1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14//  * A success/failure flag indicating whether constant folding was successful.
15//    This is the 'bool' return value used by most of the code in this file. A
16//    'false' return value indicates that constant folding has failed, and any
17//    appropriate diagnostic has already been produced.
18//
19//  * An evaluated result, valid only if constant folding has not failed.
20//
21//  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22//    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23//    where it is possible to determine the evaluated result regardless.
24//
25//  * A set of notes indicating why the evaluation was not a constant expression
26//    (under the C++11 rules only, at the moment), or, if folding failed too,
27//    why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/ASTDiagnostic.h"
39#include "clang/AST/CharUnits.h"
40#include "clang/AST/Expr.h"
41#include "clang/AST/RecordLayout.h"
42#include "clang/AST/StmtVisitor.h"
43#include "clang/AST/TypeLoc.h"
44#include "clang/Basic/Builtins.h"
45#include "clang/Basic/TargetInfo.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using llvm::APSInt;
53using llvm::APFloat;
54
55static bool IsGlobalLValue(APValue::LValueBase B);
56
57namespace {
58  struct LValue;
59  struct CallStackFrame;
60  struct EvalInfo;
61
62  static QualType getType(APValue::LValueBase B) {
63    if (!B) return QualType();
64    if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65      return D->getType();
66    return B.get<const Expr*>()->getType();
67  }
68
69  /// Get an LValue path entry, which is known to not be an array index, as a
70  /// field or base class.
71  static
72  APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
73    APValue::BaseOrMemberType Value;
74    Value.setFromOpaqueValue(E.BaseOrMember);
75    return Value;
76  }
77
78  /// Get an LValue path entry, which is known to not be an array index, as a
79  /// field declaration.
80  static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
81    return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
82  }
83  /// Get an LValue path entry, which is known to not be an array index, as a
84  /// base class declaration.
85  static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
86    return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
87  }
88  /// Determine whether this LValue path entry for a base class names a virtual
89  /// base class.
90  static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
91    return getAsBaseOrMember(E).getInt();
92  }
93
94  /// Find the path length and type of the most-derived subobject in the given
95  /// path, and find the size of the containing array, if any.
96  static
97  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
98                                    ArrayRef<APValue::LValuePathEntry> Path,
99                                    uint64_t &ArraySize, QualType &Type) {
100    unsigned MostDerivedLength = 0;
101    Type = Base;
102    for (unsigned I = 0, N = Path.size(); I != N; ++I) {
103      if (Type->isArrayType()) {
104        const ConstantArrayType *CAT =
105          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
106        Type = CAT->getElementType();
107        ArraySize = CAT->getSize().getZExtValue();
108        MostDerivedLength = I + 1;
109      } else if (Type->isAnyComplexType()) {
110        const ComplexType *CT = Type->castAs<ComplexType>();
111        Type = CT->getElementType();
112        ArraySize = 2;
113        MostDerivedLength = I + 1;
114      } else if (const FieldDecl *FD = getAsField(Path[I])) {
115        Type = FD->getType();
116        ArraySize = 0;
117        MostDerivedLength = I + 1;
118      } else {
119        // Path[I] describes a base class.
120        ArraySize = 0;
121      }
122    }
123    return MostDerivedLength;
124  }
125
126  // The order of this enum is important for diagnostics.
127  enum CheckSubobjectKind {
128    CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
129    CSK_This, CSK_Real, CSK_Imag
130  };
131
132  /// A path from a glvalue to a subobject of that glvalue.
133  struct SubobjectDesignator {
134    /// True if the subobject was named in a manner not supported by C++11. Such
135    /// lvalues can still be folded, but they are not core constant expressions
136    /// and we cannot perform lvalue-to-rvalue conversions on them.
137    bool Invalid : 1;
138
139    /// Is this a pointer one past the end of an object?
140    bool IsOnePastTheEnd : 1;
141
142    /// The length of the path to the most-derived object of which this is a
143    /// subobject.
144    unsigned MostDerivedPathLength : 30;
145
146    /// The size of the array of which the most-derived object is an element, or
147    /// 0 if the most-derived object is not an array element.
148    uint64_t MostDerivedArraySize;
149
150    /// The type of the most derived object referred to by this address.
151    QualType MostDerivedType;
152
153    typedef APValue::LValuePathEntry PathEntry;
154
155    /// The entries on the path from the glvalue to the designated subobject.
156    SmallVector<PathEntry, 8> Entries;
157
158    SubobjectDesignator() : Invalid(true) {}
159
160    explicit SubobjectDesignator(QualType T)
161      : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
162        MostDerivedArraySize(0), MostDerivedType(T) {}
163
164    SubobjectDesignator(ASTContext &Ctx, const APValue &V)
165      : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
166        MostDerivedPathLength(0), MostDerivedArraySize(0) {
167      if (!Invalid) {
168        IsOnePastTheEnd = V.isLValueOnePastTheEnd();
169        ArrayRef<PathEntry> VEntries = V.getLValuePath();
170        Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
171        if (V.getLValueBase())
172          MostDerivedPathLength =
173              findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
174                                       V.getLValuePath(), MostDerivedArraySize,
175                                       MostDerivedType);
176      }
177    }
178
179    void setInvalid() {
180      Invalid = true;
181      Entries.clear();
182    }
183
184    /// Determine whether this is a one-past-the-end pointer.
185    bool isOnePastTheEnd() const {
186      if (IsOnePastTheEnd)
187        return true;
188      if (MostDerivedArraySize &&
189          Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
190        return true;
191      return false;
192    }
193
194    /// Check that this refers to a valid subobject.
195    bool isValidSubobject() const {
196      if (Invalid)
197        return false;
198      return !isOnePastTheEnd();
199    }
200    /// Check that this refers to a valid subobject, and if not, produce a
201    /// relevant diagnostic and set the designator as invalid.
202    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
203
204    /// Update this designator to refer to the first element within this array.
205    void addArrayUnchecked(const ConstantArrayType *CAT) {
206      PathEntry Entry;
207      Entry.ArrayIndex = 0;
208      Entries.push_back(Entry);
209
210      // This is a most-derived object.
211      MostDerivedType = CAT->getElementType();
212      MostDerivedArraySize = CAT->getSize().getZExtValue();
213      MostDerivedPathLength = Entries.size();
214    }
215    /// Update this designator to refer to the given base or member of this
216    /// object.
217    void addDeclUnchecked(const Decl *D, bool Virtual = false) {
218      PathEntry Entry;
219      APValue::BaseOrMemberType Value(D, Virtual);
220      Entry.BaseOrMember = Value.getOpaqueValue();
221      Entries.push_back(Entry);
222
223      // If this isn't a base class, it's a new most-derived object.
224      if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
225        MostDerivedType = FD->getType();
226        MostDerivedArraySize = 0;
227        MostDerivedPathLength = Entries.size();
228      }
229    }
230    /// Update this designator to refer to the given complex component.
231    void addComplexUnchecked(QualType EltTy, bool Imag) {
232      PathEntry Entry;
233      Entry.ArrayIndex = Imag;
234      Entries.push_back(Entry);
235
236      // This is technically a most-derived object, though in practice this
237      // is unlikely to matter.
238      MostDerivedType = EltTy;
239      MostDerivedArraySize = 2;
240      MostDerivedPathLength = Entries.size();
241    }
242    void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
243    /// Add N to the address of this subobject.
244    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
245      if (Invalid) return;
246      if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
247        Entries.back().ArrayIndex += N;
248        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
249          diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
250          setInvalid();
251        }
252        return;
253      }
254      // [expr.add]p4: For the purposes of these operators, a pointer to a
255      // nonarray object behaves the same as a pointer to the first element of
256      // an array of length one with the type of the object as its element type.
257      if (IsOnePastTheEnd && N == (uint64_t)-1)
258        IsOnePastTheEnd = false;
259      else if (!IsOnePastTheEnd && N == 1)
260        IsOnePastTheEnd = true;
261      else if (N != 0) {
262        diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
263        setInvalid();
264      }
265    }
266  };
267
268  /// A stack frame in the constexpr call stack.
269  struct CallStackFrame {
270    EvalInfo &Info;
271
272    /// Parent - The caller of this stack frame.
273    CallStackFrame *Caller;
274
275    /// CallLoc - The location of the call expression for this call.
276    SourceLocation CallLoc;
277
278    /// Callee - The function which was called.
279    const FunctionDecl *Callee;
280
281    /// Index - The call index of this call.
282    unsigned Index;
283
284    /// This - The binding for the this pointer in this call, if any.
285    const LValue *This;
286
287    /// ParmBindings - Parameter bindings for this function call, indexed by
288    /// parameters' function scope indices.
289    const APValue *Arguments;
290
291    // Note that we intentionally use std::map here so that references to
292    // values are stable.
293    typedef std::map<const Expr*, APValue> MapTy;
294    typedef MapTy::const_iterator temp_iterator;
295    /// Temporaries - Temporary lvalues materialized within this stack frame.
296    MapTy Temporaries;
297
298    CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
299                   const FunctionDecl *Callee, const LValue *This,
300                   const APValue *Arguments);
301    ~CallStackFrame();
302  };
303
304  /// A partial diagnostic which we might know in advance that we are not going
305  /// to emit.
306  class OptionalDiagnostic {
307    PartialDiagnostic *Diag;
308
309  public:
310    explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
311
312    template<typename T>
313    OptionalDiagnostic &operator<<(const T &v) {
314      if (Diag)
315        *Diag << v;
316      return *this;
317    }
318
319    OptionalDiagnostic &operator<<(const APSInt &I) {
320      if (Diag) {
321        SmallVector<char, 32> Buffer;
322        I.toString(Buffer);
323        *Diag << StringRef(Buffer.data(), Buffer.size());
324      }
325      return *this;
326    }
327
328    OptionalDiagnostic &operator<<(const APFloat &F) {
329      if (Diag) {
330        SmallVector<char, 32> Buffer;
331        F.toString(Buffer);
332        *Diag << StringRef(Buffer.data(), Buffer.size());
333      }
334      return *this;
335    }
336  };
337
338  /// EvalInfo - This is a private struct used by the evaluator to capture
339  /// information about a subexpression as it is folded.  It retains information
340  /// about the AST context, but also maintains information about the folded
341  /// expression.
342  ///
343  /// If an expression could be evaluated, it is still possible it is not a C
344  /// "integer constant expression" or constant expression.  If not, this struct
345  /// captures information about how and why not.
346  ///
347  /// One bit of information passed *into* the request for constant folding
348  /// indicates whether the subexpression is "evaluated" or not according to C
349  /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
350  /// evaluate the expression regardless of what the RHS is, but C only allows
351  /// certain things in certain situations.
352  struct EvalInfo {
353    ASTContext &Ctx;
354
355    /// EvalStatus - Contains information about the evaluation.
356    Expr::EvalStatus &EvalStatus;
357
358    /// CurrentCall - The top of the constexpr call stack.
359    CallStackFrame *CurrentCall;
360
361    /// CallStackDepth - The number of calls in the call stack right now.
362    unsigned CallStackDepth;
363
364    /// NextCallIndex - The next call index to assign.
365    unsigned NextCallIndex;
366
367    /// BottomFrame - The frame in which evaluation started. This must be
368    /// initialized after CurrentCall and CallStackDepth.
369    CallStackFrame BottomFrame;
370
371    /// EvaluatingDecl - This is the declaration whose initializer is being
372    /// evaluated, if any.
373    const VarDecl *EvaluatingDecl;
374
375    /// EvaluatingDeclValue - This is the value being constructed for the
376    /// declaration whose initializer is being evaluated, if any.
377    APValue *EvaluatingDeclValue;
378
379    /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
380    /// notes attached to it will also be stored, otherwise they will not be.
381    bool HasActiveDiagnostic;
382
383    /// CheckingPotentialConstantExpression - Are we checking whether the
384    /// expression is a potential constant expression? If so, some diagnostics
385    /// are suppressed.
386    bool CheckingPotentialConstantExpression;
387
388    bool IntOverflowCheckMode;
389
390    EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
391             bool OverflowCheckMode=false)
392      : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
393        CallStackDepth(0), NextCallIndex(1),
394        BottomFrame(*this, SourceLocation(), 0, 0, 0),
395        EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
396        CheckingPotentialConstantExpression(false),
397        IntOverflowCheckMode(OverflowCheckMode) {}
398
399    void setEvaluatingDecl(const VarDecl *VD, APValue &Value) {
400      EvaluatingDecl = VD;
401      EvaluatingDeclValue = &Value;
402    }
403
404    const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
405
406    bool CheckCallLimit(SourceLocation Loc) {
407      // Don't perform any constexpr calls (other than the call we're checking)
408      // when checking a potential constant expression.
409      if (CheckingPotentialConstantExpression && CallStackDepth > 1)
410        return false;
411      if (NextCallIndex == 0) {
412        // NextCallIndex has wrapped around.
413        Diag(Loc, diag::note_constexpr_call_limit_exceeded);
414        return false;
415      }
416      if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
417        return true;
418      Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
419        << getLangOpts().ConstexprCallDepth;
420      return false;
421    }
422
423    CallStackFrame *getCallFrame(unsigned CallIndex) {
424      assert(CallIndex && "no call index in getCallFrame");
425      // We will eventually hit BottomFrame, which has Index 1, so Frame can't
426      // be null in this loop.
427      CallStackFrame *Frame = CurrentCall;
428      while (Frame->Index > CallIndex)
429        Frame = Frame->Caller;
430      return (Frame->Index == CallIndex) ? Frame : 0;
431    }
432
433  private:
434    /// Add a diagnostic to the diagnostics list.
435    PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
436      PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
437      EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
438      return EvalStatus.Diag->back().second;
439    }
440
441    /// Add notes containing a call stack to the current point of evaluation.
442    void addCallStack(unsigned Limit);
443
444  public:
445    /// Diagnose that the evaluation cannot be folded.
446    OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
447                              = diag::note_invalid_subexpr_in_const_expr,
448                            unsigned ExtraNotes = 0) {
449      // If we have a prior diagnostic, it will be noting that the expression
450      // isn't a constant expression. This diagnostic is more important.
451      // FIXME: We might want to show both diagnostics to the user.
452      if (EvalStatus.Diag) {
453        unsigned CallStackNotes = CallStackDepth - 1;
454        unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
455        if (Limit)
456          CallStackNotes = std::min(CallStackNotes, Limit + 1);
457        if (CheckingPotentialConstantExpression)
458          CallStackNotes = 0;
459
460        HasActiveDiagnostic = true;
461        EvalStatus.Diag->clear();
462        EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
463        addDiag(Loc, DiagId);
464        if (!CheckingPotentialConstantExpression)
465          addCallStack(Limit);
466        return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
467      }
468      HasActiveDiagnostic = false;
469      return OptionalDiagnostic();
470    }
471
472    OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
473                              = diag::note_invalid_subexpr_in_const_expr,
474                            unsigned ExtraNotes = 0) {
475      if (EvalStatus.Diag)
476        return Diag(E->getExprLoc(), DiagId, ExtraNotes);
477      HasActiveDiagnostic = false;
478      return OptionalDiagnostic();
479    }
480
481    bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
482
483    /// Diagnose that the evaluation does not produce a C++11 core constant
484    /// expression.
485    template<typename LocArg>
486    OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
487                                 = diag::note_invalid_subexpr_in_const_expr,
488                               unsigned ExtraNotes = 0) {
489      // Don't override a previous diagnostic.
490      if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
491        HasActiveDiagnostic = false;
492        return OptionalDiagnostic();
493      }
494      return Diag(Loc, DiagId, ExtraNotes);
495    }
496
497    /// Add a note to a prior diagnostic.
498    OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
499      if (!HasActiveDiagnostic)
500        return OptionalDiagnostic();
501      return OptionalDiagnostic(&addDiag(Loc, DiagId));
502    }
503
504    /// Add a stack of notes to a prior diagnostic.
505    void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
506      if (HasActiveDiagnostic) {
507        EvalStatus.Diag->insert(EvalStatus.Diag->end(),
508                                Diags.begin(), Diags.end());
509      }
510    }
511
512    /// Should we continue evaluation as much as possible after encountering a
513    /// construct which can't be folded?
514    bool keepEvaluatingAfterFailure() {
515      // Should return true in IntOverflowCheckMode, so that we check for
516      // overflow even if some subexpressions can't be evaluated as constants.
517      return IntOverflowCheckMode ||
518             (CheckingPotentialConstantExpression &&
519              EvalStatus.Diag && EvalStatus.Diag->empty());
520    }
521  };
522
523  /// Object used to treat all foldable expressions as constant expressions.
524  struct FoldConstant {
525    bool Enabled;
526
527    explicit FoldConstant(EvalInfo &Info)
528      : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
529                !Info.EvalStatus.HasSideEffects) {
530    }
531    // Treat the value we've computed since this object was created as constant.
532    void Fold(EvalInfo &Info) {
533      if (Enabled && !Info.EvalStatus.Diag->empty() &&
534          !Info.EvalStatus.HasSideEffects)
535        Info.EvalStatus.Diag->clear();
536    }
537  };
538
539  /// RAII object used to suppress diagnostics and side-effects from a
540  /// speculative evaluation.
541  class SpeculativeEvaluationRAII {
542    EvalInfo &Info;
543    Expr::EvalStatus Old;
544
545  public:
546    SpeculativeEvaluationRAII(EvalInfo &Info,
547                              SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
548      : Info(Info), Old(Info.EvalStatus) {
549      Info.EvalStatus.Diag = NewDiag;
550    }
551    ~SpeculativeEvaluationRAII() {
552      Info.EvalStatus = Old;
553    }
554  };
555}
556
557bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
558                                         CheckSubobjectKind CSK) {
559  if (Invalid)
560    return false;
561  if (isOnePastTheEnd()) {
562    Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
563      << CSK;
564    setInvalid();
565    return false;
566  }
567  return true;
568}
569
570void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
571                                                    const Expr *E, uint64_t N) {
572  if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
573    Info.CCEDiag(E, diag::note_constexpr_array_index)
574      << static_cast<int>(N) << /*array*/ 0
575      << static_cast<unsigned>(MostDerivedArraySize);
576  else
577    Info.CCEDiag(E, diag::note_constexpr_array_index)
578      << static_cast<int>(N) << /*non-array*/ 1;
579  setInvalid();
580}
581
582CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
583                               const FunctionDecl *Callee, const LValue *This,
584                               const APValue *Arguments)
585    : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
586      Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
587  Info.CurrentCall = this;
588  ++Info.CallStackDepth;
589}
590
591CallStackFrame::~CallStackFrame() {
592  assert(Info.CurrentCall == this && "calls retired out of order");
593  --Info.CallStackDepth;
594  Info.CurrentCall = Caller;
595}
596
597/// Produce a string describing the given constexpr call.
598static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
599  unsigned ArgIndex = 0;
600  bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
601                      !isa<CXXConstructorDecl>(Frame->Callee) &&
602                      cast<CXXMethodDecl>(Frame->Callee)->isInstance();
603
604  if (!IsMemberCall)
605    Out << *Frame->Callee << '(';
606
607  for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
608       E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
609    if (ArgIndex > (unsigned)IsMemberCall)
610      Out << ", ";
611
612    const ParmVarDecl *Param = *I;
613    const APValue &Arg = Frame->Arguments[ArgIndex];
614    Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
615
616    if (ArgIndex == 0 && IsMemberCall)
617      Out << "->" << *Frame->Callee << '(';
618  }
619
620  Out << ')';
621}
622
623void EvalInfo::addCallStack(unsigned Limit) {
624  // Determine which calls to skip, if any.
625  unsigned ActiveCalls = CallStackDepth - 1;
626  unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
627  if (Limit && Limit < ActiveCalls) {
628    SkipStart = Limit / 2 + Limit % 2;
629    SkipEnd = ActiveCalls - Limit / 2;
630  }
631
632  // Walk the call stack and add the diagnostics.
633  unsigned CallIdx = 0;
634  for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
635       Frame = Frame->Caller, ++CallIdx) {
636    // Skip this call?
637    if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
638      if (CallIdx == SkipStart) {
639        // Note that we're skipping calls.
640        addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
641          << unsigned(ActiveCalls - Limit);
642      }
643      continue;
644    }
645
646    SmallVector<char, 128> Buffer;
647    llvm::raw_svector_ostream Out(Buffer);
648    describeCall(Frame, Out);
649    addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
650  }
651}
652
653namespace {
654  struct ComplexValue {
655  private:
656    bool IsInt;
657
658  public:
659    APSInt IntReal, IntImag;
660    APFloat FloatReal, FloatImag;
661
662    ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
663
664    void makeComplexFloat() { IsInt = false; }
665    bool isComplexFloat() const { return !IsInt; }
666    APFloat &getComplexFloatReal() { return FloatReal; }
667    APFloat &getComplexFloatImag() { return FloatImag; }
668
669    void makeComplexInt() { IsInt = true; }
670    bool isComplexInt() const { return IsInt; }
671    APSInt &getComplexIntReal() { return IntReal; }
672    APSInt &getComplexIntImag() { return IntImag; }
673
674    void moveInto(APValue &v) const {
675      if (isComplexFloat())
676        v = APValue(FloatReal, FloatImag);
677      else
678        v = APValue(IntReal, IntImag);
679    }
680    void setFrom(const APValue &v) {
681      assert(v.isComplexFloat() || v.isComplexInt());
682      if (v.isComplexFloat()) {
683        makeComplexFloat();
684        FloatReal = v.getComplexFloatReal();
685        FloatImag = v.getComplexFloatImag();
686      } else {
687        makeComplexInt();
688        IntReal = v.getComplexIntReal();
689        IntImag = v.getComplexIntImag();
690      }
691    }
692  };
693
694  struct LValue {
695    APValue::LValueBase Base;
696    CharUnits Offset;
697    unsigned CallIndex;
698    SubobjectDesignator Designator;
699
700    const APValue::LValueBase getLValueBase() const { return Base; }
701    CharUnits &getLValueOffset() { return Offset; }
702    const CharUnits &getLValueOffset() const { return Offset; }
703    unsigned getLValueCallIndex() const { return CallIndex; }
704    SubobjectDesignator &getLValueDesignator() { return Designator; }
705    const SubobjectDesignator &getLValueDesignator() const { return Designator;}
706
707    void moveInto(APValue &V) const {
708      if (Designator.Invalid)
709        V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
710      else
711        V = APValue(Base, Offset, Designator.Entries,
712                    Designator.IsOnePastTheEnd, CallIndex);
713    }
714    void setFrom(ASTContext &Ctx, const APValue &V) {
715      assert(V.isLValue());
716      Base = V.getLValueBase();
717      Offset = V.getLValueOffset();
718      CallIndex = V.getLValueCallIndex();
719      Designator = SubobjectDesignator(Ctx, V);
720    }
721
722    void set(APValue::LValueBase B, unsigned I = 0) {
723      Base = B;
724      Offset = CharUnits::Zero();
725      CallIndex = I;
726      Designator = SubobjectDesignator(getType(B));
727    }
728
729    // Check that this LValue is not based on a null pointer. If it is, produce
730    // a diagnostic and mark the designator as invalid.
731    bool checkNullPointer(EvalInfo &Info, const Expr *E,
732                          CheckSubobjectKind CSK) {
733      if (Designator.Invalid)
734        return false;
735      if (!Base) {
736        Info.CCEDiag(E, diag::note_constexpr_null_subobject)
737          << CSK;
738        Designator.setInvalid();
739        return false;
740      }
741      return true;
742    }
743
744    // Check this LValue refers to an object. If not, set the designator to be
745    // invalid and emit a diagnostic.
746    bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
747      // Outside C++11, do not build a designator referring to a subobject of
748      // any object: we won't use such a designator for anything.
749      if (!Info.getLangOpts().CPlusPlus11)
750        Designator.setInvalid();
751      return checkNullPointer(Info, E, CSK) &&
752             Designator.checkSubobject(Info, E, CSK);
753    }
754
755    void addDecl(EvalInfo &Info, const Expr *E,
756                 const Decl *D, bool Virtual = false) {
757      if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
758        Designator.addDeclUnchecked(D, Virtual);
759    }
760    void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
761      if (checkSubobject(Info, E, CSK_ArrayToPointer))
762        Designator.addArrayUnchecked(CAT);
763    }
764    void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
765      if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
766        Designator.addComplexUnchecked(EltTy, Imag);
767    }
768    void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
769      if (checkNullPointer(Info, E, CSK_ArrayIndex))
770        Designator.adjustIndex(Info, E, N);
771    }
772  };
773
774  struct MemberPtr {
775    MemberPtr() {}
776    explicit MemberPtr(const ValueDecl *Decl) :
777      DeclAndIsDerivedMember(Decl, false), Path() {}
778
779    /// The member or (direct or indirect) field referred to by this member
780    /// pointer, or 0 if this is a null member pointer.
781    const ValueDecl *getDecl() const {
782      return DeclAndIsDerivedMember.getPointer();
783    }
784    /// Is this actually a member of some type derived from the relevant class?
785    bool isDerivedMember() const {
786      return DeclAndIsDerivedMember.getInt();
787    }
788    /// Get the class which the declaration actually lives in.
789    const CXXRecordDecl *getContainingRecord() const {
790      return cast<CXXRecordDecl>(
791          DeclAndIsDerivedMember.getPointer()->getDeclContext());
792    }
793
794    void moveInto(APValue &V) const {
795      V = APValue(getDecl(), isDerivedMember(), Path);
796    }
797    void setFrom(const APValue &V) {
798      assert(V.isMemberPointer());
799      DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
800      DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
801      Path.clear();
802      ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
803      Path.insert(Path.end(), P.begin(), P.end());
804    }
805
806    /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
807    /// whether the member is a member of some class derived from the class type
808    /// of the member pointer.
809    llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
810    /// Path - The path of base/derived classes from the member declaration's
811    /// class (exclusive) to the class type of the member pointer (inclusive).
812    SmallVector<const CXXRecordDecl*, 4> Path;
813
814    /// Perform a cast towards the class of the Decl (either up or down the
815    /// hierarchy).
816    bool castBack(const CXXRecordDecl *Class) {
817      assert(!Path.empty());
818      const CXXRecordDecl *Expected;
819      if (Path.size() >= 2)
820        Expected = Path[Path.size() - 2];
821      else
822        Expected = getContainingRecord();
823      if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
824        // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
825        // if B does not contain the original member and is not a base or
826        // derived class of the class containing the original member, the result
827        // of the cast is undefined.
828        // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
829        // (D::*). We consider that to be a language defect.
830        return false;
831      }
832      Path.pop_back();
833      return true;
834    }
835    /// Perform a base-to-derived member pointer cast.
836    bool castToDerived(const CXXRecordDecl *Derived) {
837      if (!getDecl())
838        return true;
839      if (!isDerivedMember()) {
840        Path.push_back(Derived);
841        return true;
842      }
843      if (!castBack(Derived))
844        return false;
845      if (Path.empty())
846        DeclAndIsDerivedMember.setInt(false);
847      return true;
848    }
849    /// Perform a derived-to-base member pointer cast.
850    bool castToBase(const CXXRecordDecl *Base) {
851      if (!getDecl())
852        return true;
853      if (Path.empty())
854        DeclAndIsDerivedMember.setInt(true);
855      if (isDerivedMember()) {
856        Path.push_back(Base);
857        return true;
858      }
859      return castBack(Base);
860    }
861  };
862
863  /// Compare two member pointers, which are assumed to be of the same type.
864  static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
865    if (!LHS.getDecl() || !RHS.getDecl())
866      return !LHS.getDecl() && !RHS.getDecl();
867    if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
868      return false;
869    return LHS.Path == RHS.Path;
870  }
871
872  /// Kinds of constant expression checking, for diagnostics.
873  enum CheckConstantExpressionKind {
874    CCEK_Constant,    ///< A normal constant.
875    CCEK_ReturnValue, ///< A constexpr function return value.
876    CCEK_MemberInit   ///< A constexpr constructor mem-initializer.
877  };
878}
879
880static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
881static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
882                            const LValue &This, const Expr *E,
883                            CheckConstantExpressionKind CCEK = CCEK_Constant,
884                            bool AllowNonLiteralTypes = false);
885static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
886static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
887static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
888                                  EvalInfo &Info);
889static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
890static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
891static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
892                                    EvalInfo &Info);
893static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
894static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
895
896//===----------------------------------------------------------------------===//
897// Misc utilities
898//===----------------------------------------------------------------------===//
899
900/// Should this call expression be treated as a string literal?
901static bool IsStringLiteralCall(const CallExpr *E) {
902  unsigned Builtin = E->isBuiltinCall();
903  return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
904          Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
905}
906
907static bool IsGlobalLValue(APValue::LValueBase B) {
908  // C++11 [expr.const]p3 An address constant expression is a prvalue core
909  // constant expression of pointer type that evaluates to...
