CGCall.cpp revision cd8ab51a44e80625d84126780b0d85a7732e25af
1//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace clang;
32using namespace CodeGen;
33
34/***/
35
36static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37  switch (CC) {
38  default: return llvm::CallingConv::C;
39  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
45  // TODO: add support for CC_X86Pascal to llvm
46  }
47}
48
49/// Derives the 'this' type for codegen purposes, i.e. ignoring method
50/// qualification.
51/// FIXME: address space qualification?
52static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
53  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
54  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
55}
56
57/// Returns the canonical formal type of the given C++ method.
58static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
59  return MD->getType()->getCanonicalTypeUnqualified()
60           .getAs<FunctionProtoType>();
61}
62
63/// Returns the "extra-canonicalized" return type, which discards
64/// qualifiers on the return type.  Codegen doesn't care about them,
65/// and it makes ABI code a little easier to be able to assume that
66/// all parameter and return types are top-level unqualified.
67static CanQualType GetReturnType(QualType RetTy) {
68  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
69}
70
71/// Arrange the argument and result information for a value of the given
72/// unprototyped freestanding function type.
73const CGFunctionInfo &
74CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
75  // When translating an unprototyped function type, always use a
76  // variadic type.
77  return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
78                                 ArrayRef<CanQualType>(),
79                                 FTNP->getExtInfo(),
80                                 RequiredArgs(0));
81}
82
83/// Arrange the LLVM function layout for a value of the given function
84/// type, on top of any implicit parameters already stored.  Use the
85/// given ExtInfo instead of the ExtInfo from the function type.
86static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
87                                       SmallVectorImpl<CanQualType> &prefix,
88                                             CanQual<FunctionProtoType> FTP,
89                                              FunctionType::ExtInfo extInfo) {
90  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
91  // FIXME: Kill copy.
92  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
93    prefix.push_back(FTP->getArgType(i));
94  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
95  return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
96}
97
98/// Arrange the argument and result information for a free function (i.e.
99/// not a C++ or ObjC instance method) of the given type.
100static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
101                                      SmallVectorImpl<CanQualType> &prefix,
102                                            CanQual<FunctionProtoType> FTP) {
103  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
104}
105
106/// Given the formal ext-info of a C++ instance method, adjust it
107/// according to the C++ ABI in effect.
108static void adjustCXXMethodInfo(CodeGenTypes &CGT,
109                                FunctionType::ExtInfo &extInfo,
110                                bool isVariadic) {
111  if (extInfo.getCC() == CC_Default) {
112    CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
113    extInfo = extInfo.withCallingConv(CC);
114  }
115}
116
117/// Arrange the argument and result information for a free function (i.e.
118/// not a C++ or ObjC instance method) of the given type.
119static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
120                                      SmallVectorImpl<CanQualType> &prefix,
121                                            CanQual<FunctionProtoType> FTP) {
122  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
123  adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
124  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
125}
126
127/// Arrange the argument and result information for a value of the
128/// given freestanding function type.
129const CGFunctionInfo &
130CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
131  SmallVector<CanQualType, 16> argTypes;
132  return ::arrangeFreeFunctionType(*this, argTypes, FTP);
133}
134
135static CallingConv getCallingConventionForDecl(const Decl *D) {
136  // Set the appropriate calling convention for the Function.
137  if (D->hasAttr<StdCallAttr>())
138    return CC_X86StdCall;
139
140  if (D->hasAttr<FastCallAttr>())
141    return CC_X86FastCall;
142
143  if (D->hasAttr<ThisCallAttr>())
144    return CC_X86ThisCall;
145
146  if (D->hasAttr<PascalAttr>())
147    return CC_X86Pascal;
148
149  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
150    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
151
152  if (D->hasAttr<PnaclCallAttr>())
153    return CC_PnaclCall;
154
155  if (D->hasAttr<IntelOclBiccAttr>())
156    return CC_IntelOclBicc;
157
158  return CC_C;
159}
160
161/// Arrange the argument and result information for a call to an
162/// unknown C++ non-static member function of the given abstract type.
163/// The member function must be an ordinary function, i.e. not a
164/// constructor or destructor.
165const CGFunctionInfo &
166CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                   const FunctionProtoType *FTP) {
168  SmallVector<CanQualType, 16> argTypes;
169
170  // Add the 'this' pointer.
171  argTypes.push_back(GetThisType(Context, RD));
172
173  return ::arrangeCXXMethodType(*this, argTypes,
174              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
175}
176
177/// Arrange the argument and result information for a declaration or
178/// definition of the given C++ non-static member function.  The
179/// member function must be an ordinary function, i.e. not a
180/// constructor or destructor.
181const CGFunctionInfo &
182CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
183  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
184  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
185
186  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
187
188  if (MD->isInstance()) {
189    // The abstract case is perfectly fine.
190    return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
191  }
192
193  return arrangeFreeFunctionType(prototype);
194}
195
196/// Arrange the argument and result information for a declaration
197/// or definition to the given constructor variant.
198const CGFunctionInfo &
199CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
200                                               CXXCtorType ctorKind) {
201  SmallVector<CanQualType, 16> argTypes;
202  argTypes.push_back(GetThisType(Context, D->getParent()));
203  CanQualType resultType = Context.VoidTy;
204
205  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
206
207  CanQual<FunctionProtoType> FTP = GetFormalType(D);
208
209  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
210
211  // Add the formal parameters.
212  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
213    argTypes.push_back(FTP->getArgType(i));
214
215  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
216  adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
217  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
218}
219
220/// Arrange the argument and result information for a declaration,
221/// definition, or call to the given destructor variant.  It so
222/// happens that all three cases produce the same information.
223const CGFunctionInfo &
224CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
225                                   CXXDtorType dtorKind) {
226  SmallVector<CanQualType, 2> argTypes;
227  argTypes.push_back(GetThisType(Context, D->getParent()));
228  CanQualType resultType = Context.VoidTy;
229
230  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
231
232  CanQual<FunctionProtoType> FTP = GetFormalType(D);
233  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
234  assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
235
236  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
237  adjustCXXMethodInfo(*this, extInfo, false);
238  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
239                                 RequiredArgs::All);
240}
241
242/// Arrange the argument and result information for the declaration or
243/// definition of the given function.
244const CGFunctionInfo &
245CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
246  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
247    if (MD->isInstance())
248      return arrangeCXXMethodDeclaration(MD);
249
250  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
251
252  assert(isa<FunctionType>(FTy));
253
254  // When declaring a function without a prototype, always use a
255  // non-variadic type.
256  if (isa<FunctionNoProtoType>(FTy)) {
257    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
258    return arrangeLLVMFunctionInfo(noProto->getResultType(),
259                                   ArrayRef<CanQualType>(),
260                                   noProto->getExtInfo(),
261                                   RequiredArgs::All);
262  }
263
264  assert(isa<FunctionProtoType>(FTy));
265  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
266}
267
268/// Arrange the argument and result information for the declaration or
269/// definition of an Objective-C method.
270const CGFunctionInfo &
271CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
272  // It happens that this is the same as a call with no optional
273  // arguments, except also using the formal 'self' type.
274  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
275}
276
277/// Arrange the argument and result information for the function type
278/// through which to perform a send to the given Objective-C method,
279/// using the given receiver type.  The receiver type is not always
280/// the 'self' type of the method or even an Objective-C pointer type.
281/// This is *not* the right method for actually performing such a
282/// message send, due to the possibility of optional arguments.
283const CGFunctionInfo &
284CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
285                                              QualType receiverType) {
286  SmallVector<CanQualType, 16> argTys;
287  argTys.push_back(Context.getCanonicalParamType(receiverType));
288  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
289  // FIXME: Kill copy?
290  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
291         e = MD->param_end(); i != e; ++i) {
292    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
293  }
294
295  FunctionType::ExtInfo einfo;
296  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
297
298  if (getContext().getLangOpts().ObjCAutoRefCount &&
299      MD->hasAttr<NSReturnsRetainedAttr>())
300    einfo = einfo.withProducesResult(true);
301
302  RequiredArgs required =
303    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
304
305  return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
306                                 einfo, required);
307}
308
309const CGFunctionInfo &
310CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
311  // FIXME: Do we need to handle ObjCMethodDecl?
312  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
313
314  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
315    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
316
317  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
318    return arrangeCXXDestructor(DD, GD.getDtorType());
319
320  return arrangeFunctionDeclaration(FD);
321}
322
323/// Arrange a call as unto a free function, except possibly with an
324/// additional number of formal parameters considered required.
325static const CGFunctionInfo &
326arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
327                            const CallArgList &args,
328                            const FunctionType *fnType,
329                            unsigned numExtraRequiredArgs) {
330  assert(args.size() >= numExtraRequiredArgs);
331
332  // In most cases, there are no optional arguments.
333  RequiredArgs required = RequiredArgs::All;
334
335  // If we have a variadic prototype, the required arguments are the
336  // extra prefix plus the arguments in the prototype.
337  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
338    if (proto->isVariadic())
339      required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
340
341  // If we don't have a prototype at all, but we're supposed to
342  // explicitly use the variadic convention for unprototyped calls,
343  // treat all of the arguments as required but preserve the nominal
344  // possibility of variadics.
