CGExpr.cpp revision 88a569a9781e0472a1f1c392f6c94ed0c068d946
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CodeGenModule.h" 16#include "CGCall.h" 17#include "CGCXXABI.h" 18#include "CGDebugInfo.h" 19#include "CGRecordLayout.h" 20#include "CGObjCRuntime.h" 21#include "TargetInfo.h" 22#include "clang/AST/ASTContext.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Target/TargetData.h" 28using namespace clang; 29using namespace CodeGen; 30 31//===--------------------------------------------------------------------===// 32// Miscellaneous Helper Methods 33//===--------------------------------------------------------------------===// 34 35llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45} 46 47/// CreateTempAlloca - This creates a alloca and inserts it into the entry 48/// block. 49llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54} 55 56void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61} 62 63llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70} 71 72llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79} 80 81/// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82/// expression and compare the result against zero, returning an Int1Ty value. 83llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94} 95 96/// EmitIgnoredExpr - Emit code to compute the specified expression, 97/// ignoring the result. 98void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104} 105 106/// EmitAnyExpr - Emit code to compute the specified expression which 107/// can have any type. The result is returned as an RValue struct. 108/// If this is an aggregate expression, AggSlot indicates where the 109/// result should be returned. 110RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119} 120 121/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122/// always be accessible even if no aggregate location is provided. 123RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130} 131 132/// EmitAnyExprToMem - Evaluate an expression into a given memory 133/// location. 134void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152} 153 154namespace { 155/// \brief An adjustment to be made to the temporary created when emitting a 156/// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181} 182 183static llvm::Value * 184CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207} 208 209static llvm::Value * 210EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443} 444 445RValue 446CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 491 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 492 cleanupKind & EHCleanup); 493 break; 494 } 495 496 case Qualifiers::OCL_Weak: { 497 // __weak objects always get EH cleanups; otherwise, exceptions 498 // could cause really nasty crashes instead of mere leaks. 499 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 500 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 501 break; 502 } 503 } 504 } 505 506 return RValue::get(Value); 507} 508 509 510/// getAccessedFieldNo - Given an encoded value and a result number, return the 511/// input field number being accessed. 512unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 513 const llvm::Constant *Elts) { 514 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 515 ->getZExtValue(); 516} 517 518void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 519 if (!CatchUndefined) 520 return; 521 522 // This needs to be to the standard address space. 523 Address = Builder.CreateBitCast(Address, Int8PtrTy); 524 525 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 526 527 // In time, people may want to control this and use a 1 here. 528 llvm::Value *Arg = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 llvm::BasicBlock *Check = createBasicBlock(); 532 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 533 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 534 535 EmitBlock(Check); 536 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 537 llvm::ConstantInt::get(IntPtrTy, Size)), 538 Cont, getTrapBB()); 539 EmitBlock(Cont); 540} 541 542 543CodeGenFunction::ComplexPairTy CodeGenFunction:: 544EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 545 bool isInc, bool isPre) { 546 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 547 LV.isVolatileQualified()); 548 549 llvm::Value *NextVal; 550 if (isa<llvm::IntegerType>(InVal.first->getType())) { 551 uint64_t AmountVal = isInc ? 1 : -1; 552 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 553 554 // Add the inc/dec to the real part. 555 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 556 } else { 557 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 558 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 559 if (!isInc) 560 FVal.changeSign(); 561 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 562 563 // Add the inc/dec to the real part. 564 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 565 } 566 567 ComplexPairTy IncVal(NextVal, InVal.second); 568 569 // Store the updated result through the lvalue. 570 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 571 572 // If this is a postinc, return the value read from memory, otherwise use the 573 // updated value. 574 return isPre ? IncVal : InVal; 575} 576 577 578//===----------------------------------------------------------------------===// 579// LValue Expression Emission 580//===----------------------------------------------------------------------===// 581 582RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 583 if (Ty->isVoidType()) 584 return RValue::get(0); 585 586 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 587 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 588 llvm::Value *U = llvm::UndefValue::get(EltTy); 589 return RValue::getComplex(std::make_pair(U, U)); 590 } 591 592 // If this is a use of an undefined aggregate type, the aggregate must have an 593 // identifiable address. Just because the contents of the value are undefined 594 // doesn't mean that the address can't be taken and compared. 595 if (hasAggregateLLVMType(Ty)) { 596 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 597 return RValue::getAggregate(DestPtr); 598 } 599 600 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 601} 602 603RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 return GetUndefRValue(E->getType()); 607} 608 609LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 613 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 614} 615 616LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 617 LValue LV = EmitLValue(E); 618 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 619 EmitCheck(LV.getAddress(), 620 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 621 return LV; 622} 623 624/// EmitLValue - Emit code to compute a designator that specifies the location 625/// of the expression. 626/// 627/// This can return one of two things: a simple address or a bitfield reference. 628/// In either case, the LLVM Value* in the LValue structure is guaranteed to be 629/// an LLVM pointer type. 630/// 631/// If this returns a bitfield reference, nothing about the pointee type of the 632/// LLVM value is known: For example, it may not be a pointer to an integer. 633/// 634/// If this returns a normal address, and if the lvalue's C type is fixed size, 635/// this method guarantees that the returned pointer type will point to an LLVM 636/// type of the same size of the lvalue's type. If the lvalue has a variable 637/// length type, this is not possible. 638/// 639LValue CodeGenFunction::EmitLValue(const Expr *E) { 640 switch (E->getStmtClass()) { 641 default: return EmitUnsupportedLValue(E, "l-value expression"); 642 643 case Expr::ObjCPropertyRefExprClass: 644 llvm_unreachable("cannot emit a property reference directly"); 645 646 case Expr::ObjCSelectorExprClass: 647 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 648 case Expr::ObjCIsaExprClass: 649 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 650 case Expr::BinaryOperatorClass: 651 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 652 case Expr::CompoundAssignOperatorClass: 653 if (!E->getType()->isAnyComplexType()) 654 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 655 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 case Expr::CallExprClass: 657 case Expr::CXXMemberCallExprClass: 658 case Expr::CXXOperatorCallExprClass: 659 case Expr::UserDefinedLiteralClass: 660 return EmitCallExprLValue(cast<CallExpr>(E)); 661 case Expr::VAArgExprClass: 662 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 663 case Expr::DeclRefExprClass: 664 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 665 case Expr::ParenExprClass: 666 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 667 case Expr::GenericSelectionExprClass: 668 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 669 case Expr::PredefinedExprClass: 670 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 671 case Expr::StringLiteralClass: 672 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 673 case Expr::ObjCEncodeExprClass: 674 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 675 case Expr::PseudoObjectExprClass: 676 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 677 case Expr::InitListExprClass: 678 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 679 "Only single-element init list can be lvalue."); 680 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 681 682 case Expr::CXXTemporaryObjectExprClass: 683 case Expr::CXXConstructExprClass: 684 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 685 case Expr::CXXBindTemporaryExprClass: 686 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 687 case Expr::LambdaExprClass: 688 return EmitLambdaLValue(cast<LambdaExpr>(E)); 689 690 case Expr::ExprWithCleanupsClass: { 691 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 692 enterFullExpression(cleanups); 693 RunCleanupsScope Scope(*this); 694 return EmitLValue(cleanups->getSubExpr()); 695 } 696 697 case Expr::CXXScalarValueInitExprClass: 698 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 699 case Expr::CXXDefaultArgExprClass: 700 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 701 case Expr::CXXTypeidExprClass: 702 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 703 704 case Expr::ObjCMessageExprClass: 705 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 706 case Expr::ObjCIvarRefExprClass: 707 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 708 case Expr::StmtExprClass: 709 return EmitStmtExprLValue(cast<StmtExpr>(E)); 710 case Expr::UnaryOperatorClass: 711 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 712 case Expr::ArraySubscriptExprClass: 713 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 714 case Expr::ExtVectorElementExprClass: 715 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 716 case Expr::MemberExprClass: 717 return EmitMemberExpr(cast<MemberExpr>(E)); 718 case Expr::CompoundLiteralExprClass: 719 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 720 case Expr::ConditionalOperatorClass: 721 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 722 case Expr::BinaryConditionalOperatorClass: 723 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 724 case Expr::ChooseExprClass: 725 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 726 case Expr::OpaqueValueExprClass: 727 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 728 case Expr::SubstNonTypeTemplateParmExprClass: 729 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 730 case Expr::ImplicitCastExprClass: 731 case Expr::CStyleCastExprClass: 732 case Expr::CXXFunctionalCastExprClass: 733 case Expr::CXXStaticCastExprClass: 734 case Expr::CXXDynamicCastExprClass: 735 case Expr::CXXReinterpretCastExprClass: 736 case Expr::CXXConstCastExprClass: 737 case Expr::ObjCBridgedCastExprClass: 738 return EmitCastLValue(cast<CastExpr>(E)); 739 740 case Expr::MaterializeTemporaryExprClass: 741 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 742 } 743} 744 745/// Given an object of the given canonical type, can we safely copy a 746/// value out of it based on its initializer? 