910
911  // ... a null pointer value, or a prvalue core constant expression of type
912  // std::nullptr_t.
913  if (!B) return true;
914
915  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
916    // ... the address of an object with static storage duration,
917    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
918      return VD->hasGlobalStorage();
919    // ... the address of a function,
920    return isa<FunctionDecl>(D);
921  }
922
923  const Expr *E = B.get<const Expr*>();
924  switch (E->getStmtClass()) {
925  default:
926    return false;
927  case Expr::CompoundLiteralExprClass: {
928    const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
929    return CLE->isFileScope() && CLE->isLValue();
930  }
931  // A string literal has static storage duration.
932  case Expr::StringLiteralClass:
933  case Expr::PredefinedExprClass:
934  case Expr::ObjCStringLiteralClass:
935  case Expr::ObjCEncodeExprClass:
936  case Expr::CXXTypeidExprClass:
937  case Expr::CXXUuidofExprClass:
938    return true;
939  case Expr::CallExprClass:
940    return IsStringLiteralCall(cast<CallExpr>(E));
941  // For GCC compatibility, &&label has static storage duration.
942  case Expr::AddrLabelExprClass:
943    return true;
944  // A Block literal expression may be used as the initialization value for
945  // Block variables at global or local static scope.
946  case Expr::BlockExprClass:
947    return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
948  case Expr::ImplicitValueInitExprClass:
949    // FIXME:
950    // We can never form an lvalue with an implicit value initialization as its
951    // base through expression evaluation, so these only appear in one case: the
952    // implicit variable declaration we invent when checking whether a constexpr
953    // constructor can produce a constant expression. We must assume that such
954    // an expression might be a global lvalue.
955    return true;
956  }
957}
958
959static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
960  assert(Base && "no location for a null lvalue");
961  const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
962  if (VD)
963    Info.Note(VD->getLocation(), diag::note_declared_at);
964  else
965    Info.Note(Base.get<const Expr*>()->getExprLoc(),
966              diag::note_constexpr_temporary_here);
967}
968
969/// Check that this reference or pointer core constant expression is a valid
970/// value for an address or reference constant expression. Return true if we
971/// can fold this expression, whether or not it's a constant expression.
972static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
973                                          QualType Type, const LValue &LVal) {
974  bool IsReferenceType = Type->isReferenceType();
975
976  APValue::LValueBase Base = LVal.getLValueBase();
977  const SubobjectDesignator &Designator = LVal.getLValueDesignator();
978
979  // Check that the object is a global. Note that the fake 'this' object we
980  // manufacture when checking potential constant expressions is conservatively
981  // assumed to be global here.
982  if (!IsGlobalLValue(Base)) {
983    if (Info.getLangOpts().CPlusPlus11) {
984      const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
985      Info.Diag(Loc, diag::note_constexpr_non_global, 1)
986        << IsReferenceType << !Designator.Entries.empty()
987        << !!VD << VD;
988      NoteLValueLocation(Info, Base);
989    } else {
990      Info.Diag(Loc);
991    }
992    // Don't allow references to temporaries to escape.
993    return false;
994  }
995  assert((Info.CheckingPotentialConstantExpression ||
996          LVal.getLValueCallIndex() == 0) &&
997         "have call index for global lvalue");
998
999  // Check if this is a thread-local variable.
1000  if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1001    if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1002      if (Var->isThreadSpecified())
1003        return false;
1004    }
1005  }
1006
1007  // Allow address constant expressions to be past-the-end pointers. This is
1008  // an extension: the standard requires them to point to an object.
1009  if (!IsReferenceType)
1010    return true;
1011
1012  // A reference constant expression must refer to an object.
1013  if (!Base) {
1014    // FIXME: diagnostic
1015    Info.CCEDiag(Loc);
1016    return true;
1017  }
1018
1019  // Does this refer one past the end of some object?
1020  if (Designator.isOnePastTheEnd()) {
1021    const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1022    Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1023      << !Designator.Entries.empty() << !!VD << VD;
1024    NoteLValueLocation(Info, Base);
1025  }
1026
1027  return true;
1028}
1029
1030/// Check that this core constant expression is of literal type, and if not,
1031/// produce an appropriate diagnostic.
1032static bool CheckLiteralType(EvalInfo &Info, const Expr *E) {
1033  if (!E->isRValue() || E->getType()->isLiteralType())
1034    return true;
1035
1036  // Prvalue constant expressions must be of literal types.
1037  if (Info.getLangOpts().CPlusPlus11)
1038    Info.Diag(E, diag::note_constexpr_nonliteral)
1039      << E->getType();
1040  else
1041    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1042  return false;
1043}
1044
1045/// Check that this core constant expression value is a valid value for a
1046/// constant expression. If not, report an appropriate diagnostic. Does not
1047/// check that the expression is of literal type.
1048static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1049                                    QualType Type, const APValue &Value) {
1050  // Core issue 1454: For a literal constant expression of array or class type,
1051  // each subobject of its value shall have been initialized by a constant
1052  // expression.
1053  if (Value.isArray()) {
1054    QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1055    for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1056      if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1057                                   Value.getArrayInitializedElt(I)))
1058        return false;
1059    }
1060    if (!Value.hasArrayFiller())
1061      return true;
1062    return CheckConstantExpression(Info, DiagLoc, EltTy,
1063                                   Value.getArrayFiller());
1064  }
1065  if (Value.isUnion() && Value.getUnionField()) {
1066    return CheckConstantExpression(Info, DiagLoc,
1067                                   Value.getUnionField()->getType(),
1068                                   Value.getUnionValue());
1069  }
1070  if (Value.isStruct()) {
1071    RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1072    if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1073      unsigned BaseIndex = 0;
1074      for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1075             End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1076        if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1077                                     Value.getStructBase(BaseIndex)))
1078          return false;
1079      }
1080    }
1081    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1082         I != E; ++I) {
1083      if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1084                                   Value.getStructField(I->getFieldIndex())))
1085        return false;
1086    }
1087  }
1088
1089  if (Value.isLValue()) {
1090    LValue LVal;
1091    LVal.setFrom(Info.Ctx, Value);
1092    return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1093  }
1094
1095  // Everything else is fine.
1096  return true;
1097}
1098
1099const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1100  return LVal.Base.dyn_cast<const ValueDecl*>();
1101}
1102
1103static bool IsLiteralLValue(const LValue &Value) {
1104  return Value.Base.dyn_cast<const Expr*>() && !Value.CallIndex;
1105}
1106
1107static bool IsWeakLValue(const LValue &Value) {
1108  const ValueDecl *Decl = GetLValueBaseDecl(Value);
1109  return Decl && Decl->isWeak();
1110}
1111
1112static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1113  // A null base expression indicates a null pointer.  These are always
1114  // evaluatable, and they are false unless the offset is zero.
1115  if (!Value.getLValueBase()) {
1116    Result = !Value.getLValueOffset().isZero();
1117    return true;
1118  }
1119
1120  // We have a non-null base.  These are generally known to be true, but if it's
1121  // a weak declaration it can be null at runtime.
1122  Result = true;
1123  const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1124  return !Decl || !Decl->isWeak();
1125}
1126
1127static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1128  switch (Val.getKind()) {
1129  case APValue::Uninitialized:
1130    return false;
1131  case APValue::Int:
1132    Result = Val.getInt().getBoolValue();
1133    return true;
1134  case APValue::Float:
1135    Result = !Val.getFloat().isZero();
1136    return true;
1137  case APValue::ComplexInt:
1138    Result = Val.getComplexIntReal().getBoolValue() ||
1139             Val.getComplexIntImag().getBoolValue();
1140    return true;
1141  case APValue::ComplexFloat:
1142    Result = !Val.getComplexFloatReal().isZero() ||
1143             !Val.getComplexFloatImag().isZero();
1144    return true;
1145  case APValue::LValue:
1146    return EvalPointerValueAsBool(Val, Result);
1147  case APValue::MemberPointer:
1148    Result = Val.getMemberPointerDecl();
1149    return true;
1150  case APValue::Vector:
1151  case APValue::Array:
1152  case APValue::Struct:
1153  case APValue::Union:
1154  case APValue::AddrLabelDiff:
1155    return false;
1156  }
1157
1158  llvm_unreachable("unknown APValue kind");
1159}
1160
1161static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1162                                       EvalInfo &Info) {
1163  assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1164  APValue Val;
1165  if (!Evaluate(Val, Info, E))
1166    return false;
1167  return HandleConversionToBool(Val, Result);
1168}
1169
1170template<typename T>
1171static void HandleOverflow(EvalInfo &Info, const Expr *E,
1172                           const T &SrcValue, QualType DestType) {
1173  Info.CCEDiag(E, diag::note_constexpr_overflow)
1174    << SrcValue << DestType;
1175}
1176
1177static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1178                                 QualType SrcType, const APFloat &Value,
1179                                 QualType DestType, APSInt &Result) {
1180  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1181  // Determine whether we are converting to unsigned or signed.
1182  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1183
1184  Result = APSInt(DestWidth, !DestSigned);
1185  bool ignored;
1186  if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1187      & APFloat::opInvalidOp)
1188    HandleOverflow(Info, E, Value, DestType);
1189  return true;
1190}
1191
1192static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1193                                   QualType SrcType, QualType DestType,
1194                                   APFloat &Result) {
1195  APFloat Value = Result;
1196  bool ignored;
1197  if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1198                     APFloat::rmNearestTiesToEven, &ignored)
1199      & APFloat::opOverflow)
1200    HandleOverflow(Info, E, Value, DestType);
1201  return true;
1202}
1203
1204static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1205                                 QualType DestType, QualType SrcType,
1206                                 APSInt &Value) {
1207  unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1208  APSInt Result = Value;
1209  // Figure out if this is a truncate, extend or noop cast.
1210  // If the input is signed, do a sign extend, noop, or truncate.
1211  Result = Result.extOrTrunc(DestWidth);
1212  Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1213  return Result;
1214}
1215
1216static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1217                                 QualType SrcType, const APSInt &Value,
1218                                 QualType DestType, APFloat &Result) {
1219  Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1220  if (Result.convertFromAPInt(Value, Value.isSigned(),
1221                              APFloat::rmNearestTiesToEven)
1222      & APFloat::opOverflow)
1223    HandleOverflow(Info, E, Value, DestType);
1224  return true;
1225}
1226
1227static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1228                                  llvm::APInt &Res) {
1229  APValue SVal;
1230  if (!Evaluate(SVal, Info, E))
1231    return false;
1232  if (SVal.isInt()) {
1233    Res = SVal.getInt();
1234    return true;
1235  }
1236  if (SVal.isFloat()) {
1237    Res = SVal.getFloat().bitcastToAPInt();
1238    return true;
1239  }
1240  if (SVal.isVector()) {
1241    QualType VecTy = E->getType();
1242    unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1243    QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1244    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1245    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1246    Res = llvm::APInt::getNullValue(VecSize);
1247    for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1248      APValue &Elt = SVal.getVectorElt(i);
1249      llvm::APInt EltAsInt;
1250      if (Elt.isInt()) {
1251        EltAsInt = Elt.getInt();
1252      } else if (Elt.isFloat()) {
1253        EltAsInt = Elt.getFloat().bitcastToAPInt();
1254      } else {
1255        // Don't try to handle vectors of anything other than int or float
1256        // (not sure if it's possible to hit this case).
1257        Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1258        return false;
1259      }
1260      unsigned BaseEltSize = EltAsInt.getBitWidth();
1261      if (BigEndian)
1262        Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1263      else
1264        Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1265    }
1266    return true;
1267  }
1268  // Give up if the input isn't an int, float, or vector.  For example, we
1269  // reject "(v4i16)(intptr_t)&a".
1270  Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1271  return false;
1272}
1273
1274/// Cast an lvalue referring to a base subobject to a derived class, by
1275/// truncating the lvalue's path to the given length.
1276static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1277                               const RecordDecl *TruncatedType,
1278                               unsigned TruncatedElements) {
1279  SubobjectDesignator &D = Result.Designator;
1280
1281  // Check we actually point to a derived class object.
1282  if (TruncatedElements == D.Entries.size())
1283    return true;
1284  assert(TruncatedElements >= D.MostDerivedPathLength &&
1285         "not casting to a derived class");
1286  if (!Result.checkSubobject(Info, E, CSK_Derived))
1287    return false;
1288
1289  // Truncate the path to the subobject, and remove any derived-to-base offsets.
1290  const RecordDecl *RD = TruncatedType;
1291  for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1292    if (RD->isInvalidDecl()) return false;
1293    const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1294    const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1295    if (isVirtualBaseClass(D.Entries[I]))
1296      Result.Offset -= Layout.getVBaseClassOffset(Base);
1297    else
1298      Result.Offset -= Layout.getBaseClassOffset(Base);
1299    RD = Base;
1300  }
1301  D.Entries.resize(TruncatedElements);
1302  return true;
1303}
1304
1305static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1306                                   const CXXRecordDecl *Derived,
1307                                   const CXXRecordDecl *Base,
1308                                   const ASTRecordLayout *RL = 0) {
1309  if (!RL) {
1310    if (Derived->isInvalidDecl()) return false;
1311    RL = &Info.Ctx.getASTRecordLayout(Derived);
1312  }
1313
1314  Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1315  Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1316  return true;
1317}
1318
1319static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1320                             const CXXRecordDecl *DerivedDecl,
1321                             const CXXBaseSpecifier *Base) {
1322  const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1323
1324  if (!Base->isVirtual())
1325    return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1326
1327  SubobjectDesignator &D = Obj.Designator;
1328  if (D.Invalid)
1329    return false;
1330
1331  // Extract most-derived object and corresponding type.
1332  DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1333  if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1334    return false;
1335
1336  // Find the virtual base class.
1337  if (DerivedDecl->isInvalidDecl()) return false;
1338  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1339  Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1340  Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1341  return true;
1342}
1343
1344/// Update LVal to refer to the given field, which must be a member of the type
1345/// currently described by LVal.
1346static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1347                               const FieldDecl *FD,
1348                               const ASTRecordLayout *RL = 0) {
1349  if (!RL) {
1350    if (FD->getParent()->isInvalidDecl()) return false;
1351    RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1352  }
1353
1354  unsigned I = FD->getFieldIndex();
1355  LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1356  LVal.addDecl(Info, E, FD);
1357  return true;
1358}
1359
1360/// Update LVal to refer to the given indirect field.
1361static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1362                                       LValue &LVal,
1363                                       const IndirectFieldDecl *IFD) {
1364  for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
1365                                         CE = IFD->chain_end(); C != CE; ++C)
1366    if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
1367      return false;
1368  return true;
1369}
1370
1371/// Get the size of the given type in char units.
1372static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1373                         QualType Type, CharUnits &Size) {
1374  // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1375  // extension.
1376  if (Type->isVoidType() || Type->isFunctionType()) {
1377    Size = CharUnits::One();
1378    return true;
1379  }
1380
1381  if (!Type->isConstantSizeType()) {
1382    // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1383    // FIXME: Better diagnostic.
1384    Info.Diag(Loc);
1385    return false;
1386  }
1387
1388  Size = Info.Ctx.getTypeSizeInChars(Type);
1389  return true;
1390}
1391
1392/// Update a pointer value to model pointer arithmetic.
1393/// \param Info - Information about the ongoing evaluation.
1394/// \param E - The expression being evaluated, for diagnostic purposes.
1395/// \param LVal - The pointer value to be updated.
1396/// \param EltTy - The pointee type represented by LVal.
1397/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1398static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1399                                        LValue &LVal, QualType EltTy,
1400                                        int64_t Adjustment) {
1401  CharUnits SizeOfPointee;
1402  if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1403    return false;
1404
1405  // Compute the new offset in the appropriate width.
1406  LVal.Offset += Adjustment * SizeOfPointee;
1407  LVal.adjustIndex(Info, E, Adjustment);
1408  return true;
1409}
1410
1411/// Update an lvalue to refer to a component of a complex number.
1412/// \param Info - Information about the ongoing evaluation.
1413/// \param LVal - The lvalue to be updated.
1414/// \param EltTy - The complex number's component type.
1415/// \param Imag - False for the real component, true for the imaginary.
1416static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1417                                       LValue &LVal, QualType EltTy,
1418                                       bool Imag) {
1419  if (Imag) {
1420    CharUnits SizeOfComponent;
1421    if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1422      return false;
1423    LVal.Offset += SizeOfComponent;
1424  }
1425  LVal.addComplex(Info, E, EltTy, Imag);
1426  return true;
1427}
1428
1429/// Try to evaluate the initializer for a variable declaration.
1430static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1431                                const VarDecl *VD,
1432                                CallStackFrame *Frame, APValue &Result) {
1433  // If this is a parameter to an active constexpr function call, perform
1434  // argument substitution.
1435  if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1436    // Assume arguments of a potential constant expression are unknown
1437    // constant expressions.
1438    if (Info.CheckingPotentialConstantExpression)
1439      return false;
1440    if (!Frame || !Frame->Arguments) {
1441      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1442      return false;
1443    }
1444    Result = Frame->Arguments[PVD->getFunctionScopeIndex()];
1445    return true;
1446  }
1447
1448  // Dig out the initializer, and use the declaration which it's attached to.
1449  const Expr *Init = VD->getAnyInitializer(VD);
1450  if (!Init || Init->isValueDependent()) {
1451    // If we're checking a potential constant expression, the variable could be
1452    // initialized later.
1453    if (!Info.CheckingPotentialConstantExpression)
1454      Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1455    return false;
1456  }
1457
1458  // If we're currently evaluating the initializer of this declaration, use that
1459  // in-flight value.
1460  if (Info.EvaluatingDecl == VD) {
1461    Result = *Info.EvaluatingDeclValue;
1462    return !Result.isUninit();
1463  }
1464
1465  // Never evaluate the initializer of a weak variable. We can't be sure that
1466  // this is the definition which will be used.
1467  if (VD->isWeak()) {
1468    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1469    return false;
1470  }
1471
1472  // Check that we can fold the initializer. In C++, we will have already done
1473  // this in the cases where it matters for conformance.
1474  SmallVector<PartialDiagnosticAt, 8> Notes;
1475  if (!VD->evaluateValue(Notes)) {
1476    Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1477              Notes.size() + 1) << VD;
1478    Info.Note(VD->getLocation(), diag::note_declared_at);
1479    Info.addNotes(Notes);
1480    return false;
1481  } else if (!VD->checkInitIsICE()) {
1482    Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
1483                 Notes.size() + 1) << VD;
1484    Info.Note(VD->getLocation(), diag::note_declared_at);
1485    Info.addNotes(Notes);
1486  }
1487
1488  Result = *VD->getEvaluatedValue();
1489  return true;
1490}
1491
1492static bool IsConstNonVolatile(QualType T) {
1493  Qualifiers Quals = T.getQualifiers();
1494  return Quals.hasConst() && !Quals.hasVolatile();
1495}
1496
1497/// Get the base index of the given base class within an APValue representing
1498/// the given derived class.
1499static unsigned getBaseIndex(const CXXRecordDecl *Derived,
1500                             const CXXRecordDecl *Base) {
1501  Base = Base->getCanonicalDecl();
1502  unsigned Index = 0;
1503  for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
1504         E = Derived->bases_end(); I != E; ++I, ++Index) {
1505    if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
1506      return Index;
1507  }
1508
1509  llvm_unreachable("base class missing from derived class's bases list");
1510}
1511
1512/// Extract the value of a character from a string literal. CharType is used to
1513/// determine the expected signedness of the result -- a string literal used to
1514/// initialize an array of 'signed char' or 'unsigned char' might contain chars
1515/// of the wrong signedness.
1516static APSInt ExtractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
1517                                            uint64_t Index, QualType CharType) {
1518  // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1519  const StringLiteral *S = dyn_cast<StringLiteral>(Lit);
1520  assert(S && "unexpected string literal expression kind");
1521  assert(CharType->isIntegerType() && "unexpected character type");
1522
1523  APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
1524               CharType->isUnsignedIntegerType());
1525  if (Index < S->getLength())
1526    Value = S->getCodeUnit(Index);
1527  return Value;
1528}
1529
1530/// Extract the designated sub-object of an rvalue.
1531static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
1532                             APValue &Obj, QualType ObjType,
1533                             const SubobjectDesignator &Sub, QualType SubType) {
1534  if (Sub.Invalid)
1535    // A diagnostic will have already been produced.
1536    return false;
1537  if (Sub.isOnePastTheEnd()) {
1538    Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1539                (unsigned)diag::note_constexpr_read_past_end :
1540                (unsigned)diag::note_invalid_subexpr_in_const_expr);
1541    return false;
1542  }
1543  if (Sub.Entries.empty())
1544    return true;
1545  if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
1546    // This object might be initialized later.
1547    return false;
1548
1549  APValue *O = &Obj;
1550  // Walk the designator's path to find the subobject.
1551  for (unsigned I = 0, N = Sub.Entries.size(); I != N; ++I) {
1552    if (ObjType->isArrayType()) {
1553      // Next subobject is an array element.
1554      const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
1555      assert(CAT && "vla in literal type?");
1556      uint64_t Index = Sub.Entries[I].ArrayIndex;
1557      if (CAT->getSize().ule(Index)) {
1558        // Note, it should not be possible to form a pointer with a valid
1559        // designator which points more than one past the end of the array.
1560        Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1561                    (unsigned)diag::note_constexpr_read_past_end :
1562                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1563        return false;
1564      }
1565      // An array object is represented as either an Array APValue or as an
1566      // LValue which refers to a string literal.
1567      if (O->isLValue()) {
1568        assert(I == N - 1 && "extracting subobject of character?");
1569        assert(!O->hasLValuePath() || O->getLValuePath().empty());
1570        Obj = APValue(ExtractStringLiteralCharacter(
1571          Info, O->getLValueBase().get<const Expr*>(), Index, SubType));
1572        return true;
1573      } else if (O->getArrayInitializedElts() > Index)
1574        O = &O->getArrayInitializedElt(Index);
1575      else
1576        O = &O->getArrayFiller();
1577      ObjType = CAT->getElementType();
1578    } else if (ObjType->isAnyComplexType()) {
1579      // Next subobject is a complex number.
1580      uint64_t Index = Sub.Entries[I].ArrayIndex;
1581      if (Index > 1) {
1582        Info.Diag(E, Info.getLangOpts().CPlusPlus11 ?
1583                    (unsigned)diag::note_constexpr_read_past_end :
1584                    (unsigned)diag::note_invalid_subexpr_in_const_expr);
1585        return false;
1586      }
1587      assert(I == N - 1 && "extracting subobject of scalar?");
1588      if (O->isComplexInt()) {
1589        Obj = APValue(Index ? O->getComplexIntImag()
1590                            : O->getComplexIntReal());
1591      } else {
1592        assert(O->isComplexFloat());
1593        Obj = APValue(Index ? O->getComplexFloatImag()
1594                            : O->getComplexFloatReal());
1595      }
1596      return true;
1597    } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
1598      if (Field->isMutable()) {
1599        Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
1600          << Field;
1601        Info.Note(Field->getLocation(), diag::note_declared_at);
1602        return false;
1603      }
1604
1605      // Next subobject is a class, struct or union field.
1606      RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
1607      if (RD->isUnion()) {
1608        const FieldDecl *UnionField = O->getUnionField();
1609        if (!UnionField ||
1610            UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
1611          Info.Diag(E, diag::note_constexpr_read_inactive_union_member)
1612            << Field << !UnionField << UnionField;
1613          return false;
1614        }
1615        O = &O->getUnionValue();
1616      } else
1617        O = &O->getStructField(Field->getFieldIndex());
1618      ObjType = Field->getType();
1619
1620      if (ObjType.isVolatileQualified()) {
1621        if (Info.getLangOpts().CPlusPlus) {
1622          // FIXME: Include a description of the path to the volatile subobject.
1623          Info.Diag(E, diag::note_constexpr_ltor_volatile_obj, 1)
1624            << 2 << Field;
1625          Info.Note(Field->getLocation(), diag::note_declared_at);
1626        } else {
1627          Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1628        }
1629        return false;
1630      }
1631    } else {
1632      // Next subobject is a base class.
1633      const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
1634      const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
1635      O = &O->getStructBase(getBaseIndex(Derived, Base));
1636      ObjType = Info.Ctx.getRecordType(Base);
1637    }
1638
1639    if (O->isUninit()) {
1640      if (!Info.CheckingPotentialConstantExpression)
1641        Info.Diag(E, diag::note_constexpr_read_uninit);
1642      return false;
1643    }
1644  }
1645
1646  // This may look super-stupid, but it serves an important purpose: if we just
1647  // swapped Obj and *O, we'd create an object which had itself as a subobject.
1648  // To avoid the leak, we ensure that Tmp ends up owning the original complete
1649  // object, which is destroyed by Tmp's destructor.
1650  APValue Tmp;
1651  O->swap(Tmp);
1652  Obj.swap(Tmp);
1653  return true;
1654}
1655
1656/// Find the position where two subobject designators diverge, or equivalently
1657/// the length of the common initial subsequence.
1658static unsigned FindDesignatorMismatch(QualType ObjType,
1659                                       const SubobjectDesignator &A,
1660                                       const SubobjectDesignator &B,
1661                                       bool &WasArrayIndex) {
1662  unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
1663  for (/**/; I != N; ++I) {
1664    if (!ObjType.isNull() &&
1665        (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
1666      // Next subobject is an array element.
1667      if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
1668        WasArrayIndex = true;
1669        return I;
1670      }
1671      if (ObjType->isAnyComplexType())
1672        ObjType = ObjType->castAs<ComplexType>()->getElementType();
1673      else
1674        ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
1675    } else {
1676      if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
1677        WasArrayIndex = false;
1678        return I;
1679      }
1680      if (const FieldDecl *FD = getAsField(A.Entries[I]))
1681        // Next subobject is a field.
1682        ObjType = FD->getType();
1683      else
1684        // Next subobject is a base class.
1685        ObjType = QualType();
1686    }
1687  }
1688  WasArrayIndex = false;
1689  return I;
1690}
1691
1692/// Determine whether the given subobject designators refer to elements of the
1693/// same array object.
1694static bool AreElementsOfSameArray(QualType ObjType,
1695                                   const SubobjectDesignator &A,
1696                                   const SubobjectDesignator &B) {
1697  if (A.Entries.size() != B.Entries.size())
1698    return false;
1699
1700  bool IsArray = A.MostDerivedArraySize != 0;
1701  if (IsArray && A.MostDerivedPathLength != A.Entries.size())
1702    // A is a subobject of the array element.
1703    return false;
1704
1705  // If A (and B) designates an array element, the last entry will be the array
1706  // index. That doesn't have to match. Otherwise, we're in the 'implicit array
1707  // of length 1' case, and the entire path must match.
1708  bool WasArrayIndex;
1709  unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
1710  return CommonLength >= A.Entries.size() - IsArray;
1711}
1712
1713/// HandleLValueToRValueConversion - Perform an lvalue-to-rvalue conversion on
1714/// the given lvalue. This can also be used for 'lvalue-to-lvalue' conversions
1715/// for looking up the glvalue referred to by an entity of reference type.
1716///
1717/// \param Info - Information about the ongoing evaluation.
1718/// \param Conv - The expression for which we are performing the conversion.
1719///               Used for diagnostics.
1720/// \param Type - The type we expect this conversion to produce, before
1721///               stripping cv-qualifiers in the case of a non-clas type.
1722/// \param LVal - The glvalue on which we are attempting to perform this action.
1723/// \param RVal - The produced value will be placed here.
1724static bool HandleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
1725                                           QualType Type,
1726                                           const LValue &LVal, APValue &RVal) {
1727  if (LVal.Designator.Invalid)
1728    // A diagnostic will have already been produced.
1729    return false;
1730
1731  const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
1732
1733  if (!LVal.Base) {
1734    // FIXME: Indirection through a null pointer deserves a specific diagnostic.
1735    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1736    return false;
1737  }
1738
1739  CallStackFrame *Frame = 0;
1740  if (LVal.CallIndex) {
1741    Frame = Info.getCallFrame(LVal.CallIndex);
1742    if (!Frame) {
1743      Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1744      NoteLValueLocation(Info, LVal.Base);
1745      return false;
1746    }
1747  }
1748
1749  // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
1750  // is not a constant expression (even if the object is non-volatile). We also
1751  // apply this rule to C++98, in order to conform to the expected 'volatile'
1752  // semantics.
1753  if (Type.isVolatileQualified()) {
1754    if (Info.getLangOpts().CPlusPlus)
1755      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_type) << Type;
1756    else
1757      Info.Diag(Conv);
1758    return false;
1759  }
1760
1761  if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
1762    // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
1763    // In C++11, constexpr, non-volatile variables initialized with constant
1764    // expressions are constant expressions too. Inside constexpr functions,
1765    // parameters are constant expressions even if they're non-const.