345  } else if (CGT.CGM.getTargetCodeGenInfo()
346               .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
347    required = RequiredArgs(args.size());
348  }
349
350  return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
351                                     fnType->getExtInfo(), required);
352}
353
354/// Figure out the rules for calling a function with the given formal
355/// type using the given arguments.  The arguments are necessary
356/// because the function might be unprototyped, in which case it's
357/// target-dependent in crazy ways.
358const CGFunctionInfo &
359CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
360                                      const FunctionType *fnType) {
361  return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
362}
363
364/// A block function call is essentially a free-function call with an
365/// extra implicit argument.
366const CGFunctionInfo &
367CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
368                                       const FunctionType *fnType) {
369  return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
370}
371
372const CGFunctionInfo &
373CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
374                                      const CallArgList &args,
375                                      FunctionType::ExtInfo info,
376                                      RequiredArgs required) {
377  // FIXME: Kill copy.
378  SmallVector<CanQualType, 16> argTypes;
379  for (CallArgList::const_iterator i = args.begin(), e = args.end();
380       i != e; ++i)
381    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
382  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
383                                 required);
384}
385
386/// Arrange a call to a C++ method, passing the given arguments.
387const CGFunctionInfo &
388CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
389                                   const FunctionProtoType *FPT,
390                                   RequiredArgs required) {
391  // FIXME: Kill copy.
392  SmallVector<CanQualType, 16> argTypes;
393  for (CallArgList::const_iterator i = args.begin(), e = args.end();
394       i != e; ++i)
395    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
396
397  FunctionType::ExtInfo info = FPT->getExtInfo();
398  adjustCXXMethodInfo(*this, info, FPT->isVariadic());
399  return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
400                                 argTypes, info, required);
401}
402
403const CGFunctionInfo &
404CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
405                                         const FunctionArgList &args,
406                                         const FunctionType::ExtInfo &info,
407                                         bool isVariadic) {
408  // FIXME: Kill copy.
409  SmallVector<CanQualType, 16> argTypes;
410  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
411       i != e; ++i)
412    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
413
414  RequiredArgs required =
415    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
416  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
417                                 required);
418}
419
420const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
421  return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
422                                 FunctionType::ExtInfo(), RequiredArgs::All);
423}
424
425/// Arrange the argument and result information for an abstract value
426/// of a given function type.  This is the method which all of the
427/// above functions ultimately defer to.
428const CGFunctionInfo &
429CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
430                                      ArrayRef<CanQualType> argTypes,
431                                      FunctionType::ExtInfo info,
432                                      RequiredArgs required) {
433#ifndef NDEBUG
434  for (ArrayRef<CanQualType>::const_iterator
435         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
436    assert(I->isCanonicalAsParam());
437#endif
438
439  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
440
441  // Lookup or create unique function info.
442  llvm::FoldingSetNodeID ID;
443  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
444
445  void *insertPos = 0;
446  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
447  if (FI)
448    return *FI;
449
450  // Construct the function info.  We co-allocate the ArgInfos.
451  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
452  FunctionInfos.InsertNode(FI, insertPos);
453
454  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
455  assert(inserted && "Recursively being processed?");
456
457  // Compute ABI information.
458  getABIInfo().computeInfo(*FI);
459
460  // Loop over all of the computed argument and return value info.  If any of
461  // them are direct or extend without a specified coerce type, specify the
462  // default now.
463  ABIArgInfo &retInfo = FI->getReturnInfo();
464  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
465    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
466
467  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
468       I != E; ++I)
469    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
470      I->info.setCoerceToType(ConvertType(I->type));
471
472  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
473  assert(erased && "Not in set?");
474
475  return *FI;
476}
477
478CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
479                                       const FunctionType::ExtInfo &info,
480                                       CanQualType resultType,
481                                       ArrayRef<CanQualType> argTypes,
482                                       RequiredArgs required) {
483  void *buffer = operator new(sizeof(CGFunctionInfo) +
484                              sizeof(ArgInfo) * (argTypes.size() + 1));
485  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
486  FI->CallingConvention = llvmCC;
487  FI->EffectiveCallingConvention = llvmCC;
488  FI->ASTCallingConvention = info.getCC();
489  FI->NoReturn = info.getNoReturn();
490  FI->ReturnsRetained = info.getProducesResult();
491  FI->Required = required;
492  FI->HasRegParm = info.getHasRegParm();
493  FI->RegParm = info.getRegParm();
494  FI->NumArgs = argTypes.size();
495  FI->getArgsBuffer()[0].type = resultType;
496  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
497    FI->getArgsBuffer()[i + 1].type = argTypes[i];
498  return FI;
499}
500
501/***/
502
503void CodeGenTypes::GetExpandedTypes(QualType type,
504                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
505  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
506    uint64_t NumElts = AT->getSize().getZExtValue();
507    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
508      GetExpandedTypes(AT->getElementType(), expandedTypes);
509  } else if (const RecordType *RT = type->getAs<RecordType>()) {
510    const RecordDecl *RD = RT->getDecl();
511    assert(!RD->hasFlexibleArrayMember() &&
512           "Cannot expand structure with flexible array.");
513    if (RD->isUnion()) {
514      // Unions can be here only in degenerative cases - all the fields are same
515      // after flattening. Thus we have to use the "largest" field.
516      const FieldDecl *LargestFD = 0;
517      CharUnits UnionSize = CharUnits::Zero();
518
519      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
520           i != e; ++i) {
521        const FieldDecl *FD = *i;
522        assert(!FD->isBitField() &&
523               "Cannot expand structure with bit-field members.");
524        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
525        if (UnionSize < FieldSize) {
526          UnionSize = FieldSize;
527          LargestFD = FD;
528        }
529      }
530      if (LargestFD)
531        GetExpandedTypes(LargestFD->getType(), expandedTypes);
532    } else {
533      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
534           i != e; ++i) {
535        assert(!i->isBitField() &&
536               "Cannot expand structure with bit-field members.");
537        GetExpandedTypes(i->getType(), expandedTypes);
538      }
539    }
540  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
541    llvm::Type *EltTy = ConvertType(CT->getElementType());
542    expandedTypes.push_back(EltTy);
543    expandedTypes.push_back(EltTy);
544  } else
545    expandedTypes.push_back(ConvertType(type));
546}
547
548llvm::Function::arg_iterator
549CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
550                                    llvm::Function::arg_iterator AI) {
551  assert(LV.isSimple() &&
552         "Unexpected non-simple lvalue during struct expansion.");
553
554  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
555    unsigned NumElts = AT->getSize().getZExtValue();
556    QualType EltTy = AT->getElementType();
557    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
558      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
559      LValue LV = MakeAddrLValue(EltAddr, EltTy);
560      AI = ExpandTypeFromArgs(EltTy, LV, AI);
561    }
562  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
563    RecordDecl *RD = RT->getDecl();
564    if (RD->isUnion()) {
565      // Unions can be here only in degenerative cases - all the fields are same
566      // after flattening. Thus we have to use the "largest" field.
567      const FieldDecl *LargestFD = 0;
568      CharUnits UnionSize = CharUnits::Zero();
569
570      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
571           i != e; ++i) {
572        const FieldDecl *FD = *i;
573        assert(!FD->isBitField() &&
574               "Cannot expand structure with bit-field members.");
575        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
576        if (UnionSize < FieldSize) {
577          UnionSize = FieldSize;
578          LargestFD = FD;
579        }
580      }
581      if (LargestFD) {
582        // FIXME: What are the right qualifiers here?
583        LValue SubLV = EmitLValueForField(LV, LargestFD);
584        AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
585      }
586    } else {
587      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
588           i != e; ++i) {
589        FieldDecl *FD = *i;
590        QualType FT = FD->getType();
591
592        // FIXME: What are the right qualifiers here?
593        LValue SubLV = EmitLValueForField(LV, FD);
594        AI = ExpandTypeFromArgs(FT, SubLV, AI);
595      }
596    }
597  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
598    QualType EltTy = CT->getElementType();
599    llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
600    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
601    llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
602    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
603  } else {
604    EmitStoreThroughLValue(RValue::get(AI), LV);
605    ++AI;
606  }
607
608  return AI;
609}
610
611/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
612/// accessing some number of bytes out of it, try to gep into the struct to get
613/// at its inner goodness.  Dive as deep as possible without entering an element
614/// with an in-memory size smaller than DstSize.
615static llvm::Value *
616EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
617                                   llvm::StructType *SrcSTy,
618                                   uint64_t DstSize, CodeGenFunction &CGF) {
619  // We can't dive into a zero-element struct.
620  if (SrcSTy->getNumElements() == 0) return SrcPtr;
621
622  llvm::Type *FirstElt = SrcSTy->getElementType(0);
623
624  // If the first elt is at least as large as what we're looking for, or if the
625  // first element is the same size as the whole struct, we can enter it.
626  uint64_t FirstEltSize =
627    CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
628  if (FirstEltSize < DstSize &&
629      FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
630    return SrcPtr;
631
632  // GEP into the first element.
