CGCall.cpp revision 263366f9241366f29ba65b703120f302490c39ff
1//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "CGCXXABI.h"
17#include "ABIInfo.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Attributes.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/DataLayout.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace clang;
32using namespace CodeGen;
33
34/***/
35
36static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37  switch (CC) {
38  default: return llvm::CallingConv::C;
39  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44  // TODO: add support for CC_X86Pascal to llvm
45  }
46}
47
48/// Derives the 'this' type for codegen purposes, i.e. ignoring method
49/// qualification.
50/// FIXME: address space qualification?
51static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54}
55
56/// Returns the canonical formal type of the given C++ method.
57static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58  return MD->getType()->getCanonicalTypeUnqualified()
59           .getAs<FunctionProtoType>();
60}
61
62/// Returns the "extra-canonicalized" return type, which discards
63/// qualifiers on the return type.  Codegen doesn't care about them,
64/// and it makes ABI code a little easier to be able to assume that
65/// all parameter and return types are top-level unqualified.
66static CanQualType GetReturnType(QualType RetTy) {
67  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68}
69
70/// Arrange the argument and result information for a value of the given
71/// unprototyped freestanding function type.
72const CGFunctionInfo &
73CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74  // When translating an unprototyped function type, always use a
75  // variadic type.
76  return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
77                                 ArrayRef<CanQualType>(),
78                                 FTNP->getExtInfo(),
79                                 RequiredArgs(0));
80}
81
82/// Arrange the LLVM function layout for a value of the given function
83/// type, on top of any implicit parameters already stored.  Use the
84/// given ExtInfo instead of the ExtInfo from the function type.
85static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
86                                       SmallVectorImpl<CanQualType> &prefix,
87                                             CanQual<FunctionProtoType> FTP,
88                                              FunctionType::ExtInfo extInfo) {
89  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
90  // FIXME: Kill copy.
91  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
92    prefix.push_back(FTP->getArgType(i));
93  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
94  return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
95}
96
97/// Arrange the argument and result information for a free function (i.e.
98/// not a C++ or ObjC instance method) of the given type.
99static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
100                                      SmallVectorImpl<CanQualType> &prefix,
101                                            CanQual<FunctionProtoType> FTP) {
102  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
103}
104
105/// Given the formal ext-info of a C++ instance method, adjust it
106/// according to the C++ ABI in effect.
107static void adjustCXXMethodInfo(CodeGenTypes &CGT,
108                                FunctionType::ExtInfo &extInfo,
109                                bool isVariadic) {
110  if (extInfo.getCC() == CC_Default) {
111    CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
112    extInfo = extInfo.withCallingConv(CC);
113  }
114}
115
116/// Arrange the argument and result information for a free function (i.e.
117/// not a C++ or ObjC instance method) of the given type.
118static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
119                                      SmallVectorImpl<CanQualType> &prefix,
120                                            CanQual<FunctionProtoType> FTP) {
121  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
122  adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
123  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
124}
125
126/// Arrange the argument and result information for a value of the
127/// given freestanding function type.
128const CGFunctionInfo &
129CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
130  SmallVector<CanQualType, 16> argTypes;
131  return ::arrangeFreeFunctionType(*this, argTypes, FTP);
132}
133
134static CallingConv getCallingConventionForDecl(const Decl *D) {
135  // Set the appropriate calling convention for the Function.
136  if (D->hasAttr<StdCallAttr>())
137    return CC_X86StdCall;
138
139  if (D->hasAttr<FastCallAttr>())
140    return CC_X86FastCall;
141
142  if (D->hasAttr<ThisCallAttr>())
143    return CC_X86ThisCall;
144
145  if (D->hasAttr<PascalAttr>())
146    return CC_X86Pascal;
147
148  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
149    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
150
151  if (D->hasAttr<PnaclCallAttr>())
152    return CC_PnaclCall;
153
154  return CC_C;
155}
156
157/// Arrange the argument and result information for a call to an
158/// unknown C++ non-static member function of the given abstract type.
159/// The member function must be an ordinary function, i.e. not a
160/// constructor or destructor.
161const CGFunctionInfo &
162CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
163                                   const FunctionProtoType *FTP) {
164  SmallVector<CanQualType, 16> argTypes;
165
166  // Add the 'this' pointer.
167  argTypes.push_back(GetThisType(Context, RD));
168
169  return ::arrangeCXXMethodType(*this, argTypes,
170              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
171}
172
173/// Arrange the argument and result information for a declaration or
174/// definition of the given C++ non-static member function.  The
175/// member function must be an ordinary function, i.e. not a
176/// constructor or destructor.
177const CGFunctionInfo &
178CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
179  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
180  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
181
182  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
183
184  if (MD->isInstance()) {
185    // The abstract case is perfectly fine.
186    return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
187  }
188
189  return arrangeFreeFunctionType(prototype);
190}
191
192/// Arrange the argument and result information for a declaration
193/// or definition to the given constructor variant.
194const CGFunctionInfo &
195CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
196                                               CXXCtorType ctorKind) {
197  SmallVector<CanQualType, 16> argTypes;
198  argTypes.push_back(GetThisType(Context, D->getParent()));
199  CanQualType resultType = Context.VoidTy;
200
201  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
202
203  CanQual<FunctionProtoType> FTP = GetFormalType(D);
204
205  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
206
207  // Add the formal parameters.
208  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
209    argTypes.push_back(FTP->getArgType(i));
210
211  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
212  adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
213  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
214}
215
216/// Arrange the argument and result information for a declaration,
217/// definition, or call to the given destructor variant.  It so
218/// happens that all three cases produce the same information.
219const CGFunctionInfo &
220CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
221                                   CXXDtorType dtorKind) {
222  SmallVector<CanQualType, 2> argTypes;
223  argTypes.push_back(GetThisType(Context, D->getParent()));
224  CanQualType resultType = Context.VoidTy;
225
226  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
227
228  CanQual<FunctionProtoType> FTP = GetFormalType(D);
229  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
230  assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
231
232  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
233  adjustCXXMethodInfo(*this, extInfo, false);
234  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
235                                 RequiredArgs::All);
236}
237
238/// Arrange the argument and result information for the declaration or
239/// definition of the given function.
240const CGFunctionInfo &
241CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
242  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
243    if (MD->isInstance())
244      return arrangeCXXMethodDeclaration(MD);
245
246  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
247
248  assert(isa<FunctionType>(FTy));
249
250  // When declaring a function without a prototype, always use a
251  // non-variadic type.
252  if (isa<FunctionNoProtoType>(FTy)) {
253    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
254    return arrangeLLVMFunctionInfo(noProto->getResultType(),
255                                   ArrayRef<CanQualType>(),
256                                   noProto->getExtInfo(),
257                                   RequiredArgs::All);
258  }
259
260  assert(isa<FunctionProtoType>(FTy));
261  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
262}
263
264/// Arrange the argument and result information for the declaration or
265/// definition of an Objective-C method.
266const CGFunctionInfo &
267CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
268  // It happens that this is the same as a call with no optional
269  // arguments, except also using the formal 'self' type.
270  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
271}
272
273/// Arrange the argument and result information for the function type
274/// through which to perform a send to the given Objective-C method,
275/// using the given receiver type.  The receiver type is not always
276/// the 'self' type of the method or even an Objective-C pointer type.
277/// This is *not* the right method for actually performing such a
278/// message send, due to the possibility of optional arguments.
279const CGFunctionInfo &
280CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
281                                              QualType receiverType) {
282  SmallVector<CanQualType, 16> argTys;
283  argTys.push_back(Context.getCanonicalParamType(receiverType));
284  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
285  // FIXME: Kill copy?
286  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
287         e = MD->param_end(); i != e; ++i) {
288    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
289  }
290
291  FunctionType::ExtInfo einfo;
292  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
293
294  if (getContext().getLangOpts().ObjCAutoRefCount &&
295      MD->hasAttr<NSReturnsRetainedAttr>())
296    einfo = einfo.withProducesResult(true);
297
298  RequiredArgs required =
299    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
300
301  return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
302                                 einfo, required);
303}
304
305const CGFunctionInfo &
306CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
307  // FIXME: Do we need to handle ObjCMethodDecl?
308  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
309
310  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
311    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
312
313  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
314    return arrangeCXXDestructor(DD, GD.getDtorType());
315
316  return arrangeFunctionDeclaration(FD);
317}
318
319/// Figure out the rules for calling a function with the given formal
320/// type using the given arguments.  The arguments are necessary
321/// because the function might be unprototyped, in which case it's
322/// target-dependent in crazy ways.
323const CGFunctionInfo &
324CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
325                                      const FunctionType *fnType) {
326  RequiredArgs required = RequiredArgs::All;
327  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
328    if (proto->isVariadic())
329      required = RequiredArgs(proto->getNumArgs());
330  } else if (CGM.getTargetCodeGenInfo()
331               .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
332    required = RequiredArgs(0);
333  }
334
335  return arrangeFreeFunctionCall(fnType->getResultType(), args,
336                                 fnType->getExtInfo(), required);
337}
338
339const CGFunctionInfo &
340CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
341                                      const CallArgList &args,
342                                      FunctionType::ExtInfo info,
343                                      RequiredArgs required) {
344  // FIXME: Kill copy.
