CGCall.cpp revision 52fc314e1b5e1baee6305067cf831763d02bd243
1//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "CGCXXABI.h"
17#include "ABIInfo.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Attributes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Target/TargetData.h"
28using namespace clang;
29using namespace CodeGen;
30
31/***/
32
33static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
34  switch (CC) {
35  default: return llvm::CallingConv::C;
36  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
37  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
38  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
39  // TODO: add support for CC_X86Pascal to llvm
40  }
41}
42
43/// Derives the 'this' type for codegen purposes, i.e. ignoring method
44/// qualification.
45/// FIXME: address space qualification?
46static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
47  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
48  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
49}
50
51/// Returns the canonical formal type of the given C++ method.
52static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
53  return MD->getType()->getCanonicalTypeUnqualified()
54           .getAs<FunctionProtoType>();
55}
56
57/// Returns the "extra-canonicalized" return type, which discards
58/// qualifiers on the return type.  Codegen doesn't care about them,
59/// and it makes ABI code a little easier to be able to assume that
60/// all parameter and return types are top-level unqualified.
61static CanQualType GetReturnType(QualType RetTy) {
62  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
63}
64
65const CGFunctionInfo &
66CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP,
67                              bool IsRecursive) {
68  return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
69                         llvm::SmallVector<CanQualType, 16>(),
70                         FTNP->getExtInfo(), IsRecursive);
71}
72
73/// \param Args - contains any initial parameters besides those
74///   in the formal type
75static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
76                                  llvm::SmallVectorImpl<CanQualType> &ArgTys,
77                                             CanQual<FunctionProtoType> FTP,
78                                             bool IsRecursive = false) {
79  // FIXME: Kill copy.
80  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
81    ArgTys.push_back(FTP->getArgType(i));
82  CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
83  return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo(), IsRecursive);
84}
85
86const CGFunctionInfo &
87CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP,
88                              bool IsRecursive) {
89  llvm::SmallVector<CanQualType, 16> ArgTys;
90  return ::getFunctionInfo(*this, ArgTys, FTP, IsRecursive);
91}
92
93static CallingConv getCallingConventionForDecl(const Decl *D) {
94  // Set the appropriate calling convention for the Function.
95  if (D->hasAttr<StdCallAttr>())
96    return CC_X86StdCall;
97
98  if (D->hasAttr<FastCallAttr>())
99    return CC_X86FastCall;
100
101  if (D->hasAttr<ThisCallAttr>())
102    return CC_X86ThisCall;
103
104  if (D->hasAttr<PascalAttr>())
105    return CC_X86Pascal;
106
107  return CC_C;
108}
109
110const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
111                                                 const FunctionProtoType *FTP) {
112  llvm::SmallVector<CanQualType, 16> ArgTys;
113
114  // Add the 'this' pointer.
115  ArgTys.push_back(GetThisType(Context, RD));
116
117  return ::getFunctionInfo(*this, ArgTys,
118              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
119}
120
121const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
122  llvm::SmallVector<CanQualType, 16> ArgTys;
123
124  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
125  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
126
127  // Add the 'this' pointer unless this is a static method.
128  if (MD->isInstance())
129    ArgTys.push_back(GetThisType(Context, MD->getParent()));
130
131  return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
132}
133
134const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
135                                                    CXXCtorType Type) {
136  llvm::SmallVector<CanQualType, 16> ArgTys;
137  ArgTys.push_back(GetThisType(Context, D->getParent()));
138  CanQualType ResTy = Context.VoidTy;
139
140  TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
141
142  CanQual<FunctionProtoType> FTP = GetFormalType(D);
143
144  // Add the formal parameters.
145  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
146    ArgTys.push_back(FTP->getArgType(i));
147
148  return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
149}
150
151const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
152                                                    CXXDtorType Type) {
153  llvm::SmallVector<CanQualType, 2> ArgTys;
154  ArgTys.push_back(GetThisType(Context, D->getParent()));
155  CanQualType ResTy = Context.VoidTy;
156
157  TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
158
159  CanQual<FunctionProtoType> FTP = GetFormalType(D);
160  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
161
162  return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
163}
164
165const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
166  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
167    if (MD->isInstance())
168      return getFunctionInfo(MD);
169
170  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
171  assert(isa<FunctionType>(FTy));
172  if (isa<FunctionNoProtoType>(FTy))
173    return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
174  assert(isa<FunctionProtoType>(FTy));
175  return getFunctionInfo(FTy.getAs<FunctionProtoType>());
176}
177
178const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
179  llvm::SmallVector<CanQualType, 16> ArgTys;
180  ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
181  ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
182  // FIXME: Kill copy?
183  for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
184         e = MD->param_end(); i != e; ++i) {
185    ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
186  }
187  return getFunctionInfo(GetReturnType(MD->getResultType()),
188                         ArgTys,
189                         FunctionType::ExtInfo(
190                             /*NoReturn*/ false,
191                             /*RegParm*/ 0,
192                             getCallingConventionForDecl(MD)));
193}
194
195const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
196  // FIXME: Do we need to handle ObjCMethodDecl?
197  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
198
199  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
200    return getFunctionInfo(CD, GD.getCtorType());
201
202  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
203    return getFunctionInfo(DD, GD.getDtorType());
204
205  return getFunctionInfo(FD);
206}
207
208const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
209                                                    const CallArgList &Args,
210                                            const FunctionType::ExtInfo &Info) {
211  // FIXME: Kill copy.
