CGException.cpp revision 0903421e36c174a82597f83bd296f3cd5b5f169b
1//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with C++ exception related code generation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/StmtCXX.h"
15
16#include "llvm/Intrinsics.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Support/CallSite.h"
19
20#include "CGObjCRuntime.h"
21#include "CodeGenFunction.h"
22#include "CGException.h"
23#include "CGCleanup.h"
24#include "TargetInfo.h"
25
26using namespace clang;
27using namespace CodeGen;
28
29static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) {
30  // void *__cxa_allocate_exception(size_t thrown_size);
31
32  const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
33  const llvm::FunctionType *FTy =
34    llvm::FunctionType::get(llvm::Type::getInt8PtrTy(CGF.getLLVMContext()),
35                            SizeTy, /*IsVarArgs=*/false);
36
37  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
38}
39
40static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) {
41  // void __cxa_free_exception(void *thrown_exception);
42
43  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
44  const llvm::FunctionType *FTy =
45    llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
46                            Int8PtrTy, /*IsVarArgs=*/false);
47
48  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception");
49}
50
51static llvm::Constant *getThrowFn(CodeGenFunction &CGF) {
52  // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
53  //                  void (*dest) (void *));
54
55  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
56  const llvm::Type *Args[3] = { Int8PtrTy, Int8PtrTy, Int8PtrTy };
57  const llvm::FunctionType *FTy =
58    llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
59                            Args, /*IsVarArgs=*/false);
60
61  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
62}
63
64static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) {
65  // void __cxa_rethrow();
66
67  const llvm::FunctionType *FTy =
68    llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
69                            /*IsVarArgs=*/false);
70
71  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
72}
73
74static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) {
75  // void *__cxa_get_exception_ptr(void*);
76
77  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
78  const llvm::FunctionType *FTy =
79    llvm::FunctionType::get(Int8PtrTy, Int8PtrTy, /*IsVarArgs=*/false);
80
81  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
82}
83
84static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) {
85  // void *__cxa_begin_catch(void*);
86
87  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
88  const llvm::FunctionType *FTy =
89    llvm::FunctionType::get(Int8PtrTy, Int8PtrTy, /*IsVarArgs=*/false);
90
91  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
92}
93
94static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) {
95  // void __cxa_end_catch();
96
97  const llvm::FunctionType *FTy =
98    llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
99                            /*IsVarArgs=*/false);
100
101  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
102}
103
104static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) {
105  // void __cxa_call_unexepcted(void *thrown_exception);
106
107  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
108  const llvm::FunctionType *FTy =
109    llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
110                            Int8PtrTy, /*IsVarArgs=*/false);
111
112  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected");
113}
114
115llvm::Constant *CodeGenFunction::getUnwindResumeFn() {
116  const llvm::FunctionType *FTy =
117    llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
118
119  if (CGM.getLangOptions().SjLjExceptions)
120    return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume");
121  return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume");
122}
123
124llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() {
125  const llvm::FunctionType *FTy =
126    llvm::FunctionType::get(VoidTy, Int8PtrTy, /*IsVarArgs=*/false);
127
128  if (CGM.getLangOptions().SjLjExceptions)
129    return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow");
130  return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow");
131}
132
133static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) {
134  // void __terminate();
135
136  const llvm::FunctionType *FTy =
137    llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()),
138                            /*IsVarArgs=*/false);
139
140  return CGF.CGM.CreateRuntimeFunction(FTy,
141      CGF.CGM.getLangOptions().CPlusPlus ? "_ZSt9terminatev" : "abort");
142}
143
144static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF,
145                                            llvm::StringRef Name) {
146  const llvm::Type *Int8PtrTy =
147    llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
148  const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
149  const llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Int8PtrTy,
150                                                          /*IsVarArgs=*/false);
151
152  return CGF.CGM.CreateRuntimeFunction(FTy, Name);
153}
154
155const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0");
156const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0");
157const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0");
158const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0");
159const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0");
160const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0",
161                                            "objc_exception_throw");
162const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0");
163
164static const EHPersonality &getCPersonality(const LangOptions &L) {
165  if (L.SjLjExceptions)
166    return EHPersonality::GNU_C_SJLJ;
167  return EHPersonality::GNU_C;
168}
169
170static const EHPersonality &getObjCPersonality(const LangOptions &L) {
171  if (L.NeXTRuntime) {
172    if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC;
173    else return getCPersonality(L);
174  } else {
175    return EHPersonality::GNU_ObjC;
176  }
177}
178
179static const EHPersonality &getCXXPersonality(const LangOptions &L) {
180  if (L.SjLjExceptions)
181    return EHPersonality::GNU_CPlusPlus_SJLJ;
182  else
183    return EHPersonality::GNU_CPlusPlus;
184}
185
186/// Determines the personality function to use when both C++
187/// and Objective-C exceptions are being caught.
188static const EHPersonality &getObjCXXPersonality(const LangOptions &L) {
189  // The ObjC personality defers to the C++ personality for non-ObjC
190  // handlers.  Unlike the C++ case, we use the same personality
191  // function on targets using (backend-driven) SJLJ EH.
192  if (L.NeXTRuntime) {
193    if (L.ObjCNonFragileABI)
194      return EHPersonality::NeXT_ObjC;
195
196    // In the fragile ABI, just use C++ exception handling and hope
197    // they're not doing crazy exception mixing.
198    else
199      return getCXXPersonality(L);
200  }
201
202  // The GNU runtime's personality function inherently doesn't support
203  // mixed EH.  Use the C++ personality just to avoid returning null.
204  return EHPersonality::GNU_ObjCXX;
205}
206
207const EHPersonality &EHPersonality::get(const LangOptions &L) {
208  if (L.CPlusPlus && L.ObjC1)
209    return getObjCXXPersonality(L);
210  else if (L.CPlusPlus)
211    return getCXXPersonality(L);
212  else if (L.ObjC1)
213    return getObjCPersonality(L);
214  else
215    return getCPersonality(L);
216}
217
218static llvm::Constant *getPersonalityFn(CodeGenModule &CGM,
219                                        const EHPersonality &Personality) {
220  llvm::Constant *Fn =
221    CGM.CreateRuntimeFunction(llvm::FunctionType::get(
222                                llvm::Type::getInt32Ty(CGM.getLLVMContext()),
223                                true),
224                              Personality.getPersonalityFnName());
225  return Fn;
226}
227
228static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM,
229                                        const EHPersonality &Personality) {
230  llvm::Constant *Fn = getPersonalityFn(CGM, Personality);
231  return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
232}
233
234/// Check whether a personality function could reasonably be swapped
235/// for a C++ personality function.
