CGCall.cpp revision 8e03444e924665d4d90f5cfc0624c815256e0309
1//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/RecordLayout.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Attributes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetData.h"
31
32#include "ABIInfo.h"
33
34using namespace clang;
35using namespace CodeGen;
36
37/***/
38
39// FIXME: Use iterator and sidestep silly type array creation.
40
41const
42CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) {
43  return getFunctionInfo(FTNP->getResultType(),
44                         llvm::SmallVector<QualType, 16>());
45}
46
47const
48CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) {
49  llvm::SmallVector<QualType, 16> ArgTys;
50  // FIXME: Kill copy.
51  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
52    ArgTys.push_back(FTP->getArgType(i));
53  return getFunctionInfo(FTP->getResultType(), ArgTys);
54}
55
56const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
57  llvm::SmallVector<QualType, 16> ArgTys;
58  // Add the 'this' pointer.
59  ArgTys.push_back(MD->getThisType(Context));
60
61  const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType();
62  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
63    ArgTys.push_back(FTP->getArgType(i));
64  return getFunctionInfo(FTP->getResultType(), ArgTys);
65}
66
67const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
68  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
69    if (MD->isInstance())
70      return getFunctionInfo(MD);
71  }
72
73  const FunctionType *FTy = FD->getType()->getAsFunctionType();
74  if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy))
75    return getFunctionInfo(FTP);
76  return getFunctionInfo(cast<FunctionNoProtoType>(FTy));
77}
78
79const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
80  llvm::SmallVector<QualType, 16> ArgTys;
81  ArgTys.push_back(MD->getSelfDecl()->getType());
82  ArgTys.push_back(Context.getObjCSelType());
83  // FIXME: Kill copy?
84  for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
85         e = MD->param_end(); i != e; ++i)
86    ArgTys.push_back((*i)->getType());
87  return getFunctionInfo(MD->getResultType(), ArgTys);
88}
89
90const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
91                                                    const CallArgList &Args) {
92  // FIXME: Kill copy.
93  llvm::SmallVector<QualType, 16> ArgTys;
94  for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
95       i != e; ++i)
96    ArgTys.push_back(i->second);
97  return getFunctionInfo(ResTy, ArgTys);
98}
99
100const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
101                                                  const FunctionArgList &Args) {
102  // FIXME: Kill copy.
103  llvm::SmallVector<QualType, 16> ArgTys;
104  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
105       i != e; ++i)
106    ArgTys.push_back(i->second);
107  return getFunctionInfo(ResTy, ArgTys);
108}
109
110const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
111                               const llvm::SmallVector<QualType, 16> &ArgTys) {
112  // Lookup or create unique function info.
113  llvm::FoldingSetNodeID ID;
114  CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end());
115
116  void *InsertPos = 0;
117  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
118  if (FI)
119    return *FI;
120
121  // Construct the function info.
122  FI = new CGFunctionInfo(ResTy, ArgTys);
123  FunctionInfos.InsertNode(FI, InsertPos);
124
125  // Compute ABI information.
126  getABIInfo().computeInfo(*FI, getContext());
127
128  return *FI;
129}
130
131/***/
132
133ABIInfo::~ABIInfo() {}
134
135void ABIArgInfo::dump() const {
136  fprintf(stderr, "(ABIArgInfo Kind=");
137  switch (TheKind) {
138  case Direct:
139    fprintf(stderr, "Direct");
140    break;
141  case Ignore:
142    fprintf(stderr, "Ignore");
143    break;
144  case Coerce:
145    fprintf(stderr, "Coerce Type=");
146    getCoerceToType()->print(llvm::errs());
147    break;
148  case Indirect:
149    fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
150    break;
151  case Expand:
152    fprintf(stderr, "Expand");
153    break;
154  }
155  fprintf(stderr, ")\n");
156}
157
158/***/
159
160/// isEmptyRecord - Return true iff a structure has no non-empty
161/// members. Note that a structure with a flexible array member is not
162/// considered empty.
163static bool isEmptyRecord(ASTContext &Context, QualType T) {
164  const RecordType *RT = T->getAsRecordType();
165  if (!RT)
166    return 0;
167  const RecordDecl *RD = RT->getDecl();
168  if (RD->hasFlexibleArrayMember())
169    return false;
170  for (RecordDecl::field_iterator i = RD->field_begin(Context),
171         e = RD->field_end(Context); i != e; ++i) {
172    const FieldDecl *FD = *i;
173    if (!isEmptyRecord(Context, FD->getType()))
174      return false;
175  }
176  return true;
177}
178
179/// isSingleElementStruct - Determine if a structure is a "single
180/// element struct", i.e. it has exactly one non-empty field or
181/// exactly one field which is itself a single element
182/// struct. Structures with flexible array members are never
183/// considered single element structs.
184///
185/// \return The field declaration for the single non-empty field, if
186/// it exists.
187static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
188  const RecordType *RT = T->getAsStructureType();
189  if (!RT)
190    return 0;
191
192  const RecordDecl *RD = RT->getDecl();
193  if (RD->hasFlexibleArrayMember())
194    return 0;
195
196  const Type *Found = 0;
197  for (RecordDecl::field_iterator i = RD->field_begin(Context),
198         e = RD->field_end(Context); i != e; ++i) {
199    const FieldDecl *FD = *i;
200    QualType FT = FD->getType();
201
202    // Treat single element arrays as the element
203    if (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
204      if (AT->getSize().getZExtValue() == 1)
205        FT = AT->getElementType();
206
207    if (isEmptyRecord(Context, FT)) {
208      // Ignore
209    } else if (Found) {
210      return 0;
211    } else if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
212      Found = FT.getTypePtr();
213    } else {
214      Found = isSingleElementStruct(FT, Context);
215      if (!Found)
216        return 0;
217    }
218  }
219
220  return Found;
221}
222
223static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
224  if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
225    return false;
226
227  uint64_t Size = Context.getTypeSize(Ty);
228  return Size == 32 || Size == 64;
229}
230
231static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
232                                           ASTContext &Context) {
233  for (RecordDecl::field_iterator i = RD->field_begin(Context),
234         e = RD->field_end(Context); i != e; ++i) {
235    const FieldDecl *FD = *i;
236
237    if (!is32Or64BitBasicType(FD->getType(), Context))
238      return false;
239
240    // FIXME: Reject bit-fields wholesale; there are two problems, we
241    // don't know how to expand them yet, and the predicate for
242    // telling if a bitfield still counts as "basic" is more
243    // complicated than what we were doing previously.
244    if (FD->isBitField())
245      return false;
246  }
247
248  return true;
249}
250
251namespace {
252/// DefaultABIInfo - The default implementation for ABI specific
253/// details. This implementation provides information which results in
254/// self-consistent and sensible LLVM IR generation, but does not
255/// conform to any particular ABI.
256class DefaultABIInfo : public ABIInfo {
257  ABIArgInfo classifyReturnType(QualType RetTy,
258                                ASTContext &Context) const;
259
260  ABIArgInfo classifyArgumentType(QualType RetTy,
261                                  ASTContext &Context) const;
262
263  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
264    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
265    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
266         it != ie; ++it)
267      it->info = classifyArgumentType(it->type, Context);
268  }
269
270  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
271                                 CodeGenFunction &CGF) const;
272};
273
274/// X86_32ABIInfo - The X86-32 ABI information.
275class X86_32ABIInfo : public ABIInfo {
276  ASTContext &Context;
277  bool IsDarwin;
278
279  static bool isRegisterSize(unsigned Size) {
280    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
281  }
282
283  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
284
285public:
286  ABIArgInfo classifyReturnType(QualType RetTy,
287                                ASTContext &Context) const;
288
289  ABIArgInfo classifyArgumentType(QualType RetTy,
290                                  ASTContext &Context) const;
291
292  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
293    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
294    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
295         it != ie; ++it)
296      it->info = classifyArgumentType(it->type, Context);
297  }
298
299  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
300                                 CodeGenFunction &CGF) const;
301
302  X86_32ABIInfo(ASTContext &Context, bool d)
303    : ABIInfo(), Context(Context), IsDarwin(d) {}
304};
305}
306
307
308/// shouldReturnTypeInRegister - Determine if the given type should be
309/// passed in a register (for the Darwin ABI).
310bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
311                                               ASTContext &Context) {
312  uint64_t Size = Context.getTypeSize(Ty);
313
314  // Type must be register sized.
315  if (!isRegisterSize(Size))
316    return false;
317
318  if (Ty->isVectorType()) {
319    // 64- and 128- bit vectors inside structures are not returned in
320    // registers.
321    if (Size == 64 || Size == 128)
322      return false;
323
324    return true;
325  }
326
327  // If this is a builtin, pointer, or complex type, it is ok.
328  if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
329    return true;
330
331  // Arrays are treated like records.
332  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
333    return shouldReturnTypeInRegister(AT->getElementType(), Context);
334
335  // Otherwise, it must be a record type.
336  const RecordType *RT = Ty->getAsRecordType();
337  if (!RT) return false;
338
339  // Structure types are passed in register if all fields would be
340  // passed in a register.
341  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
342         e = RT->getDecl()->field_end(Context); i != e; ++i) {
343    const FieldDecl *FD = *i;
344
345    // FIXME: Reject bit-fields wholesale for now; this is incorrect.
346    if (FD->isBitField())
347      return false;
348
349    // Empty structures are ignored.
350    if (isEmptyRecord(Context, FD->getType()))
351      continue;
352
353    // Check fields recursively.
354    if (!shouldReturnTypeInRegister(FD->getType(), Context))
355      return false;
356  }
357
358  return true;
359}
360
361ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
362                                            ASTContext &Context) const {
363  if (RetTy->isVoidType()) {
364    return ABIArgInfo::getIgnore();
365  } else if (const VectorType *VT = RetTy->getAsVectorType()) {
366    // On Darwin, some vectors are returned in registers.
367    if (IsDarwin) {
368      uint64_t Size = Context.getTypeSize(RetTy);
369
370      // 128-bit vectors are a special case; they are returned in
371      // registers and we need to make sure to pick a type the LLVM
372      // backend will like.
373      if (Size == 128)
374        return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
375                                                           2));
376
377      // Always return in register if it fits in a general purpose
378      // register, or if it is 64 bits and has a single element.
379      if ((Size == 8 || Size == 16 || Size == 32) ||
380          (Size == 64 && VT->getNumElements() == 1))
381        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
382
383      return ABIArgInfo::getIndirect(0);
384    }
385
386    return ABIArgInfo::getDirect();
387  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
388    // Structures with flexible arrays are always indirect.
389    if (const RecordType *RT = RetTy->getAsStructureType())
390      if (RT->getDecl()->hasFlexibleArrayMember())
391        return ABIArgInfo::getIndirect(0);
392
393    // Outside of Darwin, structs and unions are always indirect.
394    if (!IsDarwin && !RetTy->isAnyComplexType())
395      return ABIArgInfo::getIndirect(0);
396
397    // Classify "single element" structs as their element type.
398    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
399      if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
400        // FIXME: This is gross, it would be nice if we could just
401        // pass back SeltTy and have clients deal with it. Is it worth
402        // supporting coerce to both LLVM and clang Types?
403        if (BT->isIntegerType()) {
404          uint64_t Size = Context.getTypeSize(SeltTy);
405          return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
406        } else if (BT->getKind() == BuiltinType::Float) {
407          return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
408        } else if (BT->getKind() == BuiltinType::Double) {
409          return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
410        }
411      } else if (SeltTy->isPointerType()) {
412        // FIXME: It would be really nice if this could come out as
413        // the proper pointer type.
414        llvm::Type *PtrTy =
415          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
416        return ABIArgInfo::getCoerce(PtrTy);
417      } else if (SeltTy->isVectorType()) {
418        // 64- and 128-bit vectors are never returned in a
419        // register when inside a structure.
420        uint64_t Size = Context.getTypeSize(RetTy);
421        if (Size == 64 || Size == 128)
422          return ABIArgInfo::getIndirect(0);
423
424        return classifyReturnType(QualType(SeltTy, 0), Context);
425      }
426    }
427
428    uint64_t Size = Context.getTypeSize(RetTy);
429    if (isRegisterSize(Size)) {
430      // Always return in register for unions for now.
431      // FIXME: This is wrong, but better than treating as a
432      // structure.
433      if (RetTy->isUnionType())
434        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
435
436      // Small structures which are register sized are generally returned
437      // in a register.
438      if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context))
439        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
440    }
441
442    return ABIArgInfo::getIndirect(0);
443  } else {
444    return ABIArgInfo::getDirect();
445  }
446}
447
448ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
449                                               ASTContext &Context) const {
450  // FIXME: Set alignment on indirect arguments.
451  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
452    // Structures with flexible arrays are always indirect.
453    if (const RecordType *RT = Ty->getAsStructureType())
454      if (RT->getDecl()->hasFlexibleArrayMember())
455        return ABIArgInfo::getIndirect(0);
456
457    // Ignore empty structs.
458    uint64_t Size = Context.getTypeSize(Ty);
459    if (Ty->isStructureType() && Size == 0)
460      return ABIArgInfo::getIgnore();
461
462    // Expand structs with size <= 128-bits which consist only of
463    // basic types (int, long long, float, double, xxx*). This is
464    // non-recursive and does not ignore empty fields.
465    if (const RecordType *RT = Ty->getAsStructureType()) {
466      if (Context.getTypeSize(Ty) <= 4*32 &&
467          areAllFields32Or64BitBasicType(RT->getDecl(), Context))
468        return ABIArgInfo::getExpand();
469    }
470
471    return ABIArgInfo::getIndirect(0);
472  } else {
473    return ABIArgInfo::getDirect();
474  }
475}
476
477llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
478                                      CodeGenFunction &CGF) const {
479  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
480  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
481
482  CGBuilderTy &Builder = CGF.Builder;
483  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
484                                                       "ap");
485  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
486  llvm::Type *PTy =
487    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
488  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
489
490  uint64_t Offset =
491    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
492  llvm::Value *NextAddr =
493    Builder.CreateGEP(Addr,
494                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
495                      "ap.next");
496  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
497
498  return AddrTyped;
499}
500
501namespace {
502/// X86_64ABIInfo - The X86_64 ABI information.
503class X86_64ABIInfo : public ABIInfo {
504  enum Class {
505    Integer = 0,
506    SSE,
507    SSEUp,
508    X87,
509    X87Up,
510    ComplexX87,
511    NoClass,
512    Memory
513  };
514
515  /// merge - Implement the X86_64 ABI merging algorithm.
516  ///
517  /// Merge an accumulating classification \arg Accum with a field
518  /// classification \arg Field.
519  ///
520  /// \param Accum - The accumulating classification. This should
521  /// always be either NoClass or the result of a previous merge
522  /// call. In addition, this should never be Memory (the caller
523  /// should just return Memory for the aggregate).
524  Class merge(Class Accum, Class Field) const;
525
526  /// classify - Determine the x86_64 register classes in which the
527  /// given type T should be passed.
528  ///
529  /// \param Lo - The classification for the parts of the type
530  /// residing in the low word of the containing object.
531  ///
532  /// \param Hi - The classification for the parts of the type
533  /// residing in the high word of the containing object.
534  ///
535  /// \param OffsetBase - The bit offset of this type in the
536  /// containing object.  Some parameters are classified different
537  /// depending on whether they straddle an eightbyte boundary.
538  ///
539  /// If a word is unused its result will be NoClass; if a type should
540  /// be passed in Memory then at least the classification of \arg Lo
541  /// will be Memory.
542  ///
543  /// The \arg Lo class will be NoClass iff the argument is ignored.
544  ///
545  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
546  /// also be ComplexX87.
547  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
548                Class &Lo, Class &Hi) const;
549
550  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
551  /// to coerce to, chose the best way to pass Ty in the same place
552  /// that \arg CoerceTo would be passed, but while keeping the
553  /// emitted code as simple as possible.
554  ///
555  /// FIXME: Note, this should be cleaned up to just take an
556  /// enumeration of all the ways we might want to pass things,
557  /// instead of constructing an LLVM type. This makes this code more
558  /// explicit, and it makes it clearer that we are also doing this
559  /// for correctness in the case of passing scalar types.