633  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
634
635  // If the first element is a struct, recurse.
636  llvm::Type *SrcTy =
637    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
638  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
639    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
640
641  return SrcPtr;
642}
643
644/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
645/// are either integers or pointers.  This does a truncation of the value if it
646/// is too large or a zero extension if it is too small.
647static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
648                                             llvm::Type *Ty,
649                                             CodeGenFunction &CGF) {
650  if (Val->getType() == Ty)
651    return Val;
652
653  if (isa<llvm::PointerType>(Val->getType())) {
654    // If this is Pointer->Pointer avoid conversion to and from int.
655    if (isa<llvm::PointerType>(Ty))
656      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
657
658    // Convert the pointer to an integer so we can play with its width.
659    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
660  }
661
662  llvm::Type *DestIntTy = Ty;
663  if (isa<llvm::PointerType>(DestIntTy))
664    DestIntTy = CGF.IntPtrTy;
665
666  if (Val->getType() != DestIntTy)
667    Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
668
669  if (isa<llvm::PointerType>(Ty))
670    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
671  return Val;
672}
673
674
675
676/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
677/// a pointer to an object of type \arg Ty.
678///
679/// This safely handles the case when the src type is smaller than the
680/// destination type; in this situation the values of bits which not
681/// present in the src are undefined.
682static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
683                                      llvm::Type *Ty,
684                                      CodeGenFunction &CGF) {
685  llvm::Type *SrcTy =
686    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
687
688  // If SrcTy and Ty are the same, just do a load.
689  if (SrcTy == Ty)
690    return CGF.Builder.CreateLoad(SrcPtr);
691
692  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
693
694  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
695    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
696    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
697  }
698
699  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
700
701  // If the source and destination are integer or pointer types, just do an
702  // extension or truncation to the desired type.
703  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
704      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
705    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
706    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
707  }
708
709  // If load is legal, just bitcast the src pointer.
710  if (SrcSize >= DstSize) {
711    // Generally SrcSize is never greater than DstSize, since this means we are
712    // losing bits. However, this can happen in cases where the structure has
713    // additional padding, for example due to a user specified alignment.
714    //
715    // FIXME: Assert that we aren't truncating non-padding bits when have access
716    // to that information.
717    llvm::Value *Casted =
718      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
719    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
720    // FIXME: Use better alignment / avoid requiring aligned load.
721    Load->setAlignment(1);
722    return Load;
723  }
724
725  // Otherwise do coercion through memory. This is stupid, but
726  // simple.
727  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
728  llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
729  llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
730  llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
731  // FIXME: Use better alignment.
732  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
733      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
734      1, false);
735  return CGF.Builder.CreateLoad(Tmp);
736}
737
738// Function to store a first-class aggregate into memory.  We prefer to
739// store the elements rather than the aggregate to be more friendly to
740// fast-isel.
741// FIXME: Do we need to recurse here?
742static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
743                          llvm::Value *DestPtr, bool DestIsVolatile,
744                          bool LowAlignment) {
745  // Prefer scalar stores to first-class aggregate stores.
746  if (llvm::StructType *STy =
747        dyn_cast<llvm::StructType>(Val->getType())) {
748    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
749      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
750      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
751      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
752                                                    DestIsVolatile);
753      if (LowAlignment)
754        SI->setAlignment(1);
755    }
756  } else {
757    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
758    if (LowAlignment)
759      SI->setAlignment(1);
760  }
761}
762
763/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
764/// where the source and destination may have different types.
765///
766/// This safely handles the case when the src type is larger than the
767/// destination type; the upper bits of the src will be lost.
768static void CreateCoercedStore(llvm::Value *Src,
769                               llvm::Value *DstPtr,
770                               bool DstIsVolatile,
771                               CodeGenFunction &CGF) {
772  llvm::Type *SrcTy = Src->getType();
773  llvm::Type *DstTy =
774    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
775  if (SrcTy == DstTy) {
776    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
777    return;
778  }
779
780  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
781
782  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
783    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
784    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
785  }
786
787  // If the source and destination are integer or pointer types, just do an
788  // extension or truncation to the desired type.
789  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
790      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
791    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
792    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
793    return;
794  }
795
796  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
797
798  // If store is legal, just bitcast the src pointer.
799  if (SrcSize <= DstSize) {
800    llvm::Value *Casted =
801      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
802    // FIXME: Use better alignment / avoid requiring aligned store.
803    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
804  } else {
805    // Otherwise do coercion through memory. This is stupid, but
806    // simple.
807
808    // Generally SrcSize is never greater than DstSize, since this means we are
809    // losing bits. However, this can happen in cases where the structure has
810    // additional padding, for example due to a user specified alignment.
811    //
812    // FIXME: Assert that we aren't truncating non-padding bits when have access
813    // to that information.
814    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
815    CGF.Builder.CreateStore(Src, Tmp);
816    llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
817    llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
818    llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
819    // FIXME: Use better alignment.
820    CGF.Builder.CreateMemCpy(DstCasted, Casted,
821        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
822        1, false);
823  }
824}
825
826/***/
827
828bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
829  return FI.getReturnInfo().isIndirect();
830}
831
832bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
833  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
834    switch (BT->getKind()) {
835    default:
836      return false;
837    case BuiltinType::Float:
838      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
839    case BuiltinType::Double:
840      return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
841    case BuiltinType::LongDouble:
842      return getContext().getTargetInfo().useObjCFPRetForRealType(
843        TargetInfo::LongDouble);
844    }
845  }
846
847  return false;
848}
849
850bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
851  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
852    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
853      if (BT->getKind() == BuiltinType::LongDouble)
854        return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
855    }
856  }
857
858  return false;
859}
860
861llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
862  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
863  return GetFunctionType(FI);
864}
865
866llvm::FunctionType *
867CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
868
869  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
870  assert(Inserted && "Recursively being processed?");
871
872  SmallVector<llvm::Type*, 8> argTypes;
873  llvm::Type *resultType = 0;
874
875  const ABIArgInfo &retAI = FI.getReturnInfo();
876  switch (retAI.getKind()) {
877  case ABIArgInfo::Expand:
878    llvm_unreachable("Invalid ABI kind for return argument");
879
880  case ABIArgInfo::Extend:
881  case ABIArgInfo::Direct:
882    resultType = retAI.getCoerceToType();
883    break;
884
885  case ABIArgInfo::Indirect: {
886    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
887    resultType = llvm::Type::getVoidTy(getLLVMContext());
888
889    QualType ret = FI.getReturnType();
890    llvm::Type *ty = ConvertType(ret);
891    unsigned addressSpace = Context.getTargetAddressSpace(ret);
892    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
893    break;
894  }
895
896  case ABIArgInfo::Ignore:
897    resultType = llvm::Type::getVoidTy(getLLVMContext());
898    break;
899  }
900
901  // Add in all of the required arguments.
902  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
903  if (FI.isVariadic()) {
904    ie = it + FI.getRequiredArgs().getNumRequiredArgs();
905  } else {
906    ie = FI.arg_end();
907  }
908  for (; it != ie; ++it) {
909    const ABIArgInfo &argAI = it->info;
910
911    // Insert a padding type to ensure proper alignment.
912    if (llvm::Type *PaddingType = argAI.getPaddingType())
913      argTypes.push_back(PaddingType);
914
915    switch (argAI.getKind()) {
916    case ABIArgInfo::Ignore:
917      break;
918
919    case ABIArgInfo::Indirect: {
920      // indirect arguments are always on the stack, which is addr space #0.
921      llvm::Type *LTy = ConvertTypeForMem(it->type);
922      argTypes.push_back(LTy->getPointerTo());
923      break;
924    }
925
926    case ABIArgInfo::Extend:
927    case ABIArgInfo::Direct: {
928      // If the coerce-to type is a first class aggregate, flatten it.  Either
929      // way is semantically identical, but fast-isel and the optimizer
930      // generally likes scalar values better than FCAs.
931      llvm::Type *argType = argAI.getCoerceToType();
932      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
933        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
934          argTypes.push_back(st->getElementType(i));
935      } else {
936        argTypes.push_back(argType);
937      }
938      break;
939    }
940
941    case ABIArgInfo::Expand:
942      GetExpandedTypes(it->type, argTypes);
943      break;
944    }
945  }
946
947  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
948  assert(Erased && "Not in set?");
949
950  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
951}
952
953llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
954  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
955  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
956
957  if (!isFuncTypeConvertible(FPT))
958    return llvm::StructType::get(getLLVMContext());
959
960  const CGFunctionInfo *Info;
961  if (isa<CXXDestructorDecl>(MD))
962    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
963  else
964    Info = &arrangeCXXMethodDeclaration(MD);
965  return GetFunctionType(*Info);
966}
967
968void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
969                                           const Decl *TargetDecl,
970                                           AttributeListType &PAL,
971                                           unsigned &CallingConv) {
972  llvm::AttrBuilder FuncAttrs;
973  llvm::AttrBuilder RetAttrs;
974
975  CallingConv = FI.getEffectiveCallingConvention();
976
977  if (FI.isNoReturn())
978    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
979
980  // FIXME: handle sseregparm someday...