747static bool isConstantEmittableObjectType(QualType type) { 748 assert(type.isCanonical()); 749 assert(!type->isReferenceType()); 750 751 // Must be const-qualified but non-volatile. 752 Qualifiers qs = type.getLocalQualifiers(); 753 if (!qs.hasConst() || qs.hasVolatile()) return false; 754 755 // Otherwise, all object types satisfy this except C++ classes with 756 // mutable subobjects or non-trivial copy/destroy behavior. 757 if (const RecordType *RT = dyn_cast<RecordType>(type)) 758 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 759 if (RD->hasMutableFields() || !RD->isTrivial()) 760 return false; 761 762 return true; 763} 764 765/// Can we constant-emit a load of a reference to a variable of the 766/// given type? This is different from predicates like 767/// Decl::isUsableInConstantExpressions because we do want it to apply 768/// in situations that don't necessarily satisfy the language's rules 769/// for this (e.g. C++'s ODR-use rules). For example, we want to able 770/// to do this with const float variables even if those variables 771/// aren't marked 'constexpr'. 772enum ConstantEmissionKind { 773 CEK_None, 774 CEK_AsReferenceOnly, 775 CEK_AsValueOrReference, 776 CEK_AsValueOnly 777}; 778static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 779 type = type.getCanonicalType(); 780 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 781 if (isConstantEmittableObjectType(ref->getPointeeType())) 782 return CEK_AsValueOrReference; 783 return CEK_AsReferenceOnly; 784 } 785 if (isConstantEmittableObjectType(type)) 786 return CEK_AsValueOnly; 787 return CEK_None; 788} 789 790/// Try to emit a reference to the given value without producing it as 791/// an l-value. This is actually more than an optimization: we can't 792/// produce an l-value for variables that we never actually captured 793/// in a block or lambda, which means const int variables or constexpr 794/// literals or similar. 795CodeGenFunction::ConstantEmission 796CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 797 ValueDecl *value = refExpr->getDecl(); 798 799 // The value needs to be an enum constant or a constant variable. 800 ConstantEmissionKind CEK; 801 if (isa<ParmVarDecl>(value)) { 802 CEK = CEK_None; 803 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 804 CEK = checkVarTypeForConstantEmission(var->getType()); 805 } else if (isa<EnumConstantDecl>(value)) { 806 CEK = CEK_AsValueOnly; 807 } else { 808 CEK = CEK_None; 809 } 810 if (CEK == CEK_None) return ConstantEmission(); 811 812 Expr::EvalResult result; 813 bool resultIsReference; 814 QualType resultType; 815 816 // It's best to evaluate all the way as an r-value if that's permitted. 817 if (CEK != CEK_AsReferenceOnly && 818 refExpr->EvaluateAsRValue(result, getContext())) { 819 resultIsReference = false; 820 resultType = refExpr->getType(); 821 822 // Otherwise, try to evaluate as an l-value. 823 } else if (CEK != CEK_AsValueOnly && 824 refExpr->EvaluateAsLValue(result, getContext())) { 825 resultIsReference = true; 826 resultType = value->getType(); 827 828 // Failure. 829 } else { 830 return ConstantEmission(); 831 } 832 833 // In any case, if the initializer has side-effects, abandon ship. 834 if (result.HasSideEffects) 835 return ConstantEmission(); 836 837 // Emit as a constant. 838 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 839 840 // Make sure we emit a debug reference to the global variable. 841 // This should probably fire even for 842 if (isa<VarDecl>(value)) { 843 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 844 EmitDeclRefExprDbgValue(refExpr, C); 845 } else { 846 assert(isa<EnumConstantDecl>(value)); 847 EmitDeclRefExprDbgValue(refExpr, C); 848 } 849 850 // If we emitted a reference constant, we need to dereference that. 851 if (resultIsReference) 852 return ConstantEmission::forReference(C); 853 854 return ConstantEmission::forValue(C); 855} 856 857llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 858 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 859 lvalue.getAlignment().getQuantity(), 860 lvalue.getType(), lvalue.getTBAAInfo()); 861} 862 863llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 864 unsigned Alignment, QualType Ty, 865 llvm::MDNode *TBAAInfo) { 866 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 867 if (Volatile) 868 Load->setVolatile(true); 869 if (Alignment) 870 Load->setAlignment(Alignment); 871 if (TBAAInfo) 872 CGM.DecorateInstruction(Load, TBAAInfo); 873 // If this is an atomic type, all normal reads must be atomic 874 if (Ty->isAtomicType()) 875 Load->setAtomic(llvm::SequentiallyConsistent); 876 877 return EmitFromMemory(Load, Ty); 878} 879 880static bool isBooleanUnderlyingType(QualType Ty) { 881 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 882 return ET->getDecl()->getIntegerType()->isBooleanType(); 883 return false; 884} 885 886llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 887 // Bool has a different representation in memory than in registers. 888 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 889 // This should really always be an i1, but sometimes it's already 890 // an i8, and it's awkward to track those cases down. 891 if (Value->getType()->isIntegerTy(1)) 892 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 893 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 894 } 895 896 return Value; 897} 898 899llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 900 // Bool has a different representation in memory than in registers. 901 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 902 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 903 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 904 } 905 906 return Value; 907} 908 909void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 910 bool Volatile, unsigned Alignment, 911 QualType Ty, 912 llvm::MDNode *TBAAInfo, 913 bool isInit) { 914 Value = EmitToMemory(Value, Ty); 915 916 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 917 if (Alignment) 918 Store->setAlignment(Alignment); 919 if (TBAAInfo) 920 CGM.DecorateInstruction(Store, TBAAInfo); 921 if (!isInit && Ty->isAtomicType()) 922 Store->setAtomic(llvm::SequentiallyConsistent); 923} 924 925void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 926 bool isInit) { 927 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 928 lvalue.getAlignment().getQuantity(), lvalue.getType(), 929 lvalue.getTBAAInfo(), isInit); 930} 931 932/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 933/// method emits the address of the lvalue, then loads the result as an rvalue, 934/// returning the rvalue. 935RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 936 if (LV.isObjCWeak()) { 937 // load of a __weak object. 938 llvm::Value *AddrWeakObj = LV.getAddress(); 939 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 940 AddrWeakObj)); 941 } 942 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 943 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 944 945 if (LV.isSimple()) { 946 assert(!LV.getType()->isFunctionType()); 947 948 // Everything needs a load. 949 return RValue::get(EmitLoadOfScalar(LV)); 950 } 951 952 if (LV.isVectorElt()) { 953 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 954 LV.isVolatileQualified()); 955 Load->setAlignment(LV.getAlignment().getQuantity()); 956 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 957 "vecext")); 958 } 959 960 // If this is a reference to a subset of the elements of a vector, either 961 // shuffle the input or extract/insert them as appropriate. 962 if (LV.isExtVectorElt()) 963 return EmitLoadOfExtVectorElementLValue(LV); 964 965 assert(LV.isBitField() && "Unknown LValue type!"); 966 return EmitLoadOfBitfieldLValue(LV); 967} 968 969RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 970 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 971 972 // Get the output type. 973 llvm::Type *ResLTy = ConvertType(LV.getType()); 974 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 975 976 // Compute the result as an OR of all of the individual component accesses. 977 llvm::Value *Res = 0; 978 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 979 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 980 981 // Get the field pointer. 982 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 983 984 // Only offset by the field index if used, so that incoming values are not 985 // required to be structures. 986 if (AI.FieldIndex) 987 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 988 989 // Offset by the byte offset, if used. 990 if (!AI.FieldByteOffset.isZero()) { 991 Ptr = EmitCastToVoidPtr(Ptr); 992 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 993 "bf.field.offs"); 994 } 995 996 // Cast to the access type. 997 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 998 CGM.getContext().getTargetAddressSpace(LV.getType())); 999 Ptr = Builder.CreateBitCast(Ptr, PTy); 1000 1001 // Perform the load. 1002 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1003 if (!AI.AccessAlignment.isZero()) 1004 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1005 1006 // Shift out unused low bits and mask out unused high bits. 1007 llvm::Value *Val = Load; 1008 if (AI.FieldBitStart) 1009 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1010 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1011 AI.TargetBitWidth), 1012 "bf.clear"); 1013 1014 // Extend or truncate to the target size. 1015 if (AI.AccessWidth < ResSizeInBits) 1016 Val = Builder.CreateZExt(Val, ResLTy); 1017 else if (AI.AccessWidth > ResSizeInBits) 1018 Val = Builder.CreateTrunc(Val, ResLTy); 1019 1020 // Shift into place, and OR into the result. 1021 if (AI.TargetBitOffset) 1022 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1023 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1024 } 1025 1026 // If the bit-field is signed, perform the sign-extension. 1027 // 1028 // FIXME: This can easily be folded into the load of the high bits, which 1029 // could also eliminate the mask of high bits in some situations. 1030 if (Info.isSigned()) { 1031 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1032 if (ExtraBits) 1033 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1034 ExtraBits, "bf.val.sext"); 1035 } 1036 1037 return RValue::get(Res); 1038} 1039 1040// If this is a reference to a subset of the elements of a vector, create an 1041// appropriate shufflevector. 1042RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1043 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1044 LV.isVolatileQualified()); 1045 Load->setAlignment(LV.getAlignment().getQuantity()); 1046 llvm::Value *Vec = Load; 1047 1048 const llvm::Constant *Elts = LV.getExtVectorElts(); 1049 1050 // If the result of the expression is a non-vector type, we must be extracting 1051 // a single element. Just codegen as an extractelement. 1052 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1053 if (!ExprVT) { 1054 unsigned InIdx = getAccessedFieldNo(0, Elts); 1055 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1056 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1057 } 1058 1059 // Always use shuffle vector to try to retain the original program structure 1060 unsigned NumResultElts = ExprVT->getNumElements(); 1061 1062 SmallVector<llvm::Constant*, 4> Mask; 1063 for (unsigned i = 0; i != NumResultElts; ++i) 1064 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1065 1066 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1067 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1068 MaskV); 1069 return RValue::get(Vec); 1070} 1071 1072 1073 1074/// EmitStoreThroughLValue - Store the specified rvalue into the specified 1075/// lvalue, where both are guaranteed to the have the same type, and that type 1076/// is 'Ty'. 