236static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) {
237  for (llvm::Constant::use_iterator
238         I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) {
239    llvm::User *User = *I;
240
241    // Conditionally white-list bitcasts.
242    if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(User)) {
243      if (CE->getOpcode() != llvm::Instruction::BitCast) return false;
244      if (!PersonalityHasOnlyCXXUses(CE))
245        return false;
246      continue;
247    }
248
249    // Otherwise, it has to be a selector call.
250    if (!isa<llvm::EHSelectorInst>(User)) return false;
251
252    llvm::EHSelectorInst *Selector = cast<llvm::EHSelectorInst>(User);
253    for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) {
254      // Look for something that would've been returned by the ObjC
255      // runtime's GetEHType() method.
256      llvm::GlobalVariable *GV
257        = dyn_cast<llvm::GlobalVariable>(Selector->getArgOperand(I));
258      if (!GV) continue;
259
260      // ObjC EH selector entries are always global variables with
261      // names starting like this.
262      if (GV->getName().startswith("OBJC_EHTYPE"))
263        return false;
264    }
265  }
266
267  return true;
268}
269
270/// Try to use the C++ personality function in ObjC++.  Not doing this
271/// can cause some incompatibilities with gcc, which is more
272/// aggressive about only using the ObjC++ personality in a function
273/// when it really needs it.
274void CodeGenModule::SimplifyPersonality() {
275  // For now, this is really a Darwin-specific operation.
276  if (!Context.Target.getTriple().isOSDarwin())
277    return;
278
279  // If we're not in ObjC++ -fexceptions, there's nothing to do.
280  if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions)
281    return;
282
283  const EHPersonality &ObjCXX = EHPersonality::get(Features);
284  const EHPersonality &CXX = getCXXPersonality(Features);
285  if (&ObjCXX == &CXX ||
286      ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName())
287    return;
288
289  llvm::Function *Fn =
290    getModule().getFunction(ObjCXX.getPersonalityFnName());
291
292  // Nothing to do if it's unused.
293  if (!Fn || Fn->use_empty()) return;
294
295  // Can't do the optimization if it has non-C++ uses.
296  if (!PersonalityHasOnlyCXXUses(Fn)) return;
297
298  // Create the C++ personality function and kill off the old
299  // function.
300  llvm::Constant *CXXFn = getPersonalityFn(*this, CXX);
301
302  // This can happen if the user is screwing with us.
303  if (Fn->getType() != CXXFn->getType()) return;
304
305  Fn->replaceAllUsesWith(CXXFn);
306  Fn->eraseFromParent();
307}
308
309/// Returns the value to inject into a selector to indicate the
310/// presence of a catch-all.
311static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) {
312  // Possibly we should use @llvm.eh.catch.all.value here.
313  return llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
314}
315
316/// Returns the value to inject into a selector to indicate the
317/// presence of a cleanup.
318static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) {
319  return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
320}
321
322namespace {
323  /// A cleanup to free the exception object if its initialization
324  /// throws.
325  struct FreeException {
326    static void Emit(CodeGenFunction &CGF, bool forEH,
327                     llvm::Value *exn) {
328      CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn)
329        ->setDoesNotThrow();
330    }
331  };
332}
333
334// Emits an exception expression into the given location.  This
335// differs from EmitAnyExprToMem only in that, if a final copy-ctor
336// call is required, an exception within that copy ctor causes
337// std::terminate to be invoked.
338static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e,
339                             llvm::Value *addr) {
340  // Make sure the exception object is cleaned up if there's an
341  // exception during initialization.
342  CGF.pushFullExprCleanup<FreeException>(EHCleanup, addr);
343  EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin();
344
345  // __cxa_allocate_exception returns a void*;  we need to cast this
346  // to the appropriate type for the object.
347  const llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo();
348  llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty);
349
350  // FIXME: this isn't quite right!  If there's a final unelided call
351  // to a copy constructor, then according to [except.terminate]p1 we
352  // must call std::terminate() if that constructor throws, because
353  // technically that copy occurs after the exception expression is
354  // evaluated but before the exception is caught.  But the best way
355  // to handle that is to teach EmitAggExpr to do the final copy
356  // differently if it can't be elided.
357  CGF.EmitAnyExprToMem(e, typedAddr, /*Volatile*/ false, /*IsInit*/ true);
358
359  // Deactivate the cleanup block.
360  CGF.DeactivateCleanupBlock(cleanup);
361}
362
363llvm::Value *CodeGenFunction::getExceptionSlot() {
364  if (!ExceptionSlot) {
365    const llvm::Type *i8p = llvm::Type::getInt8PtrTy(getLLVMContext());
366    ExceptionSlot = CreateTempAlloca(i8p, "exn.slot");
367  }
368  return ExceptionSlot;
369}
370
371void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) {
372  if (!E->getSubExpr()) {
373    if (getInvokeDest()) {
374      Builder.CreateInvoke(getReThrowFn(*this),
375                           getUnreachableBlock(),
376                           getInvokeDest())
377        ->setDoesNotReturn();
378    } else {
379      Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn();
380      Builder.CreateUnreachable();
381    }
382
383    // throw is an expression, and the expression emitters expect us
384    // to leave ourselves at a valid insertion point.
385    EmitBlock(createBasicBlock("throw.cont"));
386
387    return;
388  }
389
390  QualType ThrowType = E->getSubExpr()->getType();
391
392  // Now allocate the exception object.
393  const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
394  uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
395
396  llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this);
397  llvm::CallInst *ExceptionPtr =
398    Builder.CreateCall(AllocExceptionFn,
399                       llvm::ConstantInt::get(SizeTy, TypeSize),
400                       "exception");
401  ExceptionPtr->setDoesNotThrow();
402
403  EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr);
404
405  // Now throw the exception.
406  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
407  llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
408                                                         /*ForEH=*/true);
409
410  // The address of the destructor.  If the exception type has a
411  // trivial destructor (or isn't a record), we just pass null.
412  llvm::Constant *Dtor = 0;
413  if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
414    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
415    if (!Record->hasTrivialDestructor()) {
416      CXXDestructorDecl *DtorD = Record->getDestructor();
417      Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete);
418      Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy);
419    }
420  }
421  if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy);
422
423  if (getInvokeDest()) {
424    llvm::InvokeInst *ThrowCall =
425      Builder.CreateInvoke3(getThrowFn(*this),
426                            getUnreachableBlock(), getInvokeDest(),
427                            ExceptionPtr, TypeInfo, Dtor);
428    ThrowCall->setDoesNotReturn();
429  } else {
430    llvm::CallInst *ThrowCall =
431      Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor);
432    ThrowCall->setDoesNotReturn();
433    Builder.CreateUnreachable();
434  }
435
436  // throw is an expression, and the expression emitters expect us
437  // to leave ourselves at a valid insertion point.
