CGExprConstant.cpp revision 24fe798fffc1748d8bce1321af42981c3719cb85
1//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Constant Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CGRecordLayout.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Target/TargetData.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===----------------------------------------------------------------------===//
32//                            ConstStructBuilder
33//===----------------------------------------------------------------------===//
34
35namespace {
36class ConstStructBuilder {
37  CodeGenModule &CGM;
38  CodeGenFunction *CGF;
39
40  bool Packed;
41  CharUnits NextFieldOffsetInChars;
42  CharUnits LLVMStructAlignment;
43  SmallVector<llvm::Constant *, 32> Elements;
44public:
45  static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
46                                     InitListExpr *ILE);
47  static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
48                                     const APValue &Value, QualType ValTy);
49
50private:
51  ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
52    : CGM(CGM), CGF(CGF), Packed(false),
53    NextFieldOffsetInChars(CharUnits::Zero()),
54    LLVMStructAlignment(CharUnits::One()) { }
55
56  void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
57                   llvm::Constant *InitExpr);
58
59  void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
60                      llvm::ConstantInt *InitExpr);
61
62  void AppendPadding(CharUnits PadSize);
63
64  void AppendTailPadding(CharUnits RecordSize);
65
66  void ConvertStructToPacked();
67
68  bool Build(InitListExpr *ILE);
69  void Build(const APValue &Val, QualType ValTy);
70  llvm::Constant *Finalize(QualType Ty);
71
72  CharUnits getAlignment(const llvm::Constant *C) const {
73    if (Packed)  return CharUnits::One();
74    return CharUnits::fromQuantity(
75        CGM.getTargetData().getABITypeAlignment(C->getType()));
76  }
77
78  CharUnits getSizeInChars(const llvm::Constant *C) const {
79    return CharUnits::fromQuantity(
80        CGM.getTargetData().getTypeAllocSize(C->getType()));
81  }
82};
83
84void ConstStructBuilder::
85AppendField(const FieldDecl *Field, uint64_t FieldOffset,
86            llvm::Constant *InitCst) {
87
88  const ASTContext &Context = CGM.getContext();
89
90  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
91
92  assert(NextFieldOffsetInChars <= FieldOffsetInChars
93         && "Field offset mismatch!");
94
95  CharUnits FieldAlignment = getAlignment(InitCst);
96
97  // Round up the field offset to the alignment of the field type.
98  CharUnits AlignedNextFieldOffsetInChars =
99    NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
100
101  if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
102    assert(!Packed && "Alignment is wrong even with a packed struct!");
103
104    // Convert the struct to a packed struct.
105    ConvertStructToPacked();
106
107    AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
108  }
109
110  if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
111    // We need to append padding.
112    AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
113
114    assert(NextFieldOffsetInChars == FieldOffsetInChars &&
115           "Did not add enough padding!");
116
117    AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
118  }
119
120  // Add the field.
121  Elements.push_back(InitCst);
122  NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
123                           getSizeInChars(InitCst);
124
125  if (Packed)
126    assert(LLVMStructAlignment == CharUnits::One() &&
127           "Packed struct not byte-aligned!");
128  else
129    LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
130}
131
132void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
133                                        uint64_t FieldOffset,
134                                        llvm::ConstantInt *CI) {
135  const ASTContext &Context = CGM.getContext();
136  const uint64_t CharWidth = Context.getCharWidth();
137  uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
138  if (FieldOffset > NextFieldOffsetInBits) {
139    // We need to add padding.
140    CharUnits PadSize = Context.toCharUnitsFromBits(
141      llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
142                               Context.getTargetInfo().getCharAlign()));
143
144    AppendPadding(PadSize);
145  }
146
147  uint64_t FieldSize = Field->getBitWidthValue(Context);
148
149  llvm::APInt FieldValue = CI->getValue();
150
151  // Promote the size of FieldValue if necessary
152  // FIXME: This should never occur, but currently it can because initializer
153  // constants are cast to bool, and because clang is not enforcing bitfield
154  // width limits.
155  if (FieldSize > FieldValue.getBitWidth())
156    FieldValue = FieldValue.zext(FieldSize);
157
158  // Truncate the size of FieldValue to the bit field size.
159  if (FieldSize < FieldValue.getBitWidth())
160    FieldValue = FieldValue.trunc(FieldSize);
161
162  NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
163  if (FieldOffset < NextFieldOffsetInBits) {
164    // Either part of the field or the entire field can go into the previous
165    // byte.