981  if (TargetDecl) {
982    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
983      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
984    if (TargetDecl->hasAttr<NoThrowAttr>())
985      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
986    else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
987      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
988      if (FPT && FPT->isNothrow(getContext()))
989        FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
990    }
991
992    if (TargetDecl->hasAttr<NoReturnAttr>() ||
993        TargetDecl->hasAttr<CXX11NoReturnAttr>())
994      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
995
996    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
997      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
998
999    // 'const' and 'pure' attribute functions are also nounwind.
1000    if (TargetDecl->hasAttr<ConstAttr>()) {
1001      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1002      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1003    } else if (TargetDecl->hasAttr<PureAttr>()) {
1004      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1005      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1006    }
1007    if (TargetDecl->hasAttr<MallocAttr>())
1008      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1009  }
1010
1011  if (CodeGenOpts.OptimizeSize)
1012    FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1013  if (CodeGenOpts.OptimizeSize == 2)
1014    FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1015  if (CodeGenOpts.DisableRedZone)
1016    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1017  if (CodeGenOpts.NoImplicitFloat)
1018    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1019
1020  QualType RetTy = FI.getReturnType();
1021  unsigned Index = 1;
1022  const ABIArgInfo &RetAI = FI.getReturnInfo();
1023  switch (RetAI.getKind()) {
1024  case ABIArgInfo::Extend:
1025   if (RetTy->hasSignedIntegerRepresentation())
1026     RetAttrs.addAttribute(llvm::Attribute::SExt);
1027   else if (RetTy->hasUnsignedIntegerRepresentation())
1028     RetAttrs.addAttribute(llvm::Attribute::ZExt);
1029    break;
1030  case ABIArgInfo::Direct:
1031  case ABIArgInfo::Ignore:
1032    break;
1033
1034  case ABIArgInfo::Indirect: {
1035    llvm::AttrBuilder SRETAttrs;
1036    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1037    if (RetAI.getInReg())
1038      SRETAttrs.addAttribute(llvm::Attribute::InReg);
1039    PAL.push_back(llvm::
1040                  AttributeWithIndex::get(Index,
1041                                         llvm::Attribute::get(getLLVMContext(),
1042                                                               SRETAttrs)));
1043
1044    ++Index;
1045    // sret disables readnone and readonly
1046    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1047      .removeAttribute(llvm::Attribute::ReadNone);
1048    break;
1049  }
1050
1051  case ABIArgInfo::Expand:
1052    llvm_unreachable("Invalid ABI kind for return argument");
1053  }
1054
1055  if (RetAttrs.hasAttributes())
1056    PAL.push_back(llvm::
1057                  AttributeWithIndex::get(llvm::AttributeSet::ReturnIndex,
1058                                         llvm::Attribute::get(getLLVMContext(),
1059                                                               RetAttrs)));
1060
1061  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1062         ie = FI.arg_end(); it != ie; ++it) {
1063    QualType ParamType = it->type;
1064    const ABIArgInfo &AI = it->info;
1065    llvm::AttrBuilder Attrs;
1066
1067    if (AI.getPaddingType()) {
1068      if (AI.getPaddingInReg()) {
1069        llvm::AttrBuilder PadAttrs;
1070        PadAttrs.addAttribute(llvm::Attribute::InReg);
1071
1072        llvm::Attribute A =llvm::Attribute::get(getLLVMContext(), PadAttrs);
1073        PAL.push_back(llvm::AttributeWithIndex::get(Index, A));
1074      }
1075      // Increment Index if there is padding.
1076      ++Index;
1077    }
1078
1079    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1080    // have the corresponding parameter variable.  It doesn't make
1081    // sense to do it here because parameters are so messed up.
1082    switch (AI.getKind()) {
1083    case ABIArgInfo::Extend:
1084      if (ParamType->isSignedIntegerOrEnumerationType())
1085        Attrs.addAttribute(llvm::Attribute::SExt);
1086      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1087        Attrs.addAttribute(llvm::Attribute::ZExt);
1088      // FALL THROUGH
1089    case ABIArgInfo::Direct:
1090      if (AI.getInReg())
1091        Attrs.addAttribute(llvm::Attribute::InReg);
1092
1093      // FIXME: handle sseregparm someday...
1094
1095      if (llvm::StructType *STy =
1096          dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1097        unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1098        if (Attrs.hasAttributes())
1099          for (unsigned I = 0; I < Extra; ++I)
1100            PAL.push_back(llvm::AttributeWithIndex::get(Index + I,
1101                                         llvm::Attribute::get(getLLVMContext(),
1102                                                               Attrs)));
1103        Index += Extra;
1104      }
1105      break;
1106
1107    case ABIArgInfo::Indirect:
1108      if (AI.getInReg())
1109        Attrs.addAttribute(llvm::Attribute::InReg);
1110
1111      if (AI.getIndirectByVal())
1112        Attrs.addAttribute(llvm::Attribute::ByVal);
1113
1114      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1115
1116      // byval disables readnone and readonly.
1117      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1118        .removeAttribute(llvm::Attribute::ReadNone);
1119      break;
1120
1121    case ABIArgInfo::Ignore:
1122      // Skip increment, no matching LLVM parameter.
1123      continue;
1124
1125    case ABIArgInfo::Expand: {
1126      SmallVector<llvm::Type*, 8> types;
1127      // FIXME: This is rather inefficient. Do we ever actually need to do
1128      // anything here? The result should be just reconstructed on the other
1129      // side, so extension should be a non-issue.
1130      getTypes().GetExpandedTypes(ParamType, types);
1131      Index += types.size();
1132      continue;
1133    }
1134    }
1135
1136    if (Attrs.hasAttributes())
1137      PAL.push_back(llvm::AttributeWithIndex::get(Index,
1138                                         llvm::Attribute::get(getLLVMContext(),
1139                                                               Attrs)));
1140    ++Index;
1141  }
1142  if (FuncAttrs.hasAttributes())
1143    PAL.push_back(llvm::
1144                  AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1145                                         llvm::Attribute::get(getLLVMContext(),
1146                                                               FuncAttrs)));
1147}
1148
1149/// An argument came in as a promoted argument; demote it back to its
1150/// declared type.
1151static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1152                                         const VarDecl *var,
1153                                         llvm::Value *value) {
1154  llvm::Type *varType = CGF.ConvertType(var->getType());
1155
1156  // This can happen with promotions that actually don't change the
1157  // underlying type, like the enum promotions.
1158  if (value->getType() == varType) return value;
1159
1160  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1161         && "unexpected promotion type");
1162
1163  if (isa<llvm::IntegerType>(varType))
1164    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1165
1166  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1167}
1168
1169void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1170                                         llvm::Function *Fn,
1171                                         const FunctionArgList &Args) {
1172  // If this is an implicit-return-zero function, go ahead and
1173  // initialize the return value.  TODO: it might be nice to have
1174  // a more general mechanism for this that didn't require synthesized
1175  // return statements.
1176  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1177    if (FD->hasImplicitReturnZero()) {
1178      QualType RetTy = FD->getResultType().getUnqualifiedType();
1179      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1180      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1181      Builder.CreateStore(Zero, ReturnValue);
1182    }
1183  }
1184
1185  // FIXME: We no longer need the types from FunctionArgList; lift up and
1186  // simplify.
1187
1188  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1189  llvm::Function::arg_iterator AI = Fn->arg_begin();
1190
1191  // Name the struct return argument.
1192  if (CGM.ReturnTypeUsesSRet(FI)) {
1193    AI->setName("agg.result");
1194    AI->addAttr(llvm::Attribute::get(getLLVMContext(),
1195                                      llvm::Attribute::NoAlias));
1196    ++AI;
1197  }
1198
1199  assert(FI.arg_size() == Args.size() &&
1200         "Mismatch between function signature & arguments.");
1201  unsigned ArgNo = 1;
1202  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1203  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1204       i != e; ++i, ++info_it, ++ArgNo) {
1205    const VarDecl *Arg = *i;
1206    QualType Ty = info_it->type;
1207    const ABIArgInfo &ArgI = info_it->info;
1208
1209    bool isPromoted =
1210      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1211
1212    // Skip the dummy padding argument.
1213    if (ArgI.getPaddingType())
1214      ++AI;
1215
1216    switch (ArgI.getKind()) {
1217    case ABIArgInfo::Indirect: {
1218      llvm::Value *V = AI;
1219
1220      if (hasAggregateLLVMType(Ty)) {
1221        // Aggregates and complex variables are accessed by reference.  All we
1222        // need to do is realign the value, if requested
1223        if (ArgI.getIndirectRealign()) {
1224          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1225
1226          // Copy from the incoming argument pointer to the temporary with the
1227          // appropriate alignment.
1228          //
1229          // FIXME: We should have a common utility for generating an aggregate
1230          // copy.
1231          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1232          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1233          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1234          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1235          Builder.CreateMemCpy(Dst,
1236                               Src,
1237                               llvm::ConstantInt::get(IntPtrTy,
1238                                                      Size.getQuantity()),
1239                               ArgI.getIndirectAlign(),
1240                               false);
1241          V = AlignedTemp;
1242        }
1243      } else {
1244        // Load scalar value from indirect argument.