438  EmitBlock(createBasicBlock("throw.cont"));
439}
440
441void CodeGenFunction::EmitStartEHSpec(const Decl *D) {
442  if (!CGM.getLangOptions().CXXExceptions)
443    return;
444
445  const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
446  if (FD == 0)
447    return;
448  const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
449  if (Proto == 0)
450    return;
451
452  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
453  if (isNoexceptExceptionSpec(EST)) {
454    if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
455      // noexcept functions are simple terminate scopes.
456      EHStack.pushTerminate();
457    }
458  } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
459    unsigned NumExceptions = Proto->getNumExceptions();
460    EHFilterScope *Filter = EHStack.pushFilter(NumExceptions);
461
462    for (unsigned I = 0; I != NumExceptions; ++I) {
463      QualType Ty = Proto->getExceptionType(I);
464      QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType();
465      llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType,
466                                                        /*ForEH=*/true);
467      Filter->setFilter(I, EHType);
468    }
469  }
470}
471
472void CodeGenFunction::EmitEndEHSpec(const Decl *D) {
473  if (!CGM.getLangOptions().CXXExceptions)
474    return;
475
476  const FunctionDecl* FD = dyn_cast_or_null<FunctionDecl>(D);
477  if (FD == 0)
478    return;
479  const FunctionProtoType *Proto = FD->getType()->getAs<FunctionProtoType>();
480  if (Proto == 0)
481    return;
482
483  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
484  if (isNoexceptExceptionSpec(EST)) {
485    if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) {
486      EHStack.popTerminate();
487    }
488  } else if (EST == EST_Dynamic || EST == EST_DynamicNone) {
489    EHStack.popFilter();
490  }
491}
492
493void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) {
494  EnterCXXTryStmt(S);
495  EmitStmt(S.getTryBlock());
496  ExitCXXTryStmt(S);
497}
498
499void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
500  unsigned NumHandlers = S.getNumHandlers();
501  EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers);
502
503  for (unsigned I = 0; I != NumHandlers; ++I) {
504    const CXXCatchStmt *C = S.getHandler(I);
505
506    llvm::BasicBlock *Handler = createBasicBlock("catch");
507    if (C->getExceptionDecl()) {
508      // FIXME: Dropping the reference type on the type into makes it
509      // impossible to correctly implement catch-by-reference
510      // semantics for pointers.  Unfortunately, this is what all
511      // existing compilers do, and it's not clear that the standard
512      // personality routine is capable of doing this right.  See C++ DR 388:
513      //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388
514      QualType CaughtType = C->getCaughtType();
515      CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType();
516
517      llvm::Value *TypeInfo = 0;
518      if (CaughtType->isObjCObjectPointerType())
519        TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType);
520      else
521        TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true);
522      CatchScope->setHandler(I, TypeInfo, Handler);
523    } else {
524      // No exception decl indicates '...', a catch-all.
525      CatchScope->setCatchAllHandler(I, Handler);
526    }
527  }
528}
529
530/// Check whether this is a non-EH scope, i.e. a scope which doesn't
531/// affect exception handling.  Currently, the only non-EH scopes are
532/// normal-only cleanup scopes.
533static bool isNonEHScope(const EHScope &S) {
534  switch (S.getKind()) {
535  case EHScope::Cleanup:
536    return !cast<EHCleanupScope>(S).isEHCleanup();
537  case EHScope::Filter:
538  case EHScope::Catch:
539  case EHScope::Terminate:
540    return false;
541  }
542
543  // Suppress warning.
544  return false;
545}
546
547llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() {
548  assert(EHStack.requiresLandingPad());
549  assert(!EHStack.empty());
550
551  if (!CGM.getLangOptions().Exceptions)
552    return 0;
553
554  // Check the innermost scope for a cached landing pad.  If this is
555  // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad.
556  llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad();
557  if (LP) return LP;
558
559  // Build the landing pad for this scope.
560  LP = EmitLandingPad();
561  assert(LP);
562
563  // Cache the landing pad on the innermost scope.  If this is a
564  // non-EH scope, cache the landing pad on the enclosing scope, too.
565  for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) {
566    ir->setCachedLandingPad(LP);
567    if (!isNonEHScope(*ir)) break;
568  }
569
570  return LP;
571}
572
573// This code contains a hack to work around a design flaw in
574// LLVM's EH IR which breaks semantics after inlining.  This same
575// hack is implemented in llvm-gcc.
576//
577// The LLVM EH abstraction is basically a thin veneer over the
578// traditional GCC zero-cost design: for each range of instructions
579// in the function, there is (at most) one "landing pad" with an
580// associated chain of EH actions.  A language-specific personality
581// function interprets this chain of actions and (1) decides whether
582// or not to resume execution at the landing pad and (2) if so,
583// provides an integer indicating why it's stopping.  In LLVM IR,
584// the association of a landing pad with a range of instructions is
585// achieved via an invoke instruction, the chain of actions becomes
586// the arguments to the @llvm.eh.selector call, and the selector
587// call returns the integer indicator.  Other than the required
588// presence of two intrinsic function calls in the landing pad,
589// the IR exactly describes the layout of the output code.
590//
591// A principal advantage of this design is that it is completely
592// language-agnostic; in theory, the LLVM optimizers can treat
593// landing pads neutrally, and targets need only know how to lower
594// the intrinsics to have a functioning exceptions system (assuming
595// that platform exceptions follow something approximately like the
596// GCC design).  Unfortunately, landing pads cannot be combined in a
597// language-agnostic way: given selectors A and B, there is no way
598// to make a single landing pad which faithfully represents the
599// semantics of propagating an exception first through A, then
600// through B, without knowing how the personality will interpret the
601// (lowered form of the) selectors.  This means that inlining has no
602// choice but to crudely chain invokes (i.e., to ignore invokes in
603// the inlined function, but to turn all unwindable calls into
604// invokes), which is only semantically valid if every unwind stops
605// at every landing pad.
606//
607// Therefore, the invoke-inline hack is to guarantee that every
608// landing pad has a catch-all.
609enum CleanupHackLevel_t {
610  /// A level of hack that requires that all landing pads have
611  /// catch-alls.
612  CHL_MandatoryCatchall,
613
614  /// A level of hack that requires that all landing pads handle
615  /// cleanups.
616  CHL_MandatoryCleanup,
617
618  /// No hacks at all;  ideal IR generation.