1077void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1078 if (!Dst.isSimple()) { 1079 if (Dst.isVectorElt()) { 1080 // Read/modify/write the vector, inserting the new element. 1081 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1082 Dst.isVolatileQualified()); 1083 Load->setAlignment(Dst.getAlignment().getQuantity()); 1084 llvm::Value *Vec = Load; 1085 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1086 Dst.getVectorIdx(), "vecins"); 1087 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1088 Dst.isVolatileQualified()); 1089 Store->setAlignment(Dst.getAlignment().getQuantity()); 1090 return; 1091 } 1092 1093 // If this is an update of extended vector elements, insert them as 1094 // appropriate. 1095 if (Dst.isExtVectorElt()) 1096 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1097 1098 assert(Dst.isBitField() && "Unknown LValue type"); 1099 return EmitStoreThroughBitfieldLValue(Src, Dst); 1100 } 1101 1102 // There's special magic for assigning into an ARC-qualified l-value. 1103 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1104 switch (Lifetime) { 1105 case Qualifiers::OCL_None: 1106 llvm_unreachable("present but none"); 1107 1108 case Qualifiers::OCL_ExplicitNone: 1109 // nothing special 1110 break; 1111 1112 case Qualifiers::OCL_Strong: 1113 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1114 return; 1115 1116 case Qualifiers::OCL_Weak: 1117 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1118 return; 1119 1120 case Qualifiers::OCL_Autoreleasing: 1121 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1122 Src.getScalarVal())); 1123 // fall into the normal path 1124 break; 1125 } 1126 } 1127 1128 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1129 // load of a __weak object. 1130 llvm::Value *LvalueDst = Dst.getAddress(); 1131 llvm::Value *src = Src.getScalarVal(); 1132 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1133 return; 1134 } 1135 1136 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1137 // load of a __strong object. 1138 llvm::Value *LvalueDst = Dst.getAddress(); 1139 llvm::Value *src = Src.getScalarVal(); 1140 if (Dst.isObjCIvar()) { 1141 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1142 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1143 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1144 llvm::Value *dst = RHS; 1145 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1146 llvm::Value *LHS = 1147 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1148 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1149 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1150 BytesBetween); 1151 } else if (Dst.isGlobalObjCRef()) { 1152 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1153 Dst.isThreadLocalRef()); 1154 } 1155 else 1156 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1157 return; 1158 } 1159 1160 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1161 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1162} 1163 1164void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1165 llvm::Value **Result) { 1166 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1167 1168 // Get the output type. 1169 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1170 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1171 1172 // Get the source value, truncated to the width of the bit-field. 1173 llvm::Value *SrcVal = Src.getScalarVal(); 1174 1175 if (Dst.getType()->isBooleanType()) 1176 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1177 1178 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1179 Info.getSize()), 1180 "bf.value"); 1181 1182 // Return the new value of the bit-field, if requested. 1183 if (Result) { 1184 // Cast back to the proper type for result. 1185 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1186 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1187 "bf.reload.val"); 1188 1189 // Sign extend if necessary. 1190 if (Info.isSigned()) { 1191 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1192 if (ExtraBits) 1193 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1194 ExtraBits, "bf.reload.sext"); 1195 } 1196 1197 *Result = ReloadVal; 1198 } 1199 1200 // Iterate over the components, writing each piece to memory. 1201 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1202 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1203 1204 // Get the field pointer. 1205 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1206 unsigned addressSpace = 1207 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1208 1209 // Only offset by the field index if used, so that incoming values are not 1210 // required to be structures. 1211 if (AI.FieldIndex) 1212 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1213 1214 // Offset by the byte offset, if used. 1215 if (!AI.FieldByteOffset.isZero()) { 1216 Ptr = EmitCastToVoidPtr(Ptr); 1217 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1218 "bf.field.offs"); 1219 } 1220 1221 // Cast to the access type. 1222 llvm::Type *AccessLTy = 1223 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1224 1225 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1226 Ptr = Builder.CreateBitCast(Ptr, PTy); 1227 1228 // Extract the piece of the bit-field value to write in this access, limited 1229 // to the values that are part of this access. 1230 llvm::Value *Val = SrcVal; 1231 if (AI.TargetBitOffset) 1232 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1233 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1234 AI.TargetBitWidth)); 1235 1236 // Extend or truncate to the access size. 1237 if (ResSizeInBits < AI.AccessWidth) 1238 Val = Builder.CreateZExt(Val, AccessLTy); 1239 else if (ResSizeInBits > AI.AccessWidth) 1240 Val = Builder.CreateTrunc(Val, AccessLTy); 1241 1242 // Shift into the position in memory. 1243 if (AI.FieldBitStart) 1244 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1245 1246 // If necessary, load and OR in bits that are outside of the bit-field. 1247 if (AI.TargetBitWidth != AI.AccessWidth) { 1248 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1249 if (!AI.AccessAlignment.isZero()) 1250 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1251 1252 // Compute the mask for zeroing the bits that are part of the bit-field. 1253 llvm::APInt InvMask = 1254 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1255 AI.FieldBitStart + AI.TargetBitWidth); 1256 1257 // Apply the mask and OR in to the value to write. 1258 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1259 } 1260 1261 // Write the value. 1262 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1263 Dst.isVolatileQualified()); 1264 if (!AI.AccessAlignment.isZero()) 1265 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1266 } 1267} 1268 1269void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1270 LValue Dst) { 1271 // This access turns into a read/modify/write of the vector. Load the input 1272 // value now. 1273 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1274 Dst.isVolatileQualified()); 1275 Load->setAlignment(Dst.getAlignment().getQuantity()); 1276 llvm::Value *Vec = Load; 1277 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1278 1279 llvm::Value *SrcVal = Src.getScalarVal(); 1280 1281 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1282 unsigned NumSrcElts = VTy->getNumElements(); 1283 unsigned NumDstElts = 1284 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1285 if (NumDstElts == NumSrcElts) { 1286 // Use shuffle vector is the src and destination are the same number of 1287 // elements and restore the vector mask since it is on the side it will be 1288 // stored. 1289 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1290 for (unsigned i = 0; i != NumSrcElts; ++i) 1291 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1292 1293 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1294 Vec = Builder.CreateShuffleVector(SrcVal, 1295 llvm::UndefValue::get(Vec->getType()), 1296 MaskV); 1297 } else if (NumDstElts > NumSrcElts) { 1298 // Extended the source vector to the same length and then shuffle it 1299 // into the destination. 1300 // FIXME: since we're shuffling with undef, can we just use the indices 1301 // into that? This could be simpler. 1302 SmallVector<llvm::Constant*, 4> ExtMask; 1303 for (unsigned i = 0; i != NumSrcElts; ++i) 1304 ExtMask.push_back(Builder.getInt32(i)); 1305 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1306 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1307 llvm::Value *ExtSrcVal = 1308 Builder.CreateShuffleVector(SrcVal, 1309 llvm::UndefValue::get(SrcVal->getType()), 1310 ExtMaskV); 1311 // build identity 1312 SmallVector<llvm::Constant*, 4> Mask; 1313 for (unsigned i = 0; i != NumDstElts; ++i) 1314 Mask.push_back(Builder.getInt32(i)); 1315 1316 // modify when what gets shuffled in 1317 for (unsigned i = 0; i != NumSrcElts; ++i) 1318 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1319 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1320 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1321 } else { 1322 // We should never shorten the vector 1323 llvm_unreachable("unexpected shorten vector length"); 1324 } 1325 } else { 1326 // If the Src is a scalar (not a vector) it must be updating one element. 1327 unsigned InIdx = getAccessedFieldNo(0, Elts); 1328 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1329 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1330 } 1331 1332 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1333 Dst.isVolatileQualified()); 1334 Store->setAlignment(Dst.getAlignment().getQuantity()); 1335} 1336 1337// setObjCGCLValueClass - sets class of he lvalue for the purpose of 1338// generating write-barries API. It is currently a global, ivar, 1339// or neither. 1340static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1341 LValue &LV, 1342 bool IsMemberAccess=false) { 1343 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1344 return; 1345 1346 if (isa<ObjCIvarRefExpr>(E)) { 1347 QualType ExpTy = E->getType(); 1348 if (IsMemberAccess && ExpTy->isPointerType()) { 1349 // If ivar is a structure pointer, assigning to field of 1350 // this struct follows gcc's behavior and makes it a non-ivar 1351 // writer-barrier conservatively. 1352 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1353 if (ExpTy->isRecordType()) { 1354 LV.setObjCIvar(false); 1355 return; 1356 } 1357 } 1358 LV.setObjCIvar(true); 1359 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1360 LV.setBaseIvarExp(Exp->getBase()); 1361 LV.setObjCArray(E->getType()->isArrayType()); 1362 return; 1363 } 1364 1365 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1366 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1367 if (VD->hasGlobalStorage()) { 1368 LV.setGlobalObjCRef(true); 1369 LV.setThreadLocalRef(VD->isThreadSpecified()); 1370 } 1371 } 1372 LV.setObjCArray(E->getType()->isArrayType()); 1373 return; 1374 } 1375 1376 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1377 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1378 return; 1379 } 1380 1381 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1382 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1383 if (LV.isObjCIvar()) { 1384 // If cast is to a structure pointer, follow gcc's behavior and make it 1385 // a non-ivar write-barrier. 