 std::string& S) const {
1362  if (QT & Decl::OBJC_TQ_In)
1363    S += 'n';
1364  if (QT & Decl::OBJC_TQ_Inout)
1365    S += 'N';
1366  if (QT & Decl::OBJC_TQ_Out)
1367    S += 'o';
1368  if (QT & Decl::OBJC_TQ_Bycopy)
1369    S += 'O';
1370  if (QT & Decl::OBJC_TQ_Byref)
1371    S += 'R';
1372  if (QT & Decl::OBJC_TQ_Oneway)
1373    S += 'V';
1374}
1375
1376void ASTContext::setBuiltinVaListType(QualType T)
1377{
1378  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
1379
1380  BuiltinVaListType = T;
1381}
1382
1383void ASTContext::setObjCIdType(TypedefDecl *TD)
1384{
1385  assert(ObjCIdType.isNull() && "'id' type already set!");
1386
1387  ObjCIdType = getTypedefType(TD);
1388
1389  // typedef struct objc_object *id;
1390  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1391  assert(ptr && "'id' incorrectly typed");
1392  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1393  assert(rec && "'id' incorrectly typed");
1394  IdStructType = rec;
1395}
1396
1397void ASTContext::setObjCSelType(TypedefDecl *TD)
1398{
1399  assert(ObjCSelType.isNull() && "'SEL' type already set!");
1400
1401  ObjCSelType = getTypedefType(TD);
1402
1403  // typedef struct objc_selector *SEL;
1404  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1405  assert(ptr && "'SEL' incorrectly typed");
1406  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1407  assert(rec && "'SEL' incorrectly typed");
1408  SelStructType = rec;
1409}
1410
1411void ASTContext::setObjCProtoType(QualType QT)
1412{
1413  assert(ObjCProtoType.isNull() && "'Protocol' type already set!");
1414  ObjCProtoType = QT;
1415}
1416
1417void ASTContext::setObjCClassType(TypedefDecl *TD)
1418{
1419  assert(ObjCClassType.isNull() && "'Class' type already set!");
1420
1421  ObjCClassType = getTypedefType(TD);
1422
1423  // typedef struct objc_class *Class;
1424  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
1425  assert(ptr && "'Class' incorrectly typed");
1426  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
1427  assert(rec && "'Class' incorrectly typed");
1428  ClassStructType = rec;
1429}
1430
1431void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
1432  assert(ObjCConstantStringType.isNull() &&
1433         "'NSConstantString' type already set!");
1434
1435  ObjCConstantStringType = getObjCInterfaceType(Decl);
1436}
1437
1438bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) {
1439  const BuiltinType *lBuiltin = lhs->getAsBuiltinType();
1440  const BuiltinType *rBuiltin = rhs->getAsBuiltinType();
1441
1442  return lBuiltin->getKind() == rBuiltin->getKind();
1443}
1444
1445/// objcTypesAreCompatible - This routine is called when two types
1446/// are of different class; one is interface type or is
1447/// a qualified interface type and the other type is of a different class.
1448/// Example, II or II<P>.
1449bool ASTContext::objcTypesAreCompatible(QualType LHS, QualType RHS) {
1450  // ID is compatible with all interface types.
1451  if (LHS->isObjCInterfaceType() && isObjCIdType(RHS))
1452    return true;
1453  else if (isObjCIdType(LHS) && RHS->isObjCInterfaceType())
1454    return true;
1455
1456  // II is compatible with II<P> if the base is the same.  Otherwise, no two
1457  // qualified interface types are the same.
1458  if (const ObjCInterfaceType *LHSIT = LHS->getAsObjCInterfaceType()) {
1459    if (const ObjCInterfaceType *RHSIT = RHS->getAsObjCInterfaceType()) {
1460      // If the base decls match and one is a qualified interface and one isn't,
1461      // then they are compatible.