619  CHL_Ideal
620};
621const CleanupHackLevel_t CleanupHackLevel = CHL_MandatoryCleanup;
622
623llvm::BasicBlock *CodeGenFunction::EmitLandingPad() {
624  assert(EHStack.requiresLandingPad());
625
626  for (EHScopeStack::iterator ir = EHStack.begin(); ; ) {
627    assert(ir != EHStack.end() &&
628           "stack requiring landing pad is nothing but non-EH scopes?");
629
630    // If this is a terminate scope, just use the singleton terminate
631    // landing pad.
632    if (isa<EHTerminateScope>(*ir))
633      return getTerminateLandingPad();
634
635    // If this isn't an EH scope, iterate; otherwise break out.
636    if (!isNonEHScope(*ir)) break;
637    ++ir;
638
639    // We haven't checked this scope for a cached landing pad yet.
640    if (llvm::BasicBlock *LP = ir->getCachedLandingPad())
641      return LP;
642  }
643
644  // Save the current IR generation state.
645  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
646
647  const EHPersonality &Personality = EHPersonality::get(getLangOptions());
648
649  // Create and configure the landing pad.
650  llvm::BasicBlock *LP = createBasicBlock("lpad");
651  EmitBlock(LP);
652
653  // Save the exception pointer.  It's safe to use a single exception
654  // pointer per function because EH cleanups can never have nested
655  // try/catches.
656  llvm::CallInst *Exn =
657    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
658  Exn->setDoesNotThrow();
659  Builder.CreateStore(Exn, getExceptionSlot());
660
661  // Build the selector arguments.
662  llvm::SmallVector<llvm::Value*, 8> EHSelector;
663  EHSelector.push_back(Exn);
664  EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality));
665
666  // Accumulate all the handlers in scope.
667  llvm::DenseMap<llvm::Value*, UnwindDest> EHHandlers;
668  UnwindDest CatchAll;
669  bool HasEHCleanup = false;
670  bool HasEHFilter = false;
671  llvm::SmallVector<llvm::Value*, 8> EHFilters;
672  for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end();
673         I != E; ++I) {
674
675    switch (I->getKind()) {
676    case EHScope::Cleanup:
677      if (!HasEHCleanup)
678        HasEHCleanup = cast<EHCleanupScope>(*I).isEHCleanup();
679      // We otherwise don't care about cleanups.
680      continue;
681
682    case EHScope::Filter: {
683      assert(I.next() == EHStack.end() && "EH filter is not end of EH stack");
684      assert(!CatchAll.isValid() && "EH filter reached after catch-all");
685
686      // Filter scopes get added to the selector in weird ways.
687      EHFilterScope &Filter = cast<EHFilterScope>(*I);
688      HasEHFilter = true;
689
690      // Add all the filter values which we aren't already explicitly
691      // catching.
692      for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) {
693        llvm::Value *FV = Filter.getFilter(I);
694        if (!EHHandlers.count(FV))
695          EHFilters.push_back(FV);
696      }
697      goto done;
698    }
699
700    case EHScope::Terminate:
701      // Terminate scopes are basically catch-alls.
702      assert(!CatchAll.isValid());
703      CatchAll = UnwindDest(getTerminateHandler(),
704                            EHStack.getEnclosingEHCleanup(I),
705                            cast<EHTerminateScope>(*I).getDestIndex());
706      goto done;
707
708    case EHScope::Catch:
709      break;
710    }
711
712    EHCatchScope &Catch = cast<EHCatchScope>(*I);
713    for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) {
714      EHCatchScope::Handler Handler = Catch.getHandler(HI);
715
716      // Catch-all.  We should only have one of these per catch.
717      if (!Handler.Type) {
718        assert(!CatchAll.isValid());
719        CatchAll = UnwindDest(Handler.Block,
720                              EHStack.getEnclosingEHCleanup(I),
721                              Handler.Index);
722        continue;
723      }
724
725      // Check whether we already have a handler for this type.
726      UnwindDest &Dest = EHHandlers[Handler.Type];
727      if (Dest.isValid()) continue;
728
729      EHSelector.push_back(Handler.Type);
730      Dest = UnwindDest(Handler.Block,
731                        EHStack.getEnclosingEHCleanup(I),
732                        Handler.Index);
733    }
734
735    // Stop if we found a catch-all.
736    if (CatchAll.isValid()) break;
737  }
738
739 done:
740  unsigned LastToEmitInLoop = EHSelector.size();
741
742  // If we have a catch-all, add null to the selector.
743  if (CatchAll.isValid()) {
744    EHSelector.push_back(getCatchAllValue(*this));
745
746  // If we have an EH filter, we need to add those handlers in the
747  // right place in the selector, which is to say, at the end.
748  } else if (HasEHFilter) {
749    // Create a filter expression: an integer constant saying how many
750    // filters there are (+1 to avoid ambiguity with 0 for cleanup),
751    // followed by the filter types.  The personality routine only
752    // lands here if the filter doesn't match.
753    EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(),
754                                                EHFilters.size() + 1));
755    EHSelector.append(EHFilters.begin(), EHFilters.end());
756
757    // Also check whether we need a cleanup.
758    if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup)
759      EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall
760                           ? getCatchAllValue(*this)
761                           : getCleanupValue(*this));
762
763  // Otherwise, signal that we at least have cleanups.
764  } else if (CleanupHackLevel == CHL_MandatoryCatchall || HasEHCleanup) {
765    EHSelector.push_back(CleanupHackLevel == CHL_MandatoryCatchall
766                         ? getCatchAllValue(*this)
767                         : getCleanupValue(*this));
768
769  // At the MandatoryCleanup hack level, we don't need to actually
770  // spuriously tell the unwinder that we have cleanups, but we do
771  // need to always be prepared to handle cleanups.
772  } else if (CleanupHackLevel == CHL_MandatoryCleanup) {
773    // Just don't decrement LastToEmitInLoop.
774
775  } else {
776    assert(LastToEmitInLoop > 2);
777    LastToEmitInLoop--;
778  }
779
780  assert(EHSelector.size() >= 3 && "selector call has only two arguments!");
781
782  // Tell the backend how to generate the landing pad.
783  llvm::CallInst *Selection =
784    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
785                       EHSelector.begin(), EHSelector.end(), "eh.selector");
786  Selection->setDoesNotThrow();
787
788  // Select the right handler.
789  llvm::Value *llvm_eh_typeid_for =
790    CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for);
791
792  // The results of llvm_eh_typeid_for aren't reliable --- at least
793  // not locally --- so we basically have to do this as an 'if' chain.
794  // We walk through the first N-1 catch clauses, testing and chaining,
795  // and then fall into the final clause (which is either a cleanup, a
796  // filter (possibly with a cleanup), a catch-all, or another catch).