1386 QualType ExpTy = E->getType(); 1387 if (ExpTy->isPointerType()) 1388 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1389 if (ExpTy->isRecordType()) 1390 LV.setObjCIvar(false); 1391 } 1392 return; 1393 } 1394 1395 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1396 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1397 return; 1398 } 1399 1400 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1401 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1402 return; 1403 } 1404 1405 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1406 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1407 return; 1408 } 1409 1410 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1411 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1412 return; 1413 } 1414 1415 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1416 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1417 if (LV.isObjCIvar() && !LV.isObjCArray()) 1418 // Using array syntax to assigning to what an ivar points to is not 1419 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1420 LV.setObjCIvar(false); 1421 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1422 // Using array syntax to assigning to what global points to is not 1423 // same as assigning to the global itself. {id *G;} G[i] = 0; 1424 LV.setGlobalObjCRef(false); 1425 return; 1426 } 1427 1428 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1429 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1430 // We don't know if member is an 'ivar', but this flag is looked at 1431 // only in the context of LV.isObjCIvar(). 1432 LV.setObjCArray(E->getType()->isArrayType()); 1433 return; 1434 } 1435} 1436 1437static llvm::Value * 1438EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1439 llvm::Value *V, llvm::Type *IRType, 1440 StringRef Name = StringRef()) { 1441 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1442 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1443} 1444 1445static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1446 const Expr *E, const VarDecl *VD) { 1447 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1448 "Var decl must have external storage or be a file var decl!"); 1449 1450 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1451 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1452 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1453 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1454 QualType T = E->getType(); 1455 LValue LV; 1456 if (VD->getType()->isReferenceType()) { 1457 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1458 LI->setAlignment(Alignment.getQuantity()); 1459 V = LI; 1460 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1461 } else { 1462 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1463 } 1464 setObjCGCLValueClass(CGF.getContext(), E, LV); 1465 return LV; 1466} 1467 1468static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1469 const Expr *E, const FunctionDecl *FD) { 1470 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1471 if (!FD->hasPrototype()) { 1472 if (const FunctionProtoType *Proto = 1473 FD->getType()->getAs<FunctionProtoType>()) { 1474 // Ugly case: for a K&R-style definition, the type of the definition 1475 // isn't the same as the type of a use. Correct for this with a 1476 // bitcast. 1477 QualType NoProtoType = 1478 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1479 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1480 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1481 } 1482 } 1483 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1484 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1485} 1486 1487LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1488 const NamedDecl *ND = E->getDecl(); 1489 CharUnits Alignment = getContext().getDeclAlign(ND); 1490 QualType T = E->getType(); 1491 1492 // FIXME: We should be able to assert this for FunctionDecls as well! 1493 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1494 // those with a valid source location. 1495 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1496 !E->getLocation().isValid()) && 1497 "Should not use decl without marking it used!"); 1498 1499 if (ND->hasAttr<WeakRefAttr>()) { 1500 const ValueDecl *VD = cast<ValueDecl>(ND); 1501 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1502 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1503 } 1504 1505 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1506 // Check if this is a global variable. 1507 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1508 return EmitGlobalVarDeclLValue(*this, E, VD); 1509 1510 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1511 1512 bool NonGCable = VD->hasLocalStorage() && 1513 !VD->getType()->isReferenceType() && 1514 !isBlockVariable; 1515 1516 llvm::Value *V = LocalDeclMap[VD]; 1517 if (!V && VD->isStaticLocal()) 1518 V = CGM.getStaticLocalDeclAddress(VD); 1519 1520 // Use special handling for lambdas. 1521 if (!V) { 1522 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1523 return EmitLValueForField(CXXABIThisValue, FD, 0); 1524 1525 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1526 CharUnits alignment = getContext().getDeclAlign(VD); 1527 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1528 E->getType(), alignment); 1529 } 1530 1531 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1532 1533 if (isBlockVariable) 1534 V = BuildBlockByrefAddress(V, VD); 1535 1536 LValue LV; 1537 if (VD->getType()->isReferenceType()) { 1538 llvm::LoadInst *LI = Builder.CreateLoad(V); 1539 LI->setAlignment(Alignment.getQuantity()); 1540 V = LI; 1541 LV = MakeNaturalAlignAddrLValue(V, T); 1542 } else { 1543 LV = MakeAddrLValue(V, T, Alignment); 1544 } 1545 1546 if (NonGCable) { 1547 LV.getQuals().removeObjCGCAttr(); 1548 LV.setNonGC(true); 1549 } 1550 setObjCGCLValueClass(getContext(), E, LV); 1551 return LV; 1552 } 1553 1554 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1555 return EmitFunctionDeclLValue(*this, E, fn); 1556 1557 llvm_unreachable("Unhandled DeclRefExpr"); 1558} 1559 1560LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1561 // __extension__ doesn't affect lvalue-ness. 1562 if (E->getOpcode() == UO_Extension) 1563 return EmitLValue(E->getSubExpr()); 1564 1565 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1566 switch (E->getOpcode()) { 1567 default: llvm_unreachable("Unknown unary operator lvalue!"); 1568 case UO_Deref: { 1569 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1570 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1571 1572 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1573 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1574 1575 // We should not generate __weak write barrier on indirect reference 1576 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1577 // But, we continue to generate __strong write barrier on indirect write 1578 // into a pointer to object. 1579 if (getContext().getLangOpts().ObjC1 && 1580 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1581 LV.isObjCWeak()) 1582 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1583 return LV; 1584 } 1585 case UO_Real: 1586 case UO_Imag: { 1587 LValue LV = EmitLValue(E->getSubExpr()); 1588 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1589 llvm::Value *Addr = LV.getAddress(); 1590 1591 // __real is valid on scalars. This is a faster way of testing that. 1592 // __imag can only produce an rvalue on scalars. 1593 if (E->getOpcode() == UO_Real && 1594 !cast<llvm::PointerType>(Addr->getType()) 1595 ->getElementType()->isStructTy()) { 1596 assert(E->getSubExpr()->getType()->isArithmeticType()); 1597 return LV; 1598 } 1599 1600 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1601 1602 unsigned Idx = E->getOpcode() == UO_Imag; 1603 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1604 Idx, "idx"), 1605 ExprTy); 1606 } 1607 case UO_PreInc: 1608 case UO_PreDec: { 1609 LValue LV = EmitLValue(E->getSubExpr()); 1610 bool isInc = E->getOpcode() == UO_PreInc; 1611 1612 if (E->getType()->isAnyComplexType()) 1613 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1614 else 1615 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1616 return LV; 1617 } 1618 } 1619} 1620 1621LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1622 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1623 E->getType()); 1624} 1625 1626LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1627 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1628 E->getType()); 1629} 1630 1631 1632LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1633 switch (E->getIdentType()) { 1634 default: 1635 return EmitUnsupportedLValue(E, "predefined expression"); 1636 1637 case PredefinedExpr::Func: 1638 case PredefinedExpr::Function: 1639 case PredefinedExpr::PrettyFunction: { 1640 unsigned Type = E->getIdentType(); 1641 std::string GlobalVarName; 1642 1643 switch (Type) { 1644 default: llvm_unreachable("Invalid type"); 1645 case PredefinedExpr::Func: 1646 GlobalVarName = "__func__."; 1647 break; 1648 case PredefinedExpr::Function: 1649 GlobalVarName = "__FUNCTION__."; 1650 break; 1651 case PredefinedExpr::PrettyFunction: 1652 GlobalVarName = "__PRETTY_FUNCTION__."; 1653 break; 1654 } 1655 1656 StringRef FnName = CurFn->getName(); 1657 if (FnName.startswith("\01")) 1658 FnName = FnName.substr(1); 1659 GlobalVarName += FnName; 1660 1661 const Decl *CurDecl = CurCodeDecl; 1662 if (CurDecl == 0) 1663 CurDecl = getContext().getTranslationUnitDecl(); 1664 1665 std::string FunctionName = 1666 (isa<BlockDecl>(CurDecl) 1667 ? FnName.str() 1668 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1669 1670 llvm::Constant *C = 1671 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1672 return MakeAddrLValue(C, E->getType()); 1673 } 1674 } 1675} 1676 1677llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1678 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1679 1680 // If we are not optimzing, don't collapse all calls to trap in the function 1681 // to the same call, that way, in the debugger they can see which operation 1682 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1683 // to just one per function to save on codesize. 1684 if (GCO.OptimizationLevel && TrapBB) 1685 return TrapBB; 1686 1687 llvm::BasicBlock *Cont = 0; 1688 if (HaveInsertPoint()) { 1689 Cont = createBasicBlock("cont"); 1690 EmitBranch(Cont); 1691 } 1692 TrapBB = createBasicBlock("trap"); 1693 EmitBlock(TrapBB); 1694 1695 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1696 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1697 TrapCall->setDoesNotReturn(); 1698 TrapCall->setDoesNotThrow(); 1699 Builder.CreateUnreachable(); 1700 1701 if (Cont) 1702 EmitBlock(Cont); 1703 return TrapBB; 1704} 1705 1706/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1707/// array to pointer, return the array subexpression. 1708static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1709 // If this isn't just an array->pointer decay, bail out. 1710 const CastExpr *CE = dyn_cast<CastExpr>(E); 1711 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1712 return 0; 1713 1714 // If this is a decay from variable width array, bail out. 1715 const Expr *SubExpr = CE->getSubExpr(); 1716 if (SubExpr->getType()->isVariableArrayType()) 1717 return 0; 1718 1719 return SubExpr; 1720} 1721 1722LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1723 // The index must always be an integer, which is not an aggregate. Emit it. 1724 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1725 QualType IdxTy = E->getIdx()->getType(); 1726 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1727 1728 // If the base is a vector type, then we are forming a vector element lvalue 1729 // with this subscript. 1730 if (E->getBase()->getType()->isVectorType()) { 1731 // Emit the vector as an lvalue to get its address. 