560  ABIArgInfo getCoerceResult(QualType Ty,
561                             const llvm::Type *CoerceTo,
562                             ASTContext &Context) const;
563
564  ABIArgInfo classifyReturnType(QualType RetTy,
565                                ASTContext &Context) const;
566
567  ABIArgInfo classifyArgumentType(QualType Ty,
568                                  ASTContext &Context,
569                                  unsigned &neededInt,
570                                  unsigned &neededSSE) const;
571
572public:
573  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
574
575  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
576                                 CodeGenFunction &CGF) const;
577};
578}
579
580X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
581                                          Class Field) const {
582  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
583  // classified recursively so that always two fields are
584  // considered. The resulting class is calculated according to
585  // the classes of the fields in the eightbyte:
586  //
587  // (a) If both classes are equal, this is the resulting class.
588  //
589  // (b) If one of the classes is NO_CLASS, the resulting class is
590  // the other class.
591  //
592  // (c) If one of the classes is MEMORY, the result is the MEMORY
593  // class.
594  //
595  // (d) If one of the classes is INTEGER, the result is the
596  // INTEGER.
597  //
598  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
599  // MEMORY is used as class.
600  //
601  // (f) Otherwise class SSE is used.
602
603  // Accum should never be memory (we should have returned) or
604  // ComplexX87 (because this cannot be passed in a structure).
605  assert((Accum != Memory && Accum != ComplexX87) &&
606         "Invalid accumulated classification during merge.");
607  if (Accum == Field || Field == NoClass)
608    return Accum;
609  else if (Field == Memory)
610    return Memory;
611  else if (Accum == NoClass)
612    return Field;
613  else if (Accum == Integer || Field == Integer)
614    return Integer;
615  else if (Field == X87 || Field == X87Up || Field == ComplexX87)
616    return Memory;
617  else
618    return SSE;
619}
620
621void X86_64ABIInfo::classify(QualType Ty,
622                             ASTContext &Context,
623                             uint64_t OffsetBase,
624                             Class &Lo, Class &Hi) const {
625  // FIXME: This code can be simplified by introducing a simple value
626  // class for Class pairs with appropriate constructor methods for
627  // the various situations.
628
629  // FIXME: Some of the split computations are wrong; unaligned
630  // vectors shouldn't be passed in registers for example, so there is
631  // no chance they can straddle an eightbyte. Verify & simplify.
632
633  Lo = Hi = NoClass;
634
635  Class &Current = OffsetBase < 64 ? Lo : Hi;
636  Current = Memory;
637
638  if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
639    BuiltinType::Kind k = BT->getKind();
640
641    if (k == BuiltinType::Void) {
642      Current = NoClass;
643    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
644      Current = Integer;
645    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
646      Current = SSE;
647    } else if (k == BuiltinType::LongDouble) {
648      Lo = X87;
649      Hi = X87Up;
650    }
651    // FIXME: _Decimal32 and _Decimal64 are SSE.
652    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
653    // FIXME: __int128 is (Integer, Integer).
654  } else if (const EnumType *ET = Ty->getAsEnumType()) {
655    // Classify the underlying integer type.
656    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
657  } else if (Ty->hasPointerRepresentation()) {
658    Current = Integer;
659  } else if (const VectorType *VT = Ty->getAsVectorType()) {
660    uint64_t Size = Context.getTypeSize(VT);
661    if (Size == 32) {
662      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
663      // float> as integer.
664      Current = Integer;
665
666      // If this type crosses an eightbyte boundary, it should be
667      // split.
668      uint64_t EB_Real = (OffsetBase) / 64;
669      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
670      if (EB_Real != EB_Imag)
671        Hi = Lo;
672    } else if (Size == 64) {
673      // gcc passes <1 x double> in memory. :(
674      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
675        return;
676
677      // gcc passes <1 x long long> as INTEGER.
678      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
679        Current = Integer;
680      else
681        Current = SSE;
682
683      // If this type crosses an eightbyte boundary, it should be
684      // split.
685      if (OffsetBase && OffsetBase != 64)
686        Hi = Lo;
687    } else if (Size == 128) {
688      Lo = SSE;
689      Hi = SSEUp;
690    }
691  } else if (const ComplexType *CT = Ty->getAsComplexType()) {
692    QualType ET = Context.getCanonicalType(CT->getElementType());
693
694    uint64_t Size = Context.getTypeSize(Ty);
695    if (ET->isIntegralType()) {
696      if (Size <= 64)
697        Current = Integer;
698      else if (Size <= 128)
699        Lo = Hi = Integer;
700    } else if (ET == Context.FloatTy)
701      Current = SSE;
702    else if (ET == Context.DoubleTy)
703      Lo = Hi = SSE;
704    else if (ET == Context.LongDoubleTy)
705      Current = ComplexX87;
706
707    // If this complex type crosses an eightbyte boundary then it
708    // should be split.
709    uint64_t EB_Real = (OffsetBase) / 64;
710    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
711    if (Hi == NoClass && EB_Real != EB_Imag)
712      Hi = Lo;
713  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
714    // Arrays are treated like structures.
715
716    uint64_t Size = Context.getTypeSize(Ty);
717
718    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
719    // than two eightbytes, ..., it has class MEMORY.
720    if (Size > 128)
721      return;
722
723    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
724    // fields, it has class MEMORY.
725    //
726    // Only need to check alignment of array base.
727    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
728      return;
729
730    // Otherwise implement simplified merge. We could be smarter about
731    // this, but it isn't worth it and would be harder to verify.
732    Current = NoClass;
733    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
734    uint64_t ArraySize = AT->getSize().getZExtValue();
735    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
736      Class FieldLo, FieldHi;
737      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
738      Lo = merge(Lo, FieldLo);
739      Hi = merge(Hi, FieldHi);
740      if (Lo == Memory || Hi == Memory)
741        break;
742    }
743
744    // Do post merger cleanup (see below). Only case we worry about is Memory.
745    if (Hi == Memory)
746      Lo = Memory;
747    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
748  } else if (const RecordType *RT = Ty->getAsRecordType()) {
749    uint64_t Size = Context.getTypeSize(Ty);
750
751    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
752    // than two eightbytes, ..., it has class MEMORY.
753    if (Size > 128)
754      return;
755
756    const RecordDecl *RD = RT->getDecl();
757
758    // Assume variable sized types are passed in memory.
759    if (RD->hasFlexibleArrayMember())
760      return;
761
762    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
763
764    // Reset Lo class, this will be recomputed.
765    Current = NoClass;
766    unsigned idx = 0;
767    for (RecordDecl::field_iterator i = RD->field_begin(Context),
768           e = RD->field_end(Context); i != e; ++i, ++idx) {
769      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
770      bool BitField = i->isBitField();
771
772      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
773      // fields, it has class MEMORY.
774      //
775      // Note, skip this test for bit-fields, see below.
776      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
777        Lo = Memory;
778        return;
779      }
780
781      // Classify this field.
782      //
783      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
784      // exceeds a single eightbyte, each is classified
785      // separately. Each eightbyte gets initialized to class
786      // NO_CLASS.
787      Class FieldLo, FieldHi;
788
789      // Bit-fields require special handling, they do not force the
790      // structure to be passed in memory even if unaligned, and
791      // therefore they can straddle an eightbyte.
792      if (BitField) {
793        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
794        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
795
796        uint64_t EB_Lo = Offset / 64;
797        uint64_t EB_Hi = (Offset + Size - 1) / 64;
798        FieldLo = FieldHi = NoClass;
799        if (EB_Lo) {
800          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
801          FieldLo = NoClass;
802          FieldHi = Integer;
803        } else {
804          FieldLo = Integer;
805          FieldHi = EB_Hi ? Integer : NoClass;
806        }
807      } else
808        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
809      Lo = merge(Lo, FieldLo);
810      Hi = merge(Hi, FieldHi);
811      if (Lo == Memory || Hi == Memory)
812        break;
813    }
814
815    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
816    //
817    // (a) If one of the classes is MEMORY, the whole argument is
818    // passed in memory.
819    //
820    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
821
822    // The first of these conditions is guaranteed by how we implement
823    // the merge (just bail).
824    //
825    // The second condition occurs in the case of unions; for example
826    // union { _Complex double; unsigned; }.