797  for (unsigned I = 2; I != LastToEmitInLoop; ++I) {
798    llvm::Value *Type = EHSelector[I];
799    UnwindDest Dest = EHHandlers[Type];
800    assert(Dest.isValid() && "no handler entry for value in selector?");
801
802    // Figure out where to branch on a match.  As a debug code-size
803    // optimization, if the scope depth matches the innermost cleanup,
804    // we branch directly to the catch handler.
805    llvm::BasicBlock *Match = Dest.getBlock();
806    bool MatchNeedsCleanup =
807      Dest.getScopeDepth() != EHStack.getInnermostEHCleanup();
808    if (MatchNeedsCleanup)
809      Match = createBasicBlock("eh.match");
810
811    llvm::BasicBlock *Next = createBasicBlock("eh.next");
812
813    // Check whether the exception matches.
814    llvm::CallInst *Id
815      = Builder.CreateCall(llvm_eh_typeid_for,
816                           Builder.CreateBitCast(Type, Int8PtrTy));
817    Id->setDoesNotThrow();
818    Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id),
819                         Match, Next);
820
821    // Emit match code if necessary.
822    if (MatchNeedsCleanup) {
823      EmitBlock(Match);
824      EmitBranchThroughEHCleanup(Dest);
825    }
826
827    // Continue to the next match.
828    EmitBlock(Next);
829  }
830
831  // Emit the final case in the selector.
832  // This might be a catch-all....
833  if (CatchAll.isValid()) {
834    assert(isa<llvm::ConstantPointerNull>(EHSelector.back()));
835    EmitBranchThroughEHCleanup(CatchAll);
836
837  // ...or an EH filter...
838  } else if (HasEHFilter) {
839    llvm::Value *SavedSelection = Selection;
840
841    // First, unwind out to the outermost scope if necessary.
842    if (EHStack.hasEHCleanups()) {
843      // The end here might not dominate the beginning, so we might need to
844      // save the selector if we need it.
845      llvm::AllocaInst *SelectorVar = 0;
846      if (HasEHCleanup) {
847        SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var");
848        Builder.CreateStore(Selection, SelectorVar);
849      }
850
851      llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont");
852      EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(),
853                                            EHStack.getNextEHDestIndex()));
854      EmitBlock(CleanupContBB);
855
856      if (HasEHCleanup)
857        SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector");
858    }
859
860    // If there was a cleanup, we'll need to actually check whether we
861    // landed here because the filter triggered.
862    if (CleanupHackLevel != CHL_Ideal || HasEHCleanup) {
863      llvm::BasicBlock *RethrowBB = createBasicBlock("cleanup");
864      llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected");
865
866      llvm::Constant *Zero = llvm::ConstantInt::get(Builder.getInt32Ty(), 0);
867      llvm::Value *FailsFilter =
868        Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails");
869      Builder.CreateCondBr(FailsFilter, UnexpectedBB, RethrowBB);
870
871      // The rethrow block is where we land if this was a cleanup.
872      EmitBlock(RethrowBB);
873      llvm::Constant *RethrowFn =
874        CleanupHackLevel == CHL_MandatoryCatchall ? getUnwindResumeOrRethrowFn()
875                                                  : getUnwindResumeFn();
876      Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot()))
877        ->setDoesNotReturn();
878      Builder.CreateUnreachable();
879
880      EmitBlock(UnexpectedBB);
881    }
882
883    // Call __cxa_call_unexpected.  This doesn't need to be an invoke
884    // because __cxa_call_unexpected magically filters exceptions
885    // according to the last landing pad the exception was thrown
886    // into.  Seriously.
887    Builder.CreateCall(getUnexpectedFn(*this),
888                       Builder.CreateLoad(getExceptionSlot()))
889      ->setDoesNotReturn();
890    Builder.CreateUnreachable();
891
892  // ...or a normal catch handler...
893  } else if (CleanupHackLevel == CHL_Ideal && !HasEHCleanup) {
894    llvm::Value *Type = EHSelector.back();
895    EmitBranchThroughEHCleanup(EHHandlers[Type]);
896
897  // ...or a cleanup.
898  } else {
899    EmitBranchThroughEHCleanup(getRethrowDest());
900  }
901
902  // Restore the old IR generation state.
903  Builder.restoreIP(SavedIP);
904
905  return LP;
906}
907
908namespace {
909  /// A cleanup to call __cxa_end_catch.  In many cases, the caught
910  /// exception type lets us state definitively that the thrown exception
911  /// type does not have a destructor.  In particular:
912  ///   - Catch-alls tell us nothing, so we have to conservatively
913  ///     assume that the thrown exception might have a destructor.
914  ///   - Catches by reference behave according to their base types.
915  ///   - Catches of non-record types will only trigger for exceptions
916  ///     of non-record types, which never have destructors.
917  ///   - Catches of record types can trigger for arbitrary subclasses
918  ///     of the caught type, so we have to assume the actual thrown
919  ///     exception type might have a throwing destructor, even if the
920  ///     caught type's destructor is trivial or nothrow.
921  struct CallEndCatch : EHScopeStack::Cleanup {
922    CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
923    bool MightThrow;
924
925    void Emit(CodeGenFunction &CGF, bool IsForEH) {
926      if (!MightThrow) {
927        CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow();
928        return;
929      }
930
931      CGF.EmitCallOrInvoke(getEndCatchFn(CGF), 0, 0);
932    }
933  };
934}
935
936/// Emits a call to __cxa_begin_catch and enters a cleanup to call
937/// __cxa_end_catch.
938///
939/// \param EndMightThrow - true if __cxa_end_catch might throw
940static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
941                                   llvm::Value *Exn,
942                                   bool EndMightThrow) {
943  llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn);
944  Call->setDoesNotThrow();
945
946  CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
947
948  return Call;
949}
950
951/// A "special initializer" callback for initializing a catch
952/// parameter during catch initialization.
953static void InitCatchParam(CodeGenFunction &CGF,
954                           const VarDecl &CatchParam,
955                           llvm::Value *ParamAddr) {
956  // Load the exception from where the landing pad saved it.
957  llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
958
959  CanQualType CatchType =
960    CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
961  const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
962
963  // If we're catching by reference, we can just cast the object
964  // pointer to the appropriate pointer.
965  if (isa<ReferenceType>(CatchType)) {
966    QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
967    bool EndCatchMightThrow = CaughtType->isRecordType();
968
969    // __cxa_begin_catch returns the adjusted object pointer.
970    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
971
972    // We have no way to tell the personality function that we're
973    // catching by reference, so if we're catching a pointer,
974    // __cxa_begin_catch will actually return that pointer by value.