1732 LValue LHS = EmitLValue(E->getBase()); 1733 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1734 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1735 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1736 E->getBase()->getType(), LHS.getAlignment()); 1737 } 1738 1739 // Extend or truncate the index type to 32 or 64-bits. 1740 if (Idx->getType() != IntPtrTy) 1741 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1742 1743 // FIXME: As llvm implements the object size checking, this can come out. 1744 if (CatchUndefined) { 1745 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1746 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1747 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1748 if (const ConstantArrayType *CAT 1749 = getContext().getAsConstantArrayType(DRE->getType())) { 1750 llvm::APInt Size = CAT->getSize(); 1751 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1752 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1753 llvm::ConstantInt::get(Idx->getType(), Size)), 1754 Cont, getTrapBB()); 1755 EmitBlock(Cont); 1756 } 1757 } 1758 } 1759 } 1760 } 1761 1762 // We know that the pointer points to a type of the correct size, unless the 1763 // size is a VLA or Objective-C interface. 1764 llvm::Value *Address = 0; 1765 CharUnits ArrayAlignment; 1766 if (const VariableArrayType *vla = 1767 getContext().getAsVariableArrayType(E->getType())) { 1768 // The base must be a pointer, which is not an aggregate. Emit 1769 // it. It needs to be emitted first in case it's what captures 1770 // the VLA bounds. 1771 Address = EmitScalarExpr(E->getBase()); 1772 1773 // The element count here is the total number of non-VLA elements. 1774 llvm::Value *numElements = getVLASize(vla).first; 1775 1776 // Effectively, the multiply by the VLA size is part of the GEP. 1777 // GEP indexes are signed, and scaling an index isn't permitted to 1778 // signed-overflow, so we use the same semantics for our explicit 1779 // multiply. We suppress this if overflow is not undefined behavior. 1780 if (getLangOpts().isSignedOverflowDefined()) { 1781 Idx = Builder.CreateMul(Idx, numElements); 1782 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1783 } else { 1784 Idx = Builder.CreateNSWMul(Idx, numElements); 1785 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1786 } 1787 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1788 // Indexing over an interface, as in "NSString *P; P[4];" 1789 llvm::Value *InterfaceSize = 1790 llvm::ConstantInt::get(Idx->getType(), 1791 getContext().getTypeSizeInChars(OIT).getQuantity()); 1792 1793 Idx = Builder.CreateMul(Idx, InterfaceSize); 1794 1795 // The base must be a pointer, which is not an aggregate. Emit it. 1796 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1797 Address = EmitCastToVoidPtr(Base); 1798 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1799 Address = Builder.CreateBitCast(Address, Base->getType()); 1800 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1801 // If this is A[i] where A is an array, the frontend will have decayed the 1802 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1803 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1804 // "gep x, i" here. Emit one "gep A, 0, i". 1805 assert(Array->getType()->isArrayType() && 1806 "Array to pointer decay must have array source type!"); 1807 LValue ArrayLV = EmitLValue(Array); 1808 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1809 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1810 llvm::Value *Args[] = { Zero, Idx }; 1811 1812 // Propagate the alignment from the array itself to the result. 1813 ArrayAlignment = ArrayLV.getAlignment(); 1814 1815 if (getContext().getLangOpts().isSignedOverflowDefined()) 1816 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1817 else 1818 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1819 } else { 1820 // The base must be a pointer, which is not an aggregate. Emit it. 1821 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1822 if (getContext().getLangOpts().isSignedOverflowDefined()) 1823 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1824 else 1825 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1826 } 1827 1828 QualType T = E->getBase()->getType()->getPointeeType(); 1829 assert(!T.isNull() && 1830 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1831 1832 1833 // Limit the alignment to that of the result type. 1834 LValue LV; 1835 if (!ArrayAlignment.isZero()) { 1836 CharUnits Align = getContext().getTypeAlignInChars(T); 1837 ArrayAlignment = std::min(Align, ArrayAlignment); 1838 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1839 } else { 1840 LV = MakeNaturalAlignAddrLValue(Address, T); 1841 } 1842 1843 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1844 1845 if (getContext().getLangOpts().ObjC1 && 1846 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1847 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1848 setObjCGCLValueClass(getContext(), E, LV); 1849 } 1850 return LV; 1851} 1852 1853static 1854llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1855 SmallVector<unsigned, 4> &Elts) { 1856 SmallVector<llvm::Constant*, 4> CElts; 1857 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1858 CElts.push_back(Builder.getInt32(Elts[i])); 1859 1860 return llvm::ConstantVector::get(CElts); 1861} 1862 1863LValue CodeGenFunction:: 1864EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1865 // Emit the base vector as an l-value. 1866 LValue Base; 1867 1868 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1869 if (E->isArrow()) { 1870 // If it is a pointer to a vector, emit the address and form an lvalue with 1871 // it. 1872 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1873 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1874 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1875 Base.getQuals().removeObjCGCAttr(); 1876 } else if (E->getBase()->isGLValue()) { 1877 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1878 // emit the base as an lvalue. 1879 assert(E->getBase()->getType()->isVectorType()); 1880 Base = EmitLValue(E->getBase()); 1881 } else { 1882 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1883 assert(E->getBase()->getType()->isVectorType() && 1884 "Result must be a vector"); 1885 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1886 1887 // Store the vector to memory (because LValue wants an address). 1888 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1889 Builder.CreateStore(Vec, VecMem); 1890 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1891 } 1892 1893 QualType type = 1894 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1895 1896 // Encode the element access list into a vector of unsigned indices. 1897 SmallVector<unsigned, 4> Indices; 1898 E->getEncodedElementAccess(Indices); 1899 1900 if (Base.isSimple()) { 1901 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1902 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 1903 Base.getAlignment()); 1904 } 1905 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1906 1907 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1908 SmallVector<llvm::Constant *, 4> CElts; 1909 1910 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1911 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1912 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1913 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 1914 Base.getAlignment()); 1915} 1916 1917LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1918 bool isNonGC = false; 1919 Expr *BaseExpr = E->getBase(); 1920 llvm::Value *BaseValue = NULL; 1921 Qualifiers BaseQuals; 1922 1923 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1924 if (E->isArrow()) { 1925 BaseValue = EmitScalarExpr(BaseExpr); 1926 const PointerType *PTy = 1927 BaseExpr->getType()->getAs<PointerType>(); 1928 BaseQuals = PTy->getPointeeType().getQualifiers(); 1929 } else { 1930 LValue BaseLV = EmitLValue(BaseExpr); 1931 if (BaseLV.isNonGC()) 1932 isNonGC = true; 1933 // FIXME: this isn't right for bitfields. 1934 BaseValue = BaseLV.getAddress(); 1935 QualType BaseTy = BaseExpr->getType(); 1936 BaseQuals = BaseTy.getQualifiers(); 1937 } 1938 1939 NamedDecl *ND = E->getMemberDecl(); 1940 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1941 LValue LV = EmitLValueForField(BaseValue, Field, 1942 BaseQuals.getCVRQualifiers()); 1943 LV.setNonGC(isNonGC); 1944 setObjCGCLValueClass(getContext(), E, LV); 1945 return LV; 1946 } 1947 1948 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1949 return EmitGlobalVarDeclLValue(*this, E, VD); 1950 1951 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1952 return EmitFunctionDeclLValue(*this, E, FD); 1953 1954 llvm_unreachable("Unhandled member declaration!"); 1955} 1956 1957LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1958 const FieldDecl *Field, 1959 unsigned CVRQualifiers) { 1960 const CGRecordLayout &RL = 1961 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1962 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1963 return LValue::MakeBitfield(BaseValue, Info, 1964 Field->getType().withCVRQualifiers(CVRQualifiers)); 1965} 1966 1967/// EmitLValueForAnonRecordField - Given that the field is a member of 1968/// an anonymous struct or union buried inside a record, and given 1969/// that the base value is a pointer to the enclosing record, derive 1970/// an lvalue for the ultimate field. 1971LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1972 const IndirectFieldDecl *Field, 1973 unsigned CVRQualifiers) { 1974 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1975 IEnd = Field->chain_end(); 1976 while (true) { 1977 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1978 CVRQualifiers); 1979 if (++I == IEnd) return LV; 1980 1981 assert(LV.isSimple()); 1982 BaseValue = LV.getAddress(); 1983 CVRQualifiers |= LV.getVRQualifiers(); 1984 } 1985} 1986 1987LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1988 const FieldDecl *field, 1989 unsigned cvr) { 1990 if (field->isBitField()) 1991 return EmitLValueForBitfield(baseAddr, field, cvr); 1992 1993 const RecordDecl *rec = field->getParent(); 1994 QualType type = field->getType(); 1995 CharUnits alignment = getContext().getDeclAlign(field); 1996 1997 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1998 1999 llvm::Value *addr = baseAddr; 2000 if (rec->isUnion()) { 2001 // For unions, there is no pointer adjustment. 2002 assert(!type->isReferenceType() && "union has reference member"); 2003 } else { 2004 // For structs, we GEP to the field that the record layout suggests. 2005 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2006 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2007 2008 // If this is a reference field, load the reference right now. 2009 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2010 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2011 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2012 load->setAlignment(alignment.getQuantity()); 2013 2014 if (CGM.shouldUseTBAA()) { 2015 llvm::MDNode *tbaa; 2016 if (mayAlias) 2017 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2018 else 2019 tbaa = CGM.getTBAAInfo(type); 2020 CGM.DecorateInstruction(load, tbaa); 2021 } 2022 2023 addr = load; 2024 mayAlias = false; 2025 type = refType->getPointeeType(); 2026 if (type->isIncompleteType()) 2027 alignment = CharUnits(); 2028 else 2029 alignment = getContext().getTypeAlignInChars(type); 2030 cvr = 0; // qualifiers don't recursively apply to referencee 2031 } 2032 } 2033 2034 // Make sure that the address is pointing to the right type. This is critical 2035 // for both unions and structs. A union needs a bitcast, a struct element 2036 // will need a bitcast if the LLVM type laid out doesn't match the desired 2037 // type. 2038 addr = EmitBitCastOfLValueToProperType(*this, addr, 2039 CGM.getTypes().ConvertTypeForMem(type), 2040 field->getName()); 2041 2042 if (field->hasAttr<AnnotateAttr>()) 2043 addr = EmitFieldAnnotations(field, addr); 2044 2045 LValue LV = MakeAddrLValue(addr, type, alignment); 2046 LV.getQuals().addCVRQualifiers(cvr); 2047 2048 // __weak attribute on a field is ignored. 