827    if (Hi == Memory)
828      Lo = Memory;
829    if (Hi == SSEUp && Lo != SSE)
830      Hi = SSE;
831  }
832}
833
834ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
835                                          const llvm::Type *CoerceTo,
836                                          ASTContext &Context) const {
837  if (CoerceTo == llvm::Type::Int64Ty) {
838    // Integer and pointer types will end up in a general purpose
839    // register.
840    if (Ty->isIntegralType() || Ty->isPointerType())
841      return ABIArgInfo::getDirect();
842
843  } else if (CoerceTo == llvm::Type::DoubleTy) {
844    // FIXME: It would probably be better to make CGFunctionInfo only
845    // map using canonical types than to canonize here.
846    QualType CTy = Context.getCanonicalType(Ty);
847
848    // Float and double end up in a single SSE reg.
849    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
850      return ABIArgInfo::getDirect();
851
852  }
853
854  return ABIArgInfo::getCoerce(CoerceTo);
855}
856
857ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
858                                            ASTContext &Context) const {
859  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
860  // classification algorithm.
861  X86_64ABIInfo::Class Lo, Hi;
862  classify(RetTy, Context, 0, Lo, Hi);
863
864  // Check some invariants.
865  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
866  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
867  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
868
869  const llvm::Type *ResType = 0;
870  switch (Lo) {
871  case NoClass:
872    return ABIArgInfo::getIgnore();
873
874  case SSEUp:
875  case X87Up:
876    assert(0 && "Invalid classification for lo word.");
877
878    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
879    // hidden argument.
880  case Memory:
881    return ABIArgInfo::getIndirect(0);
882
883    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
884    // available register of the sequence %rax, %rdx is used.
885  case Integer:
886    ResType = llvm::Type::Int64Ty; break;
887
888    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
889    // available SSE register of the sequence %xmm0, %xmm1 is used.
890  case SSE:
891    ResType = llvm::Type::DoubleTy; break;
892
893    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
894    // returned on the X87 stack in %st0 as 80-bit x87 number.
895  case X87:
896    ResType = llvm::Type::X86_FP80Ty; break;
897
898    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
899    // part of the value is returned in %st0 and the imaginary part in
900    // %st1.
901  case ComplexX87:
902    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
903    ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
904                                    llvm::Type::X86_FP80Ty,
905                                    NULL);
906    break;
907  }
908
909  switch (Hi) {
910    // Memory was handled previously and X87 should
911    // never occur as a hi class.
912  case Memory:
913  case X87:
914    assert(0 && "Invalid classification for hi word.");
915
916  case ComplexX87: // Previously handled.
917  case NoClass: break;
918
919  case Integer:
920    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
921    break;
922  case SSE:
923    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
924    break;
925
926    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
927    // is passed in the upper half of the last used SSE register.
928    //
929    // SSEUP should always be preceeded by SSE, just widen.
930  case SSEUp:
931    assert(Lo == SSE && "Unexpected SSEUp classification.");
932    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
933    break;
934
935    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
936    // returned together with the previous X87 value in %st0.
937  case X87Up:
938    // If X87Up is preceeded by X87, we don't need to do
939    // anything. However, in some cases with unions it may not be
940    // preceeded by X87. In such situations we follow gcc and pass the
941    // extra bits in an SSE reg.
942    if (Lo != X87)
943      ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
944    break;
945  }
946
947  return getCoerceResult(RetTy, ResType, Context);
948}
949
950ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
951                                               unsigned &neededInt,
952                                               unsigned &neededSSE) const {
953  X86_64ABIInfo::Class Lo, Hi;
954  classify(Ty, Context, 0, Lo, Hi);
955
956  // Check some invariants.
957  // FIXME: Enforce these by construction.
958  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
959  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
960  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
961
962  neededInt = 0;
963  neededSSE = 0;
964  const llvm::Type *ResType = 0;
965  switch (Lo) {
966  case NoClass:
967    return ABIArgInfo::getIgnore();
968
969    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
970    // on the stack.
971  case Memory:
972
973    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
974    // COMPLEX_X87, it is passed in memory.
975  case X87:
976  case ComplexX87:
977    return ABIArgInfo::getIndirect(0);
978
979  case SSEUp:
980  case X87Up:
981    assert(0 && "Invalid classification for lo word.");
982
983    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
984    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
985    // and %r9 is used.
986  case Integer:
987    ++neededInt;
988    ResType = llvm::Type::Int64Ty;
989    break;
990
991    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
992    // available SSE register is used, the registers are taken in the
993    // order from %xmm0 to %xmm7.
994  case SSE:
995    ++neededSSE;
996    ResType = llvm::Type::DoubleTy;
997    break;
998  }
999
1000  switch (Hi) {
1001    // Memory was handled previously, ComplexX87 and X87 should
1002    // never occur as hi classes, and X87Up must be preceed by X87,
1003    // which is passed in memory.
1004  case Memory:
1005  case X87:
1006  case ComplexX87:
1007    assert(0 && "Invalid classification for hi word.");
1008    break;
1009
1010  case NoClass: break;
1011  case Integer:
1012    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
1013    ++neededInt;
1014    break;
1015
1016    // X87Up generally doesn't occur here (long double is passed in
1017    // memory), except in situations involving unions.
1018  case X87Up:
1019  case SSE:
1020    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
1021    ++neededSSE;
1022    break;
1023
1024    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1025    // eightbyte is passed in the upper half of the last used SSE
1026    // register.
1027  case SSEUp:
1028    assert(Lo == SSE && "Unexpected SSEUp classification.");
1029    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
1030    break;
1031  }
1032
1033  return getCoerceResult(Ty, ResType, Context);
1034}
1035
1036void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1037  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1038
1039  // Keep track of the number of assigned registers.
1040  unsigned freeIntRegs = 6, freeSSERegs = 8;
1041
1042  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1043  // get assigned (in left-to-right order) for passing as follows...
1044  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1045       it != ie; ++it) {
1046    unsigned neededInt, neededSSE;
1047    it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
1048
1049    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1050    // eightbyte of an argument, the whole argument is passed on the
1051    // stack. If registers have already been assigned for some
1052    // eightbytes of such an argument, the assignments get reverted.
1053    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1054      freeIntRegs -= neededInt;
1055      freeSSERegs -= neededSSE;
1056    } else {
1057      it->info = ABIArgInfo::getIndirect(0);
1058    }
1059  }
1060}
1061
1062static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1063                                        QualType Ty,
1064                                        CodeGenFunction &CGF) {
1065  llvm::Value *overflow_arg_area_p =
1066    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1067  llvm::Value *overflow_arg_area =
1068    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1069
1070  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1071  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1072  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1073  if (Align > 8) {
1074    // Note that we follow the ABI & gcc here, even though the type
1075    // could in theory have an alignment greater than 16. This case
1076    // shouldn't ever matter in practice.
1077
1078    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1079    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
1080    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1081    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1082                                                    llvm::Type::Int64Ty);
1083    llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
1084    overflow_arg_area =
1085      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1086                                 overflow_arg_area->getType(),
1087                                 "overflow_arg_area.align");
1088  }
1089
1090  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1091  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1092  llvm::Value *Res =
1093    CGF.Builder.CreateBitCast(overflow_arg_area,
1094                              llvm::PointerType::getUnqual(LTy));
1095
1096  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1097  // l->overflow_arg_area + sizeof(type).
1098  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1099  // an 8 byte boundary.
1100
1101  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1102  llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1103                                               (SizeInBytes + 7)  & ~7);
1104  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1105                                            "overflow_arg_area.next");
1106  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1107
1108  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1109  return Res;
1110}
1111
1112llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1113                                      CodeGenFunction &CGF) const {
1114  // Assume that va_list type is correct; should be pointer to LLVM type:
1115  // struct {
1116  //   i32 gp_offset;
1117  //   i32 fp_offset;
1118  //   i8* overflow_arg_area;
1119  //   i8* reg_save_area;
1120  // };
1121  unsigned neededInt, neededSSE;
1122  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
1123                                       neededInt, neededSSE);
1124
1125  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1126  // in the registers. If not go to step 7.
1127  if (!neededInt && !neededSSE)
1128    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1129
1130  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1131  // general purpose registers needed to pass type and num_fp to hold
1132  // the number of floating point registers needed.