975    if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
976      QualType PointeeType = PT->getPointeeType();
977
978      // When catching by reference, generally we should just ignore
979      // this by-value pointer and use the exception object instead.
980      if (!PointeeType->isRecordType()) {
981
982        // Exn points to the struct _Unwind_Exception header, which
983        // we have to skip past in order to reach the exception data.
984        unsigned HeaderSize =
985          CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
986        AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
987
988      // However, if we're catching a pointer-to-record type that won't
989      // work, because the personality function might have adjusted
990      // the pointer.  There's actually no way for us to fully satisfy
991      // the language/ABI contract here:  we can't use Exn because it
992      // might have the wrong adjustment, but we can't use the by-value
993      // pointer because it's off by a level of abstraction.
994      //
995      // The current solution is to dump the adjusted pointer into an
996      // alloca, which breaks language semantics (because changing the
997      // pointer doesn't change the exception) but at least works.
998      // The better solution would be to filter out non-exact matches
999      // and rethrow them, but this is tricky because the rethrow
1000      // really needs to be catchable by other sites at this landing
1001      // pad.  The best solution is to fix the personality function.
1002      } else {
1003        // Pull the pointer for the reference type off.
1004        const llvm::Type *PtrTy =
1005          cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
1006
1007        // Create the temporary and write the adjusted pointer into it.
1008        llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp");
1009        llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1010        CGF.Builder.CreateStore(Casted, ExnPtrTmp);
1011
1012        // Bind the reference to the temporary.
1013        AdjustedExn = ExnPtrTmp;
1014      }
1015    }
1016
1017    llvm::Value *ExnCast =
1018      CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
1019    CGF.Builder.CreateStore(ExnCast, ParamAddr);
1020    return;
1021  }
1022
1023  // Non-aggregates (plus complexes).
1024  bool IsComplex = false;
1025  if (!CGF.hasAggregateLLVMType(CatchType) ||
1026      (IsComplex = CatchType->isAnyComplexType())) {
1027    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
1028
1029    // If the catch type is a pointer type, __cxa_begin_catch returns
1030    // the pointer by value.
1031    if (CatchType->hasPointerRepresentation()) {
1032      llvm::Value *CastExn =
1033        CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
1034      CGF.Builder.CreateStore(CastExn, ParamAddr);
1035      return;
1036    }
1037
1038    // Otherwise, it returns a pointer into the exception object.
1039
1040    const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1041    llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
1042
1043    if (IsComplex) {
1044      CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false),
1045                             ParamAddr, /*volatile*/ false);
1046    } else {
1047      unsigned Alignment =
1048        CGF.getContext().getDeclAlign(&CatchParam).getQuantity();
1049      llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar");
1050      CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment,
1051                            CatchType);
1052    }
1053    return;
1054  }
1055
1056  assert(isa<RecordType>(CatchType) && "unexpected catch type!");
1057
1058  const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
1059
1060  // Check for a copy expression.  If we don't have a copy expression,
1061  // that means a trivial copy is okay.
1062  const Expr *copyExpr = CatchParam.getInit();
1063  if (!copyExpr) {
1064    llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
1065    llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1066    CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
1067    return;
1068  }
1069
1070  // We have to call __cxa_get_exception_ptr to get the adjusted
1071  // pointer before copying.
1072  llvm::CallInst *rawAdjustedExn =
1073    CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn);
1074  rawAdjustedExn->setDoesNotThrow();
1075
1076  // Cast that to the appropriate type.
1077  llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy);
1078
1079  // The copy expression is defined in terms of an OpaqueValueExpr.
1080  // Find it and map it to the adjusted expression.
1081  CodeGenFunction::OpaqueValueMapping
1082    opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
1083           CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
1084
1085  // Call the copy ctor in a terminate scope.
1086  CGF.EHStack.pushTerminate();
1087
1088  // Perform the copy construction.
1089  CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, false, false));
1090
1091  // Leave the terminate scope.
1092  CGF.EHStack.popTerminate();
1093
1094  // Undo the opaque value mapping.
1095  opaque.pop();
1096
1097  // Finally we can call __cxa_begin_catch.
1098  CallBeginCatch(CGF, Exn, true);
1099}
1100
1101/// Begins a catch statement by initializing the catch variable and
1102/// calling __cxa_begin_catch.
1103static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) {
1104  // We have to be very careful with the ordering of cleanups here:
1105  //   C++ [except.throw]p4:
1106  //     The destruction [of the exception temporary] occurs
1107  //     immediately after the destruction of the object declared in
1108  //     the exception-declaration in the handler.
1109  //
1110  // So the precise ordering is:
1111  //   1.  Construct catch variable.
1112  //   2.  __cxa_begin_catch
1113  //   3.  Enter __cxa_end_catch cleanup
1114  //   4.  Enter dtor cleanup
1115  //
1116  // We do this by using a slightly abnormal initialization process.
1117  // Delegation sequence:
1118  //   - ExitCXXTryStmt opens a RunCleanupsScope
1119  //     - EmitAutoVarAlloca creates the variable and debug info
1120  //       - InitCatchParam initializes the variable from the exception
1121  //       - CallBeginCatch calls __cxa_begin_catch
1122  //       - CallBeginCatch enters the __cxa_end_catch cleanup
1123  //     - EmitAutoVarCleanups enters the variable destructor cleanup
1124  //   - EmitCXXTryStmt emits the code for the catch body
1125  //   - EmitCXXTryStmt close the RunCleanupsScope
1126
1127  VarDecl *CatchParam = S->getExceptionDecl();
1128  if (!CatchParam) {
1129    llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn");
1130    CallBeginCatch(CGF, Exn, true);
1131    return;
1132  }
1133
1134  // Emit the local.
1135  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
1136  InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF));
1137  CGF.EmitAutoVarCleanups(var);
1138}
1139
1140namespace {
1141  struct CallRethrow : EHScopeStack::Cleanup {
1142    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1143      CGF.EmitCallOrInvoke(getReThrowFn(CGF), 0, 0);
1144    }
1145  };
1146}
1147
1148void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) {
1149  unsigned NumHandlers = S.getNumHandlers();
1150  EHCatchScope &CatchScope = cast<EHCatchScope>(*EHStack.begin());
1151  assert(CatchScope.getNumHandlers() == NumHandlers);
1152
1153  // Copy the handler blocks off before we pop the EH stack.  Emitting
1154  // the handlers might scribble on this memory.