1766    // In C, such things can also be folded, although they are not ICEs.
1767    const VarDecl *VD = dyn_cast<VarDecl>(D);
1768    if (VD) {
1769      if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
1770        VD = VDef;
1771    }
1772    if (!VD || VD->isInvalidDecl()) {
1773      Info.Diag(Conv);
1774      return false;
1775    }
1776
1777    // DR1313: If the object is volatile-qualified but the glvalue was not,
1778    // behavior is undefined so the result is not a constant expression.
1779    QualType VT = VD->getType();
1780    if (VT.isVolatileQualified()) {
1781      if (Info.getLangOpts().CPlusPlus) {
1782        Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 1 << VD;
1783        Info.Note(VD->getLocation(), diag::note_declared_at);
1784      } else {
1785        Info.Diag(Conv);
1786      }
1787      return false;
1788    }
1789
1790    if (!isa<ParmVarDecl>(VD)) {
1791      if (VD->isConstexpr()) {
1792        // OK, we can read this variable.
1793      } else if (VT->isIntegralOrEnumerationType()) {
1794        if (!VT.isConstQualified()) {
1795          if (Info.getLangOpts().CPlusPlus) {
1796            Info.Diag(Conv, diag::note_constexpr_ltor_non_const_int, 1) << VD;
1797            Info.Note(VD->getLocation(), diag::note_declared_at);
1798          } else {
1799            Info.Diag(Conv);
1800          }
1801          return false;
1802        }
1803      } else if (VT->isFloatingType() && VT.isConstQualified()) {
1804        // We support folding of const floating-point types, in order to make
1805        // static const data members of such types (supported as an extension)
1806        // more useful.
1807        if (Info.getLangOpts().CPlusPlus11) {
1808          Info.CCEDiag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1809          Info.Note(VD->getLocation(), diag::note_declared_at);
1810        } else {
1811          Info.CCEDiag(Conv);
1812        }
1813      } else {
1814        // FIXME: Allow folding of values of any literal type in all languages.
1815        if (Info.getLangOpts().CPlusPlus11) {
1816          Info.Diag(Conv, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
1817          Info.Note(VD->getLocation(), diag::note_declared_at);
1818        } else {
1819          Info.Diag(Conv);
1820        }
1821        return false;
1822      }
1823    }
1824
1825    if (!EvaluateVarDeclInit(Info, Conv, VD, Frame, RVal))
1826      return false;
1827
1828    if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue())
1829      return ExtractSubobject(Info, Conv, RVal, VT, LVal.Designator, Type);
1830
1831    // The declaration was initialized by an lvalue, with no lvalue-to-rvalue
1832    // conversion. This happens when the declaration and the lvalue should be
1833    // considered synonymous, for instance when initializing an array of char
1834    // from a string literal. Continue as if the initializer lvalue was the
1835    // value we were originally given.
1836    assert(RVal.getLValueOffset().isZero() &&
1837           "offset for lvalue init of non-reference");
1838    Base = RVal.getLValueBase().get<const Expr*>();
1839
1840    if (unsigned CallIndex = RVal.getLValueCallIndex()) {
1841      Frame = Info.getCallFrame(CallIndex);
1842      if (!Frame) {
1843        Info.Diag(Conv, diag::note_constexpr_lifetime_ended, 1) << !Base;
1844        NoteLValueLocation(Info, RVal.getLValueBase());
1845        return false;
1846      }
1847    } else {
1848      Frame = 0;
1849    }
1850  }
1851
1852  // Volatile temporary objects cannot be read in constant expressions.
1853  if (Base->getType().isVolatileQualified()) {
1854    if (Info.getLangOpts().CPlusPlus) {
1855      Info.Diag(Conv, diag::note_constexpr_ltor_volatile_obj, 1) << 0;
1856      Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
1857    } else {
1858      Info.Diag(Conv);
1859    }
1860    return false;
1861  }
1862
1863  if (Frame) {
1864    // If this is a temporary expression with a nontrivial initializer, grab the
1865    // value from the relevant stack frame.
1866    RVal = Frame->Temporaries[Base];
1867  } else if (const CompoundLiteralExpr *CLE
1868             = dyn_cast<CompoundLiteralExpr>(Base)) {
1869    // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
1870    // initializer until now for such expressions. Such an expression can't be
1871    // an ICE in C, so this only matters for fold.
1872    assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
1873    if (!Evaluate(RVal, Info, CLE->getInitializer()))
1874      return false;
1875  } else if (isa<StringLiteral>(Base)) {
1876    // We represent a string literal array as an lvalue pointing at the
1877    // corresponding expression, rather than building an array of chars.
1878    // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
1879    RVal = APValue(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
1880  } else {
1881    Info.Diag(Conv, diag::note_invalid_subexpr_in_const_expr);
1882    return false;
1883  }
1884
1885  return ExtractSubobject(Info, Conv, RVal, Base->getType(), LVal.Designator,
1886                          Type);
1887}
1888
1889/// Build an lvalue for the object argument of a member function call.
1890static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
1891                                   LValue &This) {
1892  if (Object->getType()->isPointerType())
1893    return EvaluatePointer(Object, This, Info);
1894
1895  if (Object->isGLValue())
1896    return EvaluateLValue(Object, This, Info);
1897
1898  if (Object->getType()->isLiteralType())
1899    return EvaluateTemporary(Object, This, Info);
1900
1901  return false;
1902}
1903
1904/// HandleMemberPointerAccess - Evaluate a member access operation and build an
1905/// lvalue referring to the result.
1906///
1907/// \param Info - Information about the ongoing evaluation.
1908/// \param BO - The member pointer access operation.
1909/// \param LV - Filled in with a reference to the resulting object.
1910/// \param IncludeMember - Specifies whether the member itself is included in
1911///        the resulting LValue subobject designator. This is not possible when
1912///        creating a bound member function.
1913/// \return The field or method declaration to which the member pointer refers,
1914///         or 0 if evaluation fails.
1915static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
1916                                                  const BinaryOperator *BO,
1917                                                  LValue &LV,
1918                                                  bool IncludeMember = true) {
1919  assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
1920
1921  bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
1922  if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
1923    return 0;
1924
1925  MemberPtr MemPtr;
1926  if (!EvaluateMemberPointer(BO->getRHS(), MemPtr, Info))
1927    return 0;
1928
1929  // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
1930  // member value, the behavior is undefined.
1931  if (!MemPtr.getDecl())
1932    return 0;
1933
1934  if (!EvalObjOK)
1935    return 0;
1936
1937  if (MemPtr.isDerivedMember()) {
1938    // This is a member of some derived class. Truncate LV appropriately.
1939    // The end of the derived-to-base path for the base object must match the
1940    // derived-to-base path for the member pointer.
1941    if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
1942        LV.Designator.Entries.size())
1943      return 0;
1944    unsigned PathLengthToMember =
1945        LV.Designator.Entries.size() - MemPtr.Path.size();
1946    for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
1947      const CXXRecordDecl *LVDecl = getAsBaseClass(
1948          LV.Designator.Entries[PathLengthToMember + I]);
1949      const CXXRecordDecl *MPDecl = MemPtr.Path[I];
1950      if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl())
1951        return 0;
1952    }
1953
1954    // Truncate the lvalue to the appropriate derived class.
1955    if (!CastToDerivedClass(Info, BO, LV, MemPtr.getContainingRecord(),
1956                            PathLengthToMember))
1957      return 0;
1958  } else if (!MemPtr.Path.empty()) {
1959    // Extend the LValue path with the member pointer's path.
1960    LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
1961                                  MemPtr.Path.size() + IncludeMember);
1962
1963    // Walk down to the appropriate base class.
1964    QualType LVType = BO->getLHS()->getType();
1965    if (const PointerType *PT = LVType->getAs<PointerType>())
1966      LVType = PT->getPointeeType();
1967    const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
1968    assert(RD && "member pointer access on non-class-type expression");
1969    // The first class in the path is that of the lvalue.
1970    for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
1971      const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
1972      if (!HandleLValueDirectBase(Info, BO, LV, RD, Base))
1973        return 0;
1974      RD = Base;
1975    }
1976    // Finally cast to the class containing the member.
1977    if (!HandleLValueDirectBase(Info, BO, LV, RD, MemPtr.getContainingRecord()))
1978      return 0;
1979  }
1980
1981  // Add the member. Note that we cannot build bound member functions here.
1982  if (IncludeMember) {
1983    if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
1984      if (!HandleLValueMember(Info, BO, LV, FD))
1985        return 0;
1986    } else if (const IndirectFieldDecl *IFD =
1987                 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
1988      if (!HandleLValueIndirectMember(Info, BO, LV, IFD))
1989        return 0;
1990    } else {
1991      llvm_unreachable("can't construct reference to bound member function");
1992    }
1993  }
1994
1995  return MemPtr.getDecl();
1996}
1997
1998/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
1999/// the provided lvalue, which currently refers to the base object.
2000static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
2001                                    LValue &Result) {
2002  SubobjectDesignator &D = Result.Designator;
2003  if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
2004    return false;
2005
2006  QualType TargetQT = E->getType();
2007  if (const PointerType *PT = TargetQT->getAs<PointerType>())
2008    TargetQT = PT->getPointeeType();
2009
2010  // Check this cast lands within the final derived-to-base subobject path.
2011  if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
2012    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2013      << D.MostDerivedType << TargetQT;
2014    return false;
2015  }
2016
2017  // Check the type of the final cast. We don't need to check the path,
2018  // since a cast can only be formed if the path is unique.
2019  unsigned NewEntriesSize = D.Entries.size() - E->path_size();
2020  const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
2021  const CXXRecordDecl *FinalType;
2022  if (NewEntriesSize == D.MostDerivedPathLength)
2023    FinalType = D.MostDerivedType->getAsCXXRecordDecl();
2024  else
2025    FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
2026  if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
2027    Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
2028      << D.MostDerivedType << TargetQT;
2029    return false;
2030  }
2031
2032  // Truncate the lvalue to the appropriate derived class.
2033  return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
2034}
2035
2036namespace {
2037enum EvalStmtResult {
2038  /// Evaluation failed.
2039  ESR_Failed,
2040  /// Hit a 'return' statement.
2041  ESR_Returned,
2042  /// Evaluation succeeded.
2043  ESR_Succeeded
2044};
2045}
2046
2047// Evaluate a statement.
2048static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
2049                                   const Stmt *S) {
2050  switch (S->getStmtClass()) {
2051  default:
2052    return ESR_Failed;
2053
2054  case Stmt::NullStmtClass:
2055  case Stmt::DeclStmtClass:
2056    return ESR_Succeeded;
2057
2058  case Stmt::ReturnStmtClass: {
2059    const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
2060    if (!Evaluate(Result, Info, RetExpr))
2061      return ESR_Failed;
2062    return ESR_Returned;
2063  }
2064
2065  case Stmt::CompoundStmtClass: {
2066    const CompoundStmt *CS = cast<CompoundStmt>(S);
2067    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
2068           BE = CS->body_end(); BI != BE; ++BI) {
2069      EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
2070      if (ESR != ESR_Succeeded)
2071        return ESR;
2072    }
2073    return ESR_Succeeded;
2074  }
2075  }
2076}
2077
2078/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
2079/// default constructor. If so, we'll fold it whether or not it's marked as
2080/// constexpr. If it is marked as constexpr, we will never implicitly define it,
2081/// so we need special handling.
2082static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
2083                                           const CXXConstructorDecl *CD,
2084                                           bool IsValueInitialization) {
2085  if (!CD->isTrivial() || !CD->isDefaultConstructor())
2086    return false;
2087
2088  // Value-initialization does not call a trivial default constructor, so such a
2089  // call is a core constant expression whether or not the constructor is
2090  // constexpr.
2091  if (!CD->isConstexpr() && !IsValueInitialization) {
2092    if (Info.getLangOpts().CPlusPlus11) {
2093      // FIXME: If DiagDecl is an implicitly-declared special member function,
2094      // we should be much more explicit about why it's not constexpr.
2095      Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
2096        << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
2097      Info.Note(CD->getLocation(), diag::note_declared_at);
2098    } else {
2099      Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
2100    }
2101  }
2102  return true;
2103}
2104
2105/// CheckConstexprFunction - Check that a function can be called in a constant
2106/// expression.
2107static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
2108                                   const FunctionDecl *Declaration,
2109                                   const FunctionDecl *Definition) {
2110  // Potential constant expressions can contain calls to declared, but not yet
2111  // defined, constexpr functions.
2112  if (Info.CheckingPotentialConstantExpression && !Definition &&
2113      Declaration->isConstexpr())
2114    return false;
2115
2116  // Can we evaluate this function call?
2117  if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
2118    return true;
2119
2120  if (Info.getLangOpts().CPlusPlus11) {
2121    const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
2122    // FIXME: If DiagDecl is an implicitly-declared special member function, we
2123    // should be much more explicit about why it's not constexpr.
2124    Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
2125      << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
2126      << DiagDecl;
2127    Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
2128  } else {
2129    Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
2130  }
2131  return false;
2132}
2133
2134namespace {
2135typedef SmallVector<APValue, 8> ArgVector;
2136}
2137
2138/// EvaluateArgs - Evaluate the arguments to a function call.
2139static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
2140                         EvalInfo &Info) {
2141  bool Success = true;
2142  for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
2143       I != E; ++I) {
2144    if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
2145      // If we're checking for a potential constant expression, evaluate all
2146      // initializers even if some of them fail.
2147      if (!Info.keepEvaluatingAfterFailure())
2148        return false;
2149      Success = false;
2150    }
2151  }
2152  return Success;
2153}
2154
2155/// Evaluate a function call.
2156static bool HandleFunctionCall(SourceLocation CallLoc,
2157                               const FunctionDecl *Callee, const LValue *This,
2158                               ArrayRef<const Expr*> Args, const Stmt *Body,
2159                               EvalInfo &Info, APValue &Result) {
2160  ArgVector ArgValues(Args.size());
2161  if (!EvaluateArgs(Args, ArgValues, Info))
2162    return false;
2163
2164  if (!Info.CheckCallLimit(CallLoc))
2165    return false;
2166
2167  CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
2168  return EvaluateStmt(Result, Info, Body) == ESR_Returned;
2169}
2170
2171/// Evaluate a constructor call.
2172static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
2173                                  ArrayRef<const Expr*> Args,
2174                                  const CXXConstructorDecl *Definition,
2175                                  EvalInfo &Info, APValue &Result) {
2176  ArgVector ArgValues(Args.size());
2177  if (!EvaluateArgs(Args, ArgValues, Info))
2178    return false;
2179
2180  if (!Info.CheckCallLimit(CallLoc))
2181    return false;
2182
2183  const CXXRecordDecl *RD = Definition->getParent();
2184  if (RD->getNumVBases()) {
2185    Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
2186    return false;
2187  }
2188
2189  CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
2190
2191  // If it's a delegating constructor, just delegate.
2192  if (Definition->isDelegatingConstructor()) {
2193    CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
2194    return EvaluateInPlace(Result, Info, This, (*I)->getInit());
2195  }
2196
2197  // For a trivial copy or move constructor, perform an APValue copy. This is
2198  // essential for unions, where the operations performed by the constructor
2199  // cannot be represented by ctor-initializers.
2200  if (Definition->isDefaulted() &&
2201      ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
2202       (Definition->isMoveConstructor() && Definition->isTrivial()))) {
2203    LValue RHS;
2204    RHS.setFrom(Info.Ctx, ArgValues[0]);
2205    return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
2206                                          RHS, Result);
2207  }
2208
2209  // Reserve space for the struct members.
2210  if (!RD->isUnion() && Result.isUninit())
2211    Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
2212                     std::distance(RD->field_begin(), RD->field_end()));
2213
2214  if (RD->isInvalidDecl()) return false;
2215  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2216
2217  bool Success = true;
2218  unsigned BasesSeen = 0;
2219#ifndef NDEBUG
2220  CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
2221#endif
2222  for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
2223       E = Definition->init_end(); I != E; ++I) {
2224    LValue Subobject = This;
2225    APValue *Value = &Result;
2226
2227    // Determine the subobject to initialize.
2228    if ((*I)->isBaseInitializer()) {
2229      QualType BaseType((*I)->getBaseClass(), 0);
2230#ifndef NDEBUG
2231      // Non-virtual base classes are initialized in the order in the class
2232      // definition. We have already checked for virtual base classes.
2233      assert(!BaseIt->isVirtual() && "virtual base for literal type");
2234      assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
2235             "base class initializers not in expected order");
2236      ++BaseIt;
2237#endif
2238      if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
2239                                  BaseType->getAsCXXRecordDecl(), &Layout))
2240        return false;
2241      Value = &Result.getStructBase(BasesSeen++);
2242    } else if (FieldDecl *FD = (*I)->getMember()) {
2243      if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
2244        return false;
2245      if (RD->isUnion()) {
2246        Result = APValue(FD);
2247        Value = &Result.getUnionValue();
2248      } else {
2249        Value = &Result.getStructField(FD->getFieldIndex());
2250      }
2251    } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
2252      // Walk the indirect field decl's chain to find the object to initialize,
2253      // and make sure we've initialized every step along it.
2254      for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
2255                                             CE = IFD->chain_end();
2256           C != CE; ++C) {
2257        FieldDecl *FD = cast<FieldDecl>(*C);
2258        CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
2259        // Switch the union field if it differs. This happens if we had
2260        // preceding zero-initialization, and we're now initializing a union
2261        // subobject other than the first.
2262        // FIXME: In this case, the values of the other subobjects are
2263        // specified, since zero-initialization sets all padding bits to zero.
2264        if (Value->isUninit() ||
2265            (Value->isUnion() && Value->getUnionField() != FD)) {
2266          if (CD->isUnion())
2267            *Value = APValue(FD);
2268          else
2269            *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
2270                             std::distance(CD->field_begin(), CD->field_end()));
2271        }
2272        if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
2273          return false;
2274        if (CD->isUnion())
2275          Value = &Value->getUnionValue();
2276        else
2277          Value = &Value->getStructField(FD->getFieldIndex());
2278      }
2279    } else {
2280      llvm_unreachable("unknown base initializer kind");
2281    }
2282
2283    if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit(),
2284                         (*I)->isBaseInitializer()
2285                                      ? CCEK_Constant : CCEK_MemberInit)) {
2286      // If we're checking for a potential constant expression, evaluate all
2287      // initializers even if some of them fail.
2288      if (!Info.keepEvaluatingAfterFailure())
2289        return false;
2290      Success = false;
2291    }
2292  }
2293
2294  return Success;
2295}
2296
2297//===----------------------------------------------------------------------===//
2298// Generic Evaluation
2299//===----------------------------------------------------------------------===//
2300namespace {
2301
2302// FIXME: RetTy is always bool. Remove it.
2303template <class Derived, typename RetTy=bool>
2304class ExprEvaluatorBase
2305  : public ConstStmtVisitor<Derived, RetTy> {
2306private:
2307  RetTy DerivedSuccess(const APValue &V, const Expr *E) {
2308    return static_cast<Derived*>(this)->Success(V, E);
2309  }
2310  RetTy DerivedZeroInitialization(const Expr *E) {
2311    return static_cast<Derived*>(this)->ZeroInitialization(E);
2312  }
2313
2314  // Check whether a conditional operator with a non-constant condition is a
2315  // potential constant expression. If neither arm is a potential constant
2316  // expression, then the conditional operator is not either.
2317  template<typename ConditionalOperator>
2318  void CheckPotentialConstantConditional(const ConditionalOperator *E) {
2319    assert(Info.CheckingPotentialConstantExpression);
2320
2321    // Speculatively evaluate both arms.
2322    {
2323      SmallVector<PartialDiagnosticAt, 8> Diag;
2324      SpeculativeEvaluationRAII Speculate(Info, &Diag);
2325
2326      StmtVisitorTy::Visit(E->getFalseExpr());
2327      if (Diag.empty())
2328        return;
2329
2330      Diag.clear();
2331      StmtVisitorTy::Visit(E->getTrueExpr());
2332      if (Diag.empty())
2333        return;
2334    }
2335
2336    Error(E, diag::note_constexpr_conditional_never_const);
2337  }
2338
2339
2340  template<typename ConditionalOperator>
2341  bool HandleConditionalOperator(const ConditionalOperator *E) {
2342    bool BoolResult;
2343    if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
2344      if (Info.CheckingPotentialConstantExpression)
2345        CheckPotentialConstantConditional(E);
2346      return false;
2347    }
2348
2349    Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
2350    return StmtVisitorTy::Visit(EvalExpr);
2351  }
2352
2353protected:
2354  EvalInfo &Info;
2355  typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
2356  typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
2357
2358  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
2359    return Info.CCEDiag(E, D);
2360  }
2361
2362  RetTy ZeroInitialization(const Expr *E) { return Error(E); }
2363
2364public:
2365  ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
2366
2367  EvalInfo &getEvalInfo() { return Info; }
2368
2369  /// Report an evaluation error. This should only be called when an error is
2370  /// first discovered. When propagating an error, just return false.
2371  bool Error(const Expr *E, diag::kind D) {
2372    Info.Diag(E, D);
2373    return false;
2374  }
2375  bool Error(const Expr *E) {
2376    return Error(E, diag::note_invalid_subexpr_in_const_expr);
2377  }
2378
2379  RetTy VisitStmt(const Stmt *) {
2380    llvm_unreachable("Expression evaluator should not be called on stmts");
2381  }
2382  RetTy VisitExpr(const Expr *E) {
2383    return Error(E);
2384  }
2385
2386  RetTy VisitParenExpr(const ParenExpr *E)
2387    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2388  RetTy VisitUnaryExtension(const UnaryOperator *E)
2389    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2390  RetTy VisitUnaryPlus(const UnaryOperator *E)
2391    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2392  RetTy VisitChooseExpr(const ChooseExpr *E)
2393    { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); }
2394  RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
2395    { return StmtVisitorTy::Visit(E->getResultExpr()); }
2396  RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
2397    { return StmtVisitorTy::Visit(E->getReplacement()); }
2398  RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
2399    { return StmtVisitorTy::Visit(E->getExpr()); }
2400  // We cannot create any objects for which cleanups are required, so there is
2401  // nothing to do here; all cleanups must come from unevaluated subexpressions.
2402  RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
2403    { return StmtVisitorTy::Visit(E->getSubExpr()); }
2404
2405  RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
2406    CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
2407    return static_cast<Derived*>(this)->VisitCastExpr(E);
2408  }
2409  RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
2410    CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
2411    return static_cast<Derived*>(this)->VisitCastExpr(E);
2412  }
2413
2414  RetTy VisitBinaryOperator(const BinaryOperator *E) {
2415    switch (E->getOpcode()) {
2416    default:
2417      return Error(E);
2418
2419    case BO_Comma:
2420      VisitIgnoredValue(E->getLHS());
2421      return StmtVisitorTy::Visit(E->getRHS());
2422
2423    case BO_PtrMemD:
2424    case BO_PtrMemI: {
2425      LValue Obj;
2426      if (!HandleMemberPointerAccess(Info, E, Obj))
2427        return false;
2428      APValue Result;
2429      if (!HandleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
2430        return false;
2431      return DerivedSuccess(Result, E);
2432    }
2433    }
2434  }
2435
2436  RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
2437    // Evaluate and cache the common expression. We treat it as a temporary,
2438    // even though it's not quite the same thing.
2439    if (!Evaluate(Info.CurrentCall->Temporaries[E->getOpaqueValue()],
2440                  Info, E->getCommon()))
2441      return false;
2442
2443    return HandleConditionalOperator(E);
2444  }
2445
2446  RetTy VisitConditionalOperator(const ConditionalOperator *E) {
2447    bool IsBcpCall = false;
2448    // If the condition (ignoring parens) is a __builtin_constant_p call,
2449    // the result is a constant expression if it can be folded without
2450    // side-effects. This is an important GNU extension. See GCC PR38377
2451    // for discussion.
2452    if (const CallExpr *CallCE =
2453          dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
2454      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
2455        IsBcpCall = true;
2456
2457    // Always assume __builtin_constant_p(...) ? ... : ... is a potential
2458    // constant expression; we can't check whether it's potentially foldable.
2459    if (Info.CheckingPotentialConstantExpression && IsBcpCall)
2460      return false;
2461
2462    FoldConstant Fold(Info);
2463
2464    if (!HandleConditionalOperator(E))
2465      return false;
2466
2467    if (IsBcpCall)
2468      Fold.Fold(Info);
2469
2470    return true;
2471  }
2472
2473  RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2474    APValue &Value = Info.CurrentCall->Temporaries[E];
2475    if (Value.isUninit()) {
2476      const Expr *Source = E->getSourceExpr();
2477      if (!Source)
2478        return Error(E);
2479      if (Source == E) { // sanity checking.
2480        assert(0 && "OpaqueValueExpr recursively refers to itself");
2481        return Error(E);
2482      }
2483      return StmtVisitorTy::Visit(Source);
2484    }
2485    return DerivedSuccess(Value, E);
2486  }
2487
2488  RetTy VisitCallExpr(const CallExpr *E) {
2489    const Expr *Callee = E->getCallee()->IgnoreParens();
2490    QualType CalleeType = Callee->getType();
2491
2492    const FunctionDecl *FD = 0;
2493    LValue *This = 0, ThisVal;
2494    ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
2495    bool HasQualifier = false;
2496
2497    // Extract function decl and 'this' pointer from the callee.
2498    if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2499      const ValueDecl *Member = 0;
2500      if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
2501        // Explicit bound member calls, such as x.f() or p->g();
2502        if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
2503          return false;
2504        Member = ME->getMemberDecl();
2505        This = &ThisVal;
2506        HasQualifier = ME->hasQualifier();
2507      } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
2508        // Indirect bound member calls ('.*' or '->*').
2509        Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
2510        if (!Member) return false;
2511        This = &ThisVal;
2512      } else
2513        return Error(Callee);
2514
2515      FD = dyn_cast<FunctionDecl>(Member);
2516      if (!FD)
2517        return Error(Callee);
2518    } else if (CalleeType->isFunctionPointerType()) {
2519      LValue Call;
2520      if (!EvaluatePointer(Callee, Call, Info))
2521        return false;
2522
2523      if (!Call.getLValueOffset().isZero())
2524        return Error(Callee);
2525      FD = dyn_cast_or_null<FunctionDecl>(
2526                             Call.getLValueBase().dyn_cast<const ValueDecl*>());
2527      if (!FD)
2528        return Error(Callee);
2529
2530      // Overloaded operator calls to member functions are represented as normal
2531      // calls with '*this' as the first argument.
2532      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
2533      if (MD && !MD->isStatic()) {
2534        // FIXME: When selecting an implicit conversion for an overloaded
2535        // operator delete, we sometimes try to evaluate calls to conversion
2536        // operators without a 'this' parameter!
2537        if (Args.empty())
2538          return Error(E);
2539
2540        if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
2541          return false;
2542        This = &ThisVal;
2543        Args = Args.slice(1);
2544      }
2545
2546      // Don't call function pointers which have been cast to some other type.
2547      if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
2548        return Error(E);
2549    } else
2550      return Error(E);
2551
2552    if (This && !This->checkSubobject(Info, E, CSK_This))
2553      return false;
2554
2555    // DR1358 allows virtual constexpr functions in some cases. Don't allow
2556    // calls to such functions in constant expressions.
2557    if (This && !HasQualifier &&
2558        isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
2559      return Error(E, diag::note_constexpr_virtual_call);
2560
2561    const FunctionDecl *Definition = 0;
2562    Stmt *Body = FD->getBody(Definition);
2563    APValue Result;
2564
2565    if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
2566        !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
2567                            Info, Result))
2568      return false;
2569
2570    return DerivedSuccess(Result, E);
2571  }
2572
2573  RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2574    return StmtVisitorTy::Visit(E->getInitializer());
2575  }
2576  RetTy VisitInitListExpr(const InitListExpr *E) {
2577    if (E->getNumInits() == 0)
2578      return DerivedZeroInitialization(E);
2579    if (E->getNumInits() == 1)
2580      return StmtVisitorTy::Visit(E->getInit(0));
2581    return Error(E);
2582  }
2583  RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
2584    return DerivedZeroInitialization(E);
2585  }
2586  RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
2587    return DerivedZeroInitialization(E);
2588  }
2589  RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
2590    return DerivedZeroInitialization(E);
2591  }
2592
2593  /// A member expression where the object is a prvalue is itself a prvalue.