166    assert(!Elements.empty() && "Elements can't be empty!");
167
168    unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
169
170    bool FitsCompletelyInPreviousByte =
171      BitsInPreviousByte >= FieldValue.getBitWidth();
172
173    llvm::APInt Tmp = FieldValue;
174
175    if (!FitsCompletelyInPreviousByte) {
176      unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
177
178      if (CGM.getTargetData().isBigEndian()) {
179        Tmp = Tmp.lshr(NewFieldWidth);
180        Tmp = Tmp.trunc(BitsInPreviousByte);
181
182        // We want the remaining high bits.
183        FieldValue = FieldValue.trunc(NewFieldWidth);
184      } else {
185        Tmp = Tmp.trunc(BitsInPreviousByte);
186
187        // We want the remaining low bits.
188        FieldValue = FieldValue.lshr(BitsInPreviousByte);
189        FieldValue = FieldValue.trunc(NewFieldWidth);
190      }
191    }
192
193    Tmp = Tmp.zext(CharWidth);
194    if (CGM.getTargetData().isBigEndian()) {
195      if (FitsCompletelyInPreviousByte)
196        Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
197    } else {
198      Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
199    }
200
201    // 'or' in the bits that go into the previous byte.
202    llvm::Value *LastElt = Elements.back();
203    if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
204      Tmp |= Val->getValue();
205    else {
206      assert(isa<llvm::UndefValue>(LastElt));
207      // If there is an undef field that we're adding to, it can either be a
208      // scalar undef (in which case, we just replace it with our field) or it
209      // is an array.  If it is an array, we have to pull one byte off the
210      // array so that the other undef bytes stay around.
211      if (!isa<llvm::IntegerType>(LastElt->getType())) {
212        // The undef padding will be a multibyte array, create a new smaller
213        // padding and then an hole for our i8 to get plopped into.
214        assert(isa<llvm::ArrayType>(LastElt->getType()) &&
215               "Expected array padding of undefs");
216        llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
217        assert(AT->getElementType()->isIntegerTy(CharWidth) &&
218               AT->getNumElements() != 0 &&
219               "Expected non-empty array padding of undefs");
220
221        // Remove the padding array.
222        NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
223        Elements.pop_back();
224
225        // Add the padding back in two chunks.
226        AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
227        AppendPadding(CharUnits::One());
228        assert(isa<llvm::UndefValue>(Elements.back()) &&
229               Elements.back()->getType()->isIntegerTy(CharWidth) &&
230               "Padding addition didn't work right");
231      }
232    }
233
234    Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
235
236    if (FitsCompletelyInPreviousByte)
237      return;
238  }
239
240  while (FieldValue.getBitWidth() > CharWidth) {
241    llvm::APInt Tmp;
242
243    if (CGM.getTargetData().isBigEndian()) {
244      // We want the high bits.
245      Tmp =
246        FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
247    } else {
248      // We want the low bits.
249      Tmp = FieldValue.trunc(CharWidth);
250
251      FieldValue = FieldValue.lshr(CharWidth);
252    }
253
254    Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
255    ++NextFieldOffsetInChars;
256
257    FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
258  }
259
260  assert(FieldValue.getBitWidth() > 0 &&
261         "Should have at least one bit left!");
262  assert(FieldValue.getBitWidth() <= CharWidth &&
263         "Should not have more than a byte left!");
264
265  if (FieldValue.getBitWidth() < CharWidth) {
266    if (CGM.getTargetData().isBigEndian()) {
267      unsigned BitWidth = FieldValue.getBitWidth();
268
269      FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
270    } else
271      FieldValue = FieldValue.zext(CharWidth);
272  }
273
274  // Append the last element.