345  SmallVector<CanQualType, 16> argTypes;
346  for (CallArgList::const_iterator i = args.begin(), e = args.end();
347       i != e; ++i)
348    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
349  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
350                                 required);
351}
352
353/// Arrange a call to a C++ method, passing the given arguments.
354const CGFunctionInfo &
355CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
356                                   const FunctionProtoType *FPT,
357                                   RequiredArgs required) {
358  // FIXME: Kill copy.
359  SmallVector<CanQualType, 16> argTypes;
360  for (CallArgList::const_iterator i = args.begin(), e = args.end();
361       i != e; ++i)
362    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
363
364  FunctionType::ExtInfo info = FPT->getExtInfo();
365  adjustCXXMethodInfo(*this, info, FPT->isVariadic());
366  return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
367                                 argTypes, info, required);
368}
369
370const CGFunctionInfo &
371CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
372                                         const FunctionArgList &args,
373                                         const FunctionType::ExtInfo &info,
374                                         bool isVariadic) {
375  // FIXME: Kill copy.
376  SmallVector<CanQualType, 16> argTypes;
377  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
378       i != e; ++i)
379    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
380
381  RequiredArgs required =
382    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
383  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
384                                 required);
385}
386
387const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
388  return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
389                                 FunctionType::ExtInfo(), RequiredArgs::All);
390}
391
392/// Arrange the argument and result information for an abstract value
393/// of a given function type.  This is the method which all of the
394/// above functions ultimately defer to.
395const CGFunctionInfo &
396CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
397                                      ArrayRef<CanQualType> argTypes,
398                                      FunctionType::ExtInfo info,
399                                      RequiredArgs required) {
400#ifndef NDEBUG
401  for (ArrayRef<CanQualType>::const_iterator
402         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
403    assert(I->isCanonicalAsParam());
404#endif
405
406  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
407
408  // Lookup or create unique function info.
409  llvm::FoldingSetNodeID ID;
410  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
411
412  void *insertPos = 0;
413  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
414  if (FI)
415    return *FI;
416
417  // Construct the function info.  We co-allocate the ArgInfos.
418  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
419  FunctionInfos.InsertNode(FI, insertPos);
420
421  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
422  assert(inserted && "Recursively being processed?");
423
424  // Compute ABI information.
425  getABIInfo().computeInfo(*FI);
426
427  // Loop over all of the computed argument and return value info.  If any of
428  // them are direct or extend without a specified coerce type, specify the
429  // default now.
430  ABIArgInfo &retInfo = FI->getReturnInfo();
431  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
432    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
433
434  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
435       I != E; ++I)
436    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
437      I->info.setCoerceToType(ConvertType(I->type));
438
439  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
440  assert(erased && "Not in set?");
441
442  return *FI;
443}
444
445CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
446                                       const FunctionType::ExtInfo &info,
447                                       CanQualType resultType,
448                                       ArrayRef<CanQualType> argTypes,
449                                       RequiredArgs required) {
450  void *buffer = operator new(sizeof(CGFunctionInfo) +
451                              sizeof(ArgInfo) * (argTypes.size() + 1));
452  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
453  FI->CallingConvention = llvmCC;
454  FI->EffectiveCallingConvention = llvmCC;
455  FI->ASTCallingConvention = info.getCC();
456  FI->NoReturn = info.getNoReturn();
457  FI->ReturnsRetained = info.getProducesResult();
458  FI->Required = required;
459  FI->HasRegParm = info.getHasRegParm();
460  FI->RegParm = info.getRegParm();
461  FI->NumArgs = argTypes.size();
462  FI->getArgsBuffer()[0].type = resultType;
463  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
464    FI->getArgsBuffer()[i + 1].type = argTypes[i];
465  return FI;
466}
467
468/***/
469
470void CodeGenTypes::GetExpandedTypes(QualType type,
471                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
472  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
473    uint64_t NumElts = AT->getSize().getZExtValue();
474    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
475      GetExpandedTypes(AT->getElementType(), expandedTypes);
476  } else if (const RecordType *RT = type->getAs<RecordType>()) {
477    const RecordDecl *RD = RT->getDecl();
478    assert(!RD->hasFlexibleArrayMember() &&
479           "Cannot expand structure with flexible array.");
480    if (RD->isUnion()) {
481      // Unions can be here only in degenerative cases - all the fields are same
482      // after flattening. Thus we have to use the "largest" field.
483      const FieldDecl *LargestFD = 0;
484      CharUnits UnionSize = CharUnits::Zero();
485
486      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
487           i != e; ++i) {
488        const FieldDecl *FD = *i;
489        assert(!FD->isBitField() &&
490               "Cannot expand structure with bit-field members.");
491        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
492        if (UnionSize < FieldSize) {
493          UnionSize = FieldSize;
494          LargestFD = FD;
495        }
496      }
497      if (LargestFD)
498        GetExpandedTypes(LargestFD->getType(), expandedTypes);
499    } else {
500      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
501           i != e; ++i) {
502        assert(!i->isBitField() &&
503               "Cannot expand structure with bit-field members.");
504        GetExpandedTypes(i->getType(), expandedTypes);
505      }
506    }
507  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
508    llvm::Type *EltTy = ConvertType(CT->getElementType());
509    expandedTypes.push_back(EltTy);
510    expandedTypes.push_back(EltTy);
511  } else
512    expandedTypes.push_back(ConvertType(type));
513}
514
515llvm::Function::arg_iterator
516CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
517                                    llvm::Function::arg_iterator AI) {
518  assert(LV.isSimple() &&
519         "Unexpected non-simple lvalue during struct expansion.");
520
521  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
522    unsigned NumElts = AT->getSize().getZExtValue();
523    QualType EltTy = AT->getElementType();
524    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
525      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
526      LValue LV = MakeAddrLValue(EltAddr, EltTy);
527      AI = ExpandTypeFromArgs(EltTy, LV, AI);
528    }
529  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
530    RecordDecl *RD = RT->getDecl();
531    if (RD->isUnion()) {
532      // Unions can be here only in degenerative cases - all the fields are same
533      // after flattening. Thus we have to use the "largest" field.
534      const FieldDecl *LargestFD = 0;
535      CharUnits UnionSize = CharUnits::Zero();
536
537      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
538           i != e; ++i) {
539        const FieldDecl *FD = *i;
540        assert(!FD->isBitField() &&
541               "Cannot expand structure with bit-field members.");
542        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
543        if (UnionSize < FieldSize) {
544          UnionSize = FieldSize;
545          LargestFD = FD;
546        }
547      }
548      if (LargestFD) {
549        // FIXME: What are the right qualifiers here?
550        LValue SubLV = EmitLValueForField(LV, LargestFD);
551        AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
552      }
553    } else {
554      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
555           i != e; ++i) {
556        FieldDecl *FD = *i;
557        QualType FT = FD->getType();
558
559        // FIXME: What are the right qualifiers here?
560        LValue SubLV = EmitLValueForField(LV, FD);
561        AI = ExpandTypeFromArgs(FT, SubLV, AI);
562      }
563    }
564  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
565    QualType EltTy = CT->getElementType();
566    llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
567    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
568    llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
569    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
570  } else {
571    EmitStoreThroughLValue(RValue::get(AI), LV);
572    ++AI;
573  }
574
575  return AI;
576}
577
578/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
579/// accessing some number of bytes out of it, try to gep into the struct to get
580/// at its inner goodness.  Dive as deep as possible without entering an element
581/// with an in-memory size smaller than DstSize.
582static llvm::Value *
583EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
584                                   llvm::StructType *SrcSTy,
585                                   uint64_t DstSize, CodeGenFunction &CGF) {
586  // We can't dive into a zero-element struct.
587  if (SrcSTy->getNumElements() == 0) return SrcPtr;
588
589  llvm::Type *FirstElt = SrcSTy->getElementType(0);
590
591  // If the first elt is at least as large as what we're looking for, or if the
592  // first element is the same size as the whole struct, we can enter it.
593  uint64_t FirstEltSize =
594    CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
595  if (FirstEltSize < DstSize &&
596      FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
597    return SrcPtr;
598
599  // GEP into the first element.
600  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
601
602  // If the first element is a struct, recurse.
603  llvm::Type *SrcTy =
604    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
605  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
606    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
607
608  return SrcPtr;
609}
610
611/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
612/// are either integers or pointers.  This does a truncation of the value if it
613/// is too large or a zero extension if it is too small.
614static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
615                                             llvm::Type *Ty,
616                                             CodeGenFunction &CGF) {
617  if (Val->getType() == Ty)
618    return Val;
619
620  if (isa<llvm::PointerType>(Val->getType())) {
621    // If this is Pointer->Pointer avoid conversion to and from int.