1133
1134  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1135  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1136  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1137  //
1138  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1139  // register save space).
1140
1141  llvm::Value *InRegs = 0;
1142  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1143  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1144  if (neededInt) {
1145    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1146    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1147    InRegs =
1148      CGF.Builder.CreateICmpULE(gp_offset,
1149                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
1150                                                       48 - neededInt * 8),
1151                                "fits_in_gp");
1152  }
1153
1154  if (neededSSE) {
1155    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1156    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1157    llvm::Value *FitsInFP =
1158      CGF.Builder.CreateICmpULE(fp_offset,
1159                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
1160                                                       176 - neededSSE * 16),
1161                                "fits_in_fp");
1162    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1163  }
1164
1165  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1166  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1167  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1168  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1169
1170  // Emit code to load the value if it was passed in registers.
1171
1172  CGF.EmitBlock(InRegBlock);
1173
1174  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1175  // an offset of l->gp_offset and/or l->fp_offset. This may require
1176  // copying to a temporary location in case the parameter is passed
1177  // in different register classes or requires an alignment greater
1178  // than 8 for general purpose registers and 16 for XMM registers.
1179  //
1180  // FIXME: This really results in shameful code when we end up
1181  // needing to collect arguments from different places; often what
1182  // should result in a simple assembling of a structure from
1183  // scattered addresses has many more loads than necessary. Can we
1184  // clean this up?
1185  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1186  llvm::Value *RegAddr =
1187    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1188                           "reg_save_area");
1189  if (neededInt && neededSSE) {
1190    // FIXME: Cleanup.
1191    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1192    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1193    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1194    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1195    const llvm::Type *TyLo = ST->getElementType(0);
1196    const llvm::Type *TyHi = ST->getElementType(1);
1197    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
1198           "Unexpected ABI info for mixed regs");
1199    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1200    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1201    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1202    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1203    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
1204    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
1205    llvm::Value *V =
1206      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1207    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1208    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1209    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1210
1211    RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
1212  } else if (neededInt) {
1213    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1214    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1215                                        llvm::PointerType::getUnqual(LTy));
1216  } else {
1217    if (neededSSE == 1) {
1218      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1219      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1220                                          llvm::PointerType::getUnqual(LTy));
1221    } else {
1222      assert(neededSSE == 2 && "Invalid number of needed registers!");
1223      // SSE registers are spaced 16 bytes apart in the register save
1224      // area, we need to collect the two eightbytes together.
1225      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1226      llvm::Value *RegAddrHi =
1227        CGF.Builder.CreateGEP(RegAddrLo,
1228                              llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
1229      const llvm::Type *DblPtrTy =
1230        llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
1231      const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
1232                                                         llvm::Type::DoubleTy,
1233                                                         NULL);
1234      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1235      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1236                                                           DblPtrTy));
1237      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1238      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1239                                                           DblPtrTy));
1240      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1241      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1242                                          llvm::PointerType::getUnqual(LTy));
1243    }
1244  }
1245
1246  // AMD64-ABI 3.5.7p5: Step 5. Set:
1247  // l->gp_offset = l->gp_offset + num_gp * 8
1248  // l->fp_offset = l->fp_offset + num_fp * 16.
1249  if (neededInt) {
1250    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1251                                                 neededInt * 8);
1252    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1253                            gp_offset_p);
1254  }
1255  if (neededSSE) {
1256    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1257                                                 neededSSE * 16);
1258    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1259                            fp_offset_p);
1260  }
1261  CGF.EmitBranch(ContBlock);
1262
1263  // Emit code to load the value if it was passed in memory.
1264
1265  CGF.EmitBlock(InMemBlock);
1266  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1267
1268  // Return the appropriate result.
1269
1270  CGF.EmitBlock(ContBlock);
1271  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1272                                                 "vaarg.addr");
1273  ResAddr->reserveOperandSpace(2);
1274  ResAddr->addIncoming(RegAddr, InRegBlock);
1275  ResAddr->addIncoming(MemAddr, InMemBlock);
1276
1277  return ResAddr;
1278}
1279
1280// ABI Info for PIC16
1281class PIC16ABIInfo : public ABIInfo {
1282  ABIArgInfo classifyReturnType(QualType RetTy,
1283                                ASTContext &Context) const;
1284
1285  ABIArgInfo classifyArgumentType(QualType RetTy,
1286                                  ASTContext &Context) const;
1287
1288  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1289    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1290    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1291         it != ie; ++it)
1292      it->info = classifyArgumentType(it->type, Context);
1293  }
1294
1295  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1296                                 CodeGenFunction &CGF) const;
1297
1298};
1299
1300ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1301                                              ASTContext &Context) const {
1302  if (RetTy->isVoidType()) {
1303    return ABIArgInfo::getIgnore();
1304  } else {
1305    return ABIArgInfo::getDirect();
1306  }
1307}
1308
1309ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1310                                                ASTContext &Context) const {
1311  return ABIArgInfo::getDirect();
1312}
1313
1314llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1315                                       CodeGenFunction &CGF) const {
1316  return 0;
1317}
1318
1319class ARMABIInfo : public ABIInfo {
1320  ABIArgInfo classifyReturnType(QualType RetTy,
1321                                ASTContext &Context) const;
1322
1323  ABIArgInfo classifyArgumentType(QualType RetTy,
1324                                  ASTContext &Context) const;
1325
1326  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
1327
1328  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1329                                 CodeGenFunction &CGF) const;
1330};
1331
1332void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1333  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1334  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1335       it != ie; ++it) {
1336    it->info = classifyArgumentType(it->type, Context);
1337  }
1338}
1339
1340ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1341                                            ASTContext &Context) const {
1342  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1343    return ABIArgInfo::getDirect();
1344  }
1345  // FIXME: This is kind of nasty... but there isn't much choice
1346  // because the ARM backend doesn't support byval.
1347  // FIXME: This doesn't handle alignment > 64 bits.
1348  const llvm::Type* ElemTy;
1349  unsigned SizeRegs;
1350  if (Context.getTypeAlign(Ty) > 32) {
1351    ElemTy = llvm::Type::Int64Ty;
1352    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1353  } else {
1354    ElemTy = llvm::Type::Int32Ty;
1355    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1356  }
1357  std::vector<const llvm::Type*> LLVMFields;
1358  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1359  const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
1360  return ABIArgInfo::getCoerce(STy);
1361}
1362
1363ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1364                                          ASTContext &Context) const {
1365  if (RetTy->isVoidType()) {
1366    return ABIArgInfo::getIgnore();
1367  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1368    // Aggregates <= 4 bytes are returned in r0; other aggregates
1369    // are returned indirectly.
1370    uint64_t Size = Context.getTypeSize(RetTy);
1371    if (Size <= 32)
1372      return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
1373    return ABIArgInfo::getIndirect(0);
1374  } else {
1375    return ABIArgInfo::getDirect();
1376  }
1377}
1378
1379llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1380                                      CodeGenFunction &CGF) const {
1381  // FIXME: Need to handle alignment
1382  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1383  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1384
1385  CGBuilderTy &Builder = CGF.Builder;
1386  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1387                                                       "ap");
1388  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1389  llvm::Type *PTy =
1390    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1391  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1392
1393  uint64_t Offset =
1394    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
1395  llvm::Value *NextAddr =
1396    Builder.CreateGEP(Addr,
1397                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
1398                      "ap.next");
1399  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1400
1401  return AddrTyped;
1402}
1403
1404ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
1405                                              ASTContext &Context) const {
1406  if (RetTy->isVoidType()) {
1407    return ABIArgInfo::getIgnore();
1408  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1409    return ABIArgInfo::getIndirect(0);
1410  } else {
1411    return ABIArgInfo::getDirect();
1412  }
1413}
1414
1415ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
1416                                                ASTContext &Context) const {
1417  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
1418    return ABIArgInfo::getIndirect(0);
1419  } else {
1420    return ABIArgInfo::getDirect();
1421  }
1422}
1423
1424llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1425                                       CodeGenFunction &CGF) const {
1426  return 0;
1427}
1428
1429const ABIInfo &CodeGenTypes::getABIInfo() const {
1430  if (TheABIInfo)
1431    return *TheABIInfo;
1432
1433  // For now we just cache this in the CodeGenTypes and don't bother
1434  // to free it.