212  llvm::SmallVector<CanQualType, 16> ArgTys;
213  for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
214       i != e; ++i)
215    ArgTys.push_back(Context.getCanonicalParamType(i->second));
216  return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
217}
218
219const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
220                                                    const FunctionArgList &Args,
221                                            const FunctionType::ExtInfo &Info) {
222  // FIXME: Kill copy.
223  llvm::SmallVector<CanQualType, 16> ArgTys;
224  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
225       i != e; ++i)
226    ArgTys.push_back(Context.getCanonicalParamType(i->second));
227  return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
228}
229
230const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
231                           const llvm::SmallVectorImpl<CanQualType> &ArgTys,
232                                            const FunctionType::ExtInfo &Info,
233                                                    bool IsRecursive) {
234#ifndef NDEBUG
235  for (llvm::SmallVectorImpl<CanQualType>::const_iterator
236         I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
237    assert(I->isCanonicalAsParam());
238#endif
239
240  unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
241
242  // Lookup or create unique function info.
243  llvm::FoldingSetNodeID ID;
244  CGFunctionInfo::Profile(ID, Info, ResTy,
245                          ArgTys.begin(), ArgTys.end());
246
247  void *InsertPos = 0;
248  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
249  if (FI)
250    return *FI;
251
252  // Construct the function info.
253  FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getRegParm(), ResTy,
254                          ArgTys.data(), ArgTys.size());
255  FunctionInfos.InsertNode(FI, InsertPos);
256
257  // Compute ABI information.
258  getABIInfo().computeInfo(*FI);
259
260  // Loop over all of the computed argument and return value info.  If any of
261  // them are direct or extend without a specified coerce type, specify the
262  // default now.
263  ABIArgInfo &RetInfo = FI->getReturnInfo();
264  if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
265    RetInfo.setCoerceToType(ConvertTypeRecursive(FI->getReturnType()));
266
267  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
268       I != E; ++I)
269    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
270      I->info.setCoerceToType(ConvertTypeRecursive(I->type));
271
272  // If this is a top-level call and ConvertTypeRecursive hit unresolved pointer
273  // types, resolve them now.  These pointers may point to this function, which
274  // we *just* filled in the FunctionInfo for.
275  if (!IsRecursive && !PointersToResolve.empty())
276    HandleLateResolvedPointers();
277
278  return *FI;
279}
280
281CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
282                               bool _NoReturn, unsigned _RegParm,
283                               CanQualType ResTy,
284                               const CanQualType *ArgTys,
285                               unsigned NumArgTys)
286  : CallingConvention(_CallingConvention),
287    EffectiveCallingConvention(_CallingConvention),
288    NoReturn(_NoReturn), RegParm(_RegParm)
289{
290  NumArgs = NumArgTys;
291
292  // FIXME: Coallocate with the CGFunctionInfo object.
293  Args = new ArgInfo[1 + NumArgTys];
294  Args[0].type = ResTy;
295  for (unsigned i = 0; i != NumArgTys; ++i)
296    Args[1 + i].type = ArgTys[i];
297}
298
299/***/
300
301void CodeGenTypes::GetExpandedTypes(QualType Ty,
302                                    std::vector<const llvm::Type*> &ArgTys,
303                                    bool IsRecursive) {
304  const RecordType *RT = Ty->getAsStructureType();
305  assert(RT && "Can only expand structure types.");
306  const RecordDecl *RD = RT->getDecl();
307  assert(!RD->hasFlexibleArrayMember() &&
308         "Cannot expand structure with flexible array.");
309
310  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
311         i != e; ++i) {
312    const FieldDecl *FD = *i;
313    assert(!FD->isBitField() &&
314           "Cannot expand structure with bit-field members.");
315
316    QualType FT = FD->getType();
317    if (CodeGenFunction::hasAggregateLLVMType(FT))
318      GetExpandedTypes(FT, ArgTys, IsRecursive);
319    else
320      ArgTys.push_back(ConvertType(FT, IsRecursive));
321  }
322}
323
324llvm::Function::arg_iterator
325CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
326                                    llvm::Function::arg_iterator AI) {
327  const RecordType *RT = Ty->getAsStructureType();
328  assert(RT && "Can only expand structure types.");
329
330  RecordDecl *RD = RT->getDecl();
331  assert(LV.isSimple() &&
332         "Unexpected non-simple lvalue during struct expansion.");
333  llvm::Value *Addr = LV.getAddress();
334  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
335         i != e; ++i) {
336    FieldDecl *FD = *i;
337    QualType FT = FD->getType();
338
339    // FIXME: What are the right qualifiers here?
340    LValue LV = EmitLValueForField(Addr, FD, 0);
341    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
342      AI = ExpandTypeFromArgs(FT, LV, AI);
343    } else {
344      EmitStoreThroughLValue(RValue::get(AI), LV, FT);
345      ++AI;
346    }
347  }
348
349  return AI;
350}
351
352void
353CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
354                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
355  const RecordType *RT = Ty->getAsStructureType();
356  assert(RT && "Can only expand structure types.");
357
358  RecordDecl *RD = RT->getDecl();
359  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
360  llvm::Value *Addr = RV.getAggregateAddr();
361  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
362         i != e; ++i) {
363    FieldDecl *FD = *i;
364    QualType FT = FD->getType();
365
366    // FIXME: What are the right qualifiers here?
367    LValue LV = EmitLValueForField(Addr, FD, 0);
368    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
369      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
370    } else {
371      RValue RV = EmitLoadOfLValue(LV, FT);
372      assert(RV.isScalar() &&
373             "Unexpected non-scalar rvalue during struct expansion.");
374      Args.push_back(RV.getScalarVal());
375    }
376  }
377}
378
379/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
380/// accessing some number of bytes out of it, try to gep into the struct to get
381/// at its inner goodness.  Dive as deep as possible without entering an element
382/// with an in-memory size smaller than DstSize.