622    if (isa<llvm::PointerType>(Ty))
623      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
624
625    // Convert the pointer to an integer so we can play with its width.
626    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
627  }
628
629  llvm::Type *DestIntTy = Ty;
630  if (isa<llvm::PointerType>(DestIntTy))
631    DestIntTy = CGF.IntPtrTy;
632
633  if (Val->getType() != DestIntTy)
634    Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
635
636  if (isa<llvm::PointerType>(Ty))
637    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
638  return Val;
639}
640
641
642
643/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
644/// a pointer to an object of type \arg Ty.
645///
646/// This safely handles the case when the src type is smaller than the
647/// destination type; in this situation the values of bits which not
648/// present in the src are undefined.
649static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
650                                      llvm::Type *Ty,
651                                      CodeGenFunction &CGF) {
652  llvm::Type *SrcTy =
653    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
654
655  // If SrcTy and Ty are the same, just do a load.
656  if (SrcTy == Ty)
657    return CGF.Builder.CreateLoad(SrcPtr);
658
659  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
660
661  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
662    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
663    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
664  }
665
666  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
667
668  // If the source and destination are integer or pointer types, just do an
669  // extension or truncation to the desired type.
670  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
671      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
672    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
673    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
674  }
675
676  // If load is legal, just bitcast the src pointer.
677  if (SrcSize >= DstSize) {
678    // Generally SrcSize is never greater than DstSize, since this means we are
679    // losing bits. However, this can happen in cases where the structure has
680    // additional padding, for example due to a user specified alignment.
681    //
682    // FIXME: Assert that we aren't truncating non-padding bits when have access
683    // to that information.
684    llvm::Value *Casted =
685      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
686    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
687    // FIXME: Use better alignment / avoid requiring aligned load.
688    Load->setAlignment(1);
689    return Load;
690  }
691
692  // Otherwise do coercion through memory. This is stupid, but
693  // simple.
694  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
695  llvm::Value *Casted =
696    CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
697  llvm::StoreInst *Store =
698    CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
699  // FIXME: Use better alignment / avoid requiring aligned store.
700  Store->setAlignment(1);
701  return CGF.Builder.CreateLoad(Tmp);
702}
703
704// Function to store a first-class aggregate into memory.  We prefer to
705// store the elements rather than the aggregate to be more friendly to
706// fast-isel.
707// FIXME: Do we need to recurse here?
708static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
709                          llvm::Value *DestPtr, bool DestIsVolatile,
710                          bool LowAlignment) {
711  // Prefer scalar stores to first-class aggregate stores.
712  if (llvm::StructType *STy =
713        dyn_cast<llvm::StructType>(Val->getType())) {
714    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
715      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
716      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
717      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
718                                                    DestIsVolatile);
719      if (LowAlignment)
720        SI->setAlignment(1);
721    }
722  } else {
723    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
724    if (LowAlignment)
725      SI->setAlignment(1);
726  }
727}
728
729/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
730/// where the source and destination may have different types.
731///
732/// This safely handles the case when the src type is larger than the
733/// destination type; the upper bits of the src will be lost.
734static void CreateCoercedStore(llvm::Value *Src,
735                               llvm::Value *DstPtr,
736                               bool DstIsVolatile,
737                               CodeGenFunction &CGF) {
738  llvm::Type *SrcTy = Src->getType();
739  llvm::Type *DstTy =
740    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
741  if (SrcTy == DstTy) {
742    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
743    return;
744  }
745
746  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
747
748  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
749    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
750    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
751  }
752
753  // If the source and destination are integer or pointer types, just do an
754  // extension or truncation to the desired type.
755  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
756      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
757    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
758    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
759    return;
760  }
761
762  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
763
764  // If store is legal, just bitcast the src pointer.
765  if (SrcSize <= DstSize) {
766    llvm::Value *Casted =
767      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
768    // FIXME: Use better alignment / avoid requiring aligned store.
769    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
770  } else {
771    // Otherwise do coercion through memory. This is stupid, but
772    // simple.
773
774    // Generally SrcSize is never greater than DstSize, since this means we are
775    // losing bits. However, this can happen in cases where the structure has
776    // additional padding, for example due to a user specified alignment.
777    //
778    // FIXME: Assert that we aren't truncating non-padding bits when have access
779    // to that information.
780    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
781    CGF.Builder.CreateStore(Src, Tmp);
782    llvm::Value *Casted =
783      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
784    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
785    // FIXME: Use better alignment / avoid requiring aligned load.
786    Load->setAlignment(1);
787    CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
788  }
789}
790
791/***/
792
793bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
794  return FI.getReturnInfo().isIndirect();
795}
796
797bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
798  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
799    switch (BT->getKind()) {
800    default:
801      return false;
802    case BuiltinType::Float:
803      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
804    case BuiltinType::Double:
805      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
806    case BuiltinType::LongDouble:
807      return getContext().getTargetInfo().useObjCFPRetForRealType(
808        TargetInfo::LongDouble);
809    }
810  }
811
812  return false;
813}
814
815bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
816  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
817    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
818      if (BT->getKind() == BuiltinType::LongDouble)
819        return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
820    }
821  }
822
823  return false;
824}
825
826llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
827  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
828  return GetFunctionType(FI);
829}
830
831llvm::FunctionType *
832CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
833
834  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
835  assert(Inserted && "Recursively being processed?");
836
837  SmallVector<llvm::Type*, 8> argTypes;
838  llvm::Type *resultType = 0;
839
840  const ABIArgInfo &retAI = FI.getReturnInfo();
841  switch (retAI.getKind()) {
842  case ABIArgInfo::Expand:
843    llvm_unreachable("Invalid ABI kind for return argument");
844
845  case ABIArgInfo::Extend:
846  case ABIArgInfo::Direct:
847    resultType = retAI.getCoerceToType();
848    break;
849
850  case ABIArgInfo::Indirect: {
851    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
852    resultType = llvm::Type::getVoidTy(getLLVMContext());
853
854    QualType ret = FI.getReturnType();
855    llvm::Type *ty = ConvertType(ret);
856    unsigned addressSpace = Context.getTargetAddressSpace(ret);
857    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
858    break;
859  }
860
861  case ABIArgInfo::Ignore:
862    resultType = llvm::Type::getVoidTy(getLLVMContext());
863    break;
864  }
865
866  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
867         ie = FI.arg_end(); it != ie; ++it) {
868    const ABIArgInfo &argAI = it->info;
869
870    switch (argAI.getKind()) {
871    case ABIArgInfo::Ignore:
872      break;
873
874    case ABIArgInfo::Indirect: {
875      // indirect arguments are always on the stack, which is addr space #0.
876      llvm::Type *LTy = ConvertTypeForMem(it->type);
877      argTypes.push_back(LTy->getPointerTo());
878      break;
879    }
880
881    case ABIArgInfo::Extend:
882    case ABIArgInfo::Direct: {
883      // Insert a padding type to ensure proper alignment.
884      if (llvm::Type *PaddingType = argAI.getPaddingType())
885        argTypes.push_back(PaddingType);
886      // If the coerce-to type is a first class aggregate, flatten it.  Either
887      // way is semantically identical, but fast-isel and the optimizer
888      // generally likes scalar values better than FCAs.
889      llvm::Type *argType = argAI.getCoerceToType();
890      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
891        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
892          argTypes.push_back(st->getElementType(i));
893      } else {
894        argTypes.push_back(argType);
895      }
896      break;
897    }
898
899    case ABIArgInfo::Expand:
900      GetExpandedTypes(it->type, argTypes);
901      break;
902    }
903  }
904
905  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
906  assert(Erased && "Not in set?");
907
908  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
909}
910
911llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
912  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
913  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
914
915  if (!isFuncTypeConvertible(FPT))
916    return llvm::StructType::get(getLLVMContext());
917
918  const CGFunctionInfo *Info;
919  if (isa<CXXDestructorDecl>(MD))
920    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
921  else
922    Info = &arrangeCXXMethodDeclaration(MD);
923  return GetFunctionType(*Info);
924}
925
926void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
927                                           const Decl *TargetDecl,
928                                           AttributeListType &PAL,
929                                           unsigned &CallingConv) {
930  llvm::AttrBuilder FuncAttrs;
931  llvm::AttrBuilder RetAttrs;
932
933  CallingConv = FI.getEffectiveCallingConvention();
934
935  if (FI.isNoReturn())
936    FuncAttrs.addAttribute(llvm::Attributes::NoReturn);
937
938  // FIXME: handle sseregparm someday...
939  if (TargetDecl) {
940    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
941      FuncAttrs.addAttribute(llvm::Attributes::ReturnsTwice);
942    if (TargetDecl->hasAttr<NoThrowAttr>())
943      FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
944    else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
945      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
946      if (FPT && FPT->isNothrow(getContext()))
947        FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
948    }
949
950    if (TargetDecl->hasAttr<NoReturnAttr>())
951      FuncAttrs.addAttribute(llvm::Attributes::NoReturn);
952
953    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
954      FuncAttrs.addAttribute(llvm::Attributes::ReturnsTwice);
955
956    // 'const' and 'pure' attribute functions are also nounwind.