1435  const char *TargetPrefix = getContext().Target.getTargetPrefix();
1436  if (strcmp(TargetPrefix, "x86") == 0) {
1437    bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
1438    switch (getContext().Target.getPointerWidth(0)) {
1439    case 32:
1440      return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
1441    case 64:
1442      return *(TheABIInfo = new X86_64ABIInfo());
1443    }
1444  } else if (strcmp(TargetPrefix, "arm") == 0) {
1445    // FIXME: Support for OABI?
1446    return *(TheABIInfo = new ARMABIInfo());
1447  } else if (strcmp(TargetPrefix, "pic16") == 0) {
1448    return *(TheABIInfo = new PIC16ABIInfo());
1449  }
1450
1451  return *(TheABIInfo = new DefaultABIInfo);
1452}
1453
1454/***/
1455
1456CGFunctionInfo::CGFunctionInfo(QualType ResTy,
1457                               const llvm::SmallVector<QualType, 16> &ArgTys) {
1458  NumArgs = ArgTys.size();
1459  Args = new ArgInfo[1 + NumArgs];
1460  Args[0].type = ResTy;
1461  for (unsigned i = 0; i < NumArgs; ++i)
1462    Args[1 + i].type = ArgTys[i];
1463}
1464
1465/***/
1466
1467void CodeGenTypes::GetExpandedTypes(QualType Ty,
1468                                    std::vector<const llvm::Type*> &ArgTys) {
1469  const RecordType *RT = Ty->getAsStructureType();
1470  assert(RT && "Can only expand structure types.");
1471  const RecordDecl *RD = RT->getDecl();
1472  assert(!RD->hasFlexibleArrayMember() &&
1473         "Cannot expand structure with flexible array.");
1474
1475  for (RecordDecl::field_iterator i = RD->field_begin(Context),
1476         e = RD->field_end(Context); i != e; ++i) {
1477    const FieldDecl *FD = *i;
1478    assert(!FD->isBitField() &&
1479           "Cannot expand structure with bit-field members.");
1480
1481    QualType FT = FD->getType();
1482    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1483      GetExpandedTypes(FT, ArgTys);
1484    } else {
1485      ArgTys.push_back(ConvertType(FT));
1486    }
1487  }
1488}
1489
1490llvm::Function::arg_iterator
1491CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1492                                    llvm::Function::arg_iterator AI) {
1493  const RecordType *RT = Ty->getAsStructureType();
1494  assert(RT && "Can only expand structure types.");
1495
1496  RecordDecl *RD = RT->getDecl();
1497  assert(LV.isSimple() &&
1498         "Unexpected non-simple lvalue during struct expansion.");
1499  llvm::Value *Addr = LV.getAddress();
1500  for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
1501         e = RD->field_end(getContext()); i != e; ++i) {
1502    FieldDecl *FD = *i;
1503    QualType FT = FD->getType();
1504
1505    // FIXME: What are the right qualifiers here?
1506    LValue LV = EmitLValueForField(Addr, FD, false, 0);
1507    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1508      AI = ExpandTypeFromArgs(FT, LV, AI);
1509    } else {
1510      EmitStoreThroughLValue(RValue::get(AI), LV, FT);
1511      ++AI;
1512    }
1513  }
1514
1515  return AI;
1516}
1517
1518void
1519CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1520                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
1521  const RecordType *RT = Ty->getAsStructureType();
1522  assert(RT && "Can only expand structure types.");
1523
1524  RecordDecl *RD = RT->getDecl();
1525  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1526  llvm::Value *Addr = RV.getAggregateAddr();
1527  for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
1528         e = RD->field_end(getContext()); i != e; ++i) {
1529    FieldDecl *FD = *i;
1530    QualType FT = FD->getType();
1531
1532    // FIXME: What are the right qualifiers here?
1533    LValue LV = EmitLValueForField(Addr, FD, false, 0);
1534    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1535      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
1536    } else {
1537      RValue RV = EmitLoadOfLValue(LV, FT);
1538      assert(RV.isScalar() &&
1539             "Unexpected non-scalar rvalue during struct expansion.");
1540      Args.push_back(RV.getScalarVal());
1541    }
1542  }
1543}
1544
1545/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1546/// a pointer to an object of type \arg Ty.
1547///
1548/// This safely handles the case when the src type is smaller than the
1549/// destination type; in this situation the values of bits which not
1550/// present in the src are undefined.
1551static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
1552                                      const llvm::Type *Ty,
1553                                      CodeGenFunction &CGF) {
1554  const llvm::Type *SrcTy =
1555    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
1556  uint64_t SrcSize = CGF.CGM.getTargetData().getTypePaddedSize(SrcTy);
1557  uint64_t DstSize = CGF.CGM.getTargetData().getTypePaddedSize(Ty);
1558
1559  // If load is legal, just bitcast the src pointer.
1560  if (SrcSize == DstSize) {
1561    llvm::Value *Casted =
1562      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
1563    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
1564    // FIXME: Use better alignment / avoid requiring aligned load.
1565    Load->setAlignment(1);
1566    return Load;
1567  } else {
1568    assert(SrcSize < DstSize && "Coercion is losing source bits!");
1569
1570    // Otherwise do coercion through memory. This is stupid, but
1571    // simple.
1572    llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
1573    llvm::Value *Casted =
1574      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
1575    llvm::StoreInst *Store =
1576      CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
1577    // FIXME: Use better alignment / avoid requiring aligned store.
1578    Store->setAlignment(1);
1579    return CGF.Builder.CreateLoad(Tmp);
1580  }
1581}
1582
1583/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1584/// where the source and destination may have different types.
1585///
1586/// This safely handles the case when the src type is larger than the
1587/// destination type; the upper bits of the src will be lost.
1588static void CreateCoercedStore(llvm::Value *Src,
1589                               llvm::Value *DstPtr,
1590                               CodeGenFunction &CGF) {
1591  const llvm::Type *SrcTy = Src->getType();
1592  const llvm::Type *DstTy =
1593    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1594
1595  uint64_t SrcSize = CGF.CGM.getTargetData().getTypePaddedSize(SrcTy);
1596  uint64_t DstSize = CGF.CGM.getTargetData().getTypePaddedSize(DstTy);
1597
1598  // If store is legal, just bitcast the src pointer.
1599  if (SrcSize == DstSize) {
1600    llvm::Value *Casted =
1601      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1602    // FIXME: Use better alignment / avoid requiring aligned store.
1603    CGF.Builder.CreateStore(Src, Casted)->setAlignment(1);
1604  } else {
1605    assert(SrcSize > DstSize && "Coercion is missing bits!");
1606
1607    // Otherwise do coercion through memory. This is stupid, but
1608    // simple.
1609    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1610    CGF.Builder.CreateStore(Src, Tmp);
1611    llvm::Value *Casted =
1612      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
1613    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
1614    // FIXME: Use better alignment / avoid requiring aligned load.
1615    Load->setAlignment(1);
1616    CGF.Builder.CreateStore(Load, DstPtr);
1617  }
1618}
1619
1620/***/
1621
1622bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
1623  return FI.getReturnInfo().isIndirect();
1624}
1625
1626const llvm::FunctionType *
1627CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
1628  std::vector<const llvm::Type*> ArgTys;
1629
1630  const llvm::Type *ResultType = 0;
1631
1632  QualType RetTy = FI.getReturnType();
1633  const ABIArgInfo &RetAI = FI.getReturnInfo();
1634  switch (RetAI.getKind()) {
1635  case ABIArgInfo::Expand:
1636    assert(0 && "Invalid ABI kind for return argument");
1637
1638  case ABIArgInfo::Direct:
1639    ResultType = ConvertType(RetTy);
1640    break;
1641
1642  case ABIArgInfo::Indirect: {
1643    assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
1644    ResultType = llvm::Type::VoidTy;
1645    const llvm::Type *STy = ConvertType(RetTy);
1646    ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
1647    break;
1648  }
1649
1650  case ABIArgInfo::Ignore:
1651    ResultType = llvm::Type::VoidTy;
1652    break;
1653
1654  case ABIArgInfo::Coerce:
1655    ResultType = RetAI.getCoerceToType();
1656    break;
1657  }
1658
1659  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1660         ie = FI.arg_end(); it != ie; ++it) {
1661    const ABIArgInfo &AI = it->info;
1662
1663    switch (AI.getKind()) {
1664    case ABIArgInfo::Ignore:
1665      break;
1666
1667    case ABIArgInfo::Coerce:
1668      ArgTys.push_back(AI.getCoerceToType());
1669      break;
1670
1671    case ABIArgInfo::Indirect: {
1672      // indirect arguments are always on the stack, which is addr space #0.