2594  RetTy VisitMemberExpr(const MemberExpr *E) {
2595    assert(!E->isArrow() && "missing call to bound member function?");
2596
2597    APValue Val;
2598    if (!Evaluate(Val, Info, E->getBase()))
2599      return false;
2600
2601    QualType BaseTy = E->getBase()->getType();
2602
2603    const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
2604    if (!FD) return Error(E);
2605    assert(!FD->getType()->isReferenceType() && "prvalue reference?");
2606    assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2607           FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2608
2609    SubobjectDesignator Designator(BaseTy);
2610    Designator.addDeclUnchecked(FD);
2611
2612    return ExtractSubobject(Info, E, Val, BaseTy, Designator, E->getType()) &&
2613           DerivedSuccess(Val, E);
2614  }
2615
2616  RetTy VisitCastExpr(const CastExpr *E) {
2617    switch (E->getCastKind()) {
2618    default:
2619      break;
2620
2621    case CK_AtomicToNonAtomic:
2622    case CK_NonAtomicToAtomic:
2623    case CK_NoOp:
2624    case CK_UserDefinedConversion:
2625      return StmtVisitorTy::Visit(E->getSubExpr());
2626
2627    case CK_LValueToRValue: {
2628      LValue LVal;
2629      if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
2630        return false;
2631      APValue RVal;
2632      // Note, we use the subexpression's type in order to retain cv-qualifiers.
2633      if (!HandleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
2634                                          LVal, RVal))
2635        return false;
2636      return DerivedSuccess(RVal, E);
2637    }
2638    }
2639
2640    return Error(E);
2641  }
2642
2643  /// Visit a value which is evaluated, but whose value is ignored.
2644  void VisitIgnoredValue(const Expr *E) {
2645    APValue Scratch;
2646    if (!Evaluate(Scratch, Info, E))
2647      Info.EvalStatus.HasSideEffects = true;
2648  }
2649};
2650
2651}
2652
2653//===----------------------------------------------------------------------===//
2654// Common base class for lvalue and temporary evaluation.
2655//===----------------------------------------------------------------------===//
2656namespace {
2657template<class Derived>
2658class LValueExprEvaluatorBase
2659  : public ExprEvaluatorBase<Derived, bool> {
2660protected:
2661  LValue &Result;
2662  typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
2663  typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
2664
2665  bool Success(APValue::LValueBase B) {
2666    Result.set(B);
2667    return true;
2668  }
2669
2670public:
2671  LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
2672    ExprEvaluatorBaseTy(Info), Result(Result) {}
2673
2674  bool Success(const APValue &V, const Expr *E) {
2675    Result.setFrom(this->Info.Ctx, V);
2676    return true;
2677  }
2678
2679  bool VisitMemberExpr(const MemberExpr *E) {
2680    // Handle non-static data members.
2681    QualType BaseTy;
2682    if (E->isArrow()) {
2683      if (!EvaluatePointer(E->getBase(), Result, this->Info))
2684        return false;
2685      BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
2686    } else if (E->getBase()->isRValue()) {
2687      assert(E->getBase()->getType()->isRecordType());
2688      if (!EvaluateTemporary(E->getBase(), Result, this->Info))
2689        return false;
2690      BaseTy = E->getBase()->getType();
2691    } else {
2692      if (!this->Visit(E->getBase()))
2693        return false;
2694      BaseTy = E->getBase()->getType();
2695    }
2696
2697    const ValueDecl *MD = E->getMemberDecl();
2698    if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
2699      assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
2700             FD->getParent()->getCanonicalDecl() && "record / field mismatch");
2701      (void)BaseTy;
2702      if (!HandleLValueMember(this->Info, E, Result, FD))
2703        return false;
2704    } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
2705      if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
2706        return false;
2707    } else
2708      return this->Error(E);
2709
2710    if (MD->getType()->isReferenceType()) {
2711      APValue RefValue;
2712      if (!HandleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
2713                                          RefValue))
2714        return false;
2715      return Success(RefValue, E);
2716    }
2717    return true;
2718  }
2719
2720  bool VisitBinaryOperator(const BinaryOperator *E) {
2721    switch (E->getOpcode()) {
2722    default:
2723      return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
2724
2725    case BO_PtrMemD:
2726    case BO_PtrMemI:
2727      return HandleMemberPointerAccess(this->Info, E, Result);
2728    }
2729  }
2730
2731  bool VisitCastExpr(const CastExpr *E) {
2732    switch (E->getCastKind()) {
2733    default:
2734      return ExprEvaluatorBaseTy::VisitCastExpr(E);
2735
2736    case CK_DerivedToBase:
2737    case CK_UncheckedDerivedToBase: {
2738      if (!this->Visit(E->getSubExpr()))
2739        return false;
2740
2741      // Now figure out the necessary offset to add to the base LV to get from
2742      // the derived class to the base class.
2743      QualType Type = E->getSubExpr()->getType();
2744
2745      for (CastExpr::path_const_iterator PathI = E->path_begin(),
2746           PathE = E->path_end(); PathI != PathE; ++PathI) {
2747        if (!HandleLValueBase(this->Info, E, Result, Type->getAsCXXRecordDecl(),
2748                              *PathI))
2749          return false;
2750        Type = (*PathI)->getType();
2751      }
2752
2753      return true;
2754    }
2755    }
2756  }
2757};
2758}
2759
2760//===----------------------------------------------------------------------===//
2761// LValue Evaluation
2762//
2763// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
2764// function designators (in C), decl references to void objects (in C), and
2765// temporaries (if building with -Wno-address-of-temporary).
2766//
2767// LValue evaluation produces values comprising a base expression of one of the
2768// following types:
2769// - Declarations
2770//  * VarDecl
2771//  * FunctionDecl
2772// - Literals
2773//  * CompoundLiteralExpr in C
2774//  * StringLiteral
2775//  * CXXTypeidExpr
2776//  * PredefinedExpr
2777//  * ObjCStringLiteralExpr
2778//  * ObjCEncodeExpr
2779//  * AddrLabelExpr
2780//  * BlockExpr
2781//  * CallExpr for a MakeStringConstant builtin
2782// - Locals and temporaries
2783//  * Any Expr, with a CallIndex indicating the function in which the temporary
2784//    was evaluated.
2785// plus an offset in bytes.
2786//===----------------------------------------------------------------------===//
2787namespace {
2788class LValueExprEvaluator
2789  : public LValueExprEvaluatorBase<LValueExprEvaluator> {
2790public:
2791  LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
2792    LValueExprEvaluatorBaseTy(Info, Result) {}
2793
2794  bool VisitVarDecl(const Expr *E, const VarDecl *VD);
2795
2796  bool VisitDeclRefExpr(const DeclRefExpr *E);
2797  bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
2798  bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2799  bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
2800  bool VisitMemberExpr(const MemberExpr *E);
2801  bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
2802  bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
2803  bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
2804  bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
2805  bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
2806  bool VisitUnaryDeref(const UnaryOperator *E);
2807  bool VisitUnaryReal(const UnaryOperator *E);
2808  bool VisitUnaryImag(const UnaryOperator *E);
2809
2810  bool VisitCastExpr(const CastExpr *E) {
2811    switch (E->getCastKind()) {
2812    default:
2813      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
2814
2815    case CK_LValueBitCast:
2816      this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
2817      if (!Visit(E->getSubExpr()))
2818        return false;
2819      Result.Designator.setInvalid();
2820      return true;
2821
2822    case CK_BaseToDerived:
2823      if (!Visit(E->getSubExpr()))
2824        return false;
2825      return HandleBaseToDerivedCast(Info, E, Result);
2826    }
2827  }
2828};
2829} // end anonymous namespace
2830
2831/// Evaluate an expression as an lvalue. This can be legitimately called on
2832/// expressions which are not glvalues, in a few cases:
2833///  * function designators in C,
2834///  * "extern void" objects,
2835///  * temporaries, if building with -Wno-address-of-temporary.
2836static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) {
2837  assert((E->isGLValue() || E->getType()->isFunctionType() ||
2838          E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) &&
2839         "can't evaluate expression as an lvalue");
2840  return LValueExprEvaluator(Info, Result).Visit(E);
2841}
2842
2843bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
2844  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
2845    return Success(FD);
2846  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2847    return VisitVarDecl(E, VD);
2848  return Error(E);
2849}
2850
2851bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
2852  if (!VD->getType()->isReferenceType()) {
2853    if (isa<ParmVarDecl>(VD)) {
2854      Result.set(VD, Info.CurrentCall->Index);
2855      return true;
2856    }
2857    return Success(VD);
2858  }
2859
2860  APValue V;
2861  if (!EvaluateVarDeclInit(Info, E, VD, Info.CurrentCall, V))
2862    return false;
2863  return Success(V, E);
2864}
2865
2866bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
2867    const MaterializeTemporaryExpr *E) {
2868  if (E->GetTemporaryExpr()->isRValue()) {
2869    if (E->getType()->isRecordType())
2870      return EvaluateTemporary(E->GetTemporaryExpr(), Result, Info);
2871
2872    Result.set(E, Info.CurrentCall->Index);
2873    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info,
2874                           Result, E->GetTemporaryExpr());
2875  }
2876
2877  // Materialization of an lvalue temporary occurs when we need to force a copy
2878  // (for instance, if it's a bitfield).
2879  // FIXME: The AST should contain an lvalue-to-rvalue node for such cases.
2880  if (!Visit(E->GetTemporaryExpr()))
2881    return false;
2882  if (!HandleLValueToRValueConversion(Info, E, E->getType(), Result,
2883                                      Info.CurrentCall->Temporaries[E]))
2884    return false;
2885  Result.set(E, Info.CurrentCall->Index);
2886  return true;
2887}
2888
2889bool
2890LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2891  assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2892  // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
2893  // only see this when folding in C, so there's no standard to follow here.
2894  return Success(E);
2895}
2896
2897bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2898  if (!E->isPotentiallyEvaluated())
2899    return Success(E);
2900
2901  Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
2902    << E->getExprOperand()->getType()
2903    << E->getExprOperand()->getSourceRange();
2904  return false;
2905}
2906
2907bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
2908  return Success(E);
2909}
2910
2911bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
2912  // Handle static data members.
2913  if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
2914    VisitIgnoredValue(E->getBase());
2915    return VisitVarDecl(E, VD);
2916  }
2917
2918  // Handle static member functions.
2919  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
2920    if (MD->isStatic()) {
2921      VisitIgnoredValue(E->getBase());
2922      return Success(MD);
2923    }
2924  }
2925
2926  // Handle non-static data members.
2927  return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
2928}
2929
2930bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
2931  // FIXME: Deal with vectors as array subscript bases.
2932  if (E->getBase()->getType()->isVectorType())
2933    return Error(E);
2934
2935  if (!EvaluatePointer(E->getBase(), Result, Info))
2936    return false;
2937
2938  APSInt Index;
2939  if (!EvaluateInteger(E->getIdx(), Index, Info))
2940    return false;
2941  int64_t IndexValue
2942    = Index.isSigned() ? Index.getSExtValue()
2943                       : static_cast<int64_t>(Index.getZExtValue());
2944
2945  return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), IndexValue);
2946}
2947
2948bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
2949  return EvaluatePointer(E->getSubExpr(), Result, Info);
2950}
2951
2952bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
2953  if (!Visit(E->getSubExpr()))
2954    return false;
2955  // __real is a no-op on scalar lvalues.
2956  if (E->getSubExpr()->getType()->isAnyComplexType())
2957    HandleLValueComplexElement(Info, E, Result, E->getType(), false);
2958  return true;
2959}
2960
2961bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
2962  assert(E->getSubExpr()->getType()->isAnyComplexType() &&
2963         "lvalue __imag__ on scalar?");
2964  if (!Visit(E->getSubExpr()))
2965    return false;
2966  HandleLValueComplexElement(Info, E, Result, E->getType(), true);
2967  return true;
2968}
2969
2970//===----------------------------------------------------------------------===//
2971// Pointer Evaluation
2972//===----------------------------------------------------------------------===//
2973
2974namespace {
2975class PointerExprEvaluator
2976  : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
2977  LValue &Result;
2978
2979  bool Success(const Expr *E) {
2980    Result.set(E);
2981    return true;
2982  }
2983public:
2984
2985  PointerExprEvaluator(EvalInfo &info, LValue &Result)
2986    : ExprEvaluatorBaseTy(info), Result(Result) {}
2987
2988  bool Success(const APValue &V, const Expr *E) {
2989    Result.setFrom(Info.Ctx, V);
2990    return true;
2991  }
2992  bool ZeroInitialization(const Expr *E) {
2993    return Success((Expr*)0);
2994  }
2995
2996  bool VisitBinaryOperator(const BinaryOperator *E);
2997  bool VisitCastExpr(const CastExpr* E);
2998  bool VisitUnaryAddrOf(const UnaryOperator *E);
2999  bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
3000      { return Success(E); }
3001  bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
3002      { return Success(E); }
3003  bool VisitAddrLabelExpr(const AddrLabelExpr *E)
3004      { return Success(E); }
3005  bool VisitCallExpr(const CallExpr *E);
3006  bool VisitBlockExpr(const BlockExpr *E) {
3007    if (!E->getBlockDecl()->hasCaptures())
3008      return Success(E);
3009    return Error(E);
3010  }
3011  bool VisitCXXThisExpr(const CXXThisExpr *E) {
3012    if (!Info.CurrentCall->This)
3013      return Error(E);
3014    Result = *Info.CurrentCall->This;
3015    return true;
3016  }
3017
3018  // FIXME: Missing: @protocol, @selector
3019};
3020} // end anonymous namespace
3021
3022static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
3023  assert(E->isRValue() && E->getType()->hasPointerRepresentation());
3024  return PointerExprEvaluator(Info, Result).Visit(E);
3025}
3026
3027bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
3028  if (E->getOpcode() != BO_Add &&
3029      E->getOpcode() != BO_Sub)
3030    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
3031
3032  const Expr *PExp = E->getLHS();
3033  const Expr *IExp = E->getRHS();
3034  if (IExp->getType()->isPointerType())
3035    std::swap(PExp, IExp);
3036
3037  bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
3038  if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
3039    return false;
3040
3041  llvm::APSInt Offset;
3042  if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
3043    return false;
3044  int64_t AdditionalOffset
3045    = Offset.isSigned() ? Offset.getSExtValue()
3046                        : static_cast<int64_t>(Offset.getZExtValue());
3047  if (E->getOpcode() == BO_Sub)
3048    AdditionalOffset = -AdditionalOffset;
3049
3050  QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
3051  return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
3052                                     AdditionalOffset);
3053}
3054
3055bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3056  return EvaluateLValue(E->getSubExpr(), Result, Info);
3057}
3058
3059bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
3060  const Expr* SubExpr = E->getSubExpr();
3061
3062  switch (E->getCastKind()) {
3063  default:
3064    break;
3065
3066  case CK_BitCast:
3067  case CK_CPointerToObjCPointerCast:
3068  case CK_BlockPointerToObjCPointerCast:
3069  case CK_AnyPointerToBlockPointerCast:
3070    if (!Visit(SubExpr))
3071      return false;
3072    // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
3073    // permitted in constant expressions in C++11. Bitcasts from cv void* are
3074    // also static_casts, but we disallow them as a resolution to DR1312.
3075    if (!E->getType()->isVoidPointerType()) {
3076      Result.Designator.setInvalid();
3077      if (SubExpr->getType()->isVoidPointerType())
3078        CCEDiag(E, diag::note_constexpr_invalid_cast)
3079          << 3 << SubExpr->getType();
3080      else
3081        CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3082    }
3083    return true;
3084
3085  case CK_DerivedToBase:
3086  case CK_UncheckedDerivedToBase: {
3087    if (!EvaluatePointer(E->getSubExpr(), Result, Info))
3088      return false;
3089    if (!Result.Base && Result.Offset.isZero())
3090      return true;
3091
3092    // Now figure out the necessary offset to add to the base LV to get from
3093    // the derived class to the base class.
3094    QualType Type =
3095        E->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3096
3097    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3098         PathE = E->path_end(); PathI != PathE; ++PathI) {
3099      if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3100                            *PathI))
3101        return false;
3102      Type = (*PathI)->getType();
3103    }
3104
3105    return true;
3106  }
3107
3108  case CK_BaseToDerived:
3109    if (!Visit(E->getSubExpr()))
3110      return false;
3111    if (!Result.Base && Result.Offset.isZero())
3112      return true;
3113    return HandleBaseToDerivedCast(Info, E, Result);
3114
3115  case CK_NullToPointer:
3116    VisitIgnoredValue(E->getSubExpr());
3117    return ZeroInitialization(E);
3118
3119  case CK_IntegralToPointer: {
3120    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
3121
3122    APValue Value;
3123    if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
3124      break;
3125
3126    if (Value.isInt()) {
3127      unsigned Size = Info.Ctx.getTypeSize(E->getType());
3128      uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
3129      Result.Base = (Expr*)0;
3130      Result.Offset = CharUnits::fromQuantity(N);
3131      Result.CallIndex = 0;
3132      Result.Designator.setInvalid();
3133      return true;
3134    } else {
3135      // Cast is of an lvalue, no need to change value.
3136      Result.setFrom(Info.Ctx, Value);
3137      return true;
3138    }
3139  }
3140  case CK_ArrayToPointerDecay:
3141    if (SubExpr->isGLValue()) {
3142      if (!EvaluateLValue(SubExpr, Result, Info))
3143        return false;
3144    } else {
3145      Result.set(SubExpr, Info.CurrentCall->Index);
3146      if (!EvaluateInPlace(Info.CurrentCall->Temporaries[SubExpr],
3147                           Info, Result, SubExpr))
3148        return false;
3149    }
3150    // The result is a pointer to the first element of the array.
3151    if (const ConstantArrayType *CAT
3152          = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
3153      Result.addArray(Info, E, CAT);
3154    else
3155      Result.Designator.setInvalid();
3156    return true;
3157
3158  case CK_FunctionToPointerDecay:
3159    return EvaluateLValue(SubExpr, Result, Info);
3160  }
3161
3162  return ExprEvaluatorBaseTy::VisitCastExpr(E);
3163}
3164
3165bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
3166  if (IsStringLiteralCall(E))
3167    return Success(E);
3168
3169  return ExprEvaluatorBaseTy::VisitCallExpr(E);
3170}
3171
3172//===----------------------------------------------------------------------===//
3173// Member Pointer Evaluation
3174//===----------------------------------------------------------------------===//
3175
3176namespace {
3177class MemberPointerExprEvaluator
3178  : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
3179  MemberPtr &Result;
3180
3181  bool Success(const ValueDecl *D) {
3182    Result = MemberPtr(D);
3183    return true;
3184  }
3185public:
3186
3187  MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
3188    : ExprEvaluatorBaseTy(Info), Result(Result) {}
3189
3190  bool Success(const APValue &V, const Expr *E) {
3191    Result.setFrom(V);
3192    return true;
3193  }
3194  bool ZeroInitialization(const Expr *E) {
3195    return Success((const ValueDecl*)0);
3196  }
3197
3198  bool VisitCastExpr(const CastExpr *E);
3199  bool VisitUnaryAddrOf(const UnaryOperator *E);
3200};
3201} // end anonymous namespace
3202
3203static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
3204                                  EvalInfo &Info) {
3205  assert(E->isRValue() && E->getType()->isMemberPointerType());
3206  return MemberPointerExprEvaluator(Info, Result).Visit(E);
3207}
3208
3209bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
3210  switch (E->getCastKind()) {
3211  default:
3212    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3213
3214  case CK_NullToMemberPointer:
3215    VisitIgnoredValue(E->getSubExpr());
3216    return ZeroInitialization(E);
3217
3218  case CK_BaseToDerivedMemberPointer: {
3219    if (!Visit(E->getSubExpr()))
3220      return false;
3221    if (E->path_empty())
3222      return true;
3223    // Base-to-derived member pointer casts store the path in derived-to-base
3224    // order, so iterate backwards. The CXXBaseSpecifier also provides us with
3225    // the wrong end of the derived->base arc, so stagger the path by one class.
3226    typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
3227    for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
3228         PathI != PathE; ++PathI) {
3229      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3230      const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
3231      if (!Result.castToDerived(Derived))
3232        return Error(E);
3233    }
3234    const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
3235    if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
3236      return Error(E);
3237    return true;
3238  }
3239
3240  case CK_DerivedToBaseMemberPointer:
3241    if (!Visit(E->getSubExpr()))
3242      return false;
3243    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3244         PathE = E->path_end(); PathI != PathE; ++PathI) {
3245      assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
3246      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3247      if (!Result.castToBase(Base))
3248        return Error(E);
3249    }
3250    return true;
3251  }
3252}
3253
3254bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
3255  // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
3256  // member can be formed.
3257  return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
3258}
3259
3260//===----------------------------------------------------------------------===//
3261// Record Evaluation
3262//===----------------------------------------------------------------------===//
3263
3264namespace {
3265  class RecordExprEvaluator
3266  : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
3267    const LValue &This;
3268    APValue &Result;
3269  public:
3270
3271    RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
3272      : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
3273
3274    bool Success(const APValue &V, const Expr *E) {
3275      Result = V;
3276      return true;
3277    }
3278    bool ZeroInitialization(const Expr *E);
3279
3280    bool VisitCastExpr(const CastExpr *E);
3281    bool VisitInitListExpr(const InitListExpr *E);
3282    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3283  };
3284}
3285
3286/// Perform zero-initialization on an object of non-union class type.
3287/// C++11 [dcl.init]p5:
3288///  To zero-initialize an object or reference of type T means:
3289///    [...]
3290///    -- if T is a (possibly cv-qualified) non-union class type,
3291///       each non-static data member and each base-class subobject is
3292///       zero-initialized
3293static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
3294                                          const RecordDecl *RD,
3295                                          const LValue &This, APValue &Result) {
3296  assert(!RD->isUnion() && "Expected non-union class type");
3297  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
3298  Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
3299                   std::distance(RD->field_begin(), RD->field_end()));
3300
3301  if (RD->isInvalidDecl()) return false;
3302  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3303
3304  if (CD) {
3305    unsigned Index = 0;
3306    for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
3307           End = CD->bases_end(); I != End; ++I, ++Index) {
3308      const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
3309      LValue Subobject = This;
3310      if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
3311        return false;
3312      if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
3313                                         Result.getStructBase(Index)))
3314        return false;
3315    }
3316  }
3317
3318  for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
3319       I != End; ++I) {
3320    // -- if T is a reference type, no initialization is performed.
3321    if (I->getType()->isReferenceType())
3322      continue;
3323
3324    LValue Subobject = This;
3325    if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
3326      return false;
3327
3328    ImplicitValueInitExpr VIE(I->getType());
3329    if (!EvaluateInPlace(
3330          Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
3331      return false;
3332  }
3333
3334  return true;
3335}
3336
3337bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
3338  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3339  if (RD->isInvalidDecl()) return false;
3340  if (RD->isUnion()) {
3341    // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3342    // object's first non-static named data member is zero-initialized
3343    RecordDecl::field_iterator I = RD->field_begin();
3344    if (I == RD->field_end()) {
3345      Result = APValue((const FieldDecl*)0);
3346      return true;
3347    }
3348
3349    LValue Subobject = This;
3350    if (!HandleLValueMember(Info, E, Subobject, *I))
3351      return false;
3352    Result = APValue(*I);
3353    ImplicitValueInitExpr VIE(I->getType());
3354    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
3355  }
3356
3357  if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
3358    Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
3359    return false;
3360  }
3361
3362  return HandleClassZeroInitialization(Info, E, RD, This, Result);
3363}
3364
3365bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
3366  switch (E->getCastKind()) {
3367  default:
3368    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3369
3370  case CK_ConstructorConversion:
3371    return Visit(E->getSubExpr());
3372
3373  case CK_DerivedToBase:
3374  case CK_UncheckedDerivedToBase: {
3375    APValue DerivedObject;
3376    if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
3377      return false;
3378    if (!DerivedObject.isStruct())
3379      return Error(E->getSubExpr());
3380
3381    // Derived-to-base rvalue conversion: just slice off the derived part.
3382    APValue *Value = &DerivedObject;
3383    const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
3384    for (CastExpr::path_const_iterator PathI = E->path_begin(),
3385         PathE = E->path_end(); PathI != PathE; ++PathI) {
3386      assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
3387      const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
3388      Value = &Value->getStructBase(getBaseIndex(RD, Base));
3389      RD = Base;
3390    }
3391    Result = *Value;
3392    return true;
3393  }
3394  }
3395}
3396
3397bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3398  // Cannot constant-evaluate std::initializer_list inits.
3399  if (E->initializesStdInitializerList())
3400    return false;
3401
3402  const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
3403  if (RD->isInvalidDecl()) return false;
3404  const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3405
3406  if (RD->isUnion()) {
3407    const FieldDecl *Field = E->getInitializedFieldInUnion();
3408    Result = APValue(Field);
3409    if (!Field)
3410      return true;
3411
3412    // If the initializer list for a union does not contain any elements, the
3413    // first element of the union is value-initialized.
3414    ImplicitValueInitExpr VIE(Field->getType());
3415    const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
3416
3417    LValue Subobject = This;
3418    if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
3419      return false;
3420    return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
3421  }
3422
3423  assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
3424         "initializer list for class with base classes");
3425  Result = APValue(APValue::UninitStruct(), 0,
3426                   std::distance(RD->field_begin(), RD->field_end()));
3427  unsigned ElementNo = 0;
3428  bool Success = true;
3429  for (RecordDecl::field_iterator Field = RD->field_begin(),
3430       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
3431    // Anonymous bit-fields are not considered members of the class for
3432    // purposes of aggregate initialization.
3433    if (Field->isUnnamedBitfield())
3434      continue;
3435
3436    LValue Subobject = This;
3437
3438    bool HaveInit = ElementNo < E->getNumInits();
3439
3440    // FIXME: Diagnostics here should point to the end of the initializer
3441    // list, not the start.
3442    if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
3443                            Subobject, *Field, &Layout))
3444      return false;
3445
3446    // Perform an implicit value-initialization for members beyond the end of
3447    // the initializer list.
3448    ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
3449
3450    if (!EvaluateInPlace(
3451          Result.getStructField(Field->getFieldIndex()),
3452          Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
3453      if (!Info.keepEvaluatingAfterFailure())
3454        return false;
3455      Success = false;
3456    }
3457  }
3458
3459  return Success;
3460}
3461
3462bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3463  const CXXConstructorDecl *FD = E->getConstructor();
3464  if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
3465
3466  bool ZeroInit = E->requiresZeroInitialization();
3467  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3468    // If we've already performed zero-initialization, we're already done.
3469    if (!Result.isUninit())
3470      return true;
3471
3472    if (ZeroInit)
3473      return ZeroInitialization(E);
3474
3475    const CXXRecordDecl *RD = FD->getParent();
3476    if (RD->isUnion())
3477      Result = APValue((FieldDecl*)0);
3478    else
3479      Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3480                       std::distance(RD->field_begin(), RD->field_end()));
3481    return true;
3482  }
3483
3484  const FunctionDecl *Definition = 0;
3485  FD->getBody(Definition);
3486
3487  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3488    return false;
3489
3490  // Avoid materializing a temporary for an elidable copy/move constructor.
3491  if (E->isElidable() && !ZeroInit)
3492    if (const MaterializeTemporaryExpr *ME
3493          = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
3494      return Visit(ME->GetTemporaryExpr());
3495
3496  if (ZeroInit && !ZeroInitialization(E))
3497    return false;
3498
3499  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3500  return HandleConstructorCall(E->getExprLoc(), This, Args,
3501                               cast<CXXConstructorDecl>(Definition), Info,
3502                               Result);
3503}
3504
3505static bool EvaluateRecord(const Expr *E, const LValue &This,
3506                           APValue &Result, EvalInfo &Info) {
3507  assert(E->isRValue() && E->getType()->isRecordType() &&
3508         "can't evaluate expression as a record rvalue");
3509  return RecordExprEvaluator(Info, This, Result).Visit(E);
3510}
3511
3512//===----------------------------------------------------------------------===//
3513// Temporary Evaluation
3514//
3515// Temporaries are represented in the AST as rvalues, but generally behave like
3516// lvalues. The full-object of which the temporary is a subobject is implicitly
3517// materialized so that a reference can bind to it.
3518//===----------------------------------------------------------------------===//
3519namespace {
3520class TemporaryExprEvaluator
3521  : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
3522public:
3523  TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
3524    LValueExprEvaluatorBaseTy(Info, Result) {}
3525
3526  /// Visit an expression which constructs the value of this temporary.