383static llvm::Value *
384EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
385                                   const llvm::StructType *SrcSTy,
386                                   uint64_t DstSize, CodeGenFunction &CGF) {
387  // We can't dive into a zero-element struct.
388  if (SrcSTy->getNumElements() == 0) return SrcPtr;
389
390  const llvm::Type *FirstElt = SrcSTy->getElementType(0);
391
392  // If the first elt is at least as large as what we're looking for, or if the
393  // first element is the same size as the whole struct, we can enter it.
394  uint64_t FirstEltSize =
395    CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
396  if (FirstEltSize < DstSize &&
397      FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
398    return SrcPtr;
399
400  // GEP into the first element.
401  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
402
403  // If the first element is a struct, recurse.
404  const llvm::Type *SrcTy =
405    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
406  if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
407    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
408
409  return SrcPtr;
410}
411
412/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
413/// are either integers or pointers.  This does a truncation of the value if it
414/// is too large or a zero extension if it is too small.
415static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
416                                             const llvm::Type *Ty,
417                                             CodeGenFunction &CGF) {
418  if (Val->getType() == Ty)
419    return Val;
420
421  if (isa<llvm::PointerType>(Val->getType())) {
422    // If this is Pointer->Pointer avoid conversion to and from int.
423    if (isa<llvm::PointerType>(Ty))
424      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
425
426    // Convert the pointer to an integer so we can play with its width.
427    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
428  }
429
430  const llvm::Type *DestIntTy = Ty;
431  if (isa<llvm::PointerType>(DestIntTy))
432    DestIntTy = CGF.IntPtrTy;
433
434  if (Val->getType() != DestIntTy)
435    Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
436
437  if (isa<llvm::PointerType>(Ty))
438    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
439  return Val;
440}
441
442
443
444/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
445/// a pointer to an object of type \arg Ty.
446///
447/// This safely handles the case when the src type is smaller than the
448/// destination type; in this situation the values of bits which not
449/// present in the src are undefined.
450static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
451                                      const llvm::Type *Ty,
452                                      CodeGenFunction &CGF) {
453  const llvm::Type *SrcTy =
454    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
455
456  // If SrcTy and Ty are the same, just do a load.
457  if (SrcTy == Ty)
458    return CGF.Builder.CreateLoad(SrcPtr);
459
460  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
461
462  if (const llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
463    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
464    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
465  }
466
467  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
468
469  // If the source and destination are integer or pointer types, just do an
470  // extension or truncation to the desired type.
471  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
472      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
473    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
474    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
475  }
476
477  // If load is legal, just bitcast the src pointer.
478  if (SrcSize >= DstSize) {
479    // Generally SrcSize is never greater than DstSize, since this means we are
480    // losing bits. However, this can happen in cases where the structure has
481    // additional padding, for example due to a user specified alignment.
482    //
483    // FIXME: Assert that we aren't truncating non-padding bits when have access
484    // to that information.
485    llvm::Value *Casted =
486      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
487    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
488    // FIXME: Use better alignment / avoid requiring aligned load.
489    Load->setAlignment(1);
490    return Load;
491  }
492
493  // Otherwise do coercion through memory. This is stupid, but
494  // simple.
495  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
496  llvm::Value *Casted =
497    CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
498  llvm::StoreInst *Store =
499    CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
500  // FIXME: Use better alignment / avoid requiring aligned store.
501  Store->setAlignment(1);
502  return CGF.Builder.CreateLoad(Tmp);
503}
504
505/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
506/// where the source and destination may have different types.
507///
508/// This safely handles the case when the src type is larger than the
509/// destination type; the upper bits of the src will be lost.
510static void CreateCoercedStore(llvm::Value *Src,
511                               llvm::Value *DstPtr,
512                               bool DstIsVolatile,
513                               CodeGenFunction &CGF) {
514  const llvm::Type *SrcTy = Src->getType();
515  const llvm::Type *DstTy =
516    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
517  if (SrcTy == DstTy) {
518    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
519    return;
520  }
521
522  uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
523
524  if (const llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
525    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
526    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
527  }
528
529  // If the source and destination are integer or pointer types, just do an
530  // extension or truncation to the desired type.
531  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
532      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
533    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
534    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
535    return;
536  }
537
538  uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
539
540  // If store is legal, just bitcast the src pointer.
541  if (SrcSize <= DstSize) {
542    llvm::Value *Casted =
543      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
544    // FIXME: Use better alignment / avoid requiring aligned store.
545    CGF.Builder.CreateStore(Src, Casted, DstIsVolatile)->setAlignment(1);
546  } else {
547    // Otherwise do coercion through memory. This is stupid, but
548    // simple.
549
550    // Generally SrcSize is never greater than DstSize, since this means we are
551    // losing bits. However, this can happen in cases where the structure has
552    // additional padding, for example due to a user specified alignment.
553    //
554    // FIXME: Assert that we aren't truncating non-padding bits when have access
555    // to that information.
556    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
557    CGF.Builder.CreateStore(Src, Tmp);
558    llvm::Value *Casted =
559      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
560    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
561    // FIXME: Use better alignment / avoid requiring aligned load.