1673      const llvm::Type *LTy = ConvertTypeForMem(it->type);
1674      ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
1675      break;
1676    }
1677
1678    case ABIArgInfo::Direct:
1679      ArgTys.push_back(ConvertType(it->type));
1680      break;
1681
1682    case ABIArgInfo::Expand:
1683      GetExpandedTypes(it->type, ArgTys);
1684      break;
1685    }
1686  }
1687
1688  return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
1689}
1690
1691void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1692                                           const Decl *TargetDecl,
1693                                           AttributeListType &PAL) {
1694  unsigned FuncAttrs = 0;
1695  unsigned RetAttrs = 0;
1696
1697  // FIXME: handle sseregparm someday...
1698  if (TargetDecl) {
1699    if (TargetDecl->hasAttr<NoThrowAttr>())
1700      FuncAttrs |= llvm::Attribute::NoUnwind;
1701    if (TargetDecl->hasAttr<NoReturnAttr>())
1702      FuncAttrs |= llvm::Attribute::NoReturn;
1703    if (TargetDecl->hasAttr<ConstAttr>())
1704      FuncAttrs |= llvm::Attribute::ReadNone;
1705    else if (TargetDecl->hasAttr<PureAttr>())
1706      FuncAttrs |= llvm::Attribute::ReadOnly;
1707  }
1708
1709  QualType RetTy = FI.getReturnType();
1710  unsigned Index = 1;
1711  const ABIArgInfo &RetAI = FI.getReturnInfo();
1712  switch (RetAI.getKind()) {
1713  case ABIArgInfo::Direct:
1714    if (RetTy->isPromotableIntegerType()) {
1715      if (RetTy->isSignedIntegerType()) {
1716        RetAttrs |= llvm::Attribute::SExt;
1717      } else if (RetTy->isUnsignedIntegerType()) {
1718        RetAttrs |= llvm::Attribute::ZExt;
1719      }
1720    }
1721    break;
1722
1723  case ABIArgInfo::Indirect:
1724    PAL.push_back(llvm::AttributeWithIndex::get(Index,
1725                                                llvm::Attribute::StructRet |
1726                                                llvm::Attribute::NoAlias));
1727    ++Index;
1728    // sret disables readnone and readonly
1729    FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1730                   llvm::Attribute::ReadNone);
1731    break;
1732
1733  case ABIArgInfo::Ignore:
1734  case ABIArgInfo::Coerce:
1735    break;
1736
1737  case ABIArgInfo::Expand:
1738    assert(0 && "Invalid ABI kind for return argument");
1739  }
1740
1741  if (RetAttrs)
1742    PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
1743
1744  // FIXME: we need to honour command line settings also...
1745  // FIXME: RegParm should be reduced in case of nested functions and/or global
1746  // register variable.
1747  signed RegParm = 0;
1748  if (TargetDecl)
1749    if (const RegparmAttr *RegParmAttr = TargetDecl->getAttr<RegparmAttr>())
1750      RegParm = RegParmAttr->getNumParams();
1751
1752  unsigned PointerWidth = getContext().Target.getPointerWidth(0);
1753  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1754         ie = FI.arg_end(); it != ie; ++it) {
1755    QualType ParamType = it->type;
1756    const ABIArgInfo &AI = it->info;
1757    unsigned Attributes = 0;
1758
1759    switch (AI.getKind()) {
1760    case ABIArgInfo::Coerce:
1761      break;
1762
1763    case ABIArgInfo::Indirect:
1764      Attributes |= llvm::Attribute::ByVal;
1765      Attributes |=
1766        llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1767      // byval disables readnone and readonly.
1768      FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1769                     llvm::Attribute::ReadNone);
1770      break;
1771
1772    case ABIArgInfo::Direct:
1773      if (ParamType->isPromotableIntegerType()) {
1774        if (ParamType->isSignedIntegerType()) {
1775          Attributes |= llvm::Attribute::SExt;
1776        } else if (ParamType->isUnsignedIntegerType()) {
1777          Attributes |= llvm::Attribute::ZExt;
1778        }
1779      }
1780      if (RegParm > 0 &&
1781          (ParamType->isIntegerType() || ParamType->isPointerType())) {
1782        RegParm -=
1783          (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
1784        if (RegParm >= 0)
1785          Attributes |= llvm::Attribute::InReg;
1786      }
1787      // FIXME: handle sseregparm someday...
1788      break;
1789
1790    case ABIArgInfo::Ignore:
1791      // Skip increment, no matching LLVM parameter.
1792      continue;
1793
1794    case ABIArgInfo::Expand: {
1795      std::vector<const llvm::Type*> Tys;
1796      // FIXME: This is rather inefficient. Do we ever actually need
1797      // to do anything here? The result should be just reconstructed
1798      // on the other side, so extension should be a non-issue.
1799      getTypes().GetExpandedTypes(ParamType, Tys);
1800      Index += Tys.size();
1801      continue;
1802    }
1803    }
1804
1805    if (Attributes)
1806      PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
1807    ++Index;
1808  }
1809  if (FuncAttrs)
1810    PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1811}
1812
1813void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1814                                         llvm::Function *Fn,
1815                                         const FunctionArgList &Args) {
1816  // FIXME: We no longer need the types from FunctionArgList; lift up
1817  // and simplify.
1818
1819  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1820  llvm::Function::arg_iterator AI = Fn->arg_begin();
1821
1822  // Name the struct return argument.
1823  if (CGM.ReturnTypeUsesSret(FI)) {
1824    AI->setName("agg.result");
1825    ++AI;
1826  }
1827
1828  assert(FI.arg_size() == Args.size() &&
1829         "Mismatch between function signature & arguments.");
1830  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1831  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1832       i != e; ++i, ++info_it) {
1833    const VarDecl *Arg = i->first;
1834    QualType Ty = info_it->type;
1835    const ABIArgInfo &ArgI = info_it->info;
1836
1837    switch (ArgI.getKind()) {
1838    case ABIArgInfo::Indirect: {
1839      llvm::Value* V = AI;
1840      if (hasAggregateLLVMType(Ty)) {
1841        // Do nothing, aggregates and complex variables are accessed by
1842        // reference.
1843      } else {
1844        // Load scalar value from indirect argument.
1845        V = EmitLoadOfScalar(V, false, Ty);
1846        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1847          // This must be a promotion, for something like
1848          // "void a(x) short x; {..."
1849          V = EmitScalarConversion(V, Ty, Arg->getType());
1850        }
1851      }
1852      EmitParmDecl(*Arg, V);
1853      break;
1854    }
1855
1856    case ABIArgInfo::Direct: {
1857      assert(AI != Fn->arg_end() && "Argument mismatch!");
1858      llvm::Value* V = AI;
1859      if (hasAggregateLLVMType(Ty)) {
1860        // Create a temporary alloca to hold the argument; the rest of
1861        // codegen expects to access aggregates & complex values by
1862        // reference.
1863        V = CreateTempAlloca(ConvertTypeForMem(Ty));
1864        Builder.CreateStore(AI, V);
1865      } else {
1866        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1867          // This must be a promotion, for something like
1868          // "void a(x) short x; {..."
1869          V = EmitScalarConversion(V, Ty, Arg->getType());
1870        }
1871      }
1872      EmitParmDecl(*Arg, V);
1873      break;
1874    }
1875
1876    case ABIArgInfo::Expand: {
1877      // If this structure was expanded into multiple arguments then
1878      // we need to create a temporary and reconstruct it from the
1879      // arguments.
1880      std::string Name = Arg->getNameAsString();
1881      llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty),
1882                                           (Name + ".addr").c_str());
1883      // FIXME: What are the right qualifiers here?