1462      return LHSIT->getDecl() == RHSIT->getDecl() &&
1463                 isa<ObjCQualifiedInterfaceType>(LHSIT) !=
1464                 isa<ObjCQualifiedInterfaceType>(RHSIT);
1465    }
1466  }
1467  return false;
1468}
1469
1470/// areCompatObjCQualInterfaces - Return true if the two qualified interface
1471/// types are compatible for assignment from RHS to LHS.
1472///
1473static bool
1474areCompatObjCQualInterfaces(const ObjCQualifiedInterfaceType *LHS,
1475                            const ObjCQualifiedInterfaceType *RHS) {
1476  // Verify that the base decls are compatible: the RHS must be a subclass of
1477  // the LHS.
1478  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
1479    return false;
1480
1481  // All protocols in LHS must have a presence in RHS.  Since the protocol lists
1482  // are both sorted alphabetically and have no duplicates, we can scan RHS and
1483  // LHS in a single parallel scan until we run out of elements in LHS.
1484  ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHS->qual_begin();
1485  ObjCQualifiedInterfaceType::qual_iterator LHSPE = LHS->qual_end();
1486  ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHS->qual_begin();
1487  ObjCQualifiedInterfaceType::qual_iterator RHSPE = RHS->qual_end();
1488
1489  assert(LHSPI != LHSPE && "Empty LHS protocol list?");
1490  ObjCProtocolDecl *LHSProto = *LHSPI;
1491
1492  while (RHSPI != RHSPE) {
1493    ObjCProtocolDecl *RHSProto = *RHSPI++;
1494    // If the RHS has a protocol that the LHS doesn't, ignore it.
1495    if (RHSProto != LHSProto)
1496      continue;
1497
1498    // Otherwise, the RHS does have this element.
1499    ++LHSPI;
1500    if (LHSPI == LHSPE)
1501      return true;  // All protocols in LHS exist in RHS.
1502
1503    LHSProto = *LHSPI;
1504  }
1505
1506  // If we got here, we didn't find one of the LHS's protocols in the RHS list.
1507  return false;
1508}
1509
1510/// areCompatVectorTypes - Return true if the two specified vector types are
1511/// compatible.
1512static bool areCompatVectorTypes(const VectorType *LHS,
1513                                 const VectorType *RHS) {
1514  assert(LHS->isCanonical() && RHS->isCanonical());
1515  return LHS->getElementType() == RHS->getElementType() &&
1516         LHS->getNumElements() == RHS->getNumElements();
1517}
1518
1519// C99 6.2.7p1: If both are complete types, then the following additional
1520// requirements apply...FIXME (handle compatibility across source files).
1521bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) {
1522  // "Class" and "id" are compatible built-in structure types.
1523  if (isObjCIdType(lhs) && isObjCClassType(rhs) ||
1524      isObjCClassType(lhs) && isObjCIdType(rhs))
1525    return true;
1526
1527  // Within a translation unit a tag type is
1528  // only compatible with itself.
1529  return lhs.getCanonicalType() == rhs.getCanonicalType();
1530}
1531
1532bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) {
1533  // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be
1534  // identically qualified and both shall be pointers to compatible types.
1535  if (lhs.getCVRQualifiers() != rhs.getCVRQualifiers() ||
1536      lhs.getAddressSpace() != rhs.getAddressSpace())
1537    return false;
1538
1539  QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType();
1540  QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType();
1541
1542  return typesAreCompatible(ltype, rtype);
1543}
1544
1545// C++ 5.17p6: When the left operand of an assignment operator denotes a
1546// reference to T, the operation assigns to the object of type T denoted by the
1547// reference.
1548bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) {
1549  QualType ltype = lhs;
1550
1551  if (lhs->isReferenceType())
1552    ltype = cast<ReferenceType>(lhs.getCanonicalType())->getPointeeType();
1553
1554  QualType rtype = rhs;
1555
1556  if (rhs->isReferenceType())
1557    rtype = cast<ReferenceType>(rhs.getCanonicalType())->getPointeeType();
1558
1559  return typesAreCompatible(ltype, rtype);
1560}
1561
1562bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) {
1563  const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType());
1564  const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType());
1565  const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase);
1566  const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase);
1567
1568  // first check the return types (common between C99 and K&R).