562    Load->setAlignment(1);
563    CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
564  }
565}
566
567/***/
568
569bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
570  return FI.getReturnInfo().isIndirect();
571}
572
573bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
574  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
575    switch (BT->getKind()) {
576    default:
577      return false;
578    case BuiltinType::Float:
579      return getContext().Target.useObjCFPRetForRealType(TargetInfo::Float);
580    case BuiltinType::Double:
581      return getContext().Target.useObjCFPRetForRealType(TargetInfo::Double);
582    case BuiltinType::LongDouble:
583      return getContext().Target.useObjCFPRetForRealType(
584        TargetInfo::LongDouble);
585    }
586  }
587
588  return false;
589}
590
591const llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
592  const CGFunctionInfo &FI = getFunctionInfo(GD);
593
594  // For definition purposes, don't consider a K&R function variadic.
595  bool Variadic = false;
596  if (const FunctionProtoType *FPT =
597        cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
598    Variadic = FPT->isVariadic();
599
600  return GetFunctionType(FI, Variadic, false);
601}
602
603const llvm::FunctionType *
604CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic,
605                              bool IsRecursive) {
606  std::vector<const llvm::Type*> ArgTys;
607
608  const llvm::Type *ResultType = 0;
609
610  QualType RetTy = FI.getReturnType();
611  const ABIArgInfo &RetAI = FI.getReturnInfo();
612  switch (RetAI.getKind()) {
613  case ABIArgInfo::Expand:
614    assert(0 && "Invalid ABI kind for return argument");
615
616  case ABIArgInfo::Extend:
617  case ABIArgInfo::Direct:
618    ResultType = RetAI.getCoerceToType();
619    break;
620
621  case ABIArgInfo::Indirect: {
622    assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
623    ResultType = llvm::Type::getVoidTy(getLLVMContext());
624    const llvm::Type *STy = ConvertType(RetTy, IsRecursive);
625    ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
626    break;
627  }
628
629  case ABIArgInfo::Ignore:
630    ResultType = llvm::Type::getVoidTy(getLLVMContext());
631    break;
632  }
633
634  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
635         ie = FI.arg_end(); it != ie; ++it) {
636    const ABIArgInfo &AI = it->info;
637
638    switch (AI.getKind()) {
639    case ABIArgInfo::Ignore:
640      break;
641
642    case ABIArgInfo::Indirect: {
643      // indirect arguments are always on the stack, which is addr space #0.
644      const llvm::Type *LTy = ConvertTypeForMem(it->type, IsRecursive);
645      ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
646      break;
647    }
648
649    case ABIArgInfo::Extend:
650    case ABIArgInfo::Direct: {
651      // If the coerce-to type is a first class aggregate, flatten it.  Either
652      // way is semantically identical, but fast-isel and the optimizer
653      // generally likes scalar values better than FCAs.
654      const llvm::Type *ArgTy = AI.getCoerceToType();
655      if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgTy)) {
656        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
657          ArgTys.push_back(STy->getElementType(i));
658      } else {
659        ArgTys.push_back(ArgTy);
660      }
661      break;
662    }
663
664    case ABIArgInfo::Expand:
665      GetExpandedTypes(it->type, ArgTys, IsRecursive);
666      break;
667    }
668  }
669
670  return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
671}
672
673const llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
674  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
675  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
676
677  if (!VerifyFuncTypeComplete(FPT)) {
678    const CGFunctionInfo *Info;
679    if (isa<CXXDestructorDecl>(MD))
680      Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
681    else
682      Info = &getFunctionInfo(MD);
683    return GetFunctionType(*Info, FPT->isVariadic(), false);
684  }
685
686  return llvm::OpaqueType::get(getLLVMContext());
687}
688
689void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
690                                           const Decl *TargetDecl,
691                                           AttributeListType &PAL,
692                                           unsigned &CallingConv) {
693  unsigned FuncAttrs = 0;
694  unsigned RetAttrs = 0;
695
696  CallingConv = FI.getEffectiveCallingConvention();
697
698  if (FI.isNoReturn())
699    FuncAttrs |= llvm::Attribute::NoReturn;
700
701  // FIXME: handle sseregparm someday...
702  if (TargetDecl) {
703    if (TargetDecl->hasAttr<NoThrowAttr>())
704      FuncAttrs |= llvm::Attribute::NoUnwind;
705    else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
706      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
707      if (FPT && FPT->hasEmptyExceptionSpec())
708        FuncAttrs |= llvm::Attribute::NoUnwind;
709    }
710
711    if (TargetDecl->hasAttr<NoReturnAttr>())
712      FuncAttrs |= llvm::Attribute::NoReturn;
713    if (TargetDecl->hasAttr<ConstAttr>())
714      FuncAttrs |= llvm::Attribute::ReadNone;
715    else if (TargetDecl->hasAttr<PureAttr>())
716      FuncAttrs |= llvm::Attribute::ReadOnly;
717    if (TargetDecl->hasAttr<MallocAttr>())
718      RetAttrs |= llvm::Attribute::NoAlias;
719  }
720
721  if (CodeGenOpts.OptimizeSize)
722    FuncAttrs |= llvm::Attribute::OptimizeForSize;
723  if (CodeGenOpts.DisableRedZone)
724    FuncAttrs |= llvm::Attribute::NoRedZone;
725  if (CodeGenOpts.NoImplicitFloat)
726    FuncAttrs |= llvm::Attribute::NoImplicitFloat;
727
728  QualType RetTy = FI.getReturnType();
729  unsigned Index = 1;
730  const ABIArgInfo &RetAI = FI.getReturnInfo();
731  switch (RetAI.getKind()) {
732  case ABIArgInfo::Extend:
733   if (RetTy->hasSignedIntegerRepresentation())
734     RetAttrs |= llvm::Attribute::SExt;
735   else if (RetTy->hasUnsignedIntegerRepresentation())
736     RetAttrs |= llvm::Attribute::ZExt;
737    break;
738  case ABIArgInfo::Direct:
739  case ABIArgInfo::Ignore:
740    break;
741
742  case ABIArgInfo::Indirect:
743    PAL.push_back(llvm::AttributeWithIndex::get(Index,
744                                                llvm::Attribute::StructRet));
745    ++Index;
746    // sret disables readnone and readonly
747    FuncAttrs &= ~(llvm::Attribute::ReadOnly |
748                   llvm::Attribute::ReadNone);
749    break;
750
751  case ABIArgInfo::Expand:
752    assert(0 && "Invalid ABI kind for return argument");
753  }
754
755  if (RetAttrs)
756    PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
757
758  // FIXME: we need to honor command line settings also.