1155  llvm::SmallVector<EHCatchScope::Handler, 8> Handlers(NumHandlers);
1156  memcpy(Handlers.data(), CatchScope.begin(),
1157         NumHandlers * sizeof(EHCatchScope::Handler));
1158  EHStack.popCatch();
1159
1160  // The fall-through block.
1161  llvm::BasicBlock *ContBB = createBasicBlock("try.cont");
1162
1163  // We just emitted the body of the try; jump to the continue block.
1164  if (HaveInsertPoint())
1165    Builder.CreateBr(ContBB);
1166
1167  // Determine if we need an implicit rethrow for all these catch handlers.
1168  bool ImplicitRethrow = false;
1169  if (IsFnTryBlock)
1170    ImplicitRethrow = isa<CXXDestructorDecl>(CurCodeDecl) ||
1171                      isa<CXXConstructorDecl>(CurCodeDecl);
1172
1173  for (unsigned I = 0; I != NumHandlers; ++I) {
1174    llvm::BasicBlock *CatchBlock = Handlers[I].Block;
1175    EmitBlock(CatchBlock);
1176
1177    // Catch the exception if this isn't a catch-all.
1178    const CXXCatchStmt *C = S.getHandler(I);
1179
1180    // Enter a cleanup scope, including the catch variable and the
1181    // end-catch.
1182    RunCleanupsScope CatchScope(*this);
1183
1184    // Initialize the catch variable and set up the cleanups.
1185    BeginCatch(*this, C);
1186
1187    // If there's an implicit rethrow, push a normal "cleanup" to call
1188    // _cxa_rethrow.  This needs to happen before __cxa_end_catch is
1189    // called, and so it is pushed after BeginCatch.
1190    if (ImplicitRethrow)
1191      EHStack.pushCleanup<CallRethrow>(NormalCleanup);
1192
1193    // Perform the body of the catch.
1194    EmitStmt(C->getHandlerBlock());
1195
1196    // Fall out through the catch cleanups.
1197    CatchScope.ForceCleanup();
1198
1199    // Branch out of the try.
1200    if (HaveInsertPoint())
1201      Builder.CreateBr(ContBB);
1202  }
1203
1204  EmitBlock(ContBB);
1205}
1206
1207namespace {
1208  struct CallEndCatchForFinally : EHScopeStack::Cleanup {
1209    llvm::Value *ForEHVar;
1210    llvm::Value *EndCatchFn;
1211    CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn)
1212      : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {}
1213
1214    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1215      llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch");
1216      llvm::BasicBlock *CleanupContBB =
1217        CGF.createBasicBlock("finally.cleanup.cont");
1218
1219      llvm::Value *ShouldEndCatch =
1220        CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch");
1221      CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB);
1222      CGF.EmitBlock(EndCatchBB);
1223      CGF.EmitCallOrInvoke(EndCatchFn, 0, 0); // catch-all, so might throw
1224      CGF.EmitBlock(CleanupContBB);
1225    }
1226  };
1227
1228  struct PerformFinally : EHScopeStack::Cleanup {
1229    const Stmt *Body;
1230    llvm::Value *ForEHVar;
1231    llvm::Value *EndCatchFn;
1232    llvm::Value *RethrowFn;
1233    llvm::Value *SavedExnVar;
1234
1235    PerformFinally(const Stmt *Body, llvm::Value *ForEHVar,
1236                   llvm::Value *EndCatchFn,
1237                   llvm::Value *RethrowFn, llvm::Value *SavedExnVar)
1238      : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn),
1239        RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {}
1240
1241    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1242      // Enter a cleanup to call the end-catch function if one was provided.
1243      if (EndCatchFn)
1244        CGF.EHStack.pushCleanup<CallEndCatchForFinally>(NormalAndEHCleanup,
1245                                                        ForEHVar, EndCatchFn);
1246
1247      // Save the current cleanup destination in case there are
1248      // cleanups in the finally block.
1249      llvm::Value *SavedCleanupDest =
1250        CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(),
1251                               "cleanup.dest.saved");
1252
1253      // Emit the finally block.
1254      CGF.EmitStmt(Body);
1255
1256      // If the end of the finally is reachable, check whether this was
1257      // for EH.  If so, rethrow.
1258      if (CGF.HaveInsertPoint()) {
1259        llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow");
1260        llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont");
1261
1262        llvm::Value *ShouldRethrow =
1263          CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow");
1264        CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB);
1265
1266        CGF.EmitBlock(RethrowBB);
1267        if (SavedExnVar) {
1268          llvm::Value *Args[] = { CGF.Builder.CreateLoad(SavedExnVar) };
1269          CGF.EmitCallOrInvoke(RethrowFn, Args, Args+1);
1270        } else {
1271          CGF.EmitCallOrInvoke(RethrowFn, 0, 0);
1272        }
1273        CGF.Builder.CreateUnreachable();
1274
1275        CGF.EmitBlock(ContBB);
1276
1277        // Restore the cleanup destination.
1278        CGF.Builder.CreateStore(SavedCleanupDest,
1279                                CGF.getNormalCleanupDestSlot());
1280      }
1281
1282      // Leave the end-catch cleanup.  As an optimization, pretend that
1283      // the fallthrough path was inaccessible; we've dynamically proven
1284      // that we're not in the EH case along that path.
1285      if (EndCatchFn) {
1286        CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
1287        CGF.PopCleanupBlock();
1288        CGF.Builder.restoreIP(SavedIP);
1289      }
1290
1291      // Now make sure we actually have an insertion point or the
1292      // cleanup gods will hate us.
1293      CGF.EnsureInsertPoint();
1294    }
1295  };
1296}
1297
1298/// Enters a finally block for an implementation using zero-cost
1299/// exceptions.  This is mostly general, but hard-codes some
1300/// language/ABI-specific behavior in the catch-all sections.
1301CodeGenFunction::FinallyInfo
1302CodeGenFunction::EnterFinallyBlock(const Stmt *Body,
1303                                   llvm::Constant *BeginCatchFn,
1304                                   llvm::Constant *EndCatchFn,
1305                                   llvm::Constant *RethrowFn) {
1306  assert((BeginCatchFn != 0) == (EndCatchFn != 0) &&
1307         "begin/end catch functions not paired");
1308  assert(RethrowFn && "rethrow function is required");
1309
1310  // The rethrow function has one of the following two types:
1311  //   void (*)()
1312  //   void (*)(void*)
1313  // In the latter case we need to pass it the exception object.
1314  // But we can't use the exception slot because the @finally might
1315  // have a landing pad (which would overwrite the exception slot).