3527  bool VisitConstructExpr(const Expr *E) {
3528    Result.set(E, Info.CurrentCall->Index);
3529    return EvaluateInPlace(Info.CurrentCall->Temporaries[E], Info, Result, E);
3530  }
3531
3532  bool VisitCastExpr(const CastExpr *E) {
3533    switch (E->getCastKind()) {
3534    default:
3535      return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
3536
3537    case CK_ConstructorConversion:
3538      return VisitConstructExpr(E->getSubExpr());
3539    }
3540  }
3541  bool VisitInitListExpr(const InitListExpr *E) {
3542    return VisitConstructExpr(E);
3543  }
3544  bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
3545    return VisitConstructExpr(E);
3546  }
3547  bool VisitCallExpr(const CallExpr *E) {
3548    return VisitConstructExpr(E);
3549  }
3550};
3551} // end anonymous namespace
3552
3553/// Evaluate an expression of record type as a temporary.
3554static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
3555  assert(E->isRValue() && E->getType()->isRecordType());
3556  return TemporaryExprEvaluator(Info, Result).Visit(E);
3557}
3558
3559//===----------------------------------------------------------------------===//
3560// Vector Evaluation
3561//===----------------------------------------------------------------------===//
3562
3563namespace {
3564  class VectorExprEvaluator
3565  : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
3566    APValue &Result;
3567  public:
3568
3569    VectorExprEvaluator(EvalInfo &info, APValue &Result)
3570      : ExprEvaluatorBaseTy(info), Result(Result) {}
3571
3572    bool Success(const ArrayRef<APValue> &V, const Expr *E) {
3573      assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
3574      // FIXME: remove this APValue copy.
3575      Result = APValue(V.data(), V.size());
3576      return true;
3577    }
3578    bool Success(const APValue &V, const Expr *E) {
3579      assert(V.isVector());
3580      Result = V;
3581      return true;
3582    }
3583    bool ZeroInitialization(const Expr *E);
3584
3585    bool VisitUnaryReal(const UnaryOperator *E)
3586      { return Visit(E->getSubExpr()); }
3587    bool VisitCastExpr(const CastExpr* E);
3588    bool VisitInitListExpr(const InitListExpr *E);
3589    bool VisitUnaryImag(const UnaryOperator *E);
3590    // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
3591    //                 binary comparisons, binary and/or/xor,
3592    //                 shufflevector, ExtVectorElementExpr
3593  };
3594} // end anonymous namespace
3595
3596static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
3597  assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
3598  return VectorExprEvaluator(Info, Result).Visit(E);
3599}
3600
3601bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
3602  const VectorType *VTy = E->getType()->castAs<VectorType>();
3603  unsigned NElts = VTy->getNumElements();
3604
3605  const Expr *SE = E->getSubExpr();
3606  QualType SETy = SE->getType();
3607
3608  switch (E->getCastKind()) {
3609  case CK_VectorSplat: {
3610    APValue Val = APValue();
3611    if (SETy->isIntegerType()) {
3612      APSInt IntResult;
3613      if (!EvaluateInteger(SE, IntResult, Info))
3614         return false;
3615      Val = APValue(IntResult);
3616    } else if (SETy->isRealFloatingType()) {
3617       APFloat F(0.0);
3618       if (!EvaluateFloat(SE, F, Info))
3619         return false;
3620       Val = APValue(F);
3621    } else {
3622      return Error(E);
3623    }
3624
3625    // Splat and create vector APValue.
3626    SmallVector<APValue, 4> Elts(NElts, Val);
3627    return Success(Elts, E);
3628  }
3629  case CK_BitCast: {
3630    // Evaluate the operand into an APInt we can extract from.
3631    llvm::APInt SValInt;
3632    if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
3633      return false;
3634    // Extract the elements
3635    QualType EltTy = VTy->getElementType();
3636    unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
3637    bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
3638    SmallVector<APValue, 4> Elts;
3639    if (EltTy->isRealFloatingType()) {
3640      const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
3641      unsigned FloatEltSize = EltSize;
3642      if (&Sem == &APFloat::x87DoubleExtended)
3643        FloatEltSize = 80;
3644      for (unsigned i = 0; i < NElts; i++) {
3645        llvm::APInt Elt;
3646        if (BigEndian)
3647          Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
3648        else
3649          Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
3650        Elts.push_back(APValue(APFloat(Sem, Elt)));
3651      }
3652    } else if (EltTy->isIntegerType()) {
3653      for (unsigned i = 0; i < NElts; i++) {
3654        llvm::APInt Elt;
3655        if (BigEndian)
3656          Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
3657        else
3658          Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
3659        Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
3660      }
3661    } else {
3662      return Error(E);
3663    }
3664    return Success(Elts, E);
3665  }
3666  default:
3667    return ExprEvaluatorBaseTy::VisitCastExpr(E);
3668  }
3669}
3670
3671bool
3672VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3673  const VectorType *VT = E->getType()->castAs<VectorType>();
3674  unsigned NumInits = E->getNumInits();
3675  unsigned NumElements = VT->getNumElements();
3676
3677  QualType EltTy = VT->getElementType();
3678  SmallVector<APValue, 4> Elements;
3679
3680  // The number of initializers can be less than the number of
3681  // vector elements. For OpenCL, this can be due to nested vector
3682  // initialization. For GCC compatibility, missing trailing elements
3683  // should be initialized with zeroes.
3684  unsigned CountInits = 0, CountElts = 0;
3685  while (CountElts < NumElements) {
3686    // Handle nested vector initialization.
3687    if (CountInits < NumInits
3688        && E->getInit(CountInits)->getType()->isExtVectorType()) {
3689      APValue v;
3690      if (!EvaluateVector(E->getInit(CountInits), v, Info))
3691        return Error(E);
3692      unsigned vlen = v.getVectorLength();
3693      for (unsigned j = 0; j < vlen; j++)
3694        Elements.push_back(v.getVectorElt(j));
3695      CountElts += vlen;
3696    } else if (EltTy->isIntegerType()) {
3697      llvm::APSInt sInt(32);
3698      if (CountInits < NumInits) {
3699        if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
3700          return false;
3701      } else // trailing integer zero.
3702        sInt = Info.Ctx.MakeIntValue(0, EltTy);
3703      Elements.push_back(APValue(sInt));
3704      CountElts++;
3705    } else {
3706      llvm::APFloat f(0.0);
3707      if (CountInits < NumInits) {
3708        if (!EvaluateFloat(E->getInit(CountInits), f, Info))
3709          return false;
3710      } else // trailing float zero.
3711        f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
3712      Elements.push_back(APValue(f));
3713      CountElts++;
3714    }
3715    CountInits++;
3716  }
3717  return Success(Elements, E);
3718}
3719
3720bool
3721VectorExprEvaluator::ZeroInitialization(const Expr *E) {
3722  const VectorType *VT = E->getType()->getAs<VectorType>();
3723  QualType EltTy = VT->getElementType();
3724  APValue ZeroElement;
3725  if (EltTy->isIntegerType())
3726    ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
3727  else
3728    ZeroElement =
3729        APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
3730
3731  SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
3732  return Success(Elements, E);
3733}
3734
3735bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
3736  VisitIgnoredValue(E->getSubExpr());
3737  return ZeroInitialization(E);
3738}
3739
3740//===----------------------------------------------------------------------===//
3741// Array Evaluation
3742//===----------------------------------------------------------------------===//
3743
3744namespace {
3745  class ArrayExprEvaluator
3746  : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
3747    const LValue &This;
3748    APValue &Result;
3749  public:
3750
3751    ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
3752      : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
3753
3754    bool Success(const APValue &V, const Expr *E) {
3755      assert((V.isArray() || V.isLValue()) &&
3756             "expected array or string literal");
3757      Result = V;
3758      return true;
3759    }
3760
3761    bool ZeroInitialization(const Expr *E) {
3762      const ConstantArrayType *CAT =
3763          Info.Ctx.getAsConstantArrayType(E->getType());
3764      if (!CAT)
3765        return Error(E);
3766
3767      Result = APValue(APValue::UninitArray(), 0,
3768                       CAT->getSize().getZExtValue());
3769      if (!Result.hasArrayFiller()) return true;
3770
3771      // Zero-initialize all elements.
3772      LValue Subobject = This;
3773      Subobject.addArray(Info, E, CAT);
3774      ImplicitValueInitExpr VIE(CAT->getElementType());
3775      return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
3776    }
3777
3778    bool VisitInitListExpr(const InitListExpr *E);
3779    bool VisitCXXConstructExpr(const CXXConstructExpr *E);
3780  };
3781} // end anonymous namespace
3782
3783static bool EvaluateArray(const Expr *E, const LValue &This,
3784                          APValue &Result, EvalInfo &Info) {
3785  assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
3786  return ArrayExprEvaluator(Info, This, Result).Visit(E);
3787}
3788
3789bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
3790  const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
3791  if (!CAT)
3792    return Error(E);
3793
3794  // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
3795  // an appropriately-typed string literal enclosed in braces.
3796  if (E->isStringLiteralInit()) {
3797    LValue LV;
3798    if (!EvaluateLValue(E->getInit(0), LV, Info))
3799      return false;
3800    APValue Val;
3801    LV.moveInto(Val);
3802    return Success(Val, E);
3803  }
3804
3805  bool Success = true;
3806
3807  assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
3808         "zero-initialized array shouldn't have any initialized elts");
3809  APValue Filler;
3810  if (Result.isArray() && Result.hasArrayFiller())
3811    Filler = Result.getArrayFiller();
3812
3813  Result = APValue(APValue::UninitArray(), E->getNumInits(),
3814                   CAT->getSize().getZExtValue());
3815
3816  // If the array was previously zero-initialized, preserve the
3817  // zero-initialized values.
3818  if (!Filler.isUninit()) {
3819    for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
3820      Result.getArrayInitializedElt(I) = Filler;
3821    if (Result.hasArrayFiller())
3822      Result.getArrayFiller() = Filler;
3823  }
3824
3825  LValue Subobject = This;
3826  Subobject.addArray(Info, E, CAT);
3827  unsigned Index = 0;
3828  for (InitListExpr::const_iterator I = E->begin(), End = E->end();
3829       I != End; ++I, ++Index) {
3830    if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
3831                         Info, Subobject, cast<Expr>(*I)) ||
3832        !HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
3833                                     CAT->getElementType(), 1)) {
3834      if (!Info.keepEvaluatingAfterFailure())
3835        return false;
3836      Success = false;
3837    }
3838  }
3839
3840  if (!Result.hasArrayFiller()) return Success;
3841  assert(E->hasArrayFiller() && "no array filler for incomplete init list");
3842  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3843  // but sometimes does:
3844  //   struct S { constexpr S() : p(&p) {} void *p; };
3845  //   S s[10] = {};
3846  return EvaluateInPlace(Result.getArrayFiller(), Info,
3847                         Subobject, E->getArrayFiller()) && Success;
3848}
3849
3850bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
3851  // FIXME: The Subobject here isn't necessarily right. This rarely matters,
3852  // but sometimes does:
3853  //   struct S { constexpr S() : p(&p) {} void *p; };
3854  //   S s[10];
3855  LValue Subobject = This;
3856
3857  APValue *Value = &Result;
3858  bool HadZeroInit = true;
3859  QualType ElemTy = E->getType();
3860  while (const ConstantArrayType *CAT =
3861           Info.Ctx.getAsConstantArrayType(ElemTy)) {
3862    Subobject.addArray(Info, E, CAT);
3863    HadZeroInit &= !Value->isUninit();
3864    if (!HadZeroInit)
3865      *Value = APValue(APValue::UninitArray(), 0, CAT->getSize().getZExtValue());
3866    if (!Value->hasArrayFiller())
3867      return true;
3868    Value = &Value->getArrayFiller();
3869    ElemTy = CAT->getElementType();
3870  }
3871
3872  if (!ElemTy->isRecordType())
3873    return Error(E);
3874
3875  const CXXConstructorDecl *FD = E->getConstructor();
3876
3877  bool ZeroInit = E->requiresZeroInitialization();
3878  if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
3879    if (HadZeroInit)
3880      return true;
3881
3882    if (ZeroInit) {
3883      ImplicitValueInitExpr VIE(ElemTy);
3884      return EvaluateInPlace(*Value, Info, Subobject, &VIE);
3885    }
3886
3887    const CXXRecordDecl *RD = FD->getParent();
3888    if (RD->isUnion())
3889      *Value = APValue((FieldDecl*)0);
3890    else
3891      *Value =
3892          APValue(APValue::UninitStruct(), RD->getNumBases(),
3893                  std::distance(RD->field_begin(), RD->field_end()));
3894    return true;
3895  }
3896
3897  const FunctionDecl *Definition = 0;
3898  FD->getBody(Definition);
3899
3900  if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
3901    return false;
3902
3903  if (ZeroInit && !HadZeroInit) {
3904    ImplicitValueInitExpr VIE(ElemTy);
3905    if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
3906      return false;
3907  }
3908
3909  ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
3910  return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
3911                               cast<CXXConstructorDecl>(Definition),
3912                               Info, *Value);
3913}
3914
3915//===----------------------------------------------------------------------===//
3916// Integer Evaluation
3917//
3918// As a GNU extension, we support casting pointers to sufficiently-wide integer
3919// types and back in constant folding. Integer values are thus represented
3920// either as an integer-valued APValue, or as an lvalue-valued APValue.
3921//===----------------------------------------------------------------------===//
3922
3923namespace {
3924class IntExprEvaluator
3925  : public ExprEvaluatorBase<IntExprEvaluator, bool> {
3926  APValue &Result;
3927public:
3928  IntExprEvaluator(EvalInfo &info, APValue &result)
3929    : ExprEvaluatorBaseTy(info), Result(result) {}
3930
3931  bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
3932    assert(E->getType()->isIntegralOrEnumerationType() &&
3933           "Invalid evaluation result.");
3934    assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
3935           "Invalid evaluation result.");
3936    assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3937           "Invalid evaluation result.");
3938    Result = APValue(SI);
3939    return true;
3940  }
3941  bool Success(const llvm::APSInt &SI, const Expr *E) {
3942    return Success(SI, E, Result);
3943  }
3944
3945  bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
3946    assert(E->getType()->isIntegralOrEnumerationType() &&
3947           "Invalid evaluation result.");
3948    assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
3949           "Invalid evaluation result.");
3950    Result = APValue(APSInt(I));
3951    Result.getInt().setIsUnsigned(
3952                            E->getType()->isUnsignedIntegerOrEnumerationType());
3953    return true;
3954  }
3955  bool Success(const llvm::APInt &I, const Expr *E) {
3956    return Success(I, E, Result);
3957  }
3958
3959  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
3960    assert(E->getType()->isIntegralOrEnumerationType() &&
3961           "Invalid evaluation result.");
3962    Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
3963    return true;
3964  }
3965  bool Success(uint64_t Value, const Expr *E) {
3966    return Success(Value, E, Result);
3967  }
3968
3969  bool Success(CharUnits Size, const Expr *E) {
3970    return Success(Size.getQuantity(), E);
3971  }
3972
3973  bool Success(const APValue &V, const Expr *E) {
3974    if (V.isLValue() || V.isAddrLabelDiff()) {
3975      Result = V;
3976      return true;
3977    }
3978    return Success(V.getInt(), E);
3979  }
3980
3981  bool ZeroInitialization(const Expr *E) { return Success(0, E); }
3982
3983  //===--------------------------------------------------------------------===//
3984  //                            Visitor Methods
3985  //===--------------------------------------------------------------------===//
3986
3987  bool VisitIntegerLiteral(const IntegerLiteral *E) {
3988    return Success(E->getValue(), E);
3989  }
3990  bool VisitCharacterLiteral(const CharacterLiteral *E) {
3991    return Success(E->getValue(), E);
3992  }
3993
3994  bool CheckReferencedDecl(const Expr *E, const Decl *D);
3995  bool VisitDeclRefExpr(const DeclRefExpr *E) {
3996    if (CheckReferencedDecl(E, E->getDecl()))
3997      return true;
3998
3999    return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
4000  }
4001  bool VisitMemberExpr(const MemberExpr *E) {
4002    if (CheckReferencedDecl(E, E->getMemberDecl())) {
4003      VisitIgnoredValue(E->getBase());
4004      return true;
4005    }
4006
4007    return ExprEvaluatorBaseTy::VisitMemberExpr(E);
4008  }
4009
4010  bool VisitCallExpr(const CallExpr *E);
4011  bool VisitBinaryOperator(const BinaryOperator *E);
4012  bool VisitOffsetOfExpr(const OffsetOfExpr *E);
4013  bool VisitUnaryOperator(const UnaryOperator *E);
4014
4015  bool VisitCastExpr(const CastExpr* E);
4016  bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
4017
4018  bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4019    return Success(E->getValue(), E);
4020  }
4021
4022  bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
4023    return Success(E->getValue(), E);
4024  }
4025
4026  // Note, GNU defines __null as an integer, not a pointer.
4027  bool VisitGNUNullExpr(const GNUNullExpr *E) {
4028    return ZeroInitialization(E);
4029  }
4030
4031  bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
4032    return Success(E->getValue(), E);
4033  }
4034
4035  bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
4036    return Success(E->getValue(), E);
4037  }
4038
4039  bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
4040    return Success(E->getValue(), E);
4041  }
4042
4043  bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
4044    return Success(E->getValue(), E);
4045  }
4046
4047  bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
4048    return Success(E->getValue(), E);
4049  }
4050
4051  bool VisitUnaryReal(const UnaryOperator *E);
4052  bool VisitUnaryImag(const UnaryOperator *E);
4053
4054  bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
4055  bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
4056
4057private:
4058  CharUnits GetAlignOfExpr(const Expr *E);
4059  CharUnits GetAlignOfType(QualType T);
4060  static QualType GetObjectType(APValue::LValueBase B);
4061  bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
4062  // FIXME: Missing: array subscript of vector, member of vector
4063};
4064} // end anonymous namespace
4065
4066/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
4067/// produce either the integer value or a pointer.
4068///
4069/// GCC has a heinous extension which folds casts between pointer types and
4070/// pointer-sized integral types. We support this by allowing the evaluation of
4071/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
4072/// Some simple arithmetic on such values is supported (they are treated much
4073/// like char*).
4074static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
4075                                    EvalInfo &Info) {
4076  assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
4077  return IntExprEvaluator(Info, Result).Visit(E);
4078}
4079
4080static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
4081  APValue Val;
4082  if (!EvaluateIntegerOrLValue(E, Val, Info))
4083    return false;
4084  if (!Val.isInt()) {
4085    // FIXME: It would be better to produce the diagnostic for casting
4086    //        a pointer to an integer.
4087    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
4088    return false;
4089  }
4090  Result = Val.getInt();
4091  return true;
4092}
4093
4094/// Check whether the given declaration can be directly converted to an integral
4095/// rvalue. If not, no diagnostic is produced; there are other things we can
4096/// try.
4097bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
4098  // Enums are integer constant exprs.
4099  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
4100    // Check for signedness/width mismatches between E type and ECD value.
4101    bool SameSign = (ECD->getInitVal().isSigned()
4102                     == E->getType()->isSignedIntegerOrEnumerationType());
4103    bool SameWidth = (ECD->getInitVal().getBitWidth()
4104                      == Info.Ctx.getIntWidth(E->getType()));
4105    if (SameSign && SameWidth)
4106      return Success(ECD->getInitVal(), E);
4107    else {
4108      // Get rid of mismatch (otherwise Success assertions will fail)
4109      // by computing a new value matching the type of E.
4110      llvm::APSInt Val = ECD->getInitVal();
4111      if (!SameSign)
4112        Val.setIsSigned(!ECD->getInitVal().isSigned());
4113      if (!SameWidth)
4114        Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
4115      return Success(Val, E);
4116    }
4117  }
4118  return false;
4119}
4120
4121/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
4122/// as GCC.
4123static int EvaluateBuiltinClassifyType(const CallExpr *E) {
4124  // The following enum mimics the values returned by GCC.
4125  // FIXME: Does GCC differ between lvalue and rvalue references here?
4126  enum gcc_type_class {
4127    no_type_class = -1,
4128    void_type_class, integer_type_class, char_type_class,
4129    enumeral_type_class, boolean_type_class,
4130    pointer_type_class, reference_type_class, offset_type_class,
4131    real_type_class, complex_type_class,
4132    function_type_class, method_type_class,
4133    record_type_class, union_type_class,
4134    array_type_class, string_type_class,
4135    lang_type_class
4136  };
4137
4138  // If no argument was supplied, default to "no_type_class". This isn't
4139  // ideal, however it is what gcc does.
4140  if (E->getNumArgs() == 0)
4141    return no_type_class;
4142
4143  QualType ArgTy = E->getArg(0)->getType();
4144  if (ArgTy->isVoidType())
4145    return void_type_class;
4146  else if (ArgTy->isEnumeralType())
4147    return enumeral_type_class;
4148  else if (ArgTy->isBooleanType())
4149    return boolean_type_class;
4150  else if (ArgTy->isCharType())
4151    return string_type_class; // gcc doesn't appear to use char_type_class
4152  else if (ArgTy->isIntegerType())
4153    return integer_type_class;
4154  else if (ArgTy->isPointerType())
4155    return pointer_type_class;
4156  else if (ArgTy->isReferenceType())
4157    return reference_type_class;
4158  else if (ArgTy->isRealType())
4159    return real_type_class;
4160  else if (ArgTy->isComplexType())
4161    return complex_type_class;
4162  else if (ArgTy->isFunctionType())
4163    return function_type_class;
4164  else if (ArgTy->isStructureOrClassType())
4165    return record_type_class;
4166  else if (ArgTy->isUnionType())
4167    return union_type_class;
4168  else if (ArgTy->isArrayType())
4169    return array_type_class;
4170  else if (ArgTy->isUnionType())
4171    return union_type_class;
4172  else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
4173    llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
4174}
4175
4176/// EvaluateBuiltinConstantPForLValue - Determine the result of
4177/// __builtin_constant_p when applied to the given lvalue.
4178///
4179/// An lvalue is only "constant" if it is a pointer or reference to the first
4180/// character of a string literal.
4181template<typename LValue>
4182static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
4183  const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
4184  return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
4185}
4186
4187/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
4188/// GCC as we can manage.
4189static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
4190  QualType ArgType = Arg->getType();
4191
4192  // __builtin_constant_p always has one operand. The rules which gcc follows
4193  // are not precisely documented, but are as follows:
4194  //
4195  //  - If the operand is of integral, floating, complex or enumeration type,
4196  //    and can be folded to a known value of that type, it returns 1.
4197  //  - If the operand and can be folded to a pointer to the first character
4198  //    of a string literal (or such a pointer cast to an integral type), it
4199  //    returns 1.
4200  //
4201  // Otherwise, it returns 0.
4202  //
4203  // FIXME: GCC also intends to return 1 for literals of aggregate types, but
4204  // its support for this does not currently work.
4205  if (ArgType->isIntegralOrEnumerationType()) {
4206    Expr::EvalResult Result;
4207    if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
4208      return false;
4209
4210    APValue &V = Result.Val;
4211    if (V.getKind() == APValue::Int)
4212      return true;
4213
4214    return EvaluateBuiltinConstantPForLValue(V);
4215  } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
4216    return Arg->isEvaluatable(Ctx);
4217  } else if (ArgType->isPointerType() || Arg->isGLValue()) {
4218    LValue LV;
4219    Expr::EvalStatus Status;
4220    EvalInfo Info(Ctx, Status);
4221    if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
4222                          : EvaluatePointer(Arg, LV, Info)) &&
4223        !Status.HasSideEffects)
4224      return EvaluateBuiltinConstantPForLValue(LV);
4225  }
4226
4227  // Anything else isn't considered to be sufficiently constant.
4228  return false;
4229}
4230
4231/// Retrieves the "underlying object type" of the given expression,
4232/// as used by __builtin_object_size.
4233QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
4234  if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
4235    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4236      return VD->getType();
4237  } else if (const Expr *E = B.get<const Expr*>()) {
4238    if (isa<CompoundLiteralExpr>(E))
4239      return E->getType();
4240  }
4241
4242  return QualType();
4243}
4244
4245bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
4246  LValue Base;
4247
4248  {
4249    // The operand of __builtin_object_size is never evaluated for side-effects.
4250    // If there are any, but we can determine the pointed-to object anyway, then
4251    // ignore the side-effects.
4252    SpeculativeEvaluationRAII SpeculativeEval(Info);
4253    if (!EvaluatePointer(E->getArg(0), Base, Info))
4254      return false;
4255  }
4256
4257  // If we can prove the base is null, lower to zero now.
4258  if (!Base.getLValueBase()) return Success(0, E);
4259
4260  QualType T = GetObjectType(Base.getLValueBase());
4261  if (T.isNull() ||
4262      T->isIncompleteType() ||
4263      T->isFunctionType() ||
4264      T->isVariablyModifiedType() ||
4265      T->isDependentType())
4266    return Error(E);
4267
4268  CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
4269  CharUnits Offset = Base.getLValueOffset();
4270
4271  if (!Offset.isNegative() && Offset <= Size)
4272    Size -= Offset;
4273  else
4274    Size = CharUnits::Zero();
4275  return Success(Size, E);
4276}
4277
4278bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
4279  switch (unsigned BuiltinOp = E->isBuiltinCall()) {
4280  default:
4281    return ExprEvaluatorBaseTy::VisitCallExpr(E);
4282
4283  case Builtin::BI__builtin_object_size: {
4284    if (TryEvaluateBuiltinObjectSize(E))
4285      return true;
4286
4287    // If evaluating the argument has side-effects, we can't determine the size
4288    // of the object, and so we lower it to unknown now. CodeGen relies on us to
4289    // handle all cases where the expression has side-effects.
4290    if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
4291      if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
4292        return Success(-1ULL, E);
4293      return Success(0, E);
4294    }
4295
4296    // Expression had no side effects, but we couldn't statically determine the
4297    // size of the referenced object.
4298    return Error(E);
4299  }
4300
4301  case Builtin::BI__builtin_bswap16:
4302  case Builtin::BI__builtin_bswap32:
4303  case Builtin::BI__builtin_bswap64: {
4304    APSInt Val;
4305    if (!EvaluateInteger(E->getArg(0), Val, Info))
4306      return false;
4307
4308    return Success(Val.byteSwap(), E);
4309  }
4310
4311  case Builtin::BI__builtin_classify_type:
4312    return Success(EvaluateBuiltinClassifyType(E), E);
4313
4314  case Builtin::BI__builtin_constant_p:
4315    return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
4316
4317  case Builtin::BI__builtin_eh_return_data_regno: {
4318    int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
4319    Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
4320    return Success(Operand, E);
4321  }
4322
4323  case Builtin::BI__builtin_expect:
4324    return Visit(E->getArg(0));
4325
4326  case Builtin::BIstrlen:
4327    // A call to strlen is not a constant expression.
4328    if (Info.getLangOpts().CPlusPlus11)
4329      Info.CCEDiag(E, diag::note_constexpr_invalid_function)
4330        << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
4331    else
4332      Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
4333    // Fall through.
4334  case Builtin::BI__builtin_strlen:
4335    // As an extension, we support strlen() and __builtin_strlen() as constant
4336    // expressions when the argument is a string literal.
4337    if (const StringLiteral *S
4338               = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
4339      // The string literal may have embedded null characters. Find the first
4340      // one and truncate there.
4341      StringRef Str = S->getString();
4342      StringRef::size_type Pos = Str.find(0);
4343      if (Pos != StringRef::npos)
4344        Str = Str.substr(0, Pos);
4345
4346      return Success(Str.size(), E);
4347    }
4348
4349    return Error(E);
4350
4351  case Builtin::BI__atomic_always_lock_free:
4352  case Builtin::BI__atomic_is_lock_free:
4353  case Builtin::BI__c11_atomic_is_lock_free: {
4354    APSInt SizeVal;
4355    if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
4356      return false;
4357
4358    // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
4359    // of two less than the maximum inline atomic width, we know it is
4360    // lock-free.  If the size isn't a power of two, or greater than the
4361    // maximum alignment where we promote atomics, we know it is not lock-free
4362    // (at least not in the sense of atomic_is_lock_free).  Otherwise,
4363    // the answer can only be determined at runtime; for example, 16-byte
4364    // atomics have lock-free implementations on some, but not all,
4365    // x86-64 processors.
4366
4367    // Check power-of-two.
4368    CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
4369    if (Size.isPowerOfTwo()) {
4370      // Check against inlining width.
4371      unsigned InlineWidthBits =
4372          Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
4373      if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
4374        if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
4375            Size == CharUnits::One() ||
4376            E->getArg(1)->isNullPointerConstant(Info.Ctx,
4377                                                Expr::NPC_NeverValueDependent))
4378          // OK, we will inline appropriately-aligned operations of this size,
4379          // and _Atomic(T) is appropriately-aligned.