759  // FIXME: RegParm should be reduced in case of nested functions and/or global
760  // register variable.
761  signed RegParm = FI.getRegParm();
762
763  unsigned PointerWidth = getContext().Target.getPointerWidth(0);
764  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
765         ie = FI.arg_end(); it != ie; ++it) {
766    QualType ParamType = it->type;
767    const ABIArgInfo &AI = it->info;
768    unsigned Attributes = 0;
769
770    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
771    // have the corresponding parameter variable.  It doesn't make
772    // sense to do it here because parameters are so fucked up.
773    switch (AI.getKind()) {
774    case ABIArgInfo::Extend:
775      if (ParamType->isSignedIntegerType())
776        Attributes |= llvm::Attribute::SExt;
777      else if (ParamType->isUnsignedIntegerType())
778        Attributes |= llvm::Attribute::ZExt;
779      // FALL THROUGH
780    case ABIArgInfo::Direct:
781      if (RegParm > 0 &&
782          (ParamType->isIntegerType() || ParamType->isPointerType())) {
783        RegParm -=
784        (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
785        if (RegParm >= 0)
786          Attributes |= llvm::Attribute::InReg;
787      }
788      // FIXME: handle sseregparm someday...
789
790      if (const llvm::StructType *STy =
791            dyn_cast<llvm::StructType>(AI.getCoerceToType()))
792        Index += STy->getNumElements()-1;  // 1 will be added below.
793      break;
794
795    case ABIArgInfo::Indirect:
796      if (AI.getIndirectByVal())
797        Attributes |= llvm::Attribute::ByVal;
798
799      Attributes |=
800        llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
801      // byval disables readnone and readonly.
802      FuncAttrs &= ~(llvm::Attribute::ReadOnly |
803                     llvm::Attribute::ReadNone);
804      break;
805
806    case ABIArgInfo::Ignore:
807      // Skip increment, no matching LLVM parameter.
808      continue;
809
810    case ABIArgInfo::Expand: {
811      std::vector<const llvm::Type*> Tys;
812      // FIXME: This is rather inefficient. Do we ever actually need to do
813      // anything here? The result should be just reconstructed on the other
814      // side, so extension should be a non-issue.
815      getTypes().GetExpandedTypes(ParamType, Tys, false);
816      Index += Tys.size();
817      continue;
818    }
819    }
820
821    if (Attributes)
822      PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
823    ++Index;
824  }
825  if (FuncAttrs)
826    PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
827}
828
829void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
830                                         llvm::Function *Fn,
831                                         const FunctionArgList &Args) {
832  // If this is an implicit-return-zero function, go ahead and
833  // initialize the return value.  TODO: it might be nice to have
834  // a more general mechanism for this that didn't require synthesized
835  // return statements.
836  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
837    if (FD->hasImplicitReturnZero()) {
838      QualType RetTy = FD->getResultType().getUnqualifiedType();
839      const llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
840      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
841      Builder.CreateStore(Zero, ReturnValue);
842    }
843  }
844
845  // FIXME: We no longer need the types from FunctionArgList; lift up and
846  // simplify.
847
848  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
849  llvm::Function::arg_iterator AI = Fn->arg_begin();
850
851  // Name the struct return argument.
852  if (CGM.ReturnTypeUsesSRet(FI)) {
853    AI->setName("agg.result");
854    ++AI;
855  }
856
857  assert(FI.arg_size() == Args.size() &&
858         "Mismatch between function signature & arguments.");
859  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
860  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
861       i != e; ++i, ++info_it) {
862    const VarDecl *Arg = i->first;
863    QualType Ty = info_it->type;
864    const ABIArgInfo &ArgI = info_it->info;
865
866    switch (ArgI.getKind()) {
867    case ABIArgInfo::Indirect: {
868      llvm::Value *V = AI;
869      if (hasAggregateLLVMType(Ty)) {
870        // Do nothing, aggregates and complex variables are accessed by
871        // reference.
872      } else {
873        // Load scalar value from indirect argument.
874        unsigned Alignment = getContext().getTypeAlignInChars(Ty).getQuantity();
875        V = EmitLoadOfScalar(V, false, Alignment, Ty);
876        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
877          // This must be a promotion, for something like
878          // "void a(x) short x; {..."
879          V = EmitScalarConversion(V, Ty, Arg->getType());
880        }
881      }
882      EmitParmDecl(*Arg, V);
883      break;
884    }
885
886    case ABIArgInfo::Extend:
887    case ABIArgInfo::Direct: {
888      // If we have the trivial case, handle it with no muss and fuss.
889      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
890          ArgI.getCoerceToType() == ConvertType(Ty) &&
891          ArgI.getDirectOffset() == 0) {
892        assert(AI != Fn->arg_end() && "Argument mismatch!");
893        llvm::Value *V = AI;
894
895        if (Arg->getType().isRestrictQualified())
896          AI->addAttr(llvm::Attribute::NoAlias);
897
898        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
899          // This must be a promotion, for something like
900          // "void a(x) short x; {..."