957    if (TargetDecl->hasAttr<ConstAttr>()) {
958      FuncAttrs.addAttribute(llvm::Attributes::ReadNone);
959      FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
960    } else if (TargetDecl->hasAttr<PureAttr>()) {
961      FuncAttrs.addAttribute(llvm::Attributes::ReadOnly);
962      FuncAttrs.addAttribute(llvm::Attributes::NoUnwind);
963    }
964    if (TargetDecl->hasAttr<MallocAttr>())
965      RetAttrs.addAttribute(llvm::Attributes::NoAlias);
966  }
967
968  if (CodeGenOpts.OptimizeSize)
969    FuncAttrs.addAttribute(llvm::Attributes::OptimizeForSize);
970  if (CodeGenOpts.DisableRedZone)
971    FuncAttrs.addAttribute(llvm::Attributes::NoRedZone);
972  if (CodeGenOpts.NoImplicitFloat)
973    FuncAttrs.addAttribute(llvm::Attributes::NoImplicitFloat);
974
975  QualType RetTy = FI.getReturnType();
976  unsigned Index = 1;
977  const ABIArgInfo &RetAI = FI.getReturnInfo();
978  switch (RetAI.getKind()) {
979  case ABIArgInfo::Extend:
980   if (RetTy->hasSignedIntegerRepresentation())
981     RetAttrs.addAttribute(llvm::Attributes::SExt);
982   else if (RetTy->hasUnsignedIntegerRepresentation())
983     RetAttrs.addAttribute(llvm::Attributes::ZExt);
984    break;
985  case ABIArgInfo::Direct:
986  case ABIArgInfo::Ignore:
987    break;
988
989  case ABIArgInfo::Indirect: {
990    llvm::AttrBuilder SRETAttrs;
991    SRETAttrs.addAttribute(llvm::Attributes::StructRet);
992    if (RetAI.getInReg())
993      SRETAttrs.addAttribute(llvm::Attributes::InReg);
994    PAL.push_back(llvm::
995                  AttributeWithIndex::get(Index,
996                                         llvm::Attributes::get(getLLVMContext(),
997                                                               SRETAttrs)));
998
999    ++Index;
1000    // sret disables readnone and readonly
1001    FuncAttrs.removeAttribute(llvm::Attributes::ReadOnly)
1002      .removeAttribute(llvm::Attributes::ReadNone);
1003    break;
1004  }
1005
1006  case ABIArgInfo::Expand:
1007    llvm_unreachable("Invalid ABI kind for return argument");
1008  }
1009
1010  if (RetAttrs.hasAttributes())
1011    PAL.push_back(llvm::
1012                  AttributeWithIndex::get(llvm::AttrListPtr::ReturnIndex,
1013                                         llvm::Attributes::get(getLLVMContext(),
1014                                                               RetAttrs)));
1015
1016  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1017         ie = FI.arg_end(); it != ie; ++it) {
1018    QualType ParamType = it->type;
1019    const ABIArgInfo &AI = it->info;
1020    llvm::AttrBuilder Attrs;
1021
1022    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1023    // have the corresponding parameter variable.  It doesn't make
1024    // sense to do it here because parameters are so messed up.
1025    switch (AI.getKind()) {
1026    case ABIArgInfo::Extend:
1027      if (ParamType->isSignedIntegerOrEnumerationType())
1028        Attrs.addAttribute(llvm::Attributes::SExt);
1029      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1030        Attrs.addAttribute(llvm::Attributes::ZExt);
1031      // FALL THROUGH
1032    case ABIArgInfo::Direct:
1033      if (AI.getInReg())
1034        Attrs.addAttribute(llvm::Attributes::InReg);
1035
1036      // FIXME: handle sseregparm someday...
1037
1038      // Increment Index if there is padding.
1039      Index += (AI.getPaddingType() != 0);
1040
1041      if (llvm::StructType *STy =
1042          dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1043        unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1044        if (Attrs.hasAttributes())
1045          for (unsigned I = 0; I < Extra; ++I)
1046            PAL.push_back(llvm::AttributeWithIndex::get(Index + I,
1047                                         llvm::Attributes::get(getLLVMContext(),
1048                                                               Attrs)));
1049        Index += Extra;
1050      }
1051      break;
1052
1053    case ABIArgInfo::Indirect:
1054      if (AI.getIndirectByVal())
1055        Attrs.addAttribute(llvm::Attributes::ByVal);
1056
1057      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1058
1059      // byval disables readnone and readonly.
1060      FuncAttrs.removeAttribute(llvm::Attributes::ReadOnly)
1061        .removeAttribute(llvm::Attributes::ReadNone);
1062      break;
1063
1064    case ABIArgInfo::Ignore:
1065      // Skip increment, no matching LLVM parameter.
1066      continue;
1067
1068    case ABIArgInfo::Expand: {
1069      SmallVector<llvm::Type*, 8> types;
1070      // FIXME: This is rather inefficient. Do we ever actually need to do
1071      // anything here? The result should be just reconstructed on the other
1072      // side, so extension should be a non-issue.
1073      getTypes().GetExpandedTypes(ParamType, types);
1074      Index += types.size();
1075      continue;
1076    }
1077    }
1078
1079    if (Attrs.hasAttributes())
1080      PAL.push_back(llvm::AttributeWithIndex::get(Index,
1081                                         llvm::Attributes::get(getLLVMContext(),
1082                                                               Attrs)));
1083    ++Index;
1084  }
1085  if (FuncAttrs.hasAttributes())
1086    PAL.push_back(llvm::
1087                  AttributeWithIndex::get(llvm::AttrListPtr::FunctionIndex,
1088                                         llvm::Attributes::get(getLLVMContext(),
1089                                                               FuncAttrs)));
1090}
1091
1092/// An argument came in as a promoted argument; demote it back to its
1093/// declared type.
1094static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1095                                         const VarDecl *var,
1096                                         llvm::Value *value) {
1097  llvm::Type *varType = CGF.ConvertType(var->getType());
1098
1099  // This can happen with promotions that actually don't change the
1100  // underlying type, like the enum promotions.
1101  if (value->getType() == varType) return value;
1102
1103  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1104         && "unexpected promotion type");
1105
1106  if (isa<llvm::IntegerType>(varType))
1107    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1108
1109  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1110}
1111
1112void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1113                                         llvm::Function *Fn,
1114                                         const FunctionArgList &Args) {
1115  // If this is an implicit-return-zero function, go ahead and
1116  // initialize the return value.  TODO: it might be nice to have
1117  // a more general mechanism for this that didn't require synthesized
1118  // return statements.
1119  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1120    if (FD->hasImplicitReturnZero()) {
1121      QualType RetTy = FD->getResultType().getUnqualifiedType();
1122      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1123      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1124      Builder.CreateStore(Zero, ReturnValue);
1125    }
1126  }
1127
1128  // FIXME: We no longer need the types from FunctionArgList; lift up and
1129  // simplify.
1130
1131  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1132  llvm::Function::arg_iterator AI = Fn->arg_begin();
1133
1134  // Name the struct return argument.
1135  if (CGM.ReturnTypeUsesSRet(FI)) {
1136    AI->setName("agg.result");
1137    AI->addAttr(llvm::Attributes::get(getLLVMContext(),
1138                                      llvm::Attributes::NoAlias));
1139    ++AI;
1140  }
1141
1142  assert(FI.arg_size() == Args.size() &&
1143         "Mismatch between function signature & arguments.");
1144  unsigned ArgNo = 1;
1145  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1146  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1147       i != e; ++i, ++info_it, ++ArgNo) {
1148    const VarDecl *Arg = *i;
1149    QualType Ty = info_it->type;
1150    const ABIArgInfo &ArgI = info_it->info;
1151
1152    bool isPromoted =
1153      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1154
1155    switch (ArgI.getKind()) {
1156    case ABIArgInfo::Indirect: {
1157      llvm::Value *V = AI;
1158
1159      if (hasAggregateLLVMType(Ty)) {
1160        // Aggregates and complex variables are accessed by reference.  All we
1161        // need to do is realign the value, if requested
1162        if (ArgI.getIndirectRealign()) {
1163          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1164
1165          // Copy from the incoming argument pointer to the temporary with the
1166          // appropriate alignment.
1167          //
1168          // FIXME: We should have a common utility for generating an aggregate
1169          // copy.
1170          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1171          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1172          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1173          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1174          Builder.CreateMemCpy(Dst,
1175                               Src,
1176                               llvm::ConstantInt::get(IntPtrTy,
1177                                                      Size.getQuantity()),
1178                               ArgI.getIndirectAlign(),
1179                               false);
1180          V = AlignedTemp;
1181        }
1182      } else {
1183        // Load scalar value from indirect argument.