4380          return Success(1, E);
4381
4382        QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
4383          castAs<PointerType>()->getPointeeType();
4384        if (!PointeeType->isIncompleteType() &&
4385            Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
4386          // OK, we will inline operations on this object.
4387          return Success(1, E);
4388        }
4389      }
4390    }
4391
4392    return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
4393        Success(0, E) : Error(E);
4394  }
4395  }
4396}
4397
4398static bool HasSameBase(const LValue &A, const LValue &B) {
4399  if (!A.getLValueBase())
4400    return !B.getLValueBase();
4401  if (!B.getLValueBase())
4402    return false;
4403
4404  if (A.getLValueBase().getOpaqueValue() !=
4405      B.getLValueBase().getOpaqueValue()) {
4406    const Decl *ADecl = GetLValueBaseDecl(A);
4407    if (!ADecl)
4408      return false;
4409    const Decl *BDecl = GetLValueBaseDecl(B);
4410    if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
4411      return false;
4412  }
4413
4414  return IsGlobalLValue(A.getLValueBase()) ||
4415         A.getLValueCallIndex() == B.getLValueCallIndex();
4416}
4417
4418/// Perform the given integer operation, which is known to need at most BitWidth
4419/// bits, and check for overflow in the original type (if that type was not an
4420/// unsigned type).
4421template<typename Operation>
4422static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
4423                                   const APSInt &LHS, const APSInt &RHS,
4424                                   unsigned BitWidth, Operation Op) {
4425  if (LHS.isUnsigned())
4426    return Op(LHS, RHS);
4427
4428  APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
4429  APSInt Result = Value.trunc(LHS.getBitWidth());
4430  if (Result.extend(BitWidth) != Value) {
4431    if (Info.getIntOverflowCheckMode())
4432      Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
4433        diag::warn_integer_constant_overflow)
4434          << Result.toString(10) << E->getType();
4435    else
4436      HandleOverflow(Info, E, Value, E->getType());
4437  }
4438  return Result;
4439}
4440
4441namespace {
4442
4443/// \brief Data recursive integer evaluator of certain binary operators.
4444///
4445/// We use a data recursive algorithm for binary operators so that we are able
4446/// to handle extreme cases of chained binary operators without causing stack
4447/// overflow.
4448class DataRecursiveIntBinOpEvaluator {
4449  struct EvalResult {
4450    APValue Val;
4451    bool Failed;
4452
4453    EvalResult() : Failed(false) { }
4454
4455    void swap(EvalResult &RHS) {
4456      Val.swap(RHS.Val);
4457      Failed = RHS.Failed;
4458      RHS.Failed = false;
4459    }
4460  };
4461
4462  struct Job {
4463    const Expr *E;
4464    EvalResult LHSResult; // meaningful only for binary operator expression.
4465    enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
4466
4467    Job() : StoredInfo(0) { }
4468    void startSpeculativeEval(EvalInfo &Info) {
4469      OldEvalStatus = Info.EvalStatus;
4470      Info.EvalStatus.Diag = 0;
4471      StoredInfo = &Info;
4472    }
4473    ~Job() {
4474      if (StoredInfo) {
4475        StoredInfo->EvalStatus = OldEvalStatus;
4476      }
4477    }
4478  private:
4479    EvalInfo *StoredInfo; // non-null if status changed.
4480    Expr::EvalStatus OldEvalStatus;
4481  };
4482
4483  SmallVector<Job, 16> Queue;
4484
4485  IntExprEvaluator &IntEval;
4486  EvalInfo &Info;
4487  APValue &FinalResult;
4488
4489public:
4490  DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
4491    : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
4492
4493  /// \brief True if \param E is a binary operator that we are going to handle
4494  /// data recursively.
4495  /// We handle binary operators that are comma, logical, or that have operands
4496  /// with integral or enumeration type.
4497  static bool shouldEnqueue(const BinaryOperator *E) {
4498    return E->getOpcode() == BO_Comma ||
4499           E->isLogicalOp() ||
4500           (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4501            E->getRHS()->getType()->isIntegralOrEnumerationType());
4502  }
4503
4504  bool Traverse(const BinaryOperator *E) {
4505    enqueue(E);
4506    EvalResult PrevResult;
4507    while (!Queue.empty())
4508      process(PrevResult);
4509
4510    if (PrevResult.Failed) return false;
4511
4512    FinalResult.swap(PrevResult.Val);
4513    return true;
4514  }
4515
4516private:
4517  bool Success(uint64_t Value, const Expr *E, APValue &Result) {
4518    return IntEval.Success(Value, E, Result);
4519  }
4520  bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
4521    return IntEval.Success(Value, E, Result);
4522  }
4523  bool Error(const Expr *E) {
4524    return IntEval.Error(E);
4525  }
4526  bool Error(const Expr *E, diag::kind D) {
4527    return IntEval.Error(E, D);
4528  }
4529
4530  OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4531    return Info.CCEDiag(E, D);
4532  }
4533
4534  // \brief Returns true if visiting the RHS is necessary, false otherwise.
4535  bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4536                         bool &SuppressRHSDiags);
4537
4538  bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4539                  const BinaryOperator *E, APValue &Result);
4540
4541  void EvaluateExpr(const Expr *E, EvalResult &Result) {
4542    Result.Failed = !Evaluate(Result.Val, Info, E);
4543    if (Result.Failed)
4544      Result.Val = APValue();
4545  }
4546
4547  void process(EvalResult &Result);
4548
4549  void enqueue(const Expr *E) {
4550    E = E->IgnoreParens();
4551    Queue.resize(Queue.size()+1);
4552    Queue.back().E = E;
4553    Queue.back().Kind = Job::AnyExprKind;
4554  }
4555};
4556
4557}
4558
4559bool DataRecursiveIntBinOpEvaluator::
4560       VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
4561                         bool &SuppressRHSDiags) {
4562  if (E->getOpcode() == BO_Comma) {
4563    // Ignore LHS but note if we could not evaluate it.
4564    if (LHSResult.Failed)
4565      Info.EvalStatus.HasSideEffects = true;
4566    return true;
4567  }
4568
4569  if (E->isLogicalOp()) {
4570    bool lhsResult;
4571    if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
4572      // We were able to evaluate the LHS, see if we can get away with not
4573      // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
4574      if (lhsResult == (E->getOpcode() == BO_LOr)) {
4575        Success(lhsResult, E, LHSResult.Val);
4576        return false; // Ignore RHS
4577      }
4578    } else {
4579      // Since we weren't able to evaluate the left hand side, it
4580      // must have had side effects.
4581      Info.EvalStatus.HasSideEffects = true;
4582
4583      // We can't evaluate the LHS; however, sometimes the result
4584      // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4585      // Don't ignore RHS and suppress diagnostics from this arm.
4586      SuppressRHSDiags = true;
4587    }
4588
4589    return true;
4590  }
4591
4592  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4593         E->getRHS()->getType()->isIntegralOrEnumerationType());
4594
4595  if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
4596    return false; // Ignore RHS;
4597
4598  return true;
4599}
4600
4601bool DataRecursiveIntBinOpEvaluator::
4602       VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
4603                  const BinaryOperator *E, APValue &Result) {
4604  if (E->getOpcode() == BO_Comma) {
4605    if (RHSResult.Failed)
4606      return false;
4607    Result = RHSResult.Val;
4608    return true;
4609  }
4610
4611  if (E->isLogicalOp()) {
4612    bool lhsResult, rhsResult;
4613    bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
4614    bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
4615
4616    if (LHSIsOK) {
4617      if (RHSIsOK) {
4618        if (E->getOpcode() == BO_LOr)
4619          return Success(lhsResult || rhsResult, E, Result);
4620        else
4621          return Success(lhsResult && rhsResult, E, Result);
4622      }
4623    } else {
4624      if (RHSIsOK) {
4625        // We can't evaluate the LHS; however, sometimes the result
4626        // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
4627        if (rhsResult == (E->getOpcode() == BO_LOr))
4628          return Success(rhsResult, E, Result);
4629      }
4630    }
4631
4632    return false;
4633  }
4634
4635  assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
4636         E->getRHS()->getType()->isIntegralOrEnumerationType());
4637
4638  if (LHSResult.Failed || RHSResult.Failed)
4639    return false;
4640
4641  const APValue &LHSVal = LHSResult.Val;
4642  const APValue &RHSVal = RHSResult.Val;
4643
4644  // Handle cases like (unsigned long)&a + 4.
4645  if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
4646    Result = LHSVal;
4647    CharUnits AdditionalOffset = CharUnits::fromQuantity(
4648                                                         RHSVal.getInt().getZExtValue());
4649    if (E->getOpcode() == BO_Add)
4650      Result.getLValueOffset() += AdditionalOffset;
4651    else
4652      Result.getLValueOffset() -= AdditionalOffset;
4653    return true;
4654  }
4655
4656  // Handle cases like 4 + (unsigned long)&a
4657  if (E->getOpcode() == BO_Add &&
4658      RHSVal.isLValue() && LHSVal.isInt()) {
4659    Result = RHSVal;
4660    Result.getLValueOffset() += CharUnits::fromQuantity(
4661                                                        LHSVal.getInt().getZExtValue());
4662    return true;
4663  }
4664
4665  if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
4666    // Handle (intptr_t)&&A - (intptr_t)&&B.
4667    if (!LHSVal.getLValueOffset().isZero() ||
4668        !RHSVal.getLValueOffset().isZero())
4669      return false;
4670    const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
4671    const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
4672    if (!LHSExpr || !RHSExpr)
4673      return false;
4674    const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4675    const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4676    if (!LHSAddrExpr || !RHSAddrExpr)
4677      return false;
4678    // Make sure both labels come from the same function.
4679    if (LHSAddrExpr->getLabel()->getDeclContext() !=
4680        RHSAddrExpr->getLabel()->getDeclContext())
4681      return false;
4682    Result = APValue(LHSAddrExpr, RHSAddrExpr);
4683    return true;
4684  }
4685
4686  // All the following cases expect both operands to be an integer
4687  if (!LHSVal.isInt() || !RHSVal.isInt())
4688    return Error(E);
4689
4690  const APSInt &LHS = LHSVal.getInt();
4691  APSInt RHS = RHSVal.getInt();
4692
4693  switch (E->getOpcode()) {
4694    default:
4695      return Error(E);
4696    case BO_Mul:
4697      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4698                                          LHS.getBitWidth() * 2,
4699                                          std::multiplies<APSInt>()), E,
4700                     Result);
4701    case BO_Add:
4702      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4703                                          LHS.getBitWidth() + 1,
4704                                          std::plus<APSInt>()), E, Result);
4705    case BO_Sub:
4706      return Success(CheckedIntArithmetic(Info, E, LHS, RHS,
4707                                          LHS.getBitWidth() + 1,
4708                                          std::minus<APSInt>()), E, Result);
4709    case BO_And: return Success(LHS & RHS, E, Result);
4710    case BO_Xor: return Success(LHS ^ RHS, E, Result);
4711    case BO_Or:  return Success(LHS | RHS, E, Result);
4712    case BO_Div:
4713    case BO_Rem:
4714      if (RHS == 0)
4715        return Error(E, diag::note_expr_divide_by_zero);
4716      // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. The latter is
4717      // not actually undefined behavior in C++11 due to a language defect.
4718      if (RHS.isNegative() && RHS.isAllOnesValue() &&
4719          LHS.isSigned() && LHS.isMinSignedValue())
4720        HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
4721      return Success(E->getOpcode() == BO_Rem ? LHS % RHS : LHS / RHS, E,
4722                     Result);
4723    case BO_Shl: {
4724      if (Info.getLangOpts().OpenCL)
4725        // OpenCL 6.3j: shift values are effectively % word size of LHS.
4726        RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
4727                      static_cast<uint64_t>(LHS.getBitWidth() - 1)),
4728                      RHS.isUnsigned());
4729      else if (RHS.isSigned() && RHS.isNegative()) {
4730        // During constant-folding, a negative shift is an opposite shift. Such
4731        // a shift is not a constant expression.
4732        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4733        RHS = -RHS;
4734        goto shift_right;
4735      }
4736
4737    shift_left:
4738      // C++11 [expr.shift]p1: Shift width must be less than the bit width of
4739      // the shifted type.
4740      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4741      if (SA != RHS) {
4742        CCEDiag(E, diag::note_constexpr_large_shift)
4743        << RHS << E->getType() << LHS.getBitWidth();
4744      } else if (LHS.isSigned()) {
4745        // C++11 [expr.shift]p2: A signed left shift must have a non-negative
4746        // operand, and must not overflow the corresponding unsigned type.
4747        if (LHS.isNegative())
4748          CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
4749        else if (LHS.countLeadingZeros() < SA)
4750          CCEDiag(E, diag::note_constexpr_lshift_discards);
4751      }
4752
4753      return Success(LHS << SA, E, Result);
4754    }
4755    case BO_Shr: {
4756      if (Info.getLangOpts().OpenCL)
4757        // OpenCL 6.3j: shift values are effectively % word size of LHS.
4758        RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
4759                      static_cast<uint64_t>(LHS.getBitWidth() - 1)),
4760                      RHS.isUnsigned());
4761      else if (RHS.isSigned() && RHS.isNegative()) {
4762        // During constant-folding, a negative shift is an opposite shift. Such a
4763        // shift is not a constant expression.
4764        CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
4765        RHS = -RHS;
4766        goto shift_left;
4767      }
4768
4769    shift_right:
4770      // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
4771      // shifted type.
4772      unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
4773      if (SA != RHS)
4774        CCEDiag(E, diag::note_constexpr_large_shift)
4775        << RHS << E->getType() << LHS.getBitWidth();
4776
4777      return Success(LHS >> SA, E, Result);
4778    }
4779
4780    case BO_LT: return Success(LHS < RHS, E, Result);
4781    case BO_GT: return Success(LHS > RHS, E, Result);
4782    case BO_LE: return Success(LHS <= RHS, E, Result);
4783    case BO_GE: return Success(LHS >= RHS, E, Result);
4784    case BO_EQ: return Success(LHS == RHS, E, Result);
4785    case BO_NE: return Success(LHS != RHS, E, Result);
4786  }
4787}
4788
4789void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
4790  Job &job = Queue.back();
4791
4792  switch (job.Kind) {
4793    case Job::AnyExprKind: {
4794      if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
4795        if (shouldEnqueue(Bop)) {
4796          job.Kind = Job::BinOpKind;
4797          enqueue(Bop->getLHS());
4798          return;
4799        }
4800      }
4801
4802      EvaluateExpr(job.E, Result);
4803      Queue.pop_back();
4804      return;
4805    }
4806
4807    case Job::BinOpKind: {
4808      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4809      bool SuppressRHSDiags = false;
4810      if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
4811        Queue.pop_back();
4812        return;
4813      }
4814      if (SuppressRHSDiags)
4815        job.startSpeculativeEval(Info);
4816      job.LHSResult.swap(Result);
4817      job.Kind = Job::BinOpVisitedLHSKind;
4818      enqueue(Bop->getRHS());
4819      return;
4820    }
4821
4822    case Job::BinOpVisitedLHSKind: {
4823      const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
4824      EvalResult RHS;
4825      RHS.swap(Result);
4826      Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
4827      Queue.pop_back();
4828      return;
4829    }
4830  }
4831
4832  llvm_unreachable("Invalid Job::Kind!");
4833}
4834
4835bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4836  if (E->isAssignmentOp())
4837    return Error(E);
4838
4839  if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
4840    return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
4841
4842  QualType LHSTy = E->getLHS()->getType();
4843  QualType RHSTy = E->getRHS()->getType();
4844
4845  if (LHSTy->isAnyComplexType()) {
4846    assert(RHSTy->isAnyComplexType() && "Invalid comparison");
4847    ComplexValue LHS, RHS;
4848
4849    bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
4850    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4851      return false;
4852
4853    if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
4854      return false;
4855
4856    if (LHS.isComplexFloat()) {
4857      APFloat::cmpResult CR_r =
4858        LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
4859      APFloat::cmpResult CR_i =
4860        LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
4861
4862      if (E->getOpcode() == BO_EQ)
4863        return Success((CR_r == APFloat::cmpEqual &&
4864                        CR_i == APFloat::cmpEqual), E);
4865      else {
4866        assert(E->getOpcode() == BO_NE &&
4867               "Invalid complex comparison.");
4868        return Success(((CR_r == APFloat::cmpGreaterThan ||
4869                         CR_r == APFloat::cmpLessThan ||
4870                         CR_r == APFloat::cmpUnordered) ||
4871                        (CR_i == APFloat::cmpGreaterThan ||
4872                         CR_i == APFloat::cmpLessThan ||
4873                         CR_i == APFloat::cmpUnordered)), E);
4874      }
4875    } else {
4876      if (E->getOpcode() == BO_EQ)
4877        return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
4878                        LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
4879      else {
4880        assert(E->getOpcode() == BO_NE &&
4881               "Invalid compex comparison.");
4882        return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
4883                        LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
4884      }
4885    }
4886  }
4887
4888  if (LHSTy->isRealFloatingType() &&
4889      RHSTy->isRealFloatingType()) {
4890    APFloat RHS(0.0), LHS(0.0);
4891
4892    bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
4893    if (!LHSOK && !Info.keepEvaluatingAfterFailure())
4894      return false;
4895
4896    if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
4897      return false;
4898
4899    APFloat::cmpResult CR = LHS.compare(RHS);
4900
4901    switch (E->getOpcode()) {
4902    default:
4903      llvm_unreachable("Invalid binary operator!");
4904    case BO_LT:
4905      return Success(CR == APFloat::cmpLessThan, E);
4906    case BO_GT:
4907      return Success(CR == APFloat::cmpGreaterThan, E);
4908    case BO_LE:
4909      return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
4910    case BO_GE:
4911      return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
4912                     E);
4913    case BO_EQ:
4914      return Success(CR == APFloat::cmpEqual, E);
4915    case BO_NE:
4916      return Success(CR == APFloat::cmpGreaterThan
4917                     || CR == APFloat::cmpLessThan
4918                     || CR == APFloat::cmpUnordered, E);
4919    }
4920  }
4921
4922  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
4923    if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
4924      LValue LHSValue, RHSValue;
4925
4926      bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
4927      if (!LHSOK && Info.keepEvaluatingAfterFailure())
4928        return false;
4929
4930      if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
4931        return false;
4932
4933      // Reject differing bases from the normal codepath; we special-case
4934      // comparisons to null.
4935      if (!HasSameBase(LHSValue, RHSValue)) {
4936        if (E->getOpcode() == BO_Sub) {
4937          // Handle &&A - &&B.
4938          if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
4939            return false;
4940          const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
4941          const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
4942          if (!LHSExpr || !RHSExpr)
4943            return false;
4944          const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
4945          const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
4946          if (!LHSAddrExpr || !RHSAddrExpr)
4947            return false;
4948          // Make sure both labels come from the same function.
4949          if (LHSAddrExpr->getLabel()->getDeclContext() !=
4950              RHSAddrExpr->getLabel()->getDeclContext())
4951            return false;
4952          Result = APValue(LHSAddrExpr, RHSAddrExpr);
4953          return true;
4954        }
4955        // Inequalities and subtractions between unrelated pointers have
4956        // unspecified or undefined behavior.
4957        if (!E->isEqualityOp())
4958          return Error(E);
4959        // A constant address may compare equal to the address of a symbol.
4960        // The one exception is that address of an object cannot compare equal
4961        // to a null pointer constant.
4962        if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
4963            (!RHSValue.Base && !RHSValue.Offset.isZero()))
4964          return Error(E);
4965        // It's implementation-defined whether distinct literals will have
4966        // distinct addresses. In clang, the result of such a comparison is
4967        // unspecified, so it is not a constant expression. However, we do know
4968        // that the address of a literal will be non-null.
4969        if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
4970            LHSValue.Base && RHSValue.Base)
4971          return Error(E);
4972        // We can't tell whether weak symbols will end up pointing to the same
4973        // object.
4974        if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
4975          return Error(E);
4976        // Pointers with different bases cannot represent the same object.
4977        // (Note that clang defaults to -fmerge-all-constants, which can
4978        // lead to inconsistent results for comparisons involving the address
4979        // of a constant; this generally doesn't matter in practice.)
4980        return Success(E->getOpcode() == BO_NE, E);
4981      }
4982
4983      const CharUnits &LHSOffset = LHSValue.getLValueOffset();
4984      const CharUnits &RHSOffset = RHSValue.getLValueOffset();
4985
4986      SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
4987      SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
4988
4989      if (E->getOpcode() == BO_Sub) {
4990        // C++11 [expr.add]p6:
4991        //   Unless both pointers point to elements of the same array object, or
4992        //   one past the last element of the array object, the behavior is
4993        //   undefined.
4994        if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
4995            !AreElementsOfSameArray(getType(LHSValue.Base),
4996                                    LHSDesignator, RHSDesignator))
4997          CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
4998
4999        QualType Type = E->getLHS()->getType();
5000        QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
5001
5002        CharUnits ElementSize;
5003        if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
5004          return false;
5005
5006        // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
5007        // and produce incorrect results when it overflows. Such behavior
5008        // appears to be non-conforming, but is common, so perhaps we should
5009        // assume the standard intended for such cases to be undefined behavior
5010        // and check for them.
5011
5012        // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
5013        // overflow in the final conversion to ptrdiff_t.
5014        APSInt LHS(
5015          llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
5016        APSInt RHS(
5017          llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
5018        APSInt ElemSize(
5019          llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
5020        APSInt TrueResult = (LHS - RHS) / ElemSize;
5021        APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
5022
5023        if (Result.extend(65) != TrueResult)
5024          HandleOverflow(Info, E, TrueResult, E->getType());
5025        return Success(Result, E);
5026      }
5027
5028      // C++11 [expr.rel]p3:
5029      //   Pointers to void (after pointer conversions) can be compared, with a
5030      //   result defined as follows: If both pointers represent the same
5031      //   address or are both the null pointer value, the result is true if the
5032      //   operator is <= or >= and false otherwise; otherwise the result is
5033      //   unspecified.
5034      // We interpret this as applying to pointers to *cv* void.
5035      if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
5036          E->isRelationalOp())
5037        CCEDiag(E, diag::note_constexpr_void_comparison);
5038
5039      // C++11 [expr.rel]p2:
5040      // - If two pointers point to non-static data members of the same object,
5041      //   or to subobjects or array elements fo such members, recursively, the
5042      //   pointer to the later declared member compares greater provided the
5043      //   two members have the same access control and provided their class is
5044      //   not a union.
5045      //   [...]
5046      // - Otherwise pointer comparisons are unspecified.
5047      if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
5048          E->isRelationalOp()) {
5049        bool WasArrayIndex;
5050        unsigned Mismatch =
5051          FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
5052                                 RHSDesignator, WasArrayIndex);
5053        // At the point where the designators diverge, the comparison has a
5054        // specified value if:
5055        //  - we are comparing array indices
5056        //  - we are comparing fields of a union, or fields with the same access
5057        // Otherwise, the result is unspecified and thus the comparison is not a
5058        // constant expression.
5059        if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
5060            Mismatch < RHSDesignator.Entries.size()) {
5061          const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
5062          const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
5063          if (!LF && !RF)
5064            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
5065          else if (!LF)
5066            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5067              << getAsBaseClass(LHSDesignator.Entries[Mismatch])
5068              << RF->getParent() << RF;
5069          else if (!RF)
5070            CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
5071              << getAsBaseClass(RHSDesignator.Entries[Mismatch])
5072              << LF->getParent() << LF;
5073          else if (!LF->getParent()->isUnion() &&
5074                   LF->getAccess() != RF->getAccess())
5075            CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
5076              << LF << LF->getAccess() << RF << RF->getAccess()
5077              << LF->getParent();
5078        }
5079      }
5080
5081      // The comparison here must be unsigned, and performed with the same
5082      // width as the pointer.
5083      unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
5084      uint64_t CompareLHS = LHSOffset.getQuantity();
5085      uint64_t CompareRHS = RHSOffset.getQuantity();
5086      assert(PtrSize <= 64 && "Unexpected pointer width");
5087      uint64_t Mask = ~0ULL >> (64 - PtrSize);
5088      CompareLHS &= Mask;
5089      CompareRHS &= Mask;
5090
5091      // If there is a base and this is a relational operator, we can only
5092      // compare pointers within the object in question; otherwise, the result
5093      // depends on where the object is located in memory.
5094      if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
5095        QualType BaseTy = getType(LHSValue.Base);
5096        if (BaseTy->isIncompleteType())
5097          return Error(E);
5098        CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
5099        uint64_t OffsetLimit = Size.getQuantity();
5100        if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
5101          return Error(E);
5102      }
5103
5104      switch (E->getOpcode()) {
5105      default: llvm_unreachable("missing comparison operator");
5106      case BO_LT: return Success(CompareLHS < CompareRHS, E);
5107      case BO_GT: return Success(CompareLHS > CompareRHS, E);
5108      case BO_LE: return Success(CompareLHS <= CompareRHS, E);
5109      case BO_GE: return Success(CompareLHS >= CompareRHS, E);
5110      case BO_EQ: return Success(CompareLHS == CompareRHS, E);
5111      case BO_NE: return Success(CompareLHS != CompareRHS, E);
5112      }
5113    }
5114  }
5115
5116  if (LHSTy->isMemberPointerType()) {
5117    assert(E->isEqualityOp() && "unexpected member pointer operation");
5118    assert(RHSTy->isMemberPointerType() && "invalid comparison");
5119
5120    MemberPtr LHSValue, RHSValue;
5121
5122    bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
5123    if (!LHSOK && Info.keepEvaluatingAfterFailure())
5124      return false;
5125
5126    if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
5127      return false;
5128
5129    // C++11 [expr.eq]p2:
5130    //   If both operands are null, they compare equal. Otherwise if only one is
5131    //   null, they compare unequal.
5132    if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
5133      bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
5134      return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5135    }
5136
5137    //   Otherwise if either is a pointer to a virtual member function, the
5138    //   result is unspecified.
5139    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
5140      if (MD->isVirtual())
5141        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5142    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
5143      if (MD->isVirtual())
5144        CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
5145
5146    //   Otherwise they compare equal if and only if they would refer to the
5147    //   same member of the same most derived object or the same subobject if
5148    //   they were dereferenced with a hypothetical object of the associated
5149    //   class type.
5150    bool Equal = LHSValue == RHSValue;
5151    return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
5152  }
5153
5154  if (LHSTy->isNullPtrType()) {
5155    assert(E->isComparisonOp() && "unexpected nullptr operation");
5156    assert(RHSTy->isNullPtrType() && "missing pointer conversion");
5157    // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
5158    // are compared, the result is true of the operator is <=, >= or ==, and
5159    // false otherwise.
5160    BinaryOperator::Opcode Opcode = E->getOpcode();
5161    return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
5162  }
5163
5164  assert((!LHSTy->isIntegralOrEnumerationType() ||
5165          !RHSTy->isIntegralOrEnumerationType()) &&
5166         "DataRecursiveIntBinOpEvaluator should have handled integral types");
5167  // We can't continue from here for non-integral types.
5168  return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5169}
5170
5171CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
5172  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
5173  //   result shall be the alignment of the referenced type."
5174  if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5175    T = Ref->getPointeeType();
5176
5177  // __alignof is defined to return the preferred alignment.
5178  return Info.Ctx.toCharUnitsFromBits(
5179    Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5180}
5181
5182CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
5183  E = E->IgnoreParens();
5184
5185  // alignof decl is always accepted, even if it doesn't make sense: we default
5186  // to 1 in those cases.
5187  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5188    return Info.Ctx.getDeclAlign(DRE->getDecl(),
5189                                 /*RefAsPointee*/true);
5190
5191  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5192    return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5193                                 /*RefAsPointee*/true);
5194
5195  return GetAlignOfType(E->getType());
5196}
5197
5198
5199/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
5200/// a result as the expression's type.
5201bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
5202                                    const UnaryExprOrTypeTraitExpr *E) {
5203  switch(E->getKind()) {
5204  case UETT_AlignOf: {
5205    if (E->isArgumentType())
5206      return Success(GetAlignOfType(E->getArgumentType()), E);
5207    else
5208      return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
5209  }
5210
5211  case UETT_VecStep: {
5212    QualType Ty = E->getTypeOfArgument();
5213
5214    if (Ty->isVectorType()) {
5215      unsigned n = Ty->castAs<VectorType>()->getNumElements();
5216
5217      // The vec_step built-in functions that take a 3-component
5218      // vector return 4. (OpenCL 1.1 spec 6.11.12)
5219      if (n == 3)
5220        n = 4;
5221
5222      return Success(n, E);
5223    } else
5224      return Success(1, E);
5225  }
5226
5227  case UETT_SizeOf: {
5228    QualType SrcTy = E->getTypeOfArgument();
5229    // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
5230    //   the result is the size of the referenced type."