2049 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2050 LV.getQuals().removeObjCGCAttr(); 2051 2052 // Fields of may_alias structs act like 'char' for TBAA purposes. 2053 // FIXME: this should get propagated down through anonymous structs 2054 // and unions. 2055 if (mayAlias && LV.getTBAAInfo()) 2056 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2057 2058 return LV; 2059} 2060 2061LValue 2062CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 2063 const FieldDecl *Field, 2064 unsigned CVRQualifiers) { 2065 QualType FieldType = Field->getType(); 2066 2067 if (!FieldType->isReferenceType()) 2068 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 2069 2070 const CGRecordLayout &RL = 2071 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2072 unsigned idx = RL.getLLVMFieldNo(Field); 2073 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 2074 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2075 2076 2077 // Make sure that the address is pointing to the right type. This is critical 2078 // for both unions and structs. A union needs a bitcast, a struct element 2079 // will need a bitcast if the LLVM type laid out doesn't match the desired 2080 // type. 2081 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2082 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2083 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 2084 2085 CharUnits Alignment = getContext().getDeclAlign(Field); 2086 return MakeAddrLValue(V, FieldType, Alignment); 2087} 2088 2089LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2090 if (E->isFileScope()) { 2091 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2092 return MakeAddrLValue(GlobalPtr, E->getType()); 2093 } 2094 2095 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2096 const Expr *InitExpr = E->getInitializer(); 2097 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2098 2099 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2100 /*Init*/ true); 2101 2102 return Result; 2103} 2104 2105LValue CodeGenFunction:: 2106EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2107 if (!expr->isGLValue()) { 2108 // ?: here should be an aggregate. 2109 assert((hasAggregateLLVMType(expr->getType()) && 2110 !expr->getType()->isAnyComplexType()) && 2111 "Unexpected conditional operator!"); 2112 return EmitAggExprToLValue(expr); 2113 } 2114 2115 OpaqueValueMapping binding(*this, expr); 2116 2117 const Expr *condExpr = expr->getCond(); 2118 bool CondExprBool; 2119 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2120 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2121 if (!CondExprBool) std::swap(live, dead); 2122 2123 if (!ContainsLabel(dead)) 2124 return EmitLValue(live); 2125 } 2126 2127 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2128 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2129 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2130 2131 ConditionalEvaluation eval(*this); 2132 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2133 2134 // Any temporaries created here are conditional. 2135 EmitBlock(lhsBlock); 2136 eval.begin(*this); 2137 LValue lhs = EmitLValue(expr->getTrueExpr()); 2138 eval.end(*this); 2139 2140 if (!lhs.isSimple()) 2141 return EmitUnsupportedLValue(expr, "conditional operator"); 2142 2143 lhsBlock = Builder.GetInsertBlock(); 2144 Builder.CreateBr(contBlock); 2145 2146 // Any temporaries created here are conditional. 2147 EmitBlock(rhsBlock); 2148 eval.begin(*this); 2149 LValue rhs = EmitLValue(expr->getFalseExpr()); 2150 eval.end(*this); 2151 if (!rhs.isSimple()) 2152 return EmitUnsupportedLValue(expr, "conditional operator"); 2153 rhsBlock = Builder.GetInsertBlock(); 2154 2155 EmitBlock(contBlock); 2156 2157 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2158 "cond-lvalue"); 2159 phi->addIncoming(lhs.getAddress(), lhsBlock); 2160 phi->addIncoming(rhs.getAddress(), rhsBlock); 2161 return MakeAddrLValue(phi, expr->getType()); 2162} 2163 2164/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2165/// If the cast is a dynamic_cast, we can have the usual lvalue result, 2166/// otherwise if a cast is needed by the code generator in an lvalue context, 2167/// then it must mean that we need the address of an aggregate in order to 2168/// access one of its fields. This can happen for all the reasons that casts 2169/// are permitted with aggregate result, including noop aggregate casts, and 2170/// cast from scalar to union. 2171LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2172 switch (E->getCastKind()) { 2173 case CK_ToVoid: 2174 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2175 2176 case CK_Dependent: 2177 llvm_unreachable("dependent cast kind in IR gen!"); 2178 2179 // These two casts are currently treated as no-ops, although they could 2180 // potentially be real operations depending on the target's ABI. 2181 case CK_NonAtomicToAtomic: 2182 case CK_AtomicToNonAtomic: 2183 2184 case CK_NoOp: 2185 case CK_LValueToRValue: 2186 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2187 || E->getType()->isRecordType()) 2188 return EmitLValue(E->getSubExpr()); 2189 // Fall through to synthesize a temporary. 2190 2191 case CK_BitCast: 2192 case CK_ArrayToPointerDecay: 2193 case CK_FunctionToPointerDecay: 2194 case CK_NullToMemberPointer: 2195 case CK_NullToPointer: 2196 case CK_IntegralToPointer: 2197 case CK_PointerToIntegral: 2198 case CK_PointerToBoolean: 2199 case CK_VectorSplat: 2200 case CK_IntegralCast: 2201 case CK_IntegralToBoolean: 2202 case CK_IntegralToFloating: 2203 case CK_FloatingToIntegral: 2204 case CK_FloatingToBoolean: 2205 case CK_FloatingCast: 2206 case CK_FloatingRealToComplex: 2207 case CK_FloatingComplexToReal: 2208 case CK_FloatingComplexToBoolean: 2209 case CK_FloatingComplexCast: 2210 case CK_FloatingComplexToIntegralComplex: 2211 case CK_IntegralRealToComplex: 2212 case CK_IntegralComplexToReal: 2213 case CK_IntegralComplexToBoolean: 2214 case CK_IntegralComplexCast: 2215 case CK_IntegralComplexToFloatingComplex: 2216 case CK_DerivedToBaseMemberPointer: 2217 case CK_BaseToDerivedMemberPointer: 2218 case CK_MemberPointerToBoolean: 2219 case CK_ReinterpretMemberPointer: 2220 case CK_AnyPointerToBlockPointerCast: 2221 case CK_ARCProduceObject: 2222 case CK_ARCConsumeObject: 2223 case CK_ARCReclaimReturnedObject: 2224 case CK_ARCExtendBlockObject: 2225 case CK_CopyAndAutoreleaseBlockObject: { 2226 // These casts only produce lvalues when we're binding a reference to a 2227 // temporary realized from a (converted) pure rvalue. Emit the expression 2228 // as a value, copy it into a temporary, and return an lvalue referring to 2229 // that temporary. 2230 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2231 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2232 return MakeAddrLValue(V, E->getType()); 2233 } 2234 2235 case CK_Dynamic: { 2236 LValue LV = EmitLValue(E->getSubExpr()); 2237 llvm::Value *V = LV.getAddress(); 2238 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2239 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2240 } 2241 2242 case CK_ConstructorConversion: 2243 case CK_UserDefinedConversion: 2244 case CK_CPointerToObjCPointerCast: 2245 case CK_BlockPointerToObjCPointerCast: 2246 return EmitLValue(E->getSubExpr()); 2247 2248 case CK_UncheckedDerivedToBase: 2249 case CK_DerivedToBase: { 2250 const RecordType *DerivedClassTy = 2251 E->getSubExpr()->getType()->getAs<RecordType>(); 2252 CXXRecordDecl *DerivedClassDecl = 2253 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2254 2255 LValue LV = EmitLValue(E->getSubExpr()); 2256 llvm::Value *This = LV.getAddress(); 2257 2258 // Perform the derived-to-base conversion 2259 llvm::Value *Base = 2260 GetAddressOfBaseClass(This, DerivedClassDecl, 2261 E->path_begin(), E->path_end(), 2262 /*NullCheckValue=*/false); 2263 2264 return MakeAddrLValue(Base, E->getType()); 2265 } 2266 case CK_ToUnion: 2267 return EmitAggExprToLValue(E); 2268 case CK_BaseToDerived: { 2269 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2270 CXXRecordDecl *DerivedClassDecl = 2271 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2272 2273 LValue LV = EmitLValue(E->getSubExpr()); 2274 2275 // Perform the base-to-derived conversion 2276 llvm::Value *Derived = 2277 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2278 E->path_begin(), E->path_end(), 2279 /*NullCheckValue=*/false); 2280 2281 return MakeAddrLValue(Derived, E->getType()); 2282 } 2283 case CK_LValueBitCast: { 2284 // This must be a reinterpret_cast (or c-style equivalent). 2285 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2286 2287 LValue LV = EmitLValue(E->getSubExpr()); 2288 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2289 ConvertType(CE->getTypeAsWritten())); 2290 return MakeAddrLValue(V, E->getType()); 2291 } 2292 case CK_ObjCObjectLValueCast: { 2293 LValue LV = EmitLValue(E->getSubExpr()); 2294 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2295 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2296 ConvertType(ToType)); 2297 return MakeAddrLValue(V, E->getType()); 2298 } 2299 } 2300 2301 llvm_unreachable("Unhandled lvalue cast kind?"); 2302} 2303 2304LValue CodeGenFunction::EmitNullInitializationLValue( 2305 const CXXScalarValueInitExpr *E) { 2306 QualType Ty = E->getType(); 2307 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2308 EmitNullInitialization(LV.getAddress(), Ty); 2309 return LV; 2310} 2311 2312LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2313 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2314 return getOpaqueLValueMapping(e); 2315} 2316 2317LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2318 const MaterializeTemporaryExpr *E) { 2319 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2320 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2321} 2322 2323 2324//===--------------------------------------------------------------------===// 2325// Expression Emission 2326//===--------------------------------------------------------------------===// 2327 2328RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2329 ReturnValueSlot ReturnValue) { 2330 if (CGDebugInfo *DI = getDebugInfo()) 2331 DI->EmitLocation(Builder, E->getLocStart()); 2332 2333 // Builtins never have block type. 2334 if (E->getCallee()->getType()->isBlockPointerType()) 2335 return EmitBlockCallExpr(E, ReturnValue); 2336 2337 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2338 return EmitCXXMemberCallExpr(CE, ReturnValue); 2339 2340 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2341 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2342 2343 const Decl *TargetDecl = E->getCalleeDecl(); 2344 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2345 if (unsigned builtinID = FD->getBuiltinID()) 2346 return EmitBuiltinExpr(FD, builtinID, E); 2347 } 2348 2349 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2350 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2351 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2352 2353 if (const CXXPseudoDestructorExpr *PseudoDtor 2354 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2355 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2356 if (getContext().getLangOpts().ObjCAutoRefCount && 2357 DestroyedType->isObjCLifetimeType() && 2358 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2359 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2360 // Automatic Reference Counting: 2361 // If the pseudo-expression names a retainable object with weak or 2362 // strong lifetime, the object shall be released. 