1184        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1185        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1186
1187        if (isPromoted)
1188          V = emitArgumentDemotion(*this, Arg, V);
1189      }
1190      EmitParmDecl(*Arg, V, ArgNo);
1191      break;
1192    }
1193
1194    case ABIArgInfo::Extend:
1195    case ABIArgInfo::Direct: {
1196      // Skip the dummy padding argument.
1197      if (ArgI.getPaddingType())
1198        ++AI;
1199
1200      // If we have the trivial case, handle it with no muss and fuss.
1201      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1202          ArgI.getCoerceToType() == ConvertType(Ty) &&
1203          ArgI.getDirectOffset() == 0) {
1204        assert(AI != Fn->arg_end() && "Argument mismatch!");
1205        llvm::Value *V = AI;
1206
1207        if (Arg->getType().isRestrictQualified())
1208          AI->addAttr(llvm::Attributes::get(getLLVMContext(),
1209                                            llvm::Attributes::NoAlias));
1210
1211        // Ensure the argument is the correct type.
1212        if (V->getType() != ArgI.getCoerceToType())
1213          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1214
1215        if (isPromoted)
1216          V = emitArgumentDemotion(*this, Arg, V);
1217
1218        EmitParmDecl(*Arg, V, ArgNo);
1219        break;
1220      }
1221
1222      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1223
1224      // The alignment we need to use is the max of the requested alignment for
1225      // the argument plus the alignment required by our access code below.
1226      unsigned AlignmentToUse =
1227        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1228      AlignmentToUse = std::max(AlignmentToUse,
1229                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1230
1231      Alloca->setAlignment(AlignmentToUse);
1232      llvm::Value *V = Alloca;
1233      llvm::Value *Ptr = V;    // Pointer to store into.
1234
1235      // If the value is offset in memory, apply the offset now.
1236      if (unsigned Offs = ArgI.getDirectOffset()) {
1237        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1238        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1239        Ptr = Builder.CreateBitCast(Ptr,
1240                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1241      }
1242
1243      // If the coerce-to type is a first class aggregate, we flatten it and
1244      // pass the elements. Either way is semantically identical, but fast-isel
1245      // and the optimizer generally likes scalar values better than FCAs.
1246      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1247      if (STy && STy->getNumElements() > 1) {
1248        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1249        llvm::Type *DstTy =
1250          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1251        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1252
1253        if (SrcSize <= DstSize) {
1254          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1255
1256          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1257            assert(AI != Fn->arg_end() && "Argument mismatch!");
1258            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1259            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1260            Builder.CreateStore(AI++, EltPtr);
1261          }
1262        } else {
1263          llvm::AllocaInst *TempAlloca =
1264            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1265          TempAlloca->setAlignment(AlignmentToUse);
1266          llvm::Value *TempV = TempAlloca;
1267
1268          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1269            assert(AI != Fn->arg_end() && "Argument mismatch!");
1270            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1271            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1272            Builder.CreateStore(AI++, EltPtr);
1273          }
1274
1275          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1276        }
1277      } else {
1278        // Simple case, just do a coerced store of the argument into the alloca.
1279        assert(AI != Fn->arg_end() && "Argument mismatch!");
1280        AI->setName(Arg->getName() + ".coerce");
1281        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1282      }
1283
1284
1285      // Match to what EmitParmDecl is expecting for this type.
1286      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1287        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1288        if (isPromoted)
1289          V = emitArgumentDemotion(*this, Arg, V);
1290      }
1291      EmitParmDecl(*Arg, V, ArgNo);
1292      continue;  // Skip ++AI increment, already done.
1293    }
1294
1295    case ABIArgInfo::Expand: {
1296      // If this structure was expanded into multiple arguments then
1297      // we need to create a temporary and reconstruct it from the
1298      // arguments.
1299      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1300      CharUnits Align = getContext().getDeclAlign(Arg);
1301      Alloca->setAlignment(Align.getQuantity());
1302      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1303      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1304      EmitParmDecl(*Arg, Alloca, ArgNo);
1305
1306      // Name the arguments used in expansion and increment AI.
1307      unsigned Index = 0;
1308      for (; AI != End; ++AI, ++Index)
1309        AI->setName(Arg->getName() + "." + Twine(Index));
1310      continue;
1311    }
1312
1313    case ABIArgInfo::Ignore:
1314      // Initialize the local variable appropriately.
1315      if (hasAggregateLLVMType(Ty))
1316        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1317      else
1318        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1319                     ArgNo);
1320
1321      // Skip increment, no matching LLVM parameter.
1322      continue;
1323    }
1324
1325    ++AI;
1326  }
1327  assert(AI == Fn->arg_end() && "Argument mismatch!");
1328}
1329
1330static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1331  while (insn->use_empty()) {
1332    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1333    if (!bitcast) return;
1334
1335    // This is "safe" because we would have used a ConstantExpr otherwise.
1336    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1337    bitcast->eraseFromParent();
1338  }
1339}
1340
1341/// Try to emit a fused autorelease of a return result.
1342static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1343                                                    llvm::Value *result) {
1344  // We must be immediately followed the cast.
1345  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1346  if (BB->empty()) return 0;
1347  if (&BB->back() != result) return 0;
1348
1349  llvm::Type *resultType = result->getType();
1350
1351  // result is in a BasicBlock and is therefore an Instruction.
1352  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1353
1354  SmallVector<llvm::Instruction*,4> insnsToKill;
1355
1356  // Look for:
1357  //  %generator = bitcast %type1* %generator2 to %type2*
1358  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1359    // We would have emitted this as a constant if the operand weren't
1360    // an Instruction.
1361    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1362
1363    // Require the generator to be immediately followed by the cast.
1364    if (generator->getNextNode() != bitcast)
1365      return 0;
1366
1367    insnsToKill.push_back(bitcast);
1368  }
1369
1370  // Look for:
1371  //   %generator = call i8* @objc_retain(i8* %originalResult)
1372  // or
1373  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1374  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1375  if (!call) return 0;
1376
1377  bool doRetainAutorelease;
1378
1379  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1380    doRetainAutorelease = true;
1381  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1382                                          .objc_retainAutoreleasedReturnValue) {
1383    doRetainAutorelease = false;
1384
1385    // If we emitted an assembly marker for this call (and the
1386    // ARCEntrypoints field should have been set if so), go looking
1387    // for that call.  If we can't find it, we can't do this
1388    // optimization.  But it should always be the immediately previous
1389    // instruction, unless we needed bitcasts around the call.
1390    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1391      llvm::Instruction *prev = call->getPrevNode();
1392      assert(prev);
1393      if (isa<llvm::BitCastInst>(prev)) {
1394        prev = prev->getPrevNode();
1395        assert(prev);
1396      }
1397      assert(isa<llvm::CallInst>(prev));
1398      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1399               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1400      insnsToKill.push_back(prev);
1401    }
1402  } else {
1403    return 0;
1404  }
1405
1406  result = call->getArgOperand(0);
1407  insnsToKill.push_back(call);
1408
1409  // Keep killing bitcasts, for sanity.  Note that we no longer care
1410  // about precise ordering as long as there's exactly one use.
1411  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1412    if (!bitcast->hasOneUse()) break;
1413    insnsToKill.push_back(bitcast);
1414    result = bitcast->getOperand(0);
1415  }
1416
1417  // Delete all the unnecessary instructions, from latest to earliest.
1418  for (SmallVectorImpl<llvm::Instruction*>::iterator
1419         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1420    (*i)->eraseFromParent();
1421
1422  // Do the fused retain/autorelease if we were asked to.
1423  if (doRetainAutorelease)
1424    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1425
1426  // Cast back to the result type.
1427  return CGF.Builder.CreateBitCast(result, resultType);
1428}
1429
1430/// If this is a +1 of the value of an immutable 'self', remove it.
1431static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1432                                          llvm::Value *result) {
1433  // This is only applicable to a method with an immutable 'self'.
1434  const ObjCMethodDecl *method =
1435    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1436  if (!method) return 0;
1437  const VarDecl *self = method->getSelfDecl();
1438  if (!self->getType().isConstQualified()) return 0;
1439
1440  // Look for a retain call.
1441  llvm::CallInst *retainCall =
1442    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1443  if (!retainCall ||
1444      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1445    return 0;
1446
1447  // Look for an ordinary load of 'self'.
1448  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1449  llvm::LoadInst *load =
1450    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1451  if (!load || load->isAtomic() || load->isVolatile() ||
1452      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1453    return 0;
1454
1455  // Okay!  Burn it all down.  This relies for correctness on the
1456  // assumption that the retain is emitted as part of the return and
1457  // that thereafter everything is used "linearly".
1458  llvm::Type *resultType = result->getType();
1459  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1460  assert(retainCall->use_empty());
1461  retainCall->eraseFromParent();
1462  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1463
1464  return CGF.Builder.CreateBitCast(load, resultType);
1465}
1466
1467/// Emit an ARC autorelease of the result of a function.