5231    if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
5232      SrcTy = Ref->getPointeeType();
5233
5234    CharUnits Sizeof;
5235    if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
5236      return false;
5237    return Success(Sizeof, E);
5238  }
5239  }
5240
5241  llvm_unreachable("unknown expr/type trait");
5242}
5243
5244bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
5245  CharUnits Result;
5246  unsigned n = OOE->getNumComponents();
5247  if (n == 0)
5248    return Error(OOE);
5249  QualType CurrentType = OOE->getTypeSourceInfo()->getType();
5250  for (unsigned i = 0; i != n; ++i) {
5251    OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
5252    switch (ON.getKind()) {
5253    case OffsetOfExpr::OffsetOfNode::Array: {
5254      const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
5255      APSInt IdxResult;
5256      if (!EvaluateInteger(Idx, IdxResult, Info))
5257        return false;
5258      const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
5259      if (!AT)
5260        return Error(OOE);
5261      CurrentType = AT->getElementType();
5262      CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
5263      Result += IdxResult.getSExtValue() * ElementSize;
5264        break;
5265    }
5266
5267    case OffsetOfExpr::OffsetOfNode::Field: {
5268      FieldDecl *MemberDecl = ON.getField();
5269      const RecordType *RT = CurrentType->getAs<RecordType>();
5270      if (!RT)
5271        return Error(OOE);
5272      RecordDecl *RD = RT->getDecl();
5273      if (RD->isInvalidDecl()) return false;
5274      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5275      unsigned i = MemberDecl->getFieldIndex();
5276      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
5277      Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
5278      CurrentType = MemberDecl->getType().getNonReferenceType();
5279      break;
5280    }
5281
5282    case OffsetOfExpr::OffsetOfNode::Identifier:
5283      llvm_unreachable("dependent __builtin_offsetof");
5284
5285    case OffsetOfExpr::OffsetOfNode::Base: {
5286      CXXBaseSpecifier *BaseSpec = ON.getBase();
5287      if (BaseSpec->isVirtual())
5288        return Error(OOE);
5289
5290      // Find the layout of the class whose base we are looking into.
5291      const RecordType *RT = CurrentType->getAs<RecordType>();
5292      if (!RT)
5293        return Error(OOE);
5294      RecordDecl *RD = RT->getDecl();
5295      if (RD->isInvalidDecl()) return false;
5296      const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
5297
5298      // Find the base class itself.
5299      CurrentType = BaseSpec->getType();
5300      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
5301      if (!BaseRT)
5302        return Error(OOE);
5303
5304      // Add the offset to the base.
5305      Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
5306      break;
5307    }
5308    }
5309  }
5310  return Success(Result, OOE);
5311}
5312
5313bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5314  switch (E->getOpcode()) {
5315  default:
5316    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
5317    // See C99 6.6p3.
5318    return Error(E);
5319  case UO_Extension:
5320    // FIXME: Should extension allow i-c-e extension expressions in its scope?
5321    // If so, we could clear the diagnostic ID.
5322    return Visit(E->getSubExpr());
5323  case UO_Plus:
5324    // The result is just the value.
5325    return Visit(E->getSubExpr());
5326  case UO_Minus: {
5327    if (!Visit(E->getSubExpr()))
5328      return false;
5329    if (!Result.isInt()) return Error(E);
5330    const APSInt &Value = Result.getInt();
5331    if (Value.isSigned() && Value.isMinSignedValue())
5332      HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
5333                     E->getType());
5334    return Success(-Value, E);
5335  }
5336  case UO_Not: {
5337    if (!Visit(E->getSubExpr()))
5338      return false;
5339    if (!Result.isInt()) return Error(E);
5340    return Success(~Result.getInt(), E);
5341  }
5342  case UO_LNot: {
5343    bool bres;
5344    if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
5345      return false;
5346    return Success(!bres, E);
5347  }
5348  }
5349}
5350
5351/// HandleCast - This is used to evaluate implicit or explicit casts where the
5352/// result type is integer.
5353bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
5354  const Expr *SubExpr = E->getSubExpr();
5355  QualType DestType = E->getType();
5356  QualType SrcType = SubExpr->getType();
5357
5358  switch (E->getCastKind()) {
5359  case CK_BaseToDerived:
5360  case CK_DerivedToBase:
5361  case CK_UncheckedDerivedToBase:
5362  case CK_Dynamic:
5363  case CK_ToUnion:
5364  case CK_ArrayToPointerDecay:
5365  case CK_FunctionToPointerDecay:
5366  case CK_NullToPointer:
5367  case CK_NullToMemberPointer:
5368  case CK_BaseToDerivedMemberPointer:
5369  case CK_DerivedToBaseMemberPointer:
5370  case CK_ReinterpretMemberPointer:
5371  case CK_ConstructorConversion:
5372  case CK_IntegralToPointer:
5373  case CK_ToVoid:
5374  case CK_VectorSplat:
5375  case CK_IntegralToFloating:
5376  case CK_FloatingCast:
5377  case CK_CPointerToObjCPointerCast:
5378  case CK_BlockPointerToObjCPointerCast:
5379  case CK_AnyPointerToBlockPointerCast:
5380  case CK_ObjCObjectLValueCast:
5381  case CK_FloatingRealToComplex:
5382  case CK_FloatingComplexToReal:
5383  case CK_FloatingComplexCast:
5384  case CK_FloatingComplexToIntegralComplex:
5385  case CK_IntegralRealToComplex:
5386  case CK_IntegralComplexCast:
5387  case CK_IntegralComplexToFloatingComplex:
5388  case CK_BuiltinFnToFnPtr:
5389  case CK_ZeroToOCLEvent:
5390    llvm_unreachable("invalid cast kind for integral value");
5391
5392  case CK_BitCast:
5393  case CK_Dependent:
5394  case CK_LValueBitCast:
5395  case CK_ARCProduceObject:
5396  case CK_ARCConsumeObject:
5397  case CK_ARCReclaimReturnedObject:
5398  case CK_ARCExtendBlockObject:
5399  case CK_CopyAndAutoreleaseBlockObject:
5400    return Error(E);
5401
5402  case CK_UserDefinedConversion:
5403  case CK_LValueToRValue:
5404  case CK_AtomicToNonAtomic:
5405  case CK_NonAtomicToAtomic:
5406  case CK_NoOp:
5407    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5408
5409  case CK_MemberPointerToBoolean:
5410  case CK_PointerToBoolean:
5411  case CK_IntegralToBoolean:
5412  case CK_FloatingToBoolean:
5413  case CK_FloatingComplexToBoolean:
5414  case CK_IntegralComplexToBoolean: {
5415    bool BoolResult;
5416    if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
5417      return false;
5418    return Success(BoolResult, E);
5419  }
5420
5421  case CK_IntegralCast: {
5422    if (!Visit(SubExpr))
5423      return false;
5424
5425    if (!Result.isInt()) {
5426      // Allow casts of address-of-label differences if they are no-ops
5427      // or narrowing.  (The narrowing case isn't actually guaranteed to
5428      // be constant-evaluatable except in some narrow cases which are hard
5429      // to detect here.  We let it through on the assumption the user knows
5430      // what they are doing.)
5431      if (Result.isAddrLabelDiff())
5432        return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
5433      // Only allow casts of lvalues if they are lossless.
5434      return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
5435    }
5436
5437    return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
5438                                      Result.getInt()), E);
5439  }
5440
5441  case CK_PointerToIntegral: {
5442    CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5443
5444    LValue LV;
5445    if (!EvaluatePointer(SubExpr, LV, Info))
5446      return false;
5447
5448    if (LV.getLValueBase()) {
5449      // Only allow based lvalue casts if they are lossless.
5450      // FIXME: Allow a larger integer size than the pointer size, and allow
5451      // narrowing back down to pointer width in subsequent integral casts.
5452      // FIXME: Check integer type's active bits, not its type size.
5453      if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
5454        return Error(E);
5455
5456      LV.Designator.setInvalid();
5457      LV.moveInto(Result);
5458      return true;
5459    }
5460
5461    APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
5462                                         SrcType);
5463    return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
5464  }
5465
5466  case CK_IntegralComplexToReal: {
5467    ComplexValue C;
5468    if (!EvaluateComplex(SubExpr, C, Info))
5469      return false;
5470    return Success(C.getComplexIntReal(), E);
5471  }
5472
5473  case CK_FloatingToIntegral: {
5474    APFloat F(0.0);
5475    if (!EvaluateFloat(SubExpr, F, Info))
5476      return false;
5477
5478    APSInt Value;
5479    if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
5480      return false;
5481    return Success(Value, E);
5482  }
5483  }
5484
5485  llvm_unreachable("unknown cast resulting in integral value");
5486}
5487
5488bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5489  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5490    ComplexValue LV;
5491    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5492      return false;
5493    if (!LV.isComplexInt())
5494      return Error(E);
5495    return Success(LV.getComplexIntReal(), E);
5496  }
5497
5498  return Visit(E->getSubExpr());
5499}
5500
5501bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5502  if (E->getSubExpr()->getType()->isComplexIntegerType()) {
5503    ComplexValue LV;
5504    if (!EvaluateComplex(E->getSubExpr(), LV, Info))
5505      return false;
5506    if (!LV.isComplexInt())
5507      return Error(E);
5508    return Success(LV.getComplexIntImag(), E);
5509  }
5510
5511  VisitIgnoredValue(E->getSubExpr());
5512  return Success(0, E);
5513}
5514
5515bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
5516  return Success(E->getPackLength(), E);
5517}
5518
5519bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
5520  return Success(E->getValue(), E);
5521}
5522
5523//===----------------------------------------------------------------------===//
5524// Float Evaluation
5525//===----------------------------------------------------------------------===//
5526
5527namespace {
5528class FloatExprEvaluator
5529  : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
5530  APFloat &Result;
5531public:
5532  FloatExprEvaluator(EvalInfo &info, APFloat &result)
5533    : ExprEvaluatorBaseTy(info), Result(result) {}
5534
5535  bool Success(const APValue &V, const Expr *e) {
5536    Result = V.getFloat();
5537    return true;
5538  }
5539
5540  bool ZeroInitialization(const Expr *E) {
5541    Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
5542    return true;
5543  }
5544
5545  bool VisitCallExpr(const CallExpr *E);
5546
5547  bool VisitUnaryOperator(const UnaryOperator *E);
5548  bool VisitBinaryOperator(const BinaryOperator *E);
5549  bool VisitFloatingLiteral(const FloatingLiteral *E);
5550  bool VisitCastExpr(const CastExpr *E);
5551
5552  bool VisitUnaryReal(const UnaryOperator *E);
5553  bool VisitUnaryImag(const UnaryOperator *E);
5554
5555  // FIXME: Missing: array subscript of vector, member of vector
5556};
5557} // end anonymous namespace
5558
5559static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
5560  assert(E->isRValue() && E->getType()->isRealFloatingType());
5561  return FloatExprEvaluator(Info, Result).Visit(E);
5562}
5563
5564static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
5565                                  QualType ResultTy,
5566                                  const Expr *Arg,
5567                                  bool SNaN,
5568                                  llvm::APFloat &Result) {
5569  const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
5570  if (!S) return false;
5571
5572  const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
5573
5574  llvm::APInt fill;
5575
5576  // Treat empty strings as if they were zero.
5577  if (S->getString().empty())
5578    fill = llvm::APInt(32, 0);
5579  else if (S->getString().getAsInteger(0, fill))
5580    return false;
5581
5582  if (SNaN)
5583    Result = llvm::APFloat::getSNaN(Sem, false, &fill);
5584  else
5585    Result = llvm::APFloat::getQNaN(Sem, false, &fill);
5586  return true;
5587}
5588
5589bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
5590  switch (E->isBuiltinCall()) {
5591  default:
5592    return ExprEvaluatorBaseTy::VisitCallExpr(E);
5593
5594  case Builtin::BI__builtin_huge_val:
5595  case Builtin::BI__builtin_huge_valf:
5596  case Builtin::BI__builtin_huge_vall:
5597  case Builtin::BI__builtin_inf:
5598  case Builtin::BI__builtin_inff:
5599  case Builtin::BI__builtin_infl: {
5600    const llvm::fltSemantics &Sem =
5601      Info.Ctx.getFloatTypeSemantics(E->getType());
5602    Result = llvm::APFloat::getInf(Sem);
5603    return true;
5604  }
5605
5606  case Builtin::BI__builtin_nans:
5607  case Builtin::BI__builtin_nansf:
5608  case Builtin::BI__builtin_nansl:
5609    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5610                               true, Result))
5611      return Error(E);
5612    return true;
5613
5614  case Builtin::BI__builtin_nan:
5615  case Builtin::BI__builtin_nanf:
5616  case Builtin::BI__builtin_nanl:
5617    // If this is __builtin_nan() turn this into a nan, otherwise we
5618    // can't constant fold it.
5619    if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
5620                               false, Result))
5621      return Error(E);
5622    return true;
5623
5624  case Builtin::BI__builtin_fabs:
5625  case Builtin::BI__builtin_fabsf:
5626  case Builtin::BI__builtin_fabsl:
5627    if (!EvaluateFloat(E->getArg(0), Result, Info))
5628      return false;
5629
5630    if (Result.isNegative())
5631      Result.changeSign();
5632    return true;
5633
5634  case Builtin::BI__builtin_copysign:
5635  case Builtin::BI__builtin_copysignf:
5636  case Builtin::BI__builtin_copysignl: {
5637    APFloat RHS(0.);
5638    if (!EvaluateFloat(E->getArg(0), Result, Info) ||
5639        !EvaluateFloat(E->getArg(1), RHS, Info))
5640      return false;
5641    Result.copySign(RHS);
5642    return true;
5643  }
5644  }
5645}
5646
5647bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5648  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5649    ComplexValue CV;
5650    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5651      return false;
5652    Result = CV.FloatReal;
5653    return true;
5654  }
5655
5656  return Visit(E->getSubExpr());
5657}
5658
5659bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5660  if (E->getSubExpr()->getType()->isAnyComplexType()) {
5661    ComplexValue CV;
5662    if (!EvaluateComplex(E->getSubExpr(), CV, Info))
5663      return false;
5664    Result = CV.FloatImag;
5665    return true;
5666  }
5667
5668  VisitIgnoredValue(E->getSubExpr());
5669  const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
5670  Result = llvm::APFloat::getZero(Sem);
5671  return true;
5672}
5673
5674bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
5675  switch (E->getOpcode()) {
5676  default: return Error(E);
5677  case UO_Plus:
5678    return EvaluateFloat(E->getSubExpr(), Result, Info);
5679  case UO_Minus:
5680    if (!EvaluateFloat(E->getSubExpr(), Result, Info))
5681      return false;
5682    Result.changeSign();
5683    return true;
5684  }
5685}
5686
5687bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5688  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5689    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5690
5691  APFloat RHS(0.0);
5692  bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
5693  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5694    return false;
5695  if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
5696    return false;
5697
5698  switch (E->getOpcode()) {
5699  default: return Error(E);
5700  case BO_Mul:
5701    Result.multiply(RHS, APFloat::rmNearestTiesToEven);
5702    break;
5703  case BO_Add:
5704    Result.add(RHS, APFloat::rmNearestTiesToEven);
5705    break;
5706  case BO_Sub:
5707    Result.subtract(RHS, APFloat::rmNearestTiesToEven);
5708    break;
5709  case BO_Div:
5710    Result.divide(RHS, APFloat::rmNearestTiesToEven);
5711    break;
5712  }
5713
5714  if (Result.isInfinity() || Result.isNaN())
5715    CCEDiag(E, diag::note_constexpr_float_arithmetic) << Result.isNaN();
5716  return true;
5717}
5718
5719bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
5720  Result = E->getValue();
5721  return true;
5722}
5723
5724bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
5725  const Expr* SubExpr = E->getSubExpr();
5726
5727  switch (E->getCastKind()) {
5728  default:
5729    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5730
5731  case CK_IntegralToFloating: {
5732    APSInt IntResult;
5733    return EvaluateInteger(SubExpr, IntResult, Info) &&
5734           HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
5735                                E->getType(), Result);
5736  }
5737
5738  case CK_FloatingCast: {
5739    if (!Visit(SubExpr))
5740      return false;
5741    return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
5742                                  Result);
5743  }
5744
5745  case CK_FloatingComplexToReal: {
5746    ComplexValue V;
5747    if (!EvaluateComplex(SubExpr, V, Info))
5748      return false;
5749    Result = V.getComplexFloatReal();
5750    return true;
5751  }
5752  }
5753}
5754
5755//===----------------------------------------------------------------------===//
5756// Complex Evaluation (for float and integer)
5757//===----------------------------------------------------------------------===//
5758
5759namespace {
5760class ComplexExprEvaluator
5761  : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
5762  ComplexValue &Result;
5763
5764public:
5765  ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
5766    : ExprEvaluatorBaseTy(info), Result(Result) {}
5767
5768  bool Success(const APValue &V, const Expr *e) {
5769    Result.setFrom(V);
5770    return true;
5771  }
5772
5773  bool ZeroInitialization(const Expr *E);
5774
5775  //===--------------------------------------------------------------------===//
5776  //                            Visitor Methods
5777  //===--------------------------------------------------------------------===//
5778
5779  bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
5780  bool VisitCastExpr(const CastExpr *E);
5781  bool VisitBinaryOperator(const BinaryOperator *E);
5782  bool VisitUnaryOperator(const UnaryOperator *E);
5783  bool VisitInitListExpr(const InitListExpr *E);
5784};
5785} // end anonymous namespace
5786
5787static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
5788                            EvalInfo &Info) {
5789  assert(E->isRValue() && E->getType()->isAnyComplexType());
5790  return ComplexExprEvaluator(Info, Result).Visit(E);
5791}
5792
5793bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
5794  QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
5795  if (ElemTy->isRealFloatingType()) {
5796    Result.makeComplexFloat();
5797    APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
5798    Result.FloatReal = Zero;
5799    Result.FloatImag = Zero;
5800  } else {
5801    Result.makeComplexInt();
5802    APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
5803    Result.IntReal = Zero;
5804    Result.IntImag = Zero;
5805  }
5806  return true;
5807}
5808
5809bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
5810  const Expr* SubExpr = E->getSubExpr();
5811
5812  if (SubExpr->getType()->isRealFloatingType()) {
5813    Result.makeComplexFloat();
5814    APFloat &Imag = Result.FloatImag;
5815    if (!EvaluateFloat(SubExpr, Imag, Info))
5816      return false;
5817
5818    Result.FloatReal = APFloat(Imag.getSemantics());
5819    return true;
5820  } else {
5821    assert(SubExpr->getType()->isIntegerType() &&
5822           "Unexpected imaginary literal.");
5823
5824    Result.makeComplexInt();
5825    APSInt &Imag = Result.IntImag;
5826    if (!EvaluateInteger(SubExpr, Imag, Info))
5827      return false;
5828
5829    Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
5830    return true;
5831  }
5832}
5833
5834bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
5835
5836  switch (E->getCastKind()) {
5837  case CK_BitCast:
5838  case CK_BaseToDerived:
5839  case CK_DerivedToBase:
5840  case CK_UncheckedDerivedToBase:
5841  case CK_Dynamic:
5842  case CK_ToUnion:
5843  case CK_ArrayToPointerDecay:
5844  case CK_FunctionToPointerDecay:
5845  case CK_NullToPointer:
5846  case CK_NullToMemberPointer:
5847  case CK_BaseToDerivedMemberPointer:
5848  case CK_DerivedToBaseMemberPointer:
5849  case CK_MemberPointerToBoolean:
5850  case CK_ReinterpretMemberPointer:
5851  case CK_ConstructorConversion:
5852  case CK_IntegralToPointer:
5853  case CK_PointerToIntegral:
5854  case CK_PointerToBoolean:
5855  case CK_ToVoid:
5856  case CK_VectorSplat:
5857  case CK_IntegralCast:
5858  case CK_IntegralToBoolean:
5859  case CK_IntegralToFloating:
5860  case CK_FloatingToIntegral:
5861  case CK_FloatingToBoolean:
5862  case CK_FloatingCast:
5863  case CK_CPointerToObjCPointerCast:
5864  case CK_BlockPointerToObjCPointerCast:
5865  case CK_AnyPointerToBlockPointerCast:
5866  case CK_ObjCObjectLValueCast:
5867  case CK_FloatingComplexToReal:
5868  case CK_FloatingComplexToBoolean:
5869  case CK_IntegralComplexToReal:
5870  case CK_IntegralComplexToBoolean:
5871  case CK_ARCProduceObject:
5872  case CK_ARCConsumeObject:
5873  case CK_ARCReclaimReturnedObject:
5874  case CK_ARCExtendBlockObject:
5875  case CK_CopyAndAutoreleaseBlockObject:
5876  case CK_BuiltinFnToFnPtr:
5877  case CK_ZeroToOCLEvent:
5878    llvm_unreachable("invalid cast kind for complex value");
5879
5880  case CK_LValueToRValue:
5881  case CK_AtomicToNonAtomic:
5882  case CK_NonAtomicToAtomic:
5883  case CK_NoOp:
5884    return ExprEvaluatorBaseTy::VisitCastExpr(E);
5885
5886  case CK_Dependent:
5887  case CK_LValueBitCast:
5888  case CK_UserDefinedConversion:
5889    return Error(E);
5890
5891  case CK_FloatingRealToComplex: {
5892    APFloat &Real = Result.FloatReal;
5893    if (!EvaluateFloat(E->getSubExpr(), Real, Info))
5894      return false;
5895
5896    Result.makeComplexFloat();
5897    Result.FloatImag = APFloat(Real.getSemantics());
5898    return true;
5899  }
5900
5901  case CK_FloatingComplexCast: {
5902    if (!Visit(E->getSubExpr()))
5903      return false;
5904
5905    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5906    QualType From
5907      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5908
5909    return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
5910           HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
5911  }
5912
5913  case CK_FloatingComplexToIntegralComplex: {
5914    if (!Visit(E->getSubExpr()))
5915      return false;
5916
5917    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5918    QualType From
5919      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5920    Result.makeComplexInt();
5921    return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
5922                                To, Result.IntReal) &&
5923           HandleFloatToIntCast(Info, E, From, Result.FloatImag,
5924                                To, Result.IntImag);
5925  }
5926
5927  case CK_IntegralRealToComplex: {
5928    APSInt &Real = Result.IntReal;
5929    if (!EvaluateInteger(E->getSubExpr(), Real, Info))
5930      return false;
5931
5932    Result.makeComplexInt();
5933    Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
5934    return true;
5935  }
5936
5937  case CK_IntegralComplexCast: {
5938    if (!Visit(E->getSubExpr()))
5939      return false;
5940
5941    QualType To = E->getType()->getAs<ComplexType>()->getElementType();
5942    QualType From
5943      = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
5944
5945    Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
5946    Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
5947    return true;
5948  }
5949
5950  case CK_IntegralComplexToFloatingComplex: {
5951    if (!Visit(E->getSubExpr()))
5952      return false;
5953
5954    QualType To = E->getType()->castAs<ComplexType>()->getElementType();
5955    QualType From
5956      = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
5957    Result.makeComplexFloat();
5958    return HandleIntToFloatCast(Info, E, From, Result.IntReal,
5959                                To, Result.FloatReal) &&
5960           HandleIntToFloatCast(Info, E, From, Result.IntImag,
5961                                To, Result.FloatImag);
5962  }
5963  }
5964
5965  llvm_unreachable("unknown cast resulting in complex value");
5966}
5967
5968bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5969  if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
5970    return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5971
5972  bool LHSOK = Visit(E->getLHS());
5973  if (!LHSOK && !Info.keepEvaluatingAfterFailure())
5974    return false;
5975
5976  ComplexValue RHS;
5977  if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
5978    return false;
5979
5980  assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
5981         "Invalid operands to binary operator.");
5982  switch (E->getOpcode()) {
5983  default: return Error(E);
5984  case BO_Add:
5985    if (Result.isComplexFloat()) {
5986      Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
5987                                       APFloat::rmNearestTiesToEven);
5988      Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
5989                                       APFloat::rmNearestTiesToEven);
5990    } else {
5991      Result.getComplexIntReal() += RHS.getComplexIntReal();
5992      Result.getComplexIntImag() += RHS.getComplexIntImag();
5993    }
5994    break;
5995  case BO_Sub:
5996    if (Result.isComplexFloat()) {
5997      Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
5998                                            APFloat::rmNearestTiesToEven);
5999      Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
6000                                            APFloat::rmNearestTiesToEven);
6001    } else {
6002      Result.getComplexIntReal() -= RHS.getComplexIntReal();
6003      Result.getComplexIntImag() -= RHS.getComplexIntImag();
6004    }
6005    break;
6006  case BO_Mul:
6007    if (Result.isComplexFloat()) {
6008      ComplexValue LHS = Result;
6009      APFloat &LHS_r = LHS.getComplexFloatReal();
6010      APFloat &LHS_i = LHS.getComplexFloatImag();
6011      APFloat &RHS_r = RHS.getComplexFloatReal();
6012      APFloat &RHS_i = RHS.getComplexFloatImag();
6013
6014      APFloat Tmp = LHS_r;
6015      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6016      Result.getComplexFloatReal() = Tmp;
6017      Tmp = LHS_i;
6018      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6019      Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
6020
6021      Tmp = LHS_r;
6022      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6023      Result.getComplexFloatImag() = Tmp;
6024      Tmp = LHS_i;
6025      Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6026      Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
6027    } else {
6028      ComplexValue LHS = Result;
6029      Result.getComplexIntReal() =
6030        (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
6031         LHS.getComplexIntImag() * RHS.getComplexIntImag());
6032      Result.getComplexIntImag() =
6033        (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
6034         LHS.getComplexIntImag() * RHS.getComplexIntReal());
6035    }
6036    break;
6037  case BO_Div:
6038    if (Result.isComplexFloat()) {
6039      ComplexValue LHS = Result;
6040      APFloat &LHS_r = LHS.getComplexFloatReal();
6041      APFloat &LHS_i = LHS.getComplexFloatImag();
6042      APFloat &RHS_r = RHS.getComplexFloatReal();
6043      APFloat &RHS_i = RHS.getComplexFloatImag();
6044      APFloat &Res_r = Result.getComplexFloatReal();
6045      APFloat &Res_i = Result.getComplexFloatImag();
6046
6047      APFloat Den = RHS_r;
6048      Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6049      APFloat Tmp = RHS_i;
6050      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6051      Den.add(Tmp, APFloat::rmNearestTiesToEven);
6052
6053      Res_r = LHS_r;
6054      Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6055      Tmp = LHS_i;
6056      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6057      Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
6058      Res_r.divide(Den, APFloat::rmNearestTiesToEven);
6059
6060      Res_i = LHS_i;
6061      Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
6062      Tmp = LHS_r;
6063      Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
6064      Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
6065      Res_i.divide(Den, APFloat::rmNearestTiesToEven);
6066    } else {
6067      if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
6068        return Error(E, diag::note_expr_divide_by_zero);
6069
6070      ComplexValue LHS = Result;
6071      APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
6072        RHS.getComplexIntImag() * RHS.getComplexIntImag();
6073      Result.getComplexIntReal() =
6074        (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
6075         LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
6076      Result.getComplexIntImag() =
6077        (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
6078         LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
6079    }
6080    break;
6081  }
6082
6083  return true;
6084}
6085
6086bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
6087  // Get the operand value into 'Result'.
6088  if (!Visit(E->getSubExpr()))
6089    return false;
6090
6091  switch (E->getOpcode()) {
6092  default:
6093    return Error(E);
6094  case UO_Extension:
6095    return true;
6096  case UO_Plus:
6097    // The result is always just the subexpr.