1245        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1246        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1247
1248        if (isPromoted)
1249          V = emitArgumentDemotion(*this, Arg, V);
1250      }
1251      EmitParmDecl(*Arg, V, ArgNo);
1252      break;
1253    }
1254
1255    case ABIArgInfo::Extend:
1256    case ABIArgInfo::Direct: {
1257
1258      // If we have the trivial case, handle it with no muss and fuss.
1259      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1260          ArgI.getCoerceToType() == ConvertType(Ty) &&
1261          ArgI.getDirectOffset() == 0) {
1262        assert(AI != Fn->arg_end() && "Argument mismatch!");
1263        llvm::Value *V = AI;
1264
1265        if (Arg->getType().isRestrictQualified())
1266          AI->addAttr(llvm::Attribute::get(getLLVMContext(),
1267                                            llvm::Attribute::NoAlias));
1268
1269        // Ensure the argument is the correct type.
1270        if (V->getType() != ArgI.getCoerceToType())
1271          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1272
1273        if (isPromoted)
1274          V = emitArgumentDemotion(*this, Arg, V);
1275
1276        // Because of merging of function types from multiple decls it is
1277        // possible for the type of an argument to not match the corresponding
1278        // type in the function type. Since we are codegening the callee
1279        // in here, add a cast to the argument type.
1280        llvm::Type *LTy = ConvertType(Arg->getType());
1281        if (V->getType() != LTy)
1282          V = Builder.CreateBitCast(V, LTy);
1283
1284        EmitParmDecl(*Arg, V, ArgNo);
1285        break;
1286      }
1287
1288      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1289
1290      // The alignment we need to use is the max of the requested alignment for
1291      // the argument plus the alignment required by our access code below.
1292      unsigned AlignmentToUse =
1293        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1294      AlignmentToUse = std::max(AlignmentToUse,
1295                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1296
1297      Alloca->setAlignment(AlignmentToUse);
1298      llvm::Value *V = Alloca;
1299      llvm::Value *Ptr = V;    // Pointer to store into.
1300
1301      // If the value is offset in memory, apply the offset now.
1302      if (unsigned Offs = ArgI.getDirectOffset()) {
1303        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1304        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1305        Ptr = Builder.CreateBitCast(Ptr,
1306                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1307      }
1308
1309      // If the coerce-to type is a first class aggregate, we flatten it and
1310      // pass the elements. Either way is semantically identical, but fast-isel
1311      // and the optimizer generally likes scalar values better than FCAs.
1312      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1313      if (STy && STy->getNumElements() > 1) {
1314        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1315        llvm::Type *DstTy =
1316          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1317        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1318
1319        if (SrcSize <= DstSize) {
1320          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1321
1322          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1323            assert(AI != Fn->arg_end() && "Argument mismatch!");
1324            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1325            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1326            Builder.CreateStore(AI++, EltPtr);
1327          }
1328        } else {
1329          llvm::AllocaInst *TempAlloca =
1330            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1331          TempAlloca->setAlignment(AlignmentToUse);
1332          llvm::Value *TempV = TempAlloca;
1333
1334          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1335            assert(AI != Fn->arg_end() && "Argument mismatch!");
1336            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1337            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1338            Builder.CreateStore(AI++, EltPtr);
1339          }
1340
1341          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1342        }
1343      } else {
1344        // Simple case, just do a coerced store of the argument into the alloca.
1345        assert(AI != Fn->arg_end() && "Argument mismatch!");
1346        AI->setName(Arg->getName() + ".coerce");
1347        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1348      }
1349
1350
1351      // Match to what EmitParmDecl is expecting for this type.
1352      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1353        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1354        if (isPromoted)
1355          V = emitArgumentDemotion(*this, Arg, V);
1356      }
1357      EmitParmDecl(*Arg, V, ArgNo);
1358      continue;  // Skip ++AI increment, already done.
1359    }
1360
1361    case ABIArgInfo::Expand: {
1362      // If this structure was expanded into multiple arguments then
1363      // we need to create a temporary and reconstruct it from the
1364      // arguments.
1365      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1366      CharUnits Align = getContext().getDeclAlign(Arg);
1367      Alloca->setAlignment(Align.getQuantity());
1368      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1369      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1370      EmitParmDecl(*Arg, Alloca, ArgNo);
1371
1372      // Name the arguments used in expansion and increment AI.
1373      unsigned Index = 0;
1374      for (; AI != End; ++AI, ++Index)
1375        AI->setName(Arg->getName() + "." + Twine(Index));
1376      continue;
1377    }
1378
1379    case ABIArgInfo::Ignore:
1380      // Initialize the local variable appropriately.
1381      if (hasAggregateLLVMType(Ty))
1382        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1383      else
1384        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1385                     ArgNo);
1386
1387      // Skip increment, no matching LLVM parameter.
1388      continue;
1389    }
1390
1391    ++AI;
1392  }
1393  assert(AI == Fn->arg_end() && "Argument mismatch!");
1394}
1395
1396static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1397  while (insn->use_empty()) {
1398    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1399    if (!bitcast) return;
1400
1401    // This is "safe" because we would have used a ConstantExpr otherwise.
1402    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1403    bitcast->eraseFromParent();
1404  }
1405}
1406
1407/// Try to emit a fused autorelease of a return result.
1408static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1409                                                    llvm::Value *result) {
1410  // We must be immediately followed the cast.
1411  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1412  if (BB->empty()) return 0;
1413  if (&BB->back() != result) return 0;
1414
1415  llvm::Type *resultType = result->getType();
1416
1417  // result is in a BasicBlock and is therefore an Instruction.
1418  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1419
1420  SmallVector<llvm::Instruction*,4> insnsToKill;
1421
1422  // Look for:
1423  //  %generator = bitcast %type1* %generator2 to %type2*
1424  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1425    // We would have emitted this as a constant if the operand weren't
1426    // an Instruction.
1427    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1428
1429    // Require the generator to be immediately followed by the cast.
1430    if (generator->getNextNode() != bitcast)
1431      return 0;
1432
1433    insnsToKill.push_back(bitcast);
1434  }
1435
1436  // Look for:
1437  //   %generator = call i8* @objc_retain(i8* %originalResult)
1438  // or
1439  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1440  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1441  if (!call) return 0;
1442
1443  bool doRetainAutorelease;
1444
1445  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1446    doRetainAutorelease = true;
1447  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1448                                          .objc_retainAutoreleasedReturnValue) {
1449    doRetainAutorelease = false;
1450
1451    // If we emitted an assembly marker for this call (and the
1452    // ARCEntrypoints field should have been set if so), go looking
1453    // for that call.  If we can't find it, we can't do this
1454    // optimization.  But it should always be the immediately previous
1455    // instruction, unless we needed bitcasts around the call.
1456    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1457      llvm::Instruction *prev = call->getPrevNode();
1458      assert(prev);
1459      if (isa<llvm::BitCastInst>(prev)) {
1460        prev = prev->getPrevNode();
1461        assert(prev);
1462      }
1463      assert(isa<llvm::CallInst>(prev));
1464      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1465               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1466      insnsToKill.push_back(prev);
1467    }
1468  } else {
1469    return 0;
1470  }
1471
1472  result = call->getArgOperand(0);
1473  insnsToKill.push_back(call);
1474
1475  // Keep killing bitcasts, for sanity.  Note that we no longer care
1476  // about precise ordering as long as there's exactly one use.
1477  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1478    if (!bitcast->hasOneUse()) break;
1479    insnsToKill.push_back(bitcast);
1480    result = bitcast->getOperand(0);
1481  }
1482
1483  // Delete all the unnecessary instructions, from latest to earliest.
1484  for (SmallVectorImpl<llvm::Instruction*>::iterator
1485         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1486    (*i)->eraseFromParent();
1487
1488  // Do the fused retain/autorelease if we were asked to.
1489  if (doRetainAutorelease)
1490    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1491
1492  // Cast back to the result type.
1493  return CGF.Builder.CreateBitCast(result, resultType);
1494}
1495
1496/// If this is a +1 of the value of an immutable 'self', remove it.
1497static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1498                                          llvm::Value *result) {
1499  // This is only applicable to a method with an immutable 'self'.
1500  const ObjCMethodDecl *method =
1501    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1502  if (!method) return 0;
1503  const VarDecl *self = method->getSelfDecl();
1504  if (!self->getType().isConstQualified()) return 0;
1505
1506  // Look for a retain call.
1507  llvm::CallInst *retainCall =
1508    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1509  if (!retainCall ||
1510      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1511    return 0;
1512
1513  // Look for an ordinary load of 'self'.
1514  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1515  llvm::LoadInst *load =
1516    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1517  if (!load || load->isAtomic() || load->isVolatile() ||
1518      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1519    return 0;
1520
1521  // Okay!  Burn it all down.  This relies for correctness on the
1522  // assumption that the retain is emitted as part of the return and
1523  // that thereafter everything is used "linearly".