1468///
1469/// \return the value to actually return from the function
1470static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1471                                            llvm::Value *result) {
1472  // If we're returning 'self', kill the initial retain.  This is a
1473  // heuristic attempt to "encourage correctness" in the really unfortunate
1474  // case where we have a return of self during a dealloc and we desperately
1475  // need to avoid the possible autorelease.
1476  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1477    return self;
1478
1479  // At -O0, try to emit a fused retain/autorelease.
1480  if (CGF.shouldUseFusedARCCalls())
1481    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1482      return fused;
1483
1484  return CGF.EmitARCAutoreleaseReturnValue(result);
1485}
1486
1487/// Heuristically search for a dominating store to the return-value slot.
1488static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1489  // If there are multiple uses of the return-value slot, just check
1490  // for something immediately preceding the IP.  Sometimes this can
1491  // happen with how we generate implicit-returns; it can also happen
1492  // with noreturn cleanups.
1493  if (!CGF.ReturnValue->hasOneUse()) {
1494    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1495    if (IP->empty()) return 0;
1496    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1497    if (!store) return 0;
1498    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1499    assert(!store->isAtomic() && !store->isVolatile()); // see below
1500    return store;
1501  }
1502
1503  llvm::StoreInst *store =
1504    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1505  if (!store) return 0;
1506
1507  // These aren't actually possible for non-coerced returns, and we
1508  // only care about non-coerced returns on this code path.
1509  assert(!store->isAtomic() && !store->isVolatile());
1510
1511  // Now do a first-and-dirty dominance check: just walk up the
1512  // single-predecessors chain from the current insertion point.
1513  llvm::BasicBlock *StoreBB = store->getParent();
1514  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1515  while (IP != StoreBB) {
1516    if (!(IP = IP->getSinglePredecessor()))
1517      return 0;
1518  }
1519
1520  // Okay, the store's basic block dominates the insertion point; we
1521  // can do our thing.
1522  return store;
1523}
1524
1525void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1526  // Functions with no result always return void.
1527  if (ReturnValue == 0) {
1528    Builder.CreateRetVoid();
1529    return;
1530  }
1531
1532  llvm::DebugLoc RetDbgLoc;
1533  llvm::Value *RV = 0;
1534  QualType RetTy = FI.getReturnType();
1535  const ABIArgInfo &RetAI = FI.getReturnInfo();
1536
1537  switch (RetAI.getKind()) {
1538  case ABIArgInfo::Indirect: {
1539    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1540    if (RetTy->isAnyComplexType()) {
1541      ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1542      StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1543    } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1544      // Do nothing; aggregrates get evaluated directly into the destination.
1545    } else {
1546      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1547                        false, Alignment, RetTy);
1548    }
1549    break;
1550  }
1551
1552  case ABIArgInfo::Extend:
1553  case ABIArgInfo::Direct:
1554    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1555        RetAI.getDirectOffset() == 0) {
1556      // The internal return value temp always will have pointer-to-return-type
1557      // type, just do a load.
1558
1559      // If there is a dominating store to ReturnValue, we can elide
1560      // the load, zap the store, and usually zap the alloca.
1561      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1562        // Get the stored value and nuke the now-dead store.
1563        RetDbgLoc = SI->getDebugLoc();
1564        RV = SI->getValueOperand();
1565        SI->eraseFromParent();
1566
1567        // If that was the only use of the return value, nuke it as well now.
1568        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1569          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1570          ReturnValue = 0;
1571        }
1572
1573      // Otherwise, we have to do a simple load.
1574      } else {
1575        RV = Builder.CreateLoad(ReturnValue);
1576      }
1577    } else {
1578      llvm::Value *V = ReturnValue;
1579      // If the value is offset in memory, apply the offset now.
1580      if (unsigned Offs = RetAI.getDirectOffset()) {
1581        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1582        V = Builder.CreateConstGEP1_32(V, Offs);
1583        V = Builder.CreateBitCast(V,
1584                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1585      }
1586
1587      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1588    }
1589
1590    // In ARC, end functions that return a retainable type with a call
1591    // to objc_autoreleaseReturnValue.
1592    if (AutoreleaseResult) {
1593      assert(getLangOpts().ObjCAutoRefCount &&
1594             !FI.isReturnsRetained() &&
1595             RetTy->isObjCRetainableType());
1596      RV = emitAutoreleaseOfResult(*this, RV);
1597    }
1598
1599    break;
1600
1601  case ABIArgInfo::Ignore:
1602    break;
1603
1604  case ABIArgInfo::Expand:
1605    llvm_unreachable("Invalid ABI kind for return argument");
1606  }
1607
1608  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1609  if (!RetDbgLoc.isUnknown())
1610    Ret->setDebugLoc(RetDbgLoc);
1611}
1612
1613void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1614                                          const VarDecl *param) {
1615  // StartFunction converted the ABI-lowered parameter(s) into a
1616  // local alloca.  We need to turn that into an r-value suitable
1617  // for EmitCall.
1618  llvm::Value *local = GetAddrOfLocalVar(param);
1619
1620  QualType type = param->getType();
1621
1622  // For the most part, we just need to load the alloca, except:
1623  // 1) aggregate r-values are actually pointers to temporaries, and
1624  // 2) references to aggregates are pointers directly to the aggregate.
1625  // I don't know why references to non-aggregates are different here.
1626  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1627    if (hasAggregateLLVMType(ref->getPointeeType()))
1628      return args.add(RValue::getAggregate(local), type);
1629
1630    // Locals which are references to scalars are represented
1631    // with allocas holding the pointer.
1632    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1633  }
1634
1635  if (type->isAnyComplexType()) {
1636    ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1637    return args.add(RValue::getComplex(complex), type);
1638  }
1639
1640  if (hasAggregateLLVMType(type))
1641    return args.add(RValue::getAggregate(local), type);
1642
1643  unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1644  llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1645  return args.add(RValue::get(value), type);
1646}
1647
1648static bool isProvablyNull(llvm::Value *addr) {
1649  return isa<llvm::ConstantPointerNull>(addr);
1650}
1651
1652static bool isProvablyNonNull(llvm::Value *addr) {
1653  return isa<llvm::AllocaInst>(addr);
1654}
1655
1656/// Emit the actual writing-back of a writeback.
1657static void emitWriteback(CodeGenFunction &CGF,
1658                          const CallArgList::Writeback &writeback) {
1659  llvm::Value *srcAddr = writeback.Address;
1660  assert(!isProvablyNull(srcAddr) &&
1661         "shouldn't have writeback for provably null argument");
1662
1663  llvm::BasicBlock *contBB = 0;
1664
1665  // If the argument wasn't provably non-null, we need to null check
1666  // before doing the store.
1667  bool provablyNonNull = isProvablyNonNull(srcAddr);
1668  if (!provablyNonNull) {
1669    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1670    contBB = CGF.createBasicBlock("icr.done");
1671
1672    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1673    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1674    CGF.EmitBlock(writebackBB);
1675  }
1676
1677  // Load the value to writeback.
1678  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1679
1680  // Cast it back, in case we're writing an id to a Foo* or something.
1681  value = CGF.Builder.CreateBitCast(value,
1682               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1683                            "icr.writeback-cast");
1684
1685  // Perform the writeback.
1686  QualType srcAddrType = writeback.AddressType;
1687  CGF.EmitStoreThroughLValue(RValue::get(value),
1688                             CGF.MakeAddrLValue(srcAddr, srcAddrType));
1689
1690  // Jump to the continuation block.
1691  if (!provablyNonNull)
1692    CGF.EmitBlock(contBB);
1693}
1694
1695static void emitWritebacks(CodeGenFunction &CGF,
1696                           const CallArgList &args) {
1697  for (CallArgList::writeback_iterator
1698         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1699    emitWriteback(CGF, *i);
1700}
1701
1702/// Emit an argument that's being passed call-by-writeback.  That is,
1703/// we are passing the address of
1704static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1705                             const ObjCIndirectCopyRestoreExpr *CRE) {
1706  llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1707
1708  // The dest and src types don't necessarily match in LLVM terms
1709  // because of the crazy ObjC compatibility rules.
1710
1711  llvm::PointerType *destType =
1712    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1713
1714  // If the address is a constant null, just pass the appropriate null.
1715  if (isProvablyNull(srcAddr)) {
1716    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1717             CRE->getType());
1718    return;
1719  }
1720
1721  QualType srcAddrType =
1722    CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1723
1724  // Create the temporary.
1725  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1726                                           "icr.temp");
1727
1728  // Zero-initialize it if we're not doing a copy-initialization.
1729  bool shouldCopy = CRE->shouldCopy();
1730  if (!shouldCopy) {
1731    llvm::Value *null =
1732      llvm::ConstantPointerNull::get(
1733        cast<llvm::PointerType>(destType->getElementType()));
1734    CGF.Builder.CreateStore(null, temp);
1735  }
1736
1737  llvm::BasicBlock *contBB = 0;
1738
1739  // If the address is *not* known to be non-null, we need to switch.