275  Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
276                                            FieldValue));
277  ++NextFieldOffsetInChars;
278}
279
280void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
281  if (PadSize.isZero())
282    return;
283
284  llvm::Type *Ty = CGM.Int8Ty;
285  if (PadSize > CharUnits::One())
286    Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
287
288  llvm::Constant *C = llvm::UndefValue::get(Ty);
289  Elements.push_back(C);
290  assert(getAlignment(C) == CharUnits::One() &&
291         "Padding must have 1 byte alignment!");
292
293  NextFieldOffsetInChars += getSizeInChars(C);
294}
295
296void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
297  assert(NextFieldOffsetInChars <= RecordSize &&
298         "Size mismatch!");
299
300  AppendPadding(RecordSize - NextFieldOffsetInChars);
301}
302
303void ConstStructBuilder::ConvertStructToPacked() {
304  SmallVector<llvm::Constant *, 16> PackedElements;
305  CharUnits ElementOffsetInChars = CharUnits::Zero();
306
307  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
308    llvm::Constant *C = Elements[i];
309
310    CharUnits ElementAlign = CharUnits::fromQuantity(
311      CGM.getTargetData().getABITypeAlignment(C->getType()));
312    CharUnits AlignedElementOffsetInChars =
313      ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
314
315    if (AlignedElementOffsetInChars > ElementOffsetInChars) {
316      // We need some padding.
317      CharUnits NumChars =
318        AlignedElementOffsetInChars - ElementOffsetInChars;
319
320      llvm::Type *Ty = CGM.Int8Ty;
321      if (NumChars > CharUnits::One())
322        Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
323
324      llvm::Constant *Padding = llvm::UndefValue::get(Ty);
325      PackedElements.push_back(Padding);
326      ElementOffsetInChars += getSizeInChars(Padding);
327    }
328
329    PackedElements.push_back(C);
330    ElementOffsetInChars += getSizeInChars(C);
331  }
332
333  assert(ElementOffsetInChars == NextFieldOffsetInChars &&
334         "Packing the struct changed its size!");
335
336  Elements.swap(PackedElements);
337  LLVMStructAlignment = CharUnits::One();
338  Packed = true;
339}
340
341bool ConstStructBuilder::Build(InitListExpr *ILE) {
342  if (ILE->initializesStdInitializerList()) {
343    CGM.ErrorUnsupported(ILE, "global std::initializer_list");
344    return false;
345  }
346
347  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
348  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
349
350  unsigned FieldNo = 0;
351  unsigned ElementNo = 0;
352  const FieldDecl *LastFD = 0;
353  bool IsMsStruct = RD->hasAttr<MsStructAttr>();
354
355  for (RecordDecl::field_iterator Field = RD->field_begin(),
356       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
357    if (IsMsStruct) {
358      // Zero-length bitfields following non-bitfield members are
359      // ignored:
360      if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
361        --FieldNo;
362        continue;
363      }
364      LastFD = (*Field);
365    }
366
367    // If this is a union, skip all the fields that aren't being initialized.
368    if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
369      continue;
370
371    // Don't emit anonymous bitfields, they just affect layout.
372    if (Field->isUnnamedBitfield()) {
373      LastFD = (*Field);
374      continue;
375    }
376
377    // Get the initializer.  A struct can include fields without initializers,
378    // we just use explicit null values for them.
379    llvm::Constant *EltInit;
380    if (ElementNo < ILE->getNumInits())
381      EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
382                                     Field->getType(), CGF);
383    else
384      EltInit = CGM.EmitNullConstant(Field->getType());
385
386    if (!EltInit)
387      return false;
388
389    if (!Field->isBitField()) {
390      // Handle non-bitfield members.
391      AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
392    } else {
393      // Otherwise we have a bitfield.
394      AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
395                     cast<llvm::ConstantInt>(EltInit));
396    }
397  }
398
399  return true;
400}
401
402void ConstStructBuilder::Build(const APValue &Val, QualType ValTy) {
403  RecordDecl *RD = ValTy->getAs<RecordType>()->getDecl();
404  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
405
406  if (CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
407    unsigned BaseNo = 0;
408    for (CXXRecordDecl::base_class_iterator Base = CD->bases_begin(),
409         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
410      // Build the base class subobject at the appropriately-offset location
411      // within this object.
412      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
413      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
414      NextFieldOffsetInChars -= BaseOffset;
415
416      Build(Val.getStructBase(BaseNo), Base->getType());
417
418      NextFieldOffsetInChars += BaseOffset;
419    }
420  }
421
422  unsigned FieldNo = 0;
423  const FieldDecl *LastFD = 0;
424  bool IsMsStruct = RD->hasAttr<MsStructAttr>();
425
426  for (RecordDecl::field_iterator Field = RD->field_begin(),
427       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
428    if (IsMsStruct) {
429      // Zero-length bitfields following non-bitfield members are
430      // ignored:
431      if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
432        --FieldNo;
433        continue;
434      }
435      LastFD = (*Field);
436    }
437
438    // If this is a union, skip all the fields that aren't being initialized.
439    if