1524  llvm::Type *resultType = result->getType();
1525  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1526  assert(retainCall->use_empty());
1527  retainCall->eraseFromParent();
1528  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1529
1530  return CGF.Builder.CreateBitCast(load, resultType);
1531}
1532
1533/// Emit an ARC autorelease of the result of a function.
1534///
1535/// \return the value to actually return from the function
1536static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1537                                            llvm::Value *result) {
1538  // If we're returning 'self', kill the initial retain.  This is a
1539  // heuristic attempt to "encourage correctness" in the really unfortunate
1540  // case where we have a return of self during a dealloc and we desperately
1541  // need to avoid the possible autorelease.
1542  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1543    return self;
1544
1545  // At -O0, try to emit a fused retain/autorelease.
1546  if (CGF.shouldUseFusedARCCalls())
1547    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1548      return fused;
1549
1550  return CGF.EmitARCAutoreleaseReturnValue(result);
1551}
1552
1553/// Heuristically search for a dominating store to the return-value slot.
1554static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1555  // If there are multiple uses of the return-value slot, just check
1556  // for something immediately preceding the IP.  Sometimes this can
1557  // happen with how we generate implicit-returns; it can also happen
1558  // with noreturn cleanups.
1559  if (!CGF.ReturnValue->hasOneUse()) {
1560    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1561    if (IP->empty()) return 0;
1562    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1563    if (!store) return 0;
1564    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1565    assert(!store->isAtomic() && !store->isVolatile()); // see below
1566    return store;
1567  }
1568
1569  llvm::StoreInst *store =
1570    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1571  if (!store) return 0;
1572
1573  // These aren't actually possible for non-coerced returns, and we
1574  // only care about non-coerced returns on this code path.
1575  assert(!store->isAtomic() && !store->isVolatile());
1576
1577  // Now do a first-and-dirty dominance check: just walk up the
1578  // single-predecessors chain from the current insertion point.
1579  llvm::BasicBlock *StoreBB = store->getParent();
1580  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1581  while (IP != StoreBB) {
1582    if (!(IP = IP->getSinglePredecessor()))
1583      return 0;
1584  }
1585
1586  // Okay, the store's basic block dominates the insertion point; we
1587  // can do our thing.
1588  return store;
1589}
1590
1591void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1592  // Functions with no result always return void.
1593  if (ReturnValue == 0) {
1594    Builder.CreateRetVoid();
1595    return;
1596  }
1597
1598  llvm::DebugLoc RetDbgLoc;
1599  llvm::Value *RV = 0;
1600  QualType RetTy = FI.getReturnType();
1601  const ABIArgInfo &RetAI = FI.getReturnInfo();
1602
1603  switch (RetAI.getKind()) {
1604  case ABIArgInfo::Indirect: {
1605    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1606    if (RetTy->isAnyComplexType()) {
1607      ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1608      StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1609    } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1610      // Do nothing; aggregrates get evaluated directly into the destination.
1611    } else {
1612      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1613                        false, Alignment, RetTy);
1614    }
1615    break;
1616  }
1617
1618  case ABIArgInfo::Extend:
1619  case ABIArgInfo::Direct:
1620    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1621        RetAI.getDirectOffset() == 0) {
1622      // The internal return value temp always will have pointer-to-return-type
1623      // type, just do a load.
1624
1625      // If there is a dominating store to ReturnValue, we can elide
1626      // the load, zap the store, and usually zap the alloca.
1627      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1628        // Get the stored value and nuke the now-dead store.
1629        RetDbgLoc = SI->getDebugLoc();
1630        RV = SI->getValueOperand();
1631        SI->eraseFromParent();
1632
1633        // If that was the only use of the return value, nuke it as well now.
1634        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1635          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1636          ReturnValue = 0;
1637        }
1638
1639      // Otherwise, we have to do a simple load.
1640      } else {
1641        RV = Builder.CreateLoad(ReturnValue);
1642      }
1643    } else {
1644      llvm::Value *V = ReturnValue;
1645      // If the value is offset in memory, apply the offset now.
1646      if (unsigned Offs = RetAI.getDirectOffset()) {
1647        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1648        V = Builder.CreateConstGEP1_32(V, Offs);
1649        V = Builder.CreateBitCast(V,
1650                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1651      }
1652
1653      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1654    }
1655
1656    // In ARC, end functions that return a retainable type with a call
1657    // to objc_autoreleaseReturnValue.
1658    if (AutoreleaseResult) {
1659      assert(getLangOpts().ObjCAutoRefCount &&
1660             !FI.isReturnsRetained() &&
1661             RetTy->isObjCRetainableType());
1662      RV = emitAutoreleaseOfResult(*this, RV);
1663    }
1664
1665    break;
1666
1667  case ABIArgInfo::Ignore:
1668    break;
1669
1670  case ABIArgInfo::Expand:
1671    llvm_unreachable("Invalid ABI kind for return argument");
1672  }
1673
1674  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1675  if (!RetDbgLoc.isUnknown())
1676    Ret->setDebugLoc(RetDbgLoc);
1677}
1678
1679void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1680                                          const VarDecl *param) {
1681  // StartFunction converted the ABI-lowered parameter(s) into a
1682  // local alloca.  We need to turn that into an r-value suitable
1683  // for EmitCall.
1684  llvm::Value *local = GetAddrOfLocalVar(param);
1685
1686  QualType type = param->getType();
1687
1688  // For the most part, we just need to load the alloca, except:
1689  // 1) aggregate r-values are actually pointers to temporaries, and
1690  // 2) references to aggregates are pointers directly to the aggregate.
1691  // I don't know why references to non-aggregates are different here.
1692  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1693    if (hasAggregateLLVMType(ref->getPointeeType()))
1694      return args.add(RValue::getAggregate(local), type);
1695
1696    // Locals which are references to scalars are represented
1697    // with allocas holding the pointer.
1698    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1699  }
1700
1701  if (type->isAnyComplexType()) {
1702    ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1703    return args.add(RValue::getComplex(complex), type);
1704  }
1705
1706  if (hasAggregateLLVMType(type))
1707    return args.add(RValue::getAggregate(local), type);
1708
1709  unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1710  llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1711  return args.add(RValue::get(value), type);
1712}
1713
1714static bool isProvablyNull(llvm::Value *addr) {
1715  return isa<llvm::ConstantPointerNull>(addr);
1716}
1717
1718static bool isProvablyNonNull(llvm::Value *addr) {
1719  return isa<llvm::AllocaInst>(addr);
1720}
1721
1722/// Emit the actual writing-back of a writeback.
1723static void emitWriteback(CodeGenFunction &CGF,
1724                          const CallArgList::Writeback &writeback) {
1725  llvm::Value *srcAddr = writeback.Address;
1726  assert(!isProvablyNull(srcAddr) &&
1727         "shouldn't have writeback for provably null argument");
1728
1729  llvm::BasicBlock *contBB = 0;
1730
1731  // If the argument wasn't provably non-null, we need to null check
1732  // before doing the store.
1733  bool provablyNonNull = isProvablyNonNull(srcAddr);
1734  if (!provablyNonNull) {
1735    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1736    contBB = CGF.createBasicBlock("icr.done");
1737
1738    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1739    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1740    CGF.EmitBlock(writebackBB);
1741  }
1742
1743  // Load the value to writeback.
1744  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1745
1746  // Cast it back, in case we're writing an id to a Foo* or something.
1747  value = CGF.Builder.CreateBitCast(value,
1748               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1749                            "icr.writeback-cast");
1750
1751  // Perform the writeback.
1752  QualType srcAddrType = writeback.AddressType;
1753  CGF.EmitStoreThroughLValue(RValue::get(value),
1754                             CGF.MakeAddrLValue(srcAddr, srcAddrType));
1755
1756  // Jump to the continuation block.
1757  if (!provablyNonNull)
1758    CGF.EmitBlock(contBB);
1759}
1760
1761static void emitWritebacks(CodeGenFunction &CGF,
1762                           const CallArgList &args) {
1763  for (CallArgList::writeback_iterator
1764         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1765    emitWriteback(CGF, *i);
1766}
1767
1768/// Emit an argument that's being passed call-by-writeback.  That is,
1769/// we are passing the address of
1770static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1771                             const ObjCIndirectCopyRestoreExpr *CRE) {
1772  llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1773
1774  // The dest and src types don't necessarily match in LLVM terms
1775  // because of the crazy ObjC compatibility rules.
1776
1777  llvm::PointerType *destType =
1778    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1779
1780  // If the address is a constant null, just pass the appropriate null.
1781  if (isProvablyNull(srcAddr)) {
1782    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1783             CRE->getType());
1784    return;
1785  }
1786
1787  QualType srcAddrType =
1788    CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1789
1790  // Create the temporary.
1791  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1792                                           "icr.temp");
1793  // Loading an l-value can introduce a cleanup if the l-value is __weak,
1794  // and that cleanup will be conditional if we can't prove that the l-value
1795  // isn't null, so we need to register a dominating point so that the cleanups
1796  // system will make valid IR.
1797  CodeGenFunction::ConditionalEvaluation condEval(CGF);
1798
1799  // Zero-initialize it if we're not doing a copy-initialization.