1569  if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType()))
1570    return false;
1571
1572  if (lproto && rproto) { // two C99 style function prototypes
1573    unsigned lproto_nargs = lproto->getNumArgs();
1574    unsigned rproto_nargs = rproto->getNumArgs();
1575
1576    if (lproto_nargs != rproto_nargs)
1577      return false;
1578
1579    // both prototypes have the same number of arguments.
1580    if ((lproto->isVariadic() && !rproto->isVariadic()) ||
1581        (rproto->isVariadic() && !lproto->isVariadic()))
1582      return false;
1583
1584    // The use of ellipsis agree...now check the argument types.
1585    for (unsigned i = 0; i < lproto_nargs; i++)
1586      // C99 6.7.5.3p15: ...and each parameter declared with qualified type
1587      // is taken as having the unqualified version of it's declared type.
1588      if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(),
1589                              rproto->getArgType(i).getUnqualifiedType()))
1590        return false;
1591    return true;
1592  }
1593  if (!lproto && !rproto) // two K&R style function decls, nothing to do.
1594    return true;
1595
1596  // we have a mixture of K&R style with C99 prototypes
1597  const FunctionTypeProto *proto = lproto ? lproto : rproto;
1598
1599  if (proto->isVariadic())
1600    return false;
1601
1602  // FIXME: Each parameter type T in the prototype must be compatible with the
1603  // type resulting from applying the usual argument conversions to T.
1604  return true;
1605}
1606
1607bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) {
1608  // Compatible arrays must have compatible element types
1609  QualType ltype = lhs->getAsArrayType()->getElementType();
1610  QualType rtype = rhs->getAsArrayType()->getElementType();
1611
1612  if (!typesAreCompatible(ltype, rtype))
1613    return false;
1614
1615  // Compatible arrays must be the same size
1616  if (const ConstantArrayType* LCAT = lhs->getAsConstantArrayType())
1617    if (const ConstantArrayType* RCAT = rhs->getAsConstantArrayType())
1618      return RCAT->getSize() == LCAT->getSize();
1619
1620  return true;
1621}
1622
1623/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
1624/// both shall have the identically qualified version of a compatible type.
1625/// C99 6.2.7p1: Two types have compatible types if their types are the
1626/// same. See 6.7.[2,3,5] for additional rules.
1627bool ASTContext::typesAreCompatible(QualType LHS_NC, QualType RHS_NC) {
1628  QualType LHS = LHS_NC.getCanonicalType();
1629  QualType RHS = RHS_NC.getCanonicalType();
1630
1631  // If two types are identical, they are are compatible
1632  if (LHS == RHS)
1633    return true;
1634
1635  if (LHS.getCVRQualifiers() != RHS.getCVRQualifiers() ||
1636      LHS.getAddressSpace() != RHS.getAddressSpace())
1637    return false;
1638
1639  // C++ [expr]: If an expression initially has the type "reference to T", the
1640  // type is adjusted to "T" prior to any further analysis, the expression
1641  // designates the object or function denoted by the reference, and the
1642  // expression is an lvalue.
1643  if (ReferenceType *RT = dyn_cast<ReferenceType>(LHS))
1644    LHS = RT->getPointeeType();
1645  if (ReferenceType *RT = dyn_cast<ReferenceType>(RHS))
1646    RHS = RT->getPointeeType();
1647
1648  Type::TypeClass LHSClass = LHS->getTypeClass();
1649  Type::TypeClass RHSClass = RHS->getTypeClass();
1650
1651  // We want to consider the two function types to be the same for these
1652  // comparisons, just force one to the other.
1653  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
1654  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
1655
1656  // Same as above for arrays
1657  if (LHSClass == Type::VariableArray) LHSClass = Type::ConstantArray;
1658  if (RHSClass == Type::VariableArray) RHSClass = Type::ConstantArray;
1659  if (LHSClass == Type::IncompleteArray) LHSClass = Type::ConstantArray;
1660  if (RHSClass == Type::IncompleteArray) RHSClass = Type::ConstantArray;
1661
1662  // If the canonical type classes don't match...