1316  const llvm::FunctionType *RethrowFnTy =
1317    cast<llvm::FunctionType>(
1318      cast<llvm::PointerType>(RethrowFn->getType())
1319      ->getElementType());
1320  llvm::Value *SavedExnVar = 0;
1321  if (RethrowFnTy->getNumParams())
1322    SavedExnVar = CreateTempAlloca(Builder.getInt8PtrTy(), "finally.exn");
1323
1324  // A finally block is a statement which must be executed on any edge
1325  // out of a given scope.  Unlike a cleanup, the finally block may
1326  // contain arbitrary control flow leading out of itself.  In
1327  // addition, finally blocks should always be executed, even if there
1328  // are no catch handlers higher on the stack.  Therefore, we
1329  // surround the protected scope with a combination of a normal
1330  // cleanup (to catch attempts to break out of the block via normal
1331  // control flow) and an EH catch-all (semantically "outside" any try
1332  // statement to which the finally block might have been attached).
1333  // The finally block itself is generated in the context of a cleanup
1334  // which conditionally leaves the catch-all.
1335
1336  FinallyInfo Info;
1337
1338  // Jump destination for performing the finally block on an exception
1339  // edge.  We'll never actually reach this block, so unreachable is
1340  // fine.
1341  JumpDest RethrowDest = getJumpDestInCurrentScope(getUnreachableBlock());
1342
1343  // Whether the finally block is being executed for EH purposes.
1344  llvm::AllocaInst *ForEHVar = CreateTempAlloca(Builder.getInt1Ty(),
1345                                                "finally.for-eh");
1346  InitTempAlloca(ForEHVar, llvm::ConstantInt::getFalse(getLLVMContext()));
1347
1348  // Enter a normal cleanup which will perform the @finally block.
1349  EHStack.pushCleanup<PerformFinally>(NormalCleanup, Body,
1350                                      ForEHVar, EndCatchFn,
1351                                      RethrowFn, SavedExnVar);
1352
1353  // Enter a catch-all scope.
1354  llvm::BasicBlock *CatchAllBB = createBasicBlock("finally.catchall");
1355  CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1356  Builder.SetInsertPoint(CatchAllBB);
1357
1358  // If there's a begin-catch function, call it.
1359  if (BeginCatchFn) {
1360    Builder.CreateCall(BeginCatchFn, Builder.CreateLoad(getExceptionSlot()))
1361      ->setDoesNotThrow();
1362  }
1363
1364  // If we need to remember the exception pointer to rethrow later, do so.
1365  if (SavedExnVar) {
1366    llvm::Value *SavedExn = Builder.CreateLoad(getExceptionSlot());
1367    Builder.CreateStore(SavedExn, SavedExnVar);
1368  }
1369
1370  // Tell the finally block that we're in EH.
1371  Builder.CreateStore(llvm::ConstantInt::getTrue(getLLVMContext()), ForEHVar);
1372
1373  // Thread a jump through the finally cleanup.
1374  EmitBranchThroughCleanup(RethrowDest);
1375
1376  Builder.restoreIP(SavedIP);
1377
1378  EHCatchScope *CatchScope = EHStack.pushCatch(1);
1379  CatchScope->setCatchAllHandler(0, CatchAllBB);
1380
1381  return Info;
1382}
1383
1384void CodeGenFunction::ExitFinallyBlock(FinallyInfo &Info) {
1385  // Leave the finally catch-all.
1386  EHCatchScope &Catch = cast<EHCatchScope>(*EHStack.begin());
1387  llvm::BasicBlock *CatchAllBB = Catch.getHandler(0).Block;
1388  EHStack.popCatch();
1389
1390  // And leave the normal cleanup.
1391  PopCleanupBlock();
1392
1393  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1394  EmitBlock(CatchAllBB, true);
1395
1396  Builder.restoreIP(SavedIP);
1397}
1398
1399llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() {
1400  if (TerminateLandingPad)
1401    return TerminateLandingPad;
1402
1403  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1404
1405  // This will get inserted at the end of the function.
1406  TerminateLandingPad = createBasicBlock("terminate.lpad");
1407  Builder.SetInsertPoint(TerminateLandingPad);
1408
1409  // Tell the backend that this is a landing pad.
1410  llvm::CallInst *Exn =
1411    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn");
1412  Exn->setDoesNotThrow();
1413
1414  const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1415
1416  // Tell the backend what the exception table should be:
1417  // nothing but a catch-all.
1418  llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality),
1419                           getCatchAllValue(*this) };
1420  Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector),
1421                     Args, Args+3, "eh.selector")
1422    ->setDoesNotThrow();
1423
1424  llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1425  TerminateCall->setDoesNotReturn();
1426  TerminateCall->setDoesNotThrow();
1427  Builder.CreateUnreachable();
1428
1429  // Restore the saved insertion state.
1430  Builder.restoreIP(SavedIP);
1431
1432  return TerminateLandingPad;
1433}
1434
1435llvm::BasicBlock *CodeGenFunction::getTerminateHandler() {
1436  if (TerminateHandler)
1437    return TerminateHandler;
1438
1439  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1440
1441  // Set up the terminate handler.  This block is inserted at the very
1442  // end of the function by FinishFunction.
1443  TerminateHandler = createBasicBlock("terminate.handler");
1444  Builder.SetInsertPoint(TerminateHandler);
1445  llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this));
1446  TerminateCall->setDoesNotReturn();
1447  TerminateCall->setDoesNotThrow();
1448  Builder.CreateUnreachable();
1449
1450  // Restore the saved insertion state.
1451  Builder.restoreIP(SavedIP);
1452
1453  return TerminateHandler;
1454}
1455
1456CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() {
1457  if (RethrowBlock.isValid()) return RethrowBlock;
1458
1459  CGBuilderTy::InsertPoint SavedIP = Builder.saveIP();
1460
1461  // We emit a jump to a notional label at the outermost unwind state.
1462  llvm::BasicBlock *Unwind = createBasicBlock("eh.resume");
1463  Builder.SetInsertPoint(Unwind);
1464
1465  const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions());
1466
1467  // This can always be a call because we necessarily didn't find
1468  // anything on the EH stack which needs our help.
1469  llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName();
1470  llvm::Constant *RethrowFn;
1471  if (!RethrowName.empty())
1472    RethrowFn = getCatchallRethrowFn(*this, RethrowName);
1473  else
1474    RethrowFn = (CleanupHackLevel == CHL_MandatoryCatchall
1475                   ? getUnwindResumeOrRethrowFn()
1476                   : getUnwindResumeFn());
1477
1478  Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot()))
1479    ->setDoesNotReturn();
1480  Builder.CreateUnreachable();
1481
1482  Builder.restoreIP(SavedIP);
1483
1484  RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0);
1485  return RethrowBlock;
1486}
1487
1488