1740  llvm::Value *finalArgument;
1741
1742  bool provablyNonNull = isProvablyNonNull(srcAddr);
1743  if (provablyNonNull) {
1744    finalArgument = temp;
1745  } else {
1746    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1747
1748    finalArgument = CGF.Builder.CreateSelect(isNull,
1749                                   llvm::ConstantPointerNull::get(destType),
1750                                             temp, "icr.argument");
1751
1752    // If we need to copy, then the load has to be conditional, which
1753    // means we need control flow.
1754    if (shouldCopy) {
1755      contBB = CGF.createBasicBlock("icr.cont");
1756      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1757      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1758      CGF.EmitBlock(copyBB);
1759    }
1760  }
1761
1762  // Perform a copy if necessary.
1763  if (shouldCopy) {
1764    LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1765    RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1766    assert(srcRV.isScalar());
1767
1768    llvm::Value *src = srcRV.getScalarVal();
1769    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1770                                    "icr.cast");
1771
1772    // Use an ordinary store, not a store-to-lvalue.
1773    CGF.Builder.CreateStore(src, temp);
1774  }
1775
1776  // Finish the control flow if we needed it.
1777  if (shouldCopy && !provablyNonNull)
1778    CGF.EmitBlock(contBB);
1779
1780  args.addWriteback(srcAddr, srcAddrType, temp);
1781  args.add(RValue::get(finalArgument), CRE->getType());
1782}
1783
1784void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1785                                  QualType type) {
1786  if (const ObjCIndirectCopyRestoreExpr *CRE
1787        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1788    assert(getContext().getLangOpts().ObjCAutoRefCount);
1789    assert(getContext().hasSameType(E->getType(), type));
1790    return emitWritebackArg(*this, args, CRE);
1791  }
1792
1793  assert(type->isReferenceType() == E->isGLValue() &&
1794         "reference binding to unmaterialized r-value!");
1795
1796  if (E->isGLValue()) {
1797    assert(E->getObjectKind() == OK_Ordinary);
1798    return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1799                    type);
1800  }
1801
1802  if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1803      isa<ImplicitCastExpr>(E) &&
1804      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1805    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1806    assert(L.isSimple());
1807    args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1808    return;
1809  }
1810
1811  args.add(EmitAnyExprToTemp(E), type);
1812}
1813
1814// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1815// optimizer it can aggressively ignore unwind edges.
1816void
1817CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1818  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1819      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1820    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1821                      CGM.getNoObjCARCExceptionsMetadata());
1822}
1823
1824/// Emits a call or invoke instruction to the given function, depending
1825/// on the current state of the EH stack.
1826llvm::CallSite
1827CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1828                                  ArrayRef<llvm::Value *> Args,
1829                                  const Twine &Name) {
1830  llvm::BasicBlock *InvokeDest = getInvokeDest();
1831
1832  llvm::Instruction *Inst;
1833  if (!InvokeDest)
1834    Inst = Builder.CreateCall(Callee, Args, Name);
1835  else {
1836    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1837    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1838    EmitBlock(ContBB);
1839  }
1840
1841  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1842  // optimizer it can aggressively ignore unwind edges.
1843  if (CGM.getLangOpts().ObjCAutoRefCount)
1844    AddObjCARCExceptionMetadata(Inst);
1845
1846  return Inst;
1847}
1848
1849llvm::CallSite
1850CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1851                                  const Twine &Name) {
1852  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1853}
1854
1855static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1856                            llvm::FunctionType *FTy) {
1857  if (ArgNo < FTy->getNumParams())
1858    assert(Elt->getType() == FTy->getParamType(ArgNo));
1859  else
1860    assert(FTy->isVarArg());
1861  ++ArgNo;
1862}
1863
1864void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1865                                       SmallVector<llvm::Value*,16> &Args,
1866                                       llvm::FunctionType *IRFuncTy) {
1867  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1868    unsigned NumElts = AT->getSize().getZExtValue();
1869    QualType EltTy = AT->getElementType();
1870    llvm::Value *Addr = RV.getAggregateAddr();
1871    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1872      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1873      LValue LV = MakeAddrLValue(EltAddr, EltTy);
1874      RValue EltRV;
1875      if (EltTy->isAnyComplexType())
1876        // FIXME: Volatile?
1877        EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1878      else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1879        EltRV = LV.asAggregateRValue();
1880      else
1881        EltRV = EmitLoadOfLValue(LV);
1882      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1883    }
1884  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1885    RecordDecl *RD = RT->getDecl();
1886    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1887    LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1888
1889    if (RD->isUnion()) {
1890      const FieldDecl *LargestFD = 0;
1891      CharUnits UnionSize = CharUnits::Zero();
1892
1893      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1894           i != e; ++i) {
1895        const FieldDecl *FD = *i;
1896        assert(!FD->isBitField() &&
1897               "Cannot expand structure with bit-field members.");
1898        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1899        if (UnionSize < FieldSize) {
1900          UnionSize = FieldSize;
1901          LargestFD = FD;
1902        }
1903      }
1904      if (LargestFD) {
1905        RValue FldRV = EmitRValueForField(LV, LargestFD);
1906        ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1907      }
1908    } else {
1909      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1910           i != e; ++i) {
1911        FieldDecl *FD = *i;
1912
1913        RValue FldRV = EmitRValueForField(LV, FD);
1914        ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1915      }
1916    }
1917  } else if (Ty->isAnyComplexType()) {
1918    ComplexPairTy CV = RV.getComplexVal();
1919    Args.push_back(CV.first);
1920    Args.push_back(CV.second);
1921  } else {
1922    assert(RV.isScalar() &&
1923           "Unexpected non-scalar rvalue during struct expansion.");
1924
1925    // Insert a bitcast as needed.
1926    llvm::Value *V = RV.getScalarVal();
1927    if (Args.size() < IRFuncTy->getNumParams() &&
1928        V->getType() != IRFuncTy->getParamType(Args.size()))
1929      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1930
1931    Args.push_back(V);
1932  }
1933}
1934
1935
1936RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1937                                 llvm::Value *Callee,
1938                                 ReturnValueSlot ReturnValue,
1939                                 const CallArgList &CallArgs,
1940                                 const Decl *TargetDecl,
1941                                 llvm::Instruction **callOrInvoke) {
1942  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1943  SmallVector<llvm::Value*, 16> Args;
1944
1945  // Handle struct-return functions by passing a pointer to the
1946  // location that we would like to return into.
1947  QualType RetTy = CallInfo.getReturnType();
1948  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1949
1950  // IRArgNo - Keep track of the argument number in the callee we're looking at.
1951  unsigned IRArgNo = 0;
1952  llvm::FunctionType *IRFuncTy =
1953    cast<llvm::FunctionType>(
1954                  cast<llvm::PointerType>(Callee->getType())->getElementType());
1955
1956  // If the call returns a temporary with struct return, create a temporary
1957  // alloca to hold the result, unless one is given to us.
1958  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1959    llvm::Value *Value = ReturnValue.getValue();
1960    if (!Value)
1961      Value = CreateMemTemp(RetTy);
1962    Args.push_back(Value);
1963    checkArgMatches(Value, IRArgNo, IRFuncTy);
1964  }
1965
1966  assert(CallInfo.arg_size() == CallArgs.size() &&
1967         "Mismatch between function signature & arguments.");
1968  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1969  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1970       I != E; ++I, ++info_it) {
1971    const ABIArgInfo &ArgInfo = info_it->info;
1972    RValue RV = I->RV;
1973
1974    unsigned TypeAlign =
1975      getContext().getTypeAlignInChars(I->Ty).getQuantity();
1976    switch (ArgInfo.getKind()) {
1977    case ABIArgInfo::Indirect: {
1978      if (RV.isScalar() || RV.isComplex()) {
1979        // Make a temporary alloca to pass the argument.
1980        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1981        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1982          AI->setAlignment(ArgInfo.getIndirectAlign());
1983        Args.push_back(AI);
1984
1985        if (RV.isScalar())
1986          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1987                            TypeAlign, I->Ty);
1988        else
1989          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1990
1991        // Validate argument match.
1992        checkArgMatches(AI, IRArgNo, IRFuncTy);
1993      } else {
1994        // We want to avoid creating an unnecessary temporary+copy here;
1995        // however, we need one in two cases:
1996        // 1. If the argument is not byval, and we are required to copy the
1997        //    source.  (This case doesn't occur on any common architecture.)
1998        // 2. If the argument is byval, RV is not sufficiently aligned, and
1999        //    we cannot force it to be sufficiently aligned.
2000        llvm::Value *Addr = RV.getAggregateAddr();
2001        unsigned Align = ArgInfo.getIndirectAlign();
2002        const llvm::DataLayout *TD = &CGM.getDataLayout();
2003        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2004            (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
2005             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
2006          // Create an aligned temporary, and copy to it.