1800  bool shouldCopy = CRE->shouldCopy();
1801  if (!shouldCopy) {
1802    llvm::Value *null =
1803      llvm::ConstantPointerNull::get(
1804        cast<llvm::PointerType>(destType->getElementType()));
1805    CGF.Builder.CreateStore(null, temp);
1806  }
1807
1808  llvm::BasicBlock *contBB = 0;
1809
1810  // If the address is *not* known to be non-null, we need to switch.
1811  llvm::Value *finalArgument;
1812
1813  bool provablyNonNull = isProvablyNonNull(srcAddr);
1814  if (provablyNonNull) {
1815    finalArgument = temp;
1816  } else {
1817    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1818
1819    finalArgument = CGF.Builder.CreateSelect(isNull,
1820                                   llvm::ConstantPointerNull::get(destType),
1821                                             temp, "icr.argument");
1822
1823    // If we need to copy, then the load has to be conditional, which
1824    // means we need control flow.
1825    if (shouldCopy) {
1826      contBB = CGF.createBasicBlock("icr.cont");
1827      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1828      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1829      CGF.EmitBlock(copyBB);
1830      condEval.begin(CGF);
1831    }
1832  }
1833
1834  // Perform a copy if necessary.
1835  if (shouldCopy) {
1836    LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1837    RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1838    assert(srcRV.isScalar());
1839
1840    llvm::Value *src = srcRV.getScalarVal();
1841    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1842                                    "icr.cast");
1843
1844    // Use an ordinary store, not a store-to-lvalue.
1845    CGF.Builder.CreateStore(src, temp);
1846  }
1847
1848  // Finish the control flow if we needed it.
1849  if (shouldCopy && !provablyNonNull) {
1850    CGF.EmitBlock(contBB);
1851    condEval.end(CGF);
1852  }
1853
1854  args.addWriteback(srcAddr, srcAddrType, temp);
1855  args.add(RValue::get(finalArgument), CRE->getType());
1856}
1857
1858void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1859                                  QualType type) {
1860  if (const ObjCIndirectCopyRestoreExpr *CRE
1861        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1862    assert(getLangOpts().ObjCAutoRefCount);
1863    assert(getContext().hasSameType(E->getType(), type));
1864    return emitWritebackArg(*this, args, CRE);
1865  }
1866
1867  assert(type->isReferenceType() == E->isGLValue() &&
1868         "reference binding to unmaterialized r-value!");
1869
1870  if (E->isGLValue()) {
1871    assert(E->getObjectKind() == OK_Ordinary);
1872    return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1873                    type);
1874  }
1875
1876  if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1877      isa<ImplicitCastExpr>(E) &&
1878      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1879    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1880    assert(L.isSimple());
1881    args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1882    return;
1883  }
1884
1885  args.add(EmitAnyExprToTemp(E), type);
1886}
1887
1888// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1889// optimizer it can aggressively ignore unwind edges.
1890void
1891CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1892  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1893      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1894    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1895                      CGM.getNoObjCARCExceptionsMetadata());
1896}
1897
1898/// Emits a call or invoke instruction to the given function, depending
1899/// on the current state of the EH stack.
1900llvm::CallSite
1901CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1902                                  ArrayRef<llvm::Value *> Args,
1903                                  const Twine &Name) {
1904  llvm::BasicBlock *InvokeDest = getInvokeDest();
1905
1906  llvm::Instruction *Inst;
1907  if (!InvokeDest)
1908    Inst = Builder.CreateCall(Callee, Args, Name);
1909  else {
1910    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1911    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1912    EmitBlock(ContBB);
1913  }
1914
1915  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1916  // optimizer it can aggressively ignore unwind edges.
1917  if (CGM.getLangOpts().ObjCAutoRefCount)
1918    AddObjCARCExceptionMetadata(Inst);
1919
1920  return Inst;
1921}
1922
1923llvm::CallSite
1924CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1925                                  const Twine &Name) {
1926  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1927}
1928
1929static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1930                            llvm::FunctionType *FTy) {
1931  if (ArgNo < FTy->getNumParams())
1932    assert(Elt->getType() == FTy->getParamType(ArgNo));
1933  else
1934    assert(FTy->isVarArg());
1935  ++ArgNo;
1936}
1937
1938void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1939                                       SmallVector<llvm::Value*,16> &Args,
1940                                       llvm::FunctionType *IRFuncTy) {
1941  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1942    unsigned NumElts = AT->getSize().getZExtValue();
1943    QualType EltTy = AT->getElementType();
1944    llvm::Value *Addr = RV.getAggregateAddr();
1945    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1946      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1947      LValue LV = MakeAddrLValue(EltAddr, EltTy);
1948      RValue EltRV;
1949      if (EltTy->isAnyComplexType())
1950        // FIXME: Volatile?
1951        EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1952      else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1953        EltRV = LV.asAggregateRValue();
1954      else
1955        EltRV = EmitLoadOfLValue(LV);
1956      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1957    }
1958  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1959    RecordDecl *RD = RT->getDecl();
1960    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1961    LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
1962
1963    if (RD->isUnion()) {
1964      const FieldDecl *LargestFD = 0;
1965      CharUnits UnionSize = CharUnits::Zero();
1966
1967      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1968           i != e; ++i) {
1969        const FieldDecl *FD = *i;
1970        assert(!FD->isBitField() &&
1971               "Cannot expand structure with bit-field members.");
1972        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
1973        if (UnionSize < FieldSize) {
1974          UnionSize = FieldSize;
1975          LargestFD = FD;
1976        }
1977      }
1978      if (LargestFD) {
1979        RValue FldRV = EmitRValueForField(LV, LargestFD);
1980        ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
1981      }
1982    } else {
1983      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1984           i != e; ++i) {
1985        FieldDecl *FD = *i;
1986
1987        RValue FldRV = EmitRValueForField(LV, FD);
1988        ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
1989      }
1990    }
1991  } else if (Ty->isAnyComplexType()) {
1992    ComplexPairTy CV = RV.getComplexVal();
1993    Args.push_back(CV.first);
1994    Args.push_back(CV.second);
1995  } else {
1996    assert(RV.isScalar() &&
1997           "Unexpected non-scalar rvalue during struct expansion.");
1998
1999    // Insert a bitcast as needed.
2000    llvm::Value *V = RV.getScalarVal();
2001    if (Args.size() < IRFuncTy->getNumParams() &&
2002        V->getType() != IRFuncTy->getParamType(Args.size()))
2003      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2004
2005    Args.push_back(V);
2006  }
2007}
2008
2009
2010RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2011                                 llvm::Value *Callee,
2012                                 ReturnValueSlot ReturnValue,
2013                                 const CallArgList &CallArgs,
2014                                 const Decl *TargetDecl,
2015                                 llvm::Instruction **callOrInvoke) {
2016  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2017  SmallVector<llvm::Value*, 16> Args;
2018
2019  // Handle struct-return functions by passing a pointer to the
2020  // location that we would like to return into.
2021  QualType RetTy = CallInfo.getReturnType();
2022  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2023
2024  // IRArgNo - Keep track of the argument number in the callee we're looking at.
2025  unsigned IRArgNo = 0;
2026  llvm::FunctionType *IRFuncTy =
2027    cast<llvm::FunctionType>(
2028                  cast<llvm::PointerType>(Callee->getType())->getElementType());
2029
2030  // If the call returns a temporary with struct return, create a temporary
2031  // alloca to hold the result, unless one is given to us.
2032  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2033    llvm::Value *Value = ReturnValue.getValue();
2034    if (!Value)
2035      Value = CreateMemTemp(RetTy);
2036    Args.push_back(Value);
2037    checkArgMatches(Value, IRArgNo, IRFuncTy);
2038  }
2039
2040  assert(CallInfo.arg_size() == CallArgs.size() &&
2041         "Mismatch between function signature & arguments.");
2042  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2043  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2044       I != E; ++I, ++info_it) {
2045    const ABIArgInfo &ArgInfo = info_it->info;
2046    RValue RV = I->RV;
2047
2048    unsigned TypeAlign =
2049      getContext().getTypeAlignInChars(I->Ty).getQuantity();
2050
2051    // Insert a padding argument to ensure proper alignment.
2052    if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2053      Args.push_back(llvm::UndefValue::get(PaddingType));
2054      ++IRArgNo;
2055    }
2056
2057    switch (ArgInfo.getKind()) {
2058    case ABIArgInfo::Indirect: {
2059      if (RV.isScalar() || RV.isComplex()) {
2060        // Make a temporary alloca to pass the argument.
2061        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2062        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2063          AI->setAlignment(ArgInfo.getIndirectAlign());
2064        Args.push_back(AI);
2065
2066        if (RV.isScalar())
2067          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
2068                            TypeAlign, I->Ty);
2069        else
2070          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
2071
2072        // Validate argument match.
2073        checkArgMatches(AI, IRArgNo, IRFuncTy);
2074      } else {
2075        // We want to avoid creating an unnecessary temporary+copy here;
2076        // however, we need one in two cases:
2077        // 1. If the argument is not byval, and we are required to copy the
2078        //    source.  (This case doesn't occur on any common architecture.)
2079        // 2. If the argument is byval, RV is not sufficiently aligned, and
2080        //    we cannot force it to be sufficiently aligned.