901          V = EmitScalarConversion(V, Ty, Arg->getType());
902        }
903        EmitParmDecl(*Arg, V);
904        break;
905      }
906
907      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
908
909      // The alignment we need to use is the max of the requested alignment for
910      // the argument plus the alignment required by our access code below.
911      unsigned AlignmentToUse =
912        CGF.CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
913      AlignmentToUse = std::max(AlignmentToUse,
914                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
915
916      Alloca->setAlignment(AlignmentToUse);
917      llvm::Value *V = Alloca;
918      llvm::Value *Ptr = V;    // Pointer to store into.
919
920      // If the value is offset in memory, apply the offset now.
921      if (unsigned Offs = ArgI.getDirectOffset()) {
922        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
923        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
924        Ptr = Builder.CreateBitCast(Ptr,
925                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
926      }
927
928      // If the coerce-to type is a first class aggregate, we flatten it and
929      // pass the elements. Either way is semantically identical, but fast-isel
930      // and the optimizer generally likes scalar values better than FCAs.
931      if (const llvm::StructType *STy =
932            dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
933        Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
934
935        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
936          assert(AI != Fn->arg_end() && "Argument mismatch!");
937          AI->setName(Arg->getName() + ".coerce" + llvm::Twine(i));
938          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
939          Builder.CreateStore(AI++, EltPtr);
940        }
941      } else {
942        // Simple case, just do a coerced store of the argument into the alloca.
943        assert(AI != Fn->arg_end() && "Argument mismatch!");
944        AI->setName(Arg->getName() + ".coerce");
945        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
946      }
947
948
949      // Match to what EmitParmDecl is expecting for this type.
950      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
951        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
952        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
953          // This must be a promotion, for something like
954          // "void a(x) short x; {..."
955          V = EmitScalarConversion(V, Ty, Arg->getType());
956        }
957      }
958      EmitParmDecl(*Arg, V);
959      continue;  // Skip ++AI increment, already done.
960    }
961
962    case ABIArgInfo::Expand: {
963      // If this structure was expanded into multiple arguments then
964      // we need to create a temporary and reconstruct it from the
965      // arguments.
966      llvm::Value *Temp = CreateMemTemp(Ty, Arg->getName() + ".addr");
967      llvm::Function::arg_iterator End =
968        ExpandTypeFromArgs(Ty, MakeAddrLValue(Temp, Ty), AI);
969      EmitParmDecl(*Arg, Temp);
970
971      // Name the arguments used in expansion and increment AI.
972      unsigned Index = 0;
973      for (; AI != End; ++AI, ++Index)
974        AI->setName(Arg->getName() + "." + llvm::Twine(Index));
975      continue;
976    }
977
978    case ABIArgInfo::Ignore:
979      // Initialize the local variable appropriately.
980      if (hasAggregateLLVMType(Ty))
981        EmitParmDecl(*Arg, CreateMemTemp(Ty));
982      else
983        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
984
985      // Skip increment, no matching LLVM parameter.
986      continue;
987    }
988
989    ++AI;
990  }
991  assert(AI == Fn->arg_end() && "Argument mismatch!");
992}
993
994void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
995  // Functions with no result always return void.
996  if (ReturnValue == 0) {
997    Builder.CreateRetVoid();
998    return;
999  }
1000
1001  llvm::DebugLoc RetDbgLoc;
1002  llvm::Value *RV = 0;
1003  QualType RetTy = FI.getReturnType();
1004  const ABIArgInfo &RetAI = FI.getReturnInfo();
1005
1006  switch (RetAI.getKind()) {
1007  case ABIArgInfo::Indirect: {
1008    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1009    if (RetTy->isAnyComplexType()) {
1010      ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1011      StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1012    } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1013      // Do nothing; aggregrates get evaluated directly into the destination.
1014    } else {
1015      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1016                        false, Alignment, RetTy);
1017    }
1018    break;
1019  }
1020
1021  case ABIArgInfo::Extend:
1022  case ABIArgInfo::Direct:
1023    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1024        RetAI.getDirectOffset() == 0) {
1025      // The internal return value temp always will have pointer-to-return-type
1026      // type, just do a load.
1027
1028      // If the instruction right before the insertion point is a store to the
1029      // return value, we can elide the load, zap the store, and usually zap the
1030      // alloca.
1031      llvm::BasicBlock *InsertBB = Builder.GetInsertBlock();
1032      llvm::StoreInst *SI = 0;
1033      if (InsertBB->empty() ||
1034          !(SI = dyn_cast<llvm::StoreInst>(&InsertBB->back())) ||
1035          SI->getPointerOperand() != ReturnValue || SI->isVolatile()) {
1036        RV = Builder.CreateLoad(ReturnValue);
1037      } else {
1038        // Get the stored value and nuke the now-dead store.
1039        RetDbgLoc = SI->getDebugLoc();
1040        RV = SI->getValueOperand();
1041        SI->eraseFromParent();
1042
1043        // If that was the only use of the return value, nuke it as well now.
1044        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1045          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1046          ReturnValue = 0;
1047        }
1048      }
1049    } else {
1050      llvm::Value *V = ReturnValue;
1051      // If the value is offset in memory, apply the offset now.