2007          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2008          if (Align > AI->getAlignment())
2009            AI->setAlignment(Align);
2010          Args.push_back(AI);
2011          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2012
2013          // Validate argument match.
2014          checkArgMatches(AI, IRArgNo, IRFuncTy);
2015        } else {
2016          // Skip the extra memcpy call.
2017          Args.push_back(Addr);
2018
2019          // Validate argument match.
2020          checkArgMatches(Addr, IRArgNo, IRFuncTy);
2021        }
2022      }
2023      break;
2024    }
2025
2026    case ABIArgInfo::Ignore:
2027      break;
2028
2029    case ABIArgInfo::Extend:
2030    case ABIArgInfo::Direct: {
2031      // Insert a padding argument to ensure proper alignment.
2032      if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2033        Args.push_back(llvm::UndefValue::get(PaddingType));
2034        ++IRArgNo;
2035      }
2036
2037      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2038          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2039          ArgInfo.getDirectOffset() == 0) {
2040        llvm::Value *V;
2041        if (RV.isScalar())
2042          V = RV.getScalarVal();
2043        else
2044          V = Builder.CreateLoad(RV.getAggregateAddr());
2045
2046        // If the argument doesn't match, perform a bitcast to coerce it.  This
2047        // can happen due to trivial type mismatches.
2048        if (IRArgNo < IRFuncTy->getNumParams() &&
2049            V->getType() != IRFuncTy->getParamType(IRArgNo))
2050          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2051        Args.push_back(V);
2052
2053        checkArgMatches(V, IRArgNo, IRFuncTy);
2054        break;
2055      }
2056
2057      // FIXME: Avoid the conversion through memory if possible.
2058      llvm::Value *SrcPtr;
2059      if (RV.isScalar()) {
2060        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2061        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
2062      } else if (RV.isComplex()) {
2063        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2064        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2065      } else
2066        SrcPtr = RV.getAggregateAddr();
2067
2068      // If the value is offset in memory, apply the offset now.
2069      if (unsigned Offs = ArgInfo.getDirectOffset()) {
2070        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2071        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2072        SrcPtr = Builder.CreateBitCast(SrcPtr,
2073                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2074
2075      }
2076
2077      // If the coerce-to type is a first class aggregate, we flatten it and
2078      // pass the elements. Either way is semantically identical, but fast-isel
2079      // and the optimizer generally likes scalar values better than FCAs.
2080      if (llvm::StructType *STy =
2081            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2082        llvm::Type *SrcTy =
2083          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2084        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2085        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2086
2087        // If the source type is smaller than the destination type of the
2088        // coerce-to logic, copy the source value into a temp alloca the size
2089        // of the destination type to allow loading all of it. The bits past
2090        // the source value are left undef.
2091        if (SrcSize < DstSize) {
2092          llvm::AllocaInst *TempAlloca
2093            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2094          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2095          SrcPtr = TempAlloca;
2096        } else {
2097          SrcPtr = Builder.CreateBitCast(SrcPtr,
2098                                         llvm::PointerType::getUnqual(STy));
2099        }
2100
2101        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2102          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2103          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2104          // We don't know what we're loading from.
2105          LI->setAlignment(1);
2106          Args.push_back(LI);
2107
2108          // Validate argument match.
2109          checkArgMatches(LI, IRArgNo, IRFuncTy);
2110        }
2111      } else {
2112        // In the simple case, just pass the coerced loaded value.
2113        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2114                                         *this));
2115
2116        // Validate argument match.
2117        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2118      }
2119
2120      break;
2121    }
2122
2123    case ABIArgInfo::Expand:
2124      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2125      IRArgNo = Args.size();
2126      break;
2127    }
2128  }
2129
2130  // If the callee is a bitcast of a function to a varargs pointer to function
2131  // type, check to see if we can remove the bitcast.  This handles some cases
2132  // with unprototyped functions.
2133  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2134    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2135      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2136      llvm::FunctionType *CurFT =
2137        cast<llvm::FunctionType>(CurPT->getElementType());
2138      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2139
2140      if (CE->getOpcode() == llvm::Instruction::BitCast &&
2141          ActualFT->getReturnType() == CurFT->getReturnType() &&
2142          ActualFT->getNumParams() == CurFT->getNumParams() &&
2143          ActualFT->getNumParams() == Args.size() &&
2144          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2145        bool ArgsMatch = true;
2146        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2147          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2148            ArgsMatch = false;
2149            break;
2150          }
2151
2152        // Strip the cast if we can get away with it.  This is a nice cleanup,
2153        // but also allows us to inline the function at -O0 if it is marked
2154        // always_inline.
2155        if (ArgsMatch)
2156          Callee = CalleeF;
2157      }
2158    }
2159
2160  unsigned CallingConv;
2161  CodeGen::AttributeListType AttributeList;
2162  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2163  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList);
2164
2165  llvm::BasicBlock *InvokeDest = 0;
2166  if (!Attrs.getFnAttributes().hasAttribute(llvm::Attributes::NoUnwind))
2167    InvokeDest = getInvokeDest();
2168
2169  llvm::CallSite CS;
2170  if (!InvokeDest) {
2171    CS = Builder.CreateCall(Callee, Args);
2172  } else {
2173    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2174    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2175    EmitBlock(Cont);
2176  }
2177  if (callOrInvoke)
2178    *callOrInvoke = CS.getInstruction();
2179
2180  CS.setAttributes(Attrs);
2181  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2182
2183  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2184  // optimizer it can aggressively ignore unwind edges.
2185  if (CGM.getLangOpts().ObjCAutoRefCount)
2186    AddObjCARCExceptionMetadata(CS.getInstruction());
2187
2188  // If the call doesn't return, finish the basic block and clear the
2189  // insertion point; this allows the rest of IRgen to discard
2190  // unreachable code.
2191  if (CS.doesNotReturn()) {
2192    Builder.CreateUnreachable();
2193    Builder.ClearInsertionPoint();
2194
2195    // FIXME: For now, emit a dummy basic block because expr emitters in
2196    // generally are not ready to handle emitting expressions at unreachable
2197    // points.
2198    EnsureInsertPoint();
2199
2200    // Return a reasonable RValue.
2201    return GetUndefRValue(RetTy);
2202  }
2203
2204  llvm::Instruction *CI = CS.getInstruction();
2205  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2206    CI->setName("call");
2207
2208  // Emit any writebacks immediately.  Arguably this should happen
2209  // after any return-value munging.
2210  if (CallArgs.hasWritebacks())
2211    emitWritebacks(*this, CallArgs);
2212
2213  switch (RetAI.getKind()) {
2214  case ABIArgInfo::Indirect: {
2215    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2216    if (RetTy->isAnyComplexType())
2217      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2218    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2219      return RValue::getAggregate(Args[0]);
2220    return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2221  }
2222
2223  case ABIArgInfo::Ignore:
2224    // If we are ignoring an argument that had a result, make sure to
2225    // construct the appropriate return value for our caller.
2226    return GetUndefRValue(RetTy);
2227
2228  case ABIArgInfo::Extend:
2229  case ABIArgInfo::Direct: {
2230    llvm::Type *RetIRTy = ConvertType(RetTy);
2231    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2232      if (RetTy->isAnyComplexType()) {
2233        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2234        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2235        return RValue::getComplex(std::make_pair(Real, Imag));
2236      }
2237      if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2238        llvm::Value *DestPtr = ReturnValue.getValue();
2239        bool DestIsVolatile = ReturnValue.isVolatile();
2240
2241        if (!DestPtr) {
2242          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2243          DestIsVolatile = false;
2244        }
2245        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2246        return RValue::getAggregate(DestPtr);
2247      }
2248
2249      // If the argument doesn't match, perform a bitcast to coerce it.  This
2250      // can happen due to trivial type mismatches.
2251      llvm::Value *V = CI;
2252      if (V->getType() != RetIRTy)
2253        V = Builder.CreateBitCast(V, RetIRTy);
2254      return RValue::get(V);
2255    }
2256
2257    llvm::Value *DestPtr = ReturnValue.getValue();
2258    bool DestIsVolatile = ReturnValue.isVolatile();
2259
2260    if (!DestPtr) {
2261      DestPtr = CreateMemTemp(RetTy, "coerce");
2262      DestIsVolatile = false;
2263    }
2264
2265    // If the value is offset in memory, apply the offset now.
2266    llvm::Value *StorePtr = DestPtr;
2267    if (unsigned Offs = RetAI.getDirectOffset()) {
2268      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2269      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2270      StorePtr = Builder.CreateBitCast(StorePtr,
2271                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2272    }
2273    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2274
2275    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2276    if (RetTy->isAnyComplexType())
2277      return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2278    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2279      return RValue::getAggregate(DestPtr);
2280    return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2281  }
2282
2283  case ABIArgInfo::Expand:
2284    llvm_unreachable("Invalid ABI kind for return argument");
2285  }
2286
2287  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2288}
2289
2290/* VarArg handling */
2291
2292llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2293  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2294}
2295