1884      llvm::Function::arg_iterator End =
1885        ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);
1886      EmitParmDecl(*Arg, Temp);
1887
1888      // Name the arguments used in expansion and increment AI.
1889      unsigned Index = 0;
1890      for (; AI != End; ++AI, ++Index)
1891        AI->setName(Name + "." + llvm::utostr(Index));
1892      continue;
1893    }
1894
1895    case ABIArgInfo::Ignore:
1896      // Initialize the local variable appropriately.
1897      if (hasAggregateLLVMType(Ty)) {
1898        EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty)));
1899      } else {
1900        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
1901      }
1902
1903      // Skip increment, no matching LLVM parameter.
1904      continue;
1905
1906    case ABIArgInfo::Coerce: {
1907      assert(AI != Fn->arg_end() && "Argument mismatch!");
1908      // FIXME: This is very wasteful; EmitParmDecl is just going to
1909      // drop the result in a new alloca anyway, so we could just
1910      // store into that directly if we broke the abstraction down
1911      // more.
1912      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce");
1913      CreateCoercedStore(AI, V, *this);
1914      // Match to what EmitParmDecl is expecting for this type.
1915      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1916        V = EmitLoadOfScalar(V, false, Ty);
1917        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1918          // This must be a promotion, for something like
1919          // "void a(x) short x; {..."
1920          V = EmitScalarConversion(V, Ty, Arg->getType());
1921        }
1922      }
1923      EmitParmDecl(*Arg, V);
1924      break;
1925    }
1926    }
1927
1928    ++AI;
1929  }
1930  assert(AI == Fn->arg_end() && "Argument mismatch!");
1931}
1932
1933void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1934                                         llvm::Value *ReturnValue) {
1935  llvm::Value *RV = 0;
1936
1937  // Functions with no result always return void.
1938  if (ReturnValue) {
1939    QualType RetTy = FI.getReturnType();
1940    const ABIArgInfo &RetAI = FI.getReturnInfo();
1941
1942    switch (RetAI.getKind()) {
1943    case ABIArgInfo::Indirect:
1944      if (RetTy->isAnyComplexType()) {
1945        ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1946        StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1947      } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1948        EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
1949      } else {
1950        EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1951                          false);
1952      }
1953      break;
1954
1955    case ABIArgInfo::Direct:
1956      // The internal return value temp always will have
1957      // pointer-to-return-type type.
1958      RV = Builder.CreateLoad(ReturnValue);
1959      break;
1960
1961    case ABIArgInfo::Ignore:
1962      break;
1963
1964    case ABIArgInfo::Coerce:
1965      RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
1966      break;
1967
1968    case ABIArgInfo::Expand:
1969      assert(0 && "Invalid ABI kind for return argument");
1970    }
1971  }
1972
1973  if (RV) {
1974    Builder.CreateRet(RV);
1975  } else {
1976    Builder.CreateRetVoid();
1977  }
1978}
1979
1980RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
1981  return EmitAnyExprToTemp(E);
1982}
1983
1984RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1985                                 llvm::Value *Callee,
1986                                 const CallArgList &CallArgs,
1987                                 const Decl *TargetDecl) {
1988  // FIXME: We no longer need the types from CallArgs; lift up and
1989  // simplify.
1990  llvm::SmallVector<llvm::Value*, 16> Args;
1991
1992  // Handle struct-return functions by passing a pointer to the
1993  // location that we would like to return into.
1994  QualType RetTy = CallInfo.getReturnType();
1995  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1996  if (CGM.ReturnTypeUsesSret(CallInfo)) {
1997    // Create a temporary alloca to hold the result of the call. :(
1998    Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy)));
1999  }
2000
2001  assert(CallInfo.arg_size() == CallArgs.size() &&
2002         "Mismatch between function signature & arguments.");
2003  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2004  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2005       I != E; ++I, ++info_it) {
2006    const ABIArgInfo &ArgInfo = info_it->info;
2007    RValue RV = I->first;
2008
2009    switch (ArgInfo.getKind()) {
2010    case ABIArgInfo::Indirect:
2011      if (RV.isScalar() || RV.isComplex()) {
2012        // Make a temporary alloca to pass the argument.
2013        Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second)));
2014        if (RV.isScalar())
2015          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false);
2016        else
2017          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
2018      } else {
2019        Args.push_back(RV.getAggregateAddr());
2020      }
2021      break;
2022
2023    case ABIArgInfo::Direct:
2024      if (RV.isScalar()) {
2025        Args.push_back(RV.getScalarVal());
2026      } else if (RV.isComplex()) {
2027        llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second));
2028        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0);
2029        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1);
2030        Args.push_back(Tmp);
2031      } else {
2032        Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
2033      }
2034      break;
2035
2036    case ABIArgInfo::Ignore:
2037      break;
2038
2039    case ABIArgInfo::Coerce: {
2040      // FIXME: Avoid the conversion through memory if possible.
2041      llvm::Value *SrcPtr;
2042      if (RV.isScalar()) {
2043        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
2044        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false);
2045      } else if (RV.isComplex()) {
2046        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
2047        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2048      } else
2049        SrcPtr = RV.getAggregateAddr();
2050      Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2051                                       *this));
2052      break;
2053    }
2054
2055    case ABIArgInfo::Expand:
2056      ExpandTypeToArgs(I->second, RV, Args);
2057      break;
2058    }
2059  }
2060
2061  llvm::BasicBlock *InvokeDest = getInvokeDest();
2062  CodeGen::AttributeListType AttributeList;
2063  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList);
2064  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2065                                                   AttributeList.end());
2066
2067  llvm::CallSite CS;
2068  if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
2069    CS = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
2070  } else {
2071    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2072    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
2073                              &Args[0], &Args[0]+Args.size());
2074    EmitBlock(Cont);
2075  }
2076
2077  CS.setAttributes(Attrs);
2078  if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
2079    CS.setCallingConv(F->getCallingConv());
2080
2081  // If the call doesn't return, finish the basic block and clear the
2082  // insertion point; this allows the rest of IRgen to discard
2083  // unreachable code.
2084  if (CS.doesNotReturn()) {
2085    Builder.CreateUnreachable();
2086    Builder.ClearInsertionPoint();
2087
2088    // FIXME: For now, emit a dummy basic block because expr
2089    // emitters in generally are not ready to handle emitting
2090    // expressions at unreachable points.
2091    EnsureInsertPoint();
2092
2093    // Return a reasonable RValue.
2094    return GetUndefRValue(RetTy);
2095  }
2096
2097  llvm::Instruction *CI = CS.getInstruction();
2098  if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy)
2099    CI->setName("call");
2100
2101  switch (RetAI.getKind()) {
2102  case ABIArgInfo::Indirect:
2103    if (RetTy->isAnyComplexType())
2104      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2105    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2106      return RValue::getAggregate(Args[0]);
2107    return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy));
2108
2109  case ABIArgInfo::Direct:
2110    if (RetTy->isAnyComplexType()) {
2111      llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2112      llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2113      return RValue::getComplex(std::make_pair(Real, Imag));
2114    }
2115    if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2116      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp");
2117      Builder.CreateStore(CI, V);
2118      return RValue::getAggregate(V);
2119    }
2120    return RValue::get(CI);
2121
2122  case ABIArgInfo::Ignore:
2123    // If we are ignoring an argument that had a result, make sure to
2124    // construct the appropriate return value for our caller.
2125    return GetUndefRValue(RetTy);
2126
2127  case ABIArgInfo::Coerce: {
2128    // FIXME: Avoid the conversion through memory if possible.
2129    llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce");
2130    CreateCoercedStore(CI, V, *this);
2131    if (RetTy->isAnyComplexType())
2132      return RValue::getComplex(LoadComplexFromAddr(V, false));
2133    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2134      return RValue::getAggregate(V);
2135    return RValue::get(EmitLoadOfScalar(V, false, RetTy));
2136  }
2137
2138  case ABIArgInfo::Expand:
2139    assert(0 && "Invalid ABI kind for return argument");
2140  }
2141
2142  assert(0 && "Unhandled ABIArgInfo::Kind");
2143  return RValue::get(0);
2144}
2145
2146/* VarArg handling */
2147
2148llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2149  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2150}
2151