1052      if (unsigned Offs = RetAI.getDirectOffset()) {
1053        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1054        V = Builder.CreateConstGEP1_32(V, Offs);
1055        V = Builder.CreateBitCast(V,
1056                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1057      }
1058
1059      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1060    }
1061    break;
1062
1063  case ABIArgInfo::Ignore:
1064    break;
1065
1066  case ABIArgInfo::Expand:
1067    assert(0 && "Invalid ABI kind for return argument");
1068  }
1069
1070  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1071  if (!RetDbgLoc.isUnknown())
1072    Ret->setDebugLoc(RetDbgLoc);
1073}
1074
1075RValue CodeGenFunction::EmitDelegateCallArg(const VarDecl *Param) {
1076  // StartFunction converted the ABI-lowered parameter(s) into a
1077  // local alloca.  We need to turn that into an r-value suitable
1078  // for EmitCall.
1079  llvm::Value *Local = GetAddrOfLocalVar(Param);
1080
1081  QualType ArgType = Param->getType();
1082
1083  // For the most part, we just need to load the alloca, except:
1084  // 1) aggregate r-values are actually pointers to temporaries, and
1085  // 2) references to aggregates are pointers directly to the aggregate.
1086  // I don't know why references to non-aggregates are different here.
1087  if (const ReferenceType *RefType = ArgType->getAs<ReferenceType>()) {
1088    if (hasAggregateLLVMType(RefType->getPointeeType()))
1089      return RValue::getAggregate(Local);
1090
1091    // Locals which are references to scalars are represented
1092    // with allocas holding the pointer.
1093    return RValue::get(Builder.CreateLoad(Local));
1094  }
1095
1096  if (ArgType->isAnyComplexType())
1097    return RValue::getComplex(LoadComplexFromAddr(Local, /*volatile*/ false));
1098
1099  if (hasAggregateLLVMType(ArgType))
1100    return RValue::getAggregate(Local);
1101
1102  unsigned Alignment = getContext().getDeclAlign(Param).getQuantity();
1103  return RValue::get(EmitLoadOfScalar(Local, false, Alignment, ArgType));
1104}
1105
1106RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
1107  if (ArgType->isReferenceType())
1108    return EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
1109
1110  return EmitAnyExprToTemp(E);
1111}
1112
1113/// Emits a call or invoke instruction to the given function, depending
1114/// on the current state of the EH stack.
1115llvm::CallSite
1116CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1117                                  llvm::Value * const *ArgBegin,
1118                                  llvm::Value * const *ArgEnd,
1119                                  const llvm::Twine &Name) {
1120  llvm::BasicBlock *InvokeDest = getInvokeDest();
1121  if (!InvokeDest)
1122    return Builder.CreateCall(Callee, ArgBegin, ArgEnd, Name);
1123
1124  llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1125  llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
1126                                                  ArgBegin, ArgEnd, Name);
1127  EmitBlock(ContBB);
1128  return Invoke;
1129}
1130
1131RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1132                                 llvm::Value *Callee,
1133                                 ReturnValueSlot ReturnValue,
1134                                 const CallArgList &CallArgs,
1135                                 const Decl *TargetDecl,
1136                                 llvm::Instruction **callOrInvoke) {
1137  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1138  llvm::SmallVector<llvm::Value*, 16> Args;
1139
1140  // Handle struct-return functions by passing a pointer to the
1141  // location that we would like to return into.
1142  QualType RetTy = CallInfo.getReturnType();
1143  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1144
1145
1146  // If the call returns a temporary with struct return, create a temporary
1147  // alloca to hold the result, unless one is given to us.
1148  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1149    llvm::Value *Value = ReturnValue.getValue();
1150    if (!Value)
1151      Value = CreateMemTemp(RetTy);
1152    Args.push_back(Value);
1153  }
1154
1155  assert(CallInfo.arg_size() == CallArgs.size() &&
1156         "Mismatch between function signature & arguments.");
1157  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1158  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1159       I != E; ++I, ++info_it) {
1160    const ABIArgInfo &ArgInfo = info_it->info;
1161    RValue RV = I->first;
1162
1163    unsigned Alignment =
1164      getContext().getTypeAlignInChars(I->second).getQuantity();
1165    switch (ArgInfo.getKind()) {
1166    case ABIArgInfo::Indirect: {
1167      if (RV.isScalar() || RV.isComplex()) {
1168        // Make a temporary alloca to pass the argument.
1169        Args.push_back(CreateMemTemp(I->second));
1170        if (RV.isScalar())
1171          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1172                            Alignment, I->second);
1173        else
1174          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1175      } else {
1176        Args.push_back(RV.getAggregateAddr());
1177      }
1178      break;
1179    }
1180
1181    case ABIArgInfo::Ignore:
1182      break;
1183
1184    case ABIArgInfo::Extend:
1185    case ABIArgInfo::Direct: {
1186      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1187          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1188          ArgInfo.getDirectOffset() == 0) {
1189        if (RV.isScalar())
1190          Args.push_back(RV.getScalarVal());
1191        else
1192          Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
1193        break;
1194      }
1195
1196      // FIXME: Avoid the conversion through memory if possible.
1197      llvm::Value *SrcPtr;
1198      if (RV.isScalar()) {
1199        SrcPtr = CreateMemTemp(I->second, "coerce");
1200        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, Alignment,
1201                          I->second);
1202      } else if (RV.isComplex()) {
1203        SrcPtr = CreateMemTemp(I->second, "coerce");
1204        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1205      } else
1206        SrcPtr = RV.getAggregateAddr();
1207
1208      // If the value is offset in memory, apply the offset now.
1209      if (unsigned Offs = ArgInfo.getDirectOffset()) {
1210        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1211        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1212        SrcPtr = Builder.CreateBitCast(SrcPtr,
1213                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1214
1215      }
1216
1217      // If the coerce-to type is a first class aggregate, we flatten it and
1218      // pass the elements. Either way is semantically identical, but fast-isel
1219      // and the optimizer generally likes scalar values better than FCAs.