6098    return true;
6099  case UO_Minus:
6100    if (Result.isComplexFloat()) {
6101      Result.getComplexFloatReal().changeSign();
6102      Result.getComplexFloatImag().changeSign();
6103    }
6104    else {
6105      Result.getComplexIntReal() = -Result.getComplexIntReal();
6106      Result.getComplexIntImag() = -Result.getComplexIntImag();
6107    }
6108    return true;
6109  case UO_Not:
6110    if (Result.isComplexFloat())
6111      Result.getComplexFloatImag().changeSign();
6112    else
6113      Result.getComplexIntImag() = -Result.getComplexIntImag();
6114    return true;
6115  }
6116}
6117
6118bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6119  if (E->getNumInits() == 2) {
6120    if (E->getType()->isComplexType()) {
6121      Result.makeComplexFloat();
6122      if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
6123        return false;
6124      if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
6125        return false;
6126    } else {
6127      Result.makeComplexInt();
6128      if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
6129        return false;
6130      if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
6131        return false;
6132    }
6133    return true;
6134  }
6135  return ExprEvaluatorBaseTy::VisitInitListExpr(E);
6136}
6137
6138//===----------------------------------------------------------------------===//
6139// Void expression evaluation, primarily for a cast to void on the LHS of a
6140// comma operator
6141//===----------------------------------------------------------------------===//
6142
6143namespace {
6144class VoidExprEvaluator
6145  : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
6146public:
6147  VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
6148
6149  bool Success(const APValue &V, const Expr *e) { return true; }
6150
6151  bool VisitCastExpr(const CastExpr *E) {
6152    switch (E->getCastKind()) {
6153    default:
6154      return ExprEvaluatorBaseTy::VisitCastExpr(E);
6155    case CK_ToVoid:
6156      VisitIgnoredValue(E->getSubExpr());
6157      return true;
6158    }
6159  }
6160};
6161} // end anonymous namespace
6162
6163static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
6164  assert(E->isRValue() && E->getType()->isVoidType());
6165  return VoidExprEvaluator(Info).Visit(E);
6166}
6167
6168//===----------------------------------------------------------------------===//
6169// Top level Expr::EvaluateAsRValue method.
6170//===----------------------------------------------------------------------===//
6171
6172static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
6173  // In C, function designators are not lvalues, but we evaluate them as if they
6174  // are.
6175  if (E->isGLValue() || E->getType()->isFunctionType()) {
6176    LValue LV;
6177    if (!EvaluateLValue(E, LV, Info))
6178      return false;
6179    LV.moveInto(Result);
6180  } else if (E->getType()->isVectorType()) {
6181    if (!EvaluateVector(E, Result, Info))
6182      return false;
6183  } else if (E->getType()->isIntegralOrEnumerationType()) {
6184    if (!IntExprEvaluator(Info, Result).Visit(E))
6185      return false;
6186  } else if (E->getType()->hasPointerRepresentation()) {
6187    LValue LV;
6188    if (!EvaluatePointer(E, LV, Info))
6189      return false;
6190    LV.moveInto(Result);
6191  } else if (E->getType()->isRealFloatingType()) {
6192    llvm::APFloat F(0.0);
6193    if (!EvaluateFloat(E, F, Info))
6194      return false;
6195    Result = APValue(F);
6196  } else if (E->getType()->isAnyComplexType()) {
6197    ComplexValue C;
6198    if (!EvaluateComplex(E, C, Info))
6199      return false;
6200    C.moveInto(Result);
6201  } else if (E->getType()->isMemberPointerType()) {
6202    MemberPtr P;
6203    if (!EvaluateMemberPointer(E, P, Info))
6204      return false;
6205    P.moveInto(Result);
6206    return true;
6207  } else if (E->getType()->isArrayType()) {
6208    LValue LV;
6209    LV.set(E, Info.CurrentCall->Index);
6210    if (!EvaluateArray(E, LV, Info.CurrentCall->Temporaries[E], Info))
6211      return false;
6212    Result = Info.CurrentCall->Temporaries[E];
6213  } else if (E->getType()->isRecordType()) {
6214    LValue LV;
6215    LV.set(E, Info.CurrentCall->Index);
6216    if (!EvaluateRecord(E, LV, Info.CurrentCall->Temporaries[E], Info))
6217      return false;
6218    Result = Info.CurrentCall->Temporaries[E];
6219  } else if (E->getType()->isVoidType()) {
6220    if (!Info.getLangOpts().CPlusPlus11)
6221      Info.CCEDiag(E, diag::note_constexpr_nonliteral)
6222        << E->getType();
6223    if (!EvaluateVoid(E, Info))
6224      return false;
6225  } else if (Info.getLangOpts().CPlusPlus11) {
6226    Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
6227    return false;
6228  } else {
6229    Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6230    return false;
6231  }
6232
6233  return true;
6234}
6235
6236/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
6237/// cases, the in-place evaluation is essential, since later initializers for
6238/// an object can indirectly refer to subobjects which were initialized earlier.
6239static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
6240                            const Expr *E, CheckConstantExpressionKind CCEK,
6241                            bool AllowNonLiteralTypes) {
6242  if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E))
6243    return false;
6244
6245  if (E->isRValue()) {
6246    // Evaluate arrays and record types in-place, so that later initializers can
6247    // refer to earlier-initialized members of the object.
6248    if (E->getType()->isArrayType())
6249      return EvaluateArray(E, This, Result, Info);
6250    else if (E->getType()->isRecordType())
6251      return EvaluateRecord(E, This, Result, Info);
6252  }
6253
6254  // For any other type, in-place evaluation is unimportant.
6255  return Evaluate(Result, Info, E);
6256}
6257
6258/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
6259/// lvalue-to-rvalue cast if it is an lvalue.
6260static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
6261  if (!CheckLiteralType(Info, E))
6262    return false;
6263
6264  if (!::Evaluate(Result, Info, E))
6265    return false;
6266
6267  if (E->isGLValue()) {
6268    LValue LV;
6269    LV.setFrom(Info.Ctx, Result);
6270    if (!HandleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
6271      return false;
6272  }
6273
6274  // Check this core constant expression is a constant expression.
6275  return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
6276}
6277
6278static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
6279                                 const ASTContext &Ctx, bool &IsConst) {
6280  // Fast-path evaluations of integer literals, since we sometimes see files
6281  // containing vast quantities of these.
6282  if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
6283    Result.Val = APValue(APSInt(L->getValue(),
6284                                L->getType()->isUnsignedIntegerType()));
6285    IsConst = true;
6286    return true;
6287  }
6288
6289  // FIXME: Evaluating values of large array and record types can cause
6290  // performance problems. Only do so in C++11 for now.
6291  if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
6292                          Exp->getType()->isRecordType()) &&
6293      !Ctx.getLangOpts().CPlusPlus11) {
6294    IsConst = false;
6295    return true;
6296  }
6297  return false;
6298}
6299
6300
6301/// EvaluateAsRValue - Return true if this is a constant which we can fold using
6302/// any crazy technique (that has nothing to do with language standards) that
6303/// we want to.  If this function returns true, it returns the folded constant
6304/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
6305/// will be applied to the result.
6306bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
6307  bool IsConst;
6308  if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
6309    return IsConst;
6310
6311  EvalInfo Info(Ctx, Result);
6312  return ::EvaluateAsRValue(Info, this, Result.Val);
6313}
6314
6315bool Expr::EvaluateAsBooleanCondition(bool &Result,
6316                                      const ASTContext &Ctx) const {
6317  EvalResult Scratch;
6318  return EvaluateAsRValue(Scratch, Ctx) &&
6319         HandleConversionToBool(Scratch.Val, Result);
6320}
6321
6322bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
6323                         SideEffectsKind AllowSideEffects) const {
6324  if (!getType()->isIntegralOrEnumerationType())
6325    return false;
6326
6327  EvalResult ExprResult;
6328  if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
6329      (!AllowSideEffects && ExprResult.HasSideEffects))
6330    return false;
6331
6332  Result = ExprResult.Val.getInt();
6333  return true;
6334}
6335
6336bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
6337  EvalInfo Info(Ctx, Result);
6338
6339  LValue LV;
6340  if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
6341      !CheckLValueConstantExpression(Info, getExprLoc(),
6342                                     Ctx.getLValueReferenceType(getType()), LV))
6343    return false;
6344
6345  LV.moveInto(Result.Val);
6346  return true;
6347}
6348
6349bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
6350                                 const VarDecl *VD,
6351                            SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
6352  // FIXME: Evaluating initializers for large array and record types can cause
6353  // performance problems. Only do so in C++11 for now.
6354  if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
6355      !Ctx.getLangOpts().CPlusPlus11)
6356    return false;
6357
6358  Expr::EvalStatus EStatus;
6359  EStatus.Diag = &Notes;
6360
6361  EvalInfo InitInfo(Ctx, EStatus);
6362  InitInfo.setEvaluatingDecl(VD, Value);
6363
6364  LValue LVal;
6365  LVal.set(VD);
6366
6367  // C++11 [basic.start.init]p2:
6368  //  Variables with static storage duration or thread storage duration shall be
6369  //  zero-initialized before any other initialization takes place.
6370  // This behavior is not present in C.
6371  if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
6372      !VD->getType()->isReferenceType()) {
6373    ImplicitValueInitExpr VIE(VD->getType());
6374    if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, CCEK_Constant,
6375                         /*AllowNonLiteralTypes=*/true))
6376      return false;
6377  }
6378
6379  if (!EvaluateInPlace(Value, InitInfo, LVal, this, CCEK_Constant,
6380                         /*AllowNonLiteralTypes=*/true) ||
6381      EStatus.HasSideEffects)
6382    return false;
6383
6384  return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
6385                                 Value);
6386}
6387
6388/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
6389/// constant folded, but discard the result.
6390bool Expr::isEvaluatable(const ASTContext &Ctx) const {
6391  EvalResult Result;
6392  return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
6393}
6394
6395APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
6396                    SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
6397  EvalResult EvalResult;
6398  EvalResult.Diag = Diag;
6399  bool Result = EvaluateAsRValue(EvalResult, Ctx);
6400  (void)Result;
6401  assert(Result && "Could not evaluate expression");
6402  assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
6403
6404  return EvalResult.Val.getInt();
6405}
6406
6407void Expr::EvaluateForOverflow(const ASTContext &Ctx,
6408                    SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
6409  bool IsConst;
6410  EvalResult EvalResult;
6411  EvalResult.Diag = Diags;
6412  if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
6413    EvalInfo Info(Ctx, EvalResult, true);
6414    (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
6415  }
6416}
6417
6418 bool Expr::EvalResult::isGlobalLValue() const {
6419   assert(Val.isLValue());
6420   return IsGlobalLValue(Val.getLValueBase());
6421 }
6422
6423
6424/// isIntegerConstantExpr - this recursive routine will test if an expression is
6425/// an integer constant expression.
6426
6427/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
6428/// comma, etc
6429
6430// CheckICE - This function does the fundamental ICE checking: the returned
6431// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
6432// and a (possibly null) SourceLocation indicating the location of the problem.
6433//
6434// Note that to reduce code duplication, this helper does no evaluation
6435// itself; the caller checks whether the expression is evaluatable, and
6436// in the rare cases where CheckICE actually cares about the evaluated
6437// value, it calls into Evalute.
6438
6439namespace {
6440
6441enum ICEKind {
6442  /// This expression is an ICE.
6443  IK_ICE,
6444  /// This expression is not an ICE, but if it isn't evaluated, it's
6445  /// a legal subexpression for an ICE. This return value is used to handle
6446  /// the comma operator in C99 mode, and non-constant subexpressions.
6447  IK_ICEIfUnevaluated,
6448  /// This expression is not an ICE, and is not a legal subexpression for one.
6449  IK_NotICE
6450};
6451
6452struct ICEDiag {
6453  ICEKind Kind;
6454  SourceLocation Loc;
6455
6456  ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
6457};
6458
6459}
6460
6461static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
6462
6463static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
6464
6465static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
6466  Expr::EvalResult EVResult;
6467  if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
6468      !EVResult.Val.isInt())
6469    return ICEDiag(IK_NotICE, E->getLocStart());
6470
6471  return NoDiag();
6472}
6473
6474static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
6475  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
6476  if (!E->getType()->isIntegralOrEnumerationType())
6477    return ICEDiag(IK_NotICE, E->getLocStart());
6478
6479  switch (E->getStmtClass()) {
6480#define ABSTRACT_STMT(Node)
6481#define STMT(Node, Base) case Expr::Node##Class:
6482#define EXPR(Node, Base)
6483#include "clang/AST/StmtNodes.inc"
6484  case Expr::PredefinedExprClass:
6485  case Expr::FloatingLiteralClass:
6486  case Expr::ImaginaryLiteralClass:
6487  case Expr::StringLiteralClass:
6488  case Expr::ArraySubscriptExprClass:
6489  case Expr::MemberExprClass:
6490  case Expr::CompoundAssignOperatorClass:
6491  case Expr::CompoundLiteralExprClass:
6492  case Expr::ExtVectorElementExprClass:
6493  case Expr::DesignatedInitExprClass:
6494  case Expr::ImplicitValueInitExprClass:
6495  case Expr::ParenListExprClass:
6496  case Expr::VAArgExprClass:
6497  case Expr::AddrLabelExprClass:
6498  case Expr::StmtExprClass:
6499  case Expr::CXXMemberCallExprClass:
6500  case Expr::CUDAKernelCallExprClass:
6501  case Expr::CXXDynamicCastExprClass:
6502  case Expr::CXXTypeidExprClass:
6503  case Expr::CXXUuidofExprClass:
6504  case Expr::CXXNullPtrLiteralExprClass:
6505  case Expr::UserDefinedLiteralClass:
6506  case Expr::CXXThisExprClass:
6507  case Expr::CXXThrowExprClass:
6508  case Expr::CXXNewExprClass:
6509  case Expr::CXXDeleteExprClass:
6510  case Expr::CXXPseudoDestructorExprClass:
6511  case Expr::UnresolvedLookupExprClass:
6512  case Expr::DependentScopeDeclRefExprClass:
6513  case Expr::CXXConstructExprClass:
6514  case Expr::CXXBindTemporaryExprClass:
6515  case Expr::ExprWithCleanupsClass:
6516  case Expr::CXXTemporaryObjectExprClass:
6517  case Expr::CXXUnresolvedConstructExprClass:
6518  case Expr::CXXDependentScopeMemberExprClass:
6519  case Expr::UnresolvedMemberExprClass:
6520  case Expr::ObjCStringLiteralClass:
6521  case Expr::ObjCBoxedExprClass:
6522  case Expr::ObjCArrayLiteralClass:
6523  case Expr::ObjCDictionaryLiteralClass:
6524  case Expr::ObjCEncodeExprClass:
6525  case Expr::ObjCMessageExprClass:
6526  case Expr::ObjCSelectorExprClass:
6527  case Expr::ObjCProtocolExprClass:
6528  case Expr::ObjCIvarRefExprClass:
6529  case Expr::ObjCPropertyRefExprClass:
6530  case Expr::ObjCSubscriptRefExprClass:
6531  case Expr::ObjCIsaExprClass:
6532  case Expr::ShuffleVectorExprClass:
6533  case Expr::BlockExprClass:
6534  case Expr::NoStmtClass:
6535  case Expr::OpaqueValueExprClass:
6536  case Expr::PackExpansionExprClass:
6537  case Expr::SubstNonTypeTemplateParmPackExprClass:
6538  case Expr::FunctionParmPackExprClass:
6539  case Expr::AsTypeExprClass:
6540  case Expr::ObjCIndirectCopyRestoreExprClass:
6541  case Expr::MaterializeTemporaryExprClass:
6542  case Expr::PseudoObjectExprClass:
6543  case Expr::AtomicExprClass:
6544  case Expr::InitListExprClass:
6545  case Expr::LambdaExprClass:
6546    return ICEDiag(IK_NotICE, E->getLocStart());
6547
6548  case Expr::SizeOfPackExprClass:
6549  case Expr::GNUNullExprClass:
6550    // GCC considers the GNU __null value to be an integral constant expression.
6551    return NoDiag();
6552
6553  case Expr::SubstNonTypeTemplateParmExprClass:
6554    return
6555      CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
6556
6557  case Expr::ParenExprClass:
6558    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
6559  case Expr::GenericSelectionExprClass:
6560    return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
6561  case Expr::IntegerLiteralClass:
6562  case Expr::CharacterLiteralClass:
6563  case Expr::ObjCBoolLiteralExprClass:
6564  case Expr::CXXBoolLiteralExprClass:
6565  case Expr::CXXScalarValueInitExprClass:
6566  case Expr::UnaryTypeTraitExprClass:
6567  case Expr::BinaryTypeTraitExprClass:
6568  case Expr::TypeTraitExprClass:
6569  case Expr::ArrayTypeTraitExprClass:
6570  case Expr::ExpressionTraitExprClass:
6571  case Expr::CXXNoexceptExprClass:
6572    return NoDiag();
6573  case Expr::CallExprClass:
6574  case Expr::CXXOperatorCallExprClass: {
6575    // C99 6.6/3 allows function calls within unevaluated subexpressions of
6576    // constant expressions, but they can never be ICEs because an ICE cannot
6577    // contain an operand of (pointer to) function type.
6578    const CallExpr *CE = cast<CallExpr>(E);
6579    if (CE->isBuiltinCall())
6580      return CheckEvalInICE(E, Ctx);
6581    return ICEDiag(IK_NotICE, E->getLocStart());
6582  }
6583  case Expr::DeclRefExprClass: {
6584    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
6585      return NoDiag();
6586    const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
6587    if (Ctx.getLangOpts().CPlusPlus &&
6588        D && IsConstNonVolatile(D->getType())) {
6589      // Parameter variables are never constants.  Without this check,
6590      // getAnyInitializer() can find a default argument, which leads
6591      // to chaos.
6592      if (isa<ParmVarDecl>(D))
6593        return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6594
6595      // C++ 7.1.5.1p2
6596      //   A variable of non-volatile const-qualified integral or enumeration
6597      //   type initialized by an ICE can be used in ICEs.
6598      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
6599        if (!Dcl->getType()->isIntegralOrEnumerationType())
6600          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6601
6602        const VarDecl *VD;
6603        // Look for a declaration of this variable that has an initializer, and
6604        // check whether it is an ICE.
6605        if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
6606          return NoDiag();
6607        else
6608          return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
6609      }
6610    }
6611    return ICEDiag(IK_NotICE, E->getLocStart());
6612  }
6613  case Expr::UnaryOperatorClass: {
6614    const UnaryOperator *Exp = cast<UnaryOperator>(E);
6615    switch (Exp->getOpcode()) {
6616    case UO_PostInc:
6617    case UO_PostDec:
6618    case UO_PreInc:
6619    case UO_PreDec:
6620    case UO_AddrOf:
6621    case UO_Deref:
6622      // C99 6.6/3 allows increment and decrement within unevaluated
6623      // subexpressions of constant expressions, but they can never be ICEs
6624      // because an ICE cannot contain an lvalue operand.
6625      return ICEDiag(IK_NotICE, E->getLocStart());
6626    case UO_Extension:
6627    case UO_LNot:
6628    case UO_Plus:
6629    case UO_Minus:
6630    case UO_Not:
6631    case UO_Real:
6632    case UO_Imag:
6633      return CheckICE(Exp->getSubExpr(), Ctx);
6634    }
6635
6636    // OffsetOf falls through here.
6637  }
6638  case Expr::OffsetOfExprClass: {
6639    // Note that per C99, offsetof must be an ICE. And AFAIK, using
6640    // EvaluateAsRValue matches the proposed gcc behavior for cases like
6641    // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
6642    // compliance: we should warn earlier for offsetof expressions with
6643    // array subscripts that aren't ICEs, and if the array subscripts
6644    // are ICEs, the value of the offsetof must be an integer constant.
6645    return CheckEvalInICE(E, Ctx);
6646  }
6647  case Expr::UnaryExprOrTypeTraitExprClass: {
6648    const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
6649    if ((Exp->getKind() ==  UETT_SizeOf) &&
6650        Exp->getTypeOfArgument()->isVariableArrayType())
6651      return ICEDiag(IK_NotICE, E->getLocStart());
6652    return NoDiag();
6653  }
6654  case Expr::BinaryOperatorClass: {
6655    const BinaryOperator *Exp = cast<BinaryOperator>(E);
6656    switch (Exp->getOpcode()) {
6657    case BO_PtrMemD:
6658    case BO_PtrMemI:
6659    case BO_Assign:
6660    case BO_MulAssign:
6661    case BO_DivAssign:
6662    case BO_RemAssign:
6663    case BO_AddAssign:
6664    case BO_SubAssign:
6665    case BO_ShlAssign:
6666    case BO_ShrAssign:
6667    case BO_AndAssign:
6668    case BO_XorAssign:
6669    case BO_OrAssign:
6670      // C99 6.6/3 allows assignments within unevaluated subexpressions of
6671      // constant expressions, but they can never be ICEs because an ICE cannot
6672      // contain an lvalue operand.
6673      return ICEDiag(IK_NotICE, E->getLocStart());
6674
6675    case BO_Mul:
6676    case BO_Div:
6677    case BO_Rem:
6678    case BO_Add:
6679    case BO_Sub:
6680    case BO_Shl:
6681    case BO_Shr:
6682    case BO_LT:
6683    case BO_GT:
6684    case BO_LE:
6685    case BO_GE:
6686    case BO_EQ:
6687    case BO_NE:
6688    case BO_And:
6689    case BO_Xor:
6690    case BO_Or:
6691    case BO_Comma: {
6692      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6693      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6694      if (Exp->getOpcode() == BO_Div ||
6695          Exp->getOpcode() == BO_Rem) {
6696        // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
6697        // we don't evaluate one.
6698        if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
6699          llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
6700          if (REval == 0)
6701            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6702          if (REval.isSigned() && REval.isAllOnesValue()) {
6703            llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
6704            if (LEval.isMinSignedValue())
6705              return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6706          }
6707        }
6708      }
6709      if (Exp->getOpcode() == BO_Comma) {
6710        if (Ctx.getLangOpts().C99) {
6711          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
6712          // if it isn't evaluated.
6713          if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
6714            return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
6715        } else {
6716          // In both C89 and C++, commas in ICEs are illegal.
6717          return ICEDiag(IK_NotICE, E->getLocStart());
6718        }
6719      }
6720      return Worst(LHSResult, RHSResult);
6721    }
6722    case BO_LAnd:
6723    case BO_LOr: {
6724      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
6725      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
6726      if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
6727        // Rare case where the RHS has a comma "side-effect"; we need
6728        // to actually check the condition to see whether the side
6729        // with the comma is evaluated.
6730        if ((Exp->getOpcode() == BO_LAnd) !=
6731            (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
6732          return RHSResult;
6733        return NoDiag();
6734      }
6735
6736      return Worst(LHSResult, RHSResult);
6737    }
6738    }
6739  }
6740  case Expr::ImplicitCastExprClass:
6741  case Expr::CStyleCastExprClass:
6742  case Expr::CXXFunctionalCastExprClass:
6743  case Expr::CXXStaticCastExprClass:
6744  case Expr::CXXReinterpretCastExprClass:
6745  case Expr::CXXConstCastExprClass:
6746  case Expr::ObjCBridgedCastExprClass: {
6747    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
6748    if (isa<ExplicitCastExpr>(E)) {
6749      if (const FloatingLiteral *FL
6750            = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
6751        unsigned DestWidth = Ctx.getIntWidth(E->getType());
6752        bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
6753        APSInt IgnoredVal(DestWidth, !DestSigned);
6754        bool Ignored;
6755        // If the value does not fit in the destination type, the behavior is
6756        // undefined, so we are not required to treat it as a constant
6757        // expression.
6758        if (FL->getValue().convertToInteger(IgnoredVal,
6759                                            llvm::APFloat::rmTowardZero,
6760                                            &Ignored) & APFloat::opInvalidOp)
6761          return ICEDiag(IK_NotICE, E->getLocStart());
6762        return NoDiag();
6763      }
6764    }
6765    switch (cast<CastExpr>(E)->getCastKind()) {
6766    case CK_LValueToRValue:
6767    case CK_AtomicToNonAtomic:
6768    case CK_NonAtomicToAtomic:
6769    case CK_NoOp:
6770    case CK_IntegralToBoolean:
6771    case CK_IntegralCast:
6772      return CheckICE(SubExpr, Ctx);
6773    default:
6774      return ICEDiag(IK_NotICE, E->getLocStart());
6775    }
6776  }
6777  case Expr::BinaryConditionalOperatorClass: {
6778    const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
6779    ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
6780    if (CommonResult.Kind == IK_NotICE) return CommonResult;
6781    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6782    if (FalseResult.Kind == IK_NotICE) return FalseResult;
6783    if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
6784    if (FalseResult.Kind == IK_ICEIfUnevaluated &&
6785        Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
6786    return FalseResult;
6787  }
6788  case Expr::ConditionalOperatorClass: {
6789    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
6790    // If the condition (ignoring parens) is a __builtin_constant_p call,
6791    // then only the true side is actually considered in an integer constant
6792    // expression, and it is fully evaluated.  This is an important GNU
6793    // extension.  See GCC PR38377 for discussion.
6794    if (const CallExpr *CallCE
6795        = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
6796      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
6797        return CheckEvalInICE(E, Ctx);
6798    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
6799    if (CondResult.Kind == IK_NotICE)
6800      return CondResult;
6801
6802    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
6803    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
6804
6805    if (TrueResult.Kind == IK_NotICE)
6806      return TrueResult;
6807    if (FalseResult.Kind == IK_NotICE)
6808      return FalseResult;
6809    if (CondResult.Kind == IK_ICEIfUnevaluated)
6810      return CondResult;
6811    if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
6812      return NoDiag();
6813    // Rare case where the diagnostics depend on which side is evaluated
6814    // Note that if we get here, CondResult is 0, and at least one of
6815    // TrueResult and FalseResult is non-zero.
6816    if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
6817      return FalseResult;
6818    return TrueResult;
6819  }
6820  case Expr::CXXDefaultArgExprClass:
6821    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
6822  case Expr::ChooseExprClass: {
6823    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
6824  }
6825  }
6826
6827  llvm_unreachable("Invalid StmtClass!");
6828}
6829
6830/// Evaluate an expression as a C++11 integral constant expression.
6831static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
6832                                                    const Expr *E,
6833                                                    llvm::APSInt *Value,
6834                                                    SourceLocation *Loc) {
6835  if (!E->getType()->isIntegralOrEnumerationType()) {
6836    if (Loc) *Loc = E->getExprLoc();
6837    return false;
6838  }
6839
6840  APValue Result;
6841  if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
6842    return false;
6843
6844  assert(Result.isInt() && "pointer cast to int is not an ICE");
6845  if (Value) *Value = Result.getInt();
6846  return true;
6847}
6848
6849bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
6850  if (Ctx.getLangOpts().CPlusPlus11)
6851    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
6852
6853  ICEDiag D = CheckICE(this, Ctx);
6854  if (D.Kind != IK_ICE) {
6855    if (Loc) *Loc = D.Loc;
6856    return false;
6857  }
6858  return true;
6859}
6860
6861bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
6862                                 SourceLocation *Loc, bool isEvaluated) const {
6863  if (Ctx.getLangOpts().CPlusPlus11)
6864    return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
6865
6866  if (!isIntegerConstantExpr(Ctx, Loc))
6867    return false;
6868  if (!EvaluateAsInt(Value, Ctx))
6869    llvm_unreachable("ICE cannot be evaluated!");
6870  return true;
6871}
6872
6873bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
6874  return CheckICE(this, Ctx).Kind == IK_ICE;
6875}
6876
6877bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
6878                               SourceLocation *Loc) const {
6879  // We support this checking in C++98 mode in order to diagnose compatibility
6880  // issues.
6881  assert(Ctx.getLangOpts().CPlusPlus);
6882
6883  // Build evaluation settings.
6884  Expr::EvalStatus Status;
6885  SmallVector<PartialDiagnosticAt, 8> Diags;
6886  Status.Diag = &Diags;
6887  EvalInfo Info(Ctx, Status);
6888
6889  APValue Scratch;
6890  bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
6891
6892  if (!Diags.empty()) {
6893    IsConstExpr = false;
6894    if (Loc) *Loc = Diags[0].first;
6895  } else if (!IsConstExpr) {
6896    // FIXME: This shouldn't happen.
6897    if (Loc) *Loc = getExprLoc();
6898  }
6899
6900  return IsConstExpr;
6901}
6902
6903bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
6904                                   SmallVectorImpl<
6905                                     PartialDiagnosticAt> &Diags) {
6906  // FIXME: It would be useful to check constexpr function templates, but at the
6907  // moment the constant expression evaluator cannot cope with the non-rigorous
6908  // ASTs which we build for dependent expressions.
6909  if (FD->isDependentContext())
6910    return true;
6911
6912  Expr::EvalStatus Status;
6913  Status.Diag = &Diags;
6914
6915  EvalInfo Info(FD->getASTContext(), Status);
6916  Info.CheckingPotentialConstantExpression = true;
6917
6918  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6919  const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
6920
6921  // FIXME: Fabricate an arbitrary expression on the stack and pretend that it
6922  // is a temporary being used as the 'this' pointer.
6923  LValue This;
6924  ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
6925  This.set(&VIE, Info.CurrentCall->Index);
6926
6927  ArrayRef<const Expr*> Args;
6928
6929  SourceLocation Loc = FD->getLocation();
6930
6931  APValue Scratch;
6932  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
6933    HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
6934  else
6935    HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
6936                       Args, FD->getBody(), Info, Scratch);
6937
6938  return Diags.empty();
6939}
6940