2081        llvm::Value *Addr = RV.getAggregateAddr();
2082        unsigned Align = ArgInfo.getIndirectAlign();
2083        const llvm::DataLayout *TD = &CGM.getDataLayout();
2084        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2085            (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
2086             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
2087          // Create an aligned temporary, and copy to it.
2088          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2089          if (Align > AI->getAlignment())
2090            AI->setAlignment(Align);
2091          Args.push_back(AI);
2092          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2093
2094          // Validate argument match.
2095          checkArgMatches(AI, IRArgNo, IRFuncTy);
2096        } else {
2097          // Skip the extra memcpy call.
2098          Args.push_back(Addr);
2099
2100          // Validate argument match.
2101          checkArgMatches(Addr, IRArgNo, IRFuncTy);
2102        }
2103      }
2104      break;
2105    }
2106
2107    case ABIArgInfo::Ignore:
2108      break;
2109
2110    case ABIArgInfo::Extend:
2111    case ABIArgInfo::Direct: {
2112      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2113          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2114          ArgInfo.getDirectOffset() == 0) {
2115        llvm::Value *V;
2116        if (RV.isScalar())
2117          V = RV.getScalarVal();
2118        else
2119          V = Builder.CreateLoad(RV.getAggregateAddr());
2120
2121        // If the argument doesn't match, perform a bitcast to coerce it.  This
2122        // can happen due to trivial type mismatches.
2123        if (IRArgNo < IRFuncTy->getNumParams() &&
2124            V->getType() != IRFuncTy->getParamType(IRArgNo))
2125          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2126        Args.push_back(V);
2127
2128        checkArgMatches(V, IRArgNo, IRFuncTy);
2129        break;
2130      }
2131
2132      // FIXME: Avoid the conversion through memory if possible.
2133      llvm::Value *SrcPtr;
2134      if (RV.isScalar()) {
2135        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2136        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
2137      } else if (RV.isComplex()) {
2138        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2139        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2140      } else
2141        SrcPtr = RV.getAggregateAddr();
2142
2143      // If the value is offset in memory, apply the offset now.
2144      if (unsigned Offs = ArgInfo.getDirectOffset()) {
2145        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2146        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2147        SrcPtr = Builder.CreateBitCast(SrcPtr,
2148                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2149
2150      }
2151
2152      // If the coerce-to type is a first class aggregate, we flatten it and
2153      // pass the elements. Either way is semantically identical, but fast-isel
2154      // and the optimizer generally likes scalar values better than FCAs.
2155      if (llvm::StructType *STy =
2156            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2157        llvm::Type *SrcTy =
2158          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2159        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2160        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2161
2162        // If the source type is smaller than the destination type of the
2163        // coerce-to logic, copy the source value into a temp alloca the size
2164        // of the destination type to allow loading all of it. The bits past
2165        // the source value are left undef.
2166        if (SrcSize < DstSize) {
2167          llvm::AllocaInst *TempAlloca
2168            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2169          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2170          SrcPtr = TempAlloca;
2171        } else {
2172          SrcPtr = Builder.CreateBitCast(SrcPtr,
2173                                         llvm::PointerType::getUnqual(STy));
2174        }
2175
2176        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2177          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2178          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2179          // We don't know what we're loading from.
2180          LI->setAlignment(1);
2181          Args.push_back(LI);
2182
2183          // Validate argument match.
2184          checkArgMatches(LI, IRArgNo, IRFuncTy);
2185        }
2186      } else {
2187        // In the simple case, just pass the coerced loaded value.
2188        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2189                                         *this));
2190
2191        // Validate argument match.
2192        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2193      }
2194
2195      break;
2196    }
2197
2198    case ABIArgInfo::Expand:
2199      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2200      IRArgNo = Args.size();
2201      break;
2202    }
2203  }
2204
2205  // If the callee is a bitcast of a function to a varargs pointer to function
2206  // type, check to see if we can remove the bitcast.  This handles some cases
2207  // with unprototyped functions.
2208  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2209    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2210      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2211      llvm::FunctionType *CurFT =
2212        cast<llvm::FunctionType>(CurPT->getElementType());
2213      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2214
2215      if (CE->getOpcode() == llvm::Instruction::BitCast &&
2216          ActualFT->getReturnType() == CurFT->getReturnType() &&
2217          ActualFT->getNumParams() == CurFT->getNumParams() &&
2218          ActualFT->getNumParams() == Args.size() &&
2219          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2220        bool ArgsMatch = true;
2221        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2222          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2223            ArgsMatch = false;
2224            break;
2225          }
2226
2227        // Strip the cast if we can get away with it.  This is a nice cleanup,
2228        // but also allows us to inline the function at -O0 if it is marked
2229        // always_inline.
2230        if (ArgsMatch)
2231          Callee = CalleeF;
2232      }
2233    }
2234
2235  unsigned CallingConv;
2236  CodeGen::AttributeListType AttributeList;
2237  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2238  llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2239                                                   AttributeList);
2240
2241  llvm::BasicBlock *InvokeDest = 0;
2242  if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2243                          llvm::Attribute::NoUnwind))
2244    InvokeDest = getInvokeDest();
2245
2246  llvm::CallSite CS;
2247  if (!InvokeDest) {
2248    CS = Builder.CreateCall(Callee, Args);
2249  } else {
2250    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2251    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2252    EmitBlock(Cont);
2253  }
2254  if (callOrInvoke)
2255    *callOrInvoke = CS.getInstruction();
2256
2257  CS.setAttributes(Attrs);
2258  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2259
2260  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2261  // optimizer it can aggressively ignore unwind edges.
2262  if (CGM.getLangOpts().ObjCAutoRefCount)
2263    AddObjCARCExceptionMetadata(CS.getInstruction());
2264
2265  // If the call doesn't return, finish the basic block and clear the
2266  // insertion point; this allows the rest of IRgen to discard
2267  // unreachable code.
2268  if (CS.doesNotReturn()) {
2269    Builder.CreateUnreachable();
2270    Builder.ClearInsertionPoint();
2271
2272    // FIXME: For now, emit a dummy basic block because expr emitters in
2273    // generally are not ready to handle emitting expressions at unreachable
2274    // points.
2275    EnsureInsertPoint();
2276
2277    // Return a reasonable RValue.
2278    return GetUndefRValue(RetTy);
2279  }
2280
2281  llvm::Instruction *CI = CS.getInstruction();
2282  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2283    CI->setName("call");
2284
2285  // Emit any writebacks immediately.  Arguably this should happen
2286  // after any return-value munging.
2287  if (CallArgs.hasWritebacks())
2288    emitWritebacks(*this, CallArgs);
2289
2290  switch (RetAI.getKind()) {
2291  case ABIArgInfo::Indirect: {
2292    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2293    if (RetTy->isAnyComplexType())
2294      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2295    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2296      return RValue::getAggregate(Args[0]);
2297    return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2298  }
2299
2300  case ABIArgInfo::Ignore:
2301    // If we are ignoring an argument that had a result, make sure to
2302    // construct the appropriate return value for our caller.
2303    return GetUndefRValue(RetTy);
2304
2305  case ABIArgInfo::Extend:
2306  case ABIArgInfo::Direct: {
2307    llvm::Type *RetIRTy = ConvertType(RetTy);
2308    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2309      if (RetTy->isAnyComplexType()) {
2310        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2311        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2312        return RValue::getComplex(std::make_pair(Real, Imag));
2313      }
2314      if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2315        llvm::Value *DestPtr = ReturnValue.getValue();
2316        bool DestIsVolatile = ReturnValue.isVolatile();
2317
2318        if (!DestPtr) {
2319          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2320          DestIsVolatile = false;
2321        }
2322        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2323        return RValue::getAggregate(DestPtr);
2324      }
2325
2326      // If the argument doesn't match, perform a bitcast to coerce it.  This
2327      // can happen due to trivial type mismatches.
2328      llvm::Value *V = CI;
2329      if (V->getType() != RetIRTy)
2330        V = Builder.CreateBitCast(V, RetIRTy);
2331      return RValue::get(V);
2332    }
2333
2334    llvm::Value *DestPtr = ReturnValue.getValue();
2335    bool DestIsVolatile = ReturnValue.isVolatile();
2336
2337    if (!DestPtr) {
2338      DestPtr = CreateMemTemp(RetTy, "coerce");
2339      DestIsVolatile = false;
2340    }
2341
2342    // If the value is offset in memory, apply the offset now.
2343    llvm::Value *StorePtr = DestPtr;
2344    if (unsigned Offs = RetAI.getDirectOffset()) {
2345      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2346      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2347      StorePtr = Builder.CreateBitCast(StorePtr,
2348                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2349    }
2350    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2351
2352    unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2353    if (RetTy->isAnyComplexType())
2354      return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2355    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2356      return RValue::getAggregate(DestPtr);
2357    return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2358  }
2359
2360  case ABIArgInfo::Expand:
2361    llvm_unreachable("Invalid ABI kind for return argument");
2362  }
2363
2364  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2365}
2366
2367/* VarArg handling */
2368
2369llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2370  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2371}
2372