2363 Expr *BaseExpr = PseudoDtor->getBase(); 2364 llvm::Value *BaseValue = NULL; 2365 Qualifiers BaseQuals; 2366 2367 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2368 if (PseudoDtor->isArrow()) { 2369 BaseValue = EmitScalarExpr(BaseExpr); 2370 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2371 BaseQuals = PTy->getPointeeType().getQualifiers(); 2372 } else { 2373 LValue BaseLV = EmitLValue(BaseExpr); 2374 BaseValue = BaseLV.getAddress(); 2375 QualType BaseTy = BaseExpr->getType(); 2376 BaseQuals = BaseTy.getQualifiers(); 2377 } 2378 2379 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2380 case Qualifiers::OCL_None: 2381 case Qualifiers::OCL_ExplicitNone: 2382 case Qualifiers::OCL_Autoreleasing: 2383 break; 2384 2385 case Qualifiers::OCL_Strong: 2386 EmitARCRelease(Builder.CreateLoad(BaseValue, 2387 PseudoDtor->getDestroyedType().isVolatileQualified()), 2388 /*precise*/ true); 2389 break; 2390 2391 case Qualifiers::OCL_Weak: 2392 EmitARCDestroyWeak(BaseValue); 2393 break; 2394 } 2395 } else { 2396 // C++ [expr.pseudo]p1: 2397 // The result shall only be used as the operand for the function call 2398 // operator (), and the result of such a call has type void. The only 2399 // effect is the evaluation of the postfix-expression before the dot or 2400 // arrow. 2401 EmitScalarExpr(E->getCallee()); 2402 } 2403 2404 return RValue::get(0); 2405 } 2406 2407 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2408 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2409 E->arg_begin(), E->arg_end(), TargetDecl); 2410} 2411 2412LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2413 // Comma expressions just emit their LHS then their RHS as an l-value. 2414 if (E->getOpcode() == BO_Comma) { 2415 EmitIgnoredExpr(E->getLHS()); 2416 EnsureInsertPoint(); 2417 return EmitLValue(E->getRHS()); 2418 } 2419 2420 if (E->getOpcode() == BO_PtrMemD || 2421 E->getOpcode() == BO_PtrMemI) 2422 return EmitPointerToDataMemberBinaryExpr(E); 2423 2424 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2425 2426 // Note that in all of these cases, __block variables need the RHS 2427 // evaluated first just in case the variable gets moved by the RHS. 2428 2429 if (!hasAggregateLLVMType(E->getType())) { 2430 switch (E->getLHS()->getType().getObjCLifetime()) { 2431 case Qualifiers::OCL_Strong: 2432 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2433 2434 case Qualifiers::OCL_Autoreleasing: 2435 return EmitARCStoreAutoreleasing(E).first; 2436 2437 // No reason to do any of these differently. 2438 case Qualifiers::OCL_None: 2439 case Qualifiers::OCL_ExplicitNone: 2440 case Qualifiers::OCL_Weak: 2441 break; 2442 } 2443 2444 RValue RV = EmitAnyExpr(E->getRHS()); 2445 LValue LV = EmitLValue(E->getLHS()); 2446 EmitStoreThroughLValue(RV, LV); 2447 return LV; 2448 } 2449 2450 if (E->getType()->isAnyComplexType()) 2451 return EmitComplexAssignmentLValue(E); 2452 2453 return EmitAggExprToLValue(E); 2454} 2455 2456LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2457 RValue RV = EmitCallExpr(E); 2458 2459 if (!RV.isScalar()) 2460 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2461 2462 assert(E->getCallReturnType()->isReferenceType() && 2463 "Can't have a scalar return unless the return type is a " 2464 "reference type!"); 2465 2466 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2467} 2468 2469LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2470 // FIXME: This shouldn't require another copy. 2471 return EmitAggExprToLValue(E); 2472} 2473 2474LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2475 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2476 && "binding l-value to type which needs a temporary"); 2477 AggValueSlot Slot = CreateAggTemp(E->getType()); 2478 EmitCXXConstructExpr(E, Slot); 2479 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2480} 2481 2482LValue 2483CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2484 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2485} 2486 2487LValue 2488CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2489 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2490 Slot.setExternallyDestructed(); 2491 EmitAggExpr(E->getSubExpr(), Slot); 2492 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2493 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2494} 2495 2496LValue 2497CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2498 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2499 EmitLambdaExpr(E, Slot); 2500 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2501} 2502 2503LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2504 RValue RV = EmitObjCMessageExpr(E); 2505 2506 if (!RV.isScalar()) 2507 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2508 2509 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2510 "Can't have a scalar return unless the return type is a " 2511 "reference type!"); 2512 2513 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2514} 2515 2516LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2517 llvm::Value *V = 2518 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2519 return MakeAddrLValue(V, E->getType()); 2520} 2521 2522llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2523 const ObjCIvarDecl *Ivar) { 2524 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2525} 2526 2527LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2528 llvm::Value *BaseValue, 2529 const ObjCIvarDecl *Ivar, 2530 unsigned CVRQualifiers) { 2531 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2532 Ivar, CVRQualifiers); 2533} 2534 2535LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2536 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2537 llvm::Value *BaseValue = 0; 2538 const Expr *BaseExpr = E->getBase(); 2539 Qualifiers BaseQuals; 2540 QualType ObjectTy; 2541 if (E->isArrow()) { 2542 BaseValue = EmitScalarExpr(BaseExpr); 2543 ObjectTy = BaseExpr->getType()->getPointeeType(); 2544 BaseQuals = ObjectTy.getQualifiers(); 2545 } else { 2546 LValue BaseLV = EmitLValue(BaseExpr); 2547 // FIXME: this isn't right for bitfields. 2548 BaseValue = BaseLV.getAddress(); 2549 ObjectTy = BaseExpr->getType(); 2550 BaseQuals = ObjectTy.getQualifiers(); 2551 } 2552 2553 LValue LV = 2554 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2555 BaseQuals.getCVRQualifiers()); 2556 setObjCGCLValueClass(getContext(), E, LV); 2557 return LV; 2558} 2559 2560LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2561 // Can only get l-value for message expression returning aggregate type 2562 RValue RV = EmitAnyExprToTemp(E); 2563 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2564} 2565 2566RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2567 ReturnValueSlot ReturnValue, 2568 CallExpr::const_arg_iterator ArgBeg, 2569 CallExpr::const_arg_iterator ArgEnd, 2570 const Decl *TargetDecl) { 2571 // Get the actual function type. The callee type will always be a pointer to 2572 // function type or a block pointer type. 2573 assert(CalleeType->isFunctionPointerType() && 2574 "Call must have function pointer type!"); 2575 2576 CalleeType = getContext().getCanonicalType(CalleeType); 2577 2578 const FunctionType *FnType 2579 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2580 2581 CallArgList Args; 2582 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2583 2584 const CGFunctionInfo &FnInfo = 2585 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2586 2587 // C99 6.5.2.2p6: 2588 // If the expression that denotes the called function has a type 2589 // that does not include a prototype, [the default argument 2590 // promotions are performed]. If the number of arguments does not 2591 // equal the number of parameters, the behavior is undefined. If 2592 // the function is defined with a type that includes a prototype, 2593 // and either the prototype ends with an ellipsis (, ...) or the 2594 // types of the arguments after promotion are not compatible with 2595 // the types of the parameters, the behavior is undefined. If the 2596 // function is defined with a type that does not include a 2597 // prototype, and the types of the arguments after promotion are 2598 // not compatible with those of the parameters after promotion, 2599 // the behavior is undefined [except in some trivial cases]. 2600 // That is, in the general case, we should assume that a call 2601 // through an unprototyped function type works like a *non-variadic* 2602 // call. The way we make this work is to cast to the exact type 2603 // of the promoted arguments. 2604 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2605 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2606 CalleeTy = CalleeTy->getPointerTo(); 2607 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2608 } 2609 2610 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2611} 2612 2613LValue CodeGenFunction:: 2614EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2615 llvm::Value *BaseV; 2616 if (E->getOpcode() == BO_PtrMemI) 2617 BaseV = EmitScalarExpr(E->getLHS()); 2618 else 2619 BaseV = EmitLValue(E->getLHS()).getAddress(); 2620 2621 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2622 2623 const MemberPointerType *MPT 2624 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2625 2626 llvm::Value *AddV = 2627 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2628 2629 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2630} 2631 2632static void 2633EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2634 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2635 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2636 if (E->isCmpXChg()) { 2637 // Note that cmpxchg only supports specifying one ordering and 2638 // doesn't support weak cmpxchg, at least at the moment. 2639 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2640 LoadVal1->setAlignment(Align); 2641 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2642 LoadVal2->setAlignment(Align); 2643 llvm::AtomicCmpXchgInst *CXI = 2644 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2645 CXI->setVolatile(E->isVolatile()); 2646 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2647 StoreVal1->setAlignment(Align); 2648 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2649 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2650 return; 2651 } 2652 2653 if (E->getOp() == AtomicExpr::Load) { 2654 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2655 Load->setAtomic(Order); 2656 Load->setAlignment(Size); 2657 Load->setVolatile(E->isVolatile()); 2658 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2659 StoreDest->setAlignment(Align); 2660 return; 2661 } 2662 2663 if (E->getOp() == AtomicExpr::Store) { 2664 assert(!Dest && "Store does not return a value"); 2665 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2666 LoadVal1->setAlignment(Align); 2667 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2668 Store->setAtomic(Order); 2669 Store->setAlignment(Size); 2670 Store->setVolatile(E->isVolatile()); 2671 return; 2672 } 2673 2674 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2675 switch (E->getOp()) { 2676 case AtomicExpr::CmpXchgWeak: 2677 case AtomicExpr::CmpXchgStrong: 2678 case AtomicExpr::Store: 2679 case AtomicExpr::Init: 2680 case AtomicExpr::Load: assert(0 && "Already handled!"); 2681 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2682 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2683 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2684 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2685 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2686 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2687 } 2688 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2689 LoadVal1->setAlignment(Align); 2690 llvm::AtomicRMWInst *RMWI = 2691 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2692 RMWI->setVolatile(E->isVolatile()); 2693 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2694 StoreDest->setAlignment(Align); 2695} 2696 2697// This function emits any expression (scalar, complex, or aggregate) 2698// into a temporary alloca. 