1220      if (const llvm::StructType *STy =
1221            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1222        SrcPtr = Builder.CreateBitCast(SrcPtr,
1223                                       llvm::PointerType::getUnqual(STy));
1224        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1225          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1226          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1227          // We don't know what we're loading from.
1228          LI->setAlignment(1);
1229          Args.push_back(LI);
1230        }
1231      } else {
1232        // In the simple case, just pass the coerced loaded value.
1233        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1234                                         *this));
1235      }
1236
1237      break;
1238    }
1239
1240    case ABIArgInfo::Expand:
1241      ExpandTypeToArgs(I->second, RV, Args);
1242      break;
1243    }
1244  }
1245
1246  // If the callee is a bitcast of a function to a varargs pointer to function
1247  // type, check to see if we can remove the bitcast.  This handles some cases
1248  // with unprototyped functions.
1249  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1250    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1251      const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1252      const llvm::FunctionType *CurFT =
1253        cast<llvm::FunctionType>(CurPT->getElementType());
1254      const llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1255
1256      if (CE->getOpcode() == llvm::Instruction::BitCast &&
1257          ActualFT->getReturnType() == CurFT->getReturnType() &&
1258          ActualFT->getNumParams() == CurFT->getNumParams() &&
1259          ActualFT->getNumParams() == Args.size()) {
1260        bool ArgsMatch = true;
1261        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1262          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1263            ArgsMatch = false;
1264            break;
1265          }
1266
1267        // Strip the cast if we can get away with it.  This is a nice cleanup,
1268        // but also allows us to inline the function at -O0 if it is marked
1269        // always_inline.
1270        if (ArgsMatch)
1271          Callee = CalleeF;
1272      }
1273    }
1274
1275
1276  unsigned CallingConv;
1277  CodeGen::AttributeListType AttributeList;
1278  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
1279  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
1280                                                   AttributeList.end());
1281
1282  llvm::BasicBlock *InvokeDest = 0;
1283  if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
1284    InvokeDest = getInvokeDest();
1285
1286  llvm::CallSite CS;
1287  if (!InvokeDest) {
1288    CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size());
1289  } else {
1290    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
1291    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
1292                              Args.data(), Args.data()+Args.size());
1293    EmitBlock(Cont);
1294  }
1295  if (callOrInvoke)
1296    *callOrInvoke = CS.getInstruction();
1297
1298  CS.setAttributes(Attrs);
1299  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1300
1301  // If the call doesn't return, finish the basic block and clear the
1302  // insertion point; this allows the rest of IRgen to discard
1303  // unreachable code.
1304  if (CS.doesNotReturn()) {
1305    Builder.CreateUnreachable();
1306    Builder.ClearInsertionPoint();
1307
1308    // FIXME: For now, emit a dummy basic block because expr emitters in
1309    // generally are not ready to handle emitting expressions at unreachable
1310    // points.
1311    EnsureInsertPoint();
1312
1313    // Return a reasonable RValue.
1314    return GetUndefRValue(RetTy);
1315  }
1316
1317  llvm::Instruction *CI = CS.getInstruction();
1318  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
1319    CI->setName("call");
1320
1321  switch (RetAI.getKind()) {
1322  case ABIArgInfo::Indirect: {
1323    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1324    if (RetTy->isAnyComplexType())
1325      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
1326    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1327      return RValue::getAggregate(Args[0]);
1328    return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
1329  }
1330
1331  case ABIArgInfo::Ignore:
1332    // If we are ignoring an argument that had a result, make sure to
1333    // construct the appropriate return value for our caller.
1334    return GetUndefRValue(RetTy);
1335
1336  case ABIArgInfo::Extend:
1337  case ABIArgInfo::Direct: {
1338    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1339        RetAI.getDirectOffset() == 0) {
1340      if (RetTy->isAnyComplexType()) {
1341        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
1342        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
1343        return RValue::getComplex(std::make_pair(Real, Imag));
1344      }
1345      if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1346        llvm::Value *DestPtr = ReturnValue.getValue();
1347        bool DestIsVolatile = ReturnValue.isVolatile();
1348
1349        if (!DestPtr) {
1350          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
1351          DestIsVolatile = false;
1352        }
1353        Builder.CreateStore(CI, DestPtr, DestIsVolatile);
1354        return RValue::getAggregate(DestPtr);
1355      }
1356      return RValue::get(CI);
1357    }
1358
1359    llvm::Value *DestPtr = ReturnValue.getValue();
1360    bool DestIsVolatile = ReturnValue.isVolatile();
1361
1362    if (!DestPtr) {
1363      DestPtr = CreateMemTemp(RetTy, "coerce");
1364      DestIsVolatile = false;
1365    }
1366
1367    // If the value is offset in memory, apply the offset now.
1368    llvm::Value *StorePtr = DestPtr;
1369    if (unsigned Offs = RetAI.getDirectOffset()) {
1370      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
1371      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
1372      StorePtr = Builder.CreateBitCast(StorePtr,
1373                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1374    }
1375    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
1376
1377    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1378    if (RetTy->isAnyComplexType())
1379      return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
1380    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1381      return RValue::getAggregate(DestPtr);
1382    return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
1383  }
1384
1385  case ABIArgInfo::Expand:
1386    assert(0 && "Invalid ABI kind for return argument");
1387  }
1388
1389  assert(0 && "Unhandled ABIArgInfo::Kind");
1390  return RValue::get(0);
1391}
1392
1393/* VarArg handling */
1394
1395llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
1396  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
1397}
1398