1663  if (LHSClass != RHSClass) {
1664    // For Objective-C, it is possible for two types to be compatible
1665    // when their classes don't match (when dealing with "id"). If either type
1666    // is an interface, we defer to objcTypesAreCompatible().
1667    if (LHS->isObjCInterfaceType() || RHS->isObjCInterfaceType())
1668      return objcTypesAreCompatible(LHS, RHS);
1669
1670    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
1671    // a signed integer type, or an unsigned integer type.
1672    if (LHS->isEnumeralType() && RHS->isIntegralType()) {
1673      EnumDecl* EDecl = cast<EnumType>(LHS)->getDecl();
1674      return EDecl->getIntegerType() == RHS;
1675    }
1676    if (RHS->isEnumeralType() && LHS->isIntegralType()) {
1677      EnumDecl* EDecl = cast<EnumType>(RHS)->getDecl();
1678      return EDecl->getIntegerType() == LHS;
1679    }
1680
1681    return false;
1682  }
1683  // The canonical type classes match.
1684  switch (LHSClass) {
1685  case Type::FunctionProto: assert(0 && "Canonicalized away above");
1686  case Type::Pointer:
1687    return pointerTypesAreCompatible(LHS, RHS);
1688  case Type::ConstantArray:
1689  case Type::VariableArray:
1690  case Type::IncompleteArray:
1691    return arrayTypesAreCompatible(LHS, RHS);
1692  case Type::FunctionNoProto:
1693    return functionTypesAreCompatible(LHS, RHS);
1694  case Type::Tagged: // handle structures, unions
1695    return tagTypesAreCompatible(LHS, RHS);
1696  case Type::Builtin:
1697    return builtinTypesAreCompatible(LHS, RHS);
1698  case Type::ObjCInterface:
1699    // The LHS must be a superclass of the RHS.
1700    return cast<ObjCInterfaceType>(LHS)->getDecl()->isSuperClassOf(
1701                                   cast<ObjCInterfaceType>(RHS)->getDecl());
1702  case Type::Vector:
1703  case Type::OCUVector:
1704    return areCompatVectorTypes(cast<VectorType>(LHS), cast<VectorType>(RHS));
1705  case Type::ObjCQualifiedInterface:
1706    return areCompatObjCQualInterfaces(cast<ObjCQualifiedInterfaceType>(LHS),
1707                                       cast<ObjCQualifiedInterfaceType>(RHS));
1708  default:
1709    assert(0 && "unexpected type");
1710  }
1711  return true; // should never get here...
1712}
1713
1714/// Emit - Serialize an ASTContext object to Bitcode.
1715void ASTContext::Emit(llvm::Serializer& S) const {
1716  S.EmitRef(SourceMgr);
1717  S.EmitRef(Target);
1718  S.EmitRef(Idents);
1719  S.EmitRef(Selectors);
1720
1721  // Emit the size of the type vector so that we can reserve that size
1722  // when we reconstitute the ASTContext object.
1723  S.EmitInt(Types.size());
1724
1725  for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end();
1726                                          I!=E;++I)
1727    (*I)->Emit(S);
1728
1729  // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl);
1730}
1731
1732ASTContext* ASTContext::Create(llvm::Deserializer& D) {
1733  SourceManager &SM = D.ReadRef<SourceManager>();
1734  TargetInfo &t = D.ReadRef<TargetInfo>();
1735  IdentifierTable &idents = D.ReadRef<IdentifierTable>();
1736  SelectorTable &sels = D.ReadRef<SelectorTable>();
1737
1738  unsigned size_reserve = D.ReadInt();
1739
1740  ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve);
1741
1742  for (unsigned i = 0; i < size_reserve; ++i)
1743    Type::Create(*A,i,D);
1744
1745  // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>();
1746
1747  return A;
1748}
1749