2699static llvm::Value * 2700EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2701 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2702 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2703 /*Init*/ true); 2704 return DeclPtr; 2705} 2706 2707static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2708 llvm::Value *Dest) { 2709 if (Ty->isAnyComplexType()) 2710 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2711 if (CGF.hasAggregateLLVMType(Ty)) 2712 return RValue::getAggregate(Dest); 2713 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2714} 2715 2716RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2717 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2718 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2719 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2720 uint64_t Size = sizeChars.getQuantity(); 2721 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2722 unsigned Align = alignChars.getQuantity(); 2723 unsigned MaxInlineWidth = 2724 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2725 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2726 2727 2728 2729 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2730 Ptr = EmitScalarExpr(E->getPtr()); 2731 2732 if (E->getOp() == AtomicExpr::Init) { 2733 assert(!Dest && "Init does not return a value"); 2734 Val1 = EmitScalarExpr(E->getVal1()); 2735 llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr); 2736 Store->setAlignment(Size); 2737 Store->setVolatile(E->isVolatile()); 2738 return RValue::get(0); 2739 } 2740 2741 Order = EmitScalarExpr(E->getOrder()); 2742 if (E->isCmpXChg()) { 2743 Val1 = EmitScalarExpr(E->getVal1()); 2744 Val2 = EmitValToTemp(*this, E->getVal2()); 2745 OrderFail = EmitScalarExpr(E->getOrderFail()); 2746 (void)OrderFail; // OrderFail is unused at the moment 2747 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2748 MemTy->isPointerType()) { 2749 // For pointers, we're required to do a bit of math: adding 1 to an int* 2750 // is not the same as adding 1 to a uintptr_t. 2751 QualType Val1Ty = E->getVal1()->getType(); 2752 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2753 CharUnits PointeeIncAmt = 2754 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2755 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2756 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2757 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2758 } else if (E->getOp() != AtomicExpr::Load) { 2759 Val1 = EmitValToTemp(*this, E->getVal1()); 2760 } 2761 2762 if (E->getOp() != AtomicExpr::Store && !Dest) 2763 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2764 2765 if (UseLibcall) { 2766 // FIXME: Finalize what the libcalls are actually supposed to look like. 2767 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2768 return EmitUnsupportedRValue(E, "atomic library call"); 2769 } 2770#if 0 2771 if (UseLibcall) { 2772 const char* LibCallName; 2773 switch (E->getOp()) { 2774 case AtomicExpr::CmpXchgWeak: 2775 LibCallName = "__atomic_compare_exchange_generic"; break; 2776 case AtomicExpr::CmpXchgStrong: 2777 LibCallName = "__atomic_compare_exchange_generic"; break; 2778 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2779 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2780 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2781 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2782 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2783 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2784 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2785 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2786 } 2787 llvm::SmallVector<QualType, 4> Params; 2788 CallArgList Args; 2789 QualType RetTy = getContext().VoidTy; 2790 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2791 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2792 getContext().VoidPtrTy); 2793 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2794 getContext().VoidPtrTy); 2795 if (E->getOp() != AtomicExpr::Load) 2796 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2797 getContext().VoidPtrTy); 2798 if (E->isCmpXChg()) { 2799 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2800 getContext().VoidPtrTy); 2801 RetTy = getContext().IntTy; 2802 } 2803 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2804 getContext().getSizeType()); 2805 const CGFunctionInfo &FuncInfo = 2806 CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(), 2807 /*variadic*/ false); 2808 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2809 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2810 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2811 if (E->isCmpXChg()) 2812 return Res; 2813 if (E->getOp() == AtomicExpr::Store) 2814 return RValue::get(0); 2815 return ConvertTempToRValue(*this, E->getType(), Dest); 2816 } 2817#endif 2818 llvm::Type *IPtrTy = 2819 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2820 llvm::Value *OrigDest = Dest; 2821 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2822 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2823 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2824 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2825 2826 if (isa<llvm::ConstantInt>(Order)) { 2827 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2828 switch (ord) { 2829 case 0: // memory_order_relaxed 2830 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2831 llvm::Monotonic); 2832 break; 2833 case 1: // memory_order_consume 2834 case 2: // memory_order_acquire 2835 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2836 llvm::Acquire); 2837 break; 2838 case 3: // memory_order_release 2839 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2840 llvm::Release); 2841 break; 2842 case 4: // memory_order_acq_rel 2843 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2844 llvm::AcquireRelease); 2845 break; 2846 case 5: // memory_order_seq_cst 2847 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2848 llvm::SequentiallyConsistent); 2849 break; 2850 default: // invalid order 2851 // We should not ever get here normally, but it's hard to 2852 // enforce that in general. 2853 break; 2854 } 2855 if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init) 2856 return RValue::get(0); 2857 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2858 } 2859 2860 // Long case, when Order isn't obviously constant. 2861 2862 // Create all the relevant BB's 2863 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2864 *AcqRelBB = 0, *SeqCstBB = 0; 2865 MonotonicBB = createBasicBlock("monotonic", CurFn); 2866 if (E->getOp() != AtomicExpr::Store) 2867 AcquireBB = createBasicBlock("acquire", CurFn); 2868 if (E->getOp() != AtomicExpr::Load) 2869 ReleaseBB = createBasicBlock("release", CurFn); 2870 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2871 AcqRelBB = createBasicBlock("acqrel", CurFn); 2872 SeqCstBB = createBasicBlock("seqcst", CurFn); 2873 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2874 2875 // Create the switch for the split 2876 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2877 // doesn't matter unless someone is crazy enough to use something that 2878 // doesn't fold to a constant for the ordering. 2879 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2880 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2881 2882 // Emit all the different atomics 2883 Builder.SetInsertPoint(MonotonicBB); 2884 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2885 llvm::Monotonic); 2886 Builder.CreateBr(ContBB); 2887 if (E->getOp() != AtomicExpr::Store) { 2888 Builder.SetInsertPoint(AcquireBB); 2889 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2890 llvm::Acquire); 2891 Builder.CreateBr(ContBB); 2892 SI->addCase(Builder.getInt32(1), AcquireBB); 2893 SI->addCase(Builder.getInt32(2), AcquireBB); 2894 } 2895 if (E->getOp() != AtomicExpr::Load) { 2896 Builder.SetInsertPoint(ReleaseBB); 2897 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2898 llvm::Release); 2899 Builder.CreateBr(ContBB); 2900 SI->addCase(Builder.getInt32(3), ReleaseBB); 2901 } 2902 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2903 Builder.SetInsertPoint(AcqRelBB); 2904 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2905 llvm::AcquireRelease); 2906 Builder.CreateBr(ContBB); 2907 SI->addCase(Builder.getInt32(4), AcqRelBB); 2908 } 2909 Builder.SetInsertPoint(SeqCstBB); 2910 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2911 llvm::SequentiallyConsistent); 2912 Builder.CreateBr(ContBB); 2913 SI->addCase(Builder.getInt32(5), SeqCstBB); 2914 2915 // Cleanup and return 2916 Builder.SetInsertPoint(ContBB); 2917 if (E->getOp() == AtomicExpr::Store) 2918 return RValue::get(0); 2919 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2920} 2921 2922void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2923 unsigned AccuracyD) { 2924 assert(Val->getType()->isFPOrFPVectorTy()); 2925 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2926 return; 2927 2928 llvm::Value *Vals[2]; 2929 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2930 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2931 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2932 2933 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2934 Node); 2935} 2936 2937namespace { 2938 struct LValueOrRValue { 2939 LValue LV; 2940 RValue RV; 2941 }; 2942} 2943 2944static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 2945 const PseudoObjectExpr *E, 2946 bool forLValue, 2947 AggValueSlot slot) { 2948 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2949 2950 // Find the result expression, if any. 2951 const Expr *resultExpr = E->getResultExpr(); 2952 LValueOrRValue result; 2953 2954 for (PseudoObjectExpr::const_semantics_iterator 2955 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2956 const Expr *semantic = *i; 2957 2958 // If this semantic expression is an opaque value, bind it 2959 // to the result of its source expression. 2960 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2961 2962 // If this is the result expression, we may need to evaluate 2963 // directly into the slot. 2964 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2965 OVMA opaqueData; 2966 if (ov == resultExpr && ov->isRValue() && !forLValue && 2967 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 2968 !ov->getType()->isAnyComplexType()) { 2969 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 2970 2971 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 2972 opaqueData = OVMA::bind(CGF, ov, LV); 2973 result.RV = slot.asRValue(); 2974 2975 // Otherwise, emit as normal. 2976 } else { 2977 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2978 2979 // If this is the result, also evaluate the result now. 2980 if (ov == resultExpr) { 2981 if (forLValue) 2982 result.LV = CGF.EmitLValue(ov); 2983 else 2984 result.RV = CGF.EmitAnyExpr(ov, slot); 2985 } 2986 } 2987 2988 opaques.push_back(opaqueData); 2989 2990 // Otherwise, if the expression is the result, evaluate it 2991 // and remember the result. 2992 } else if (semantic == resultExpr) { 2993 if (forLValue) 2994 result.LV = CGF.EmitLValue(semantic); 2995 else 2996 result.RV = CGF.EmitAnyExpr(semantic, slot); 2997 2998 // Otherwise, evaluate the expression in an ignored context. 2999 } else { 3000 CGF.EmitIgnoredExpr(semantic); 3001 } 3002 } 3003 3004 // Unbind all the opaques now. 3005 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3006 opaques[i].unbind(CGF); 3007 3008 return result; 3009} 3010 3011RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3012 AggValueSlot slot) { 3013 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3014} 3015 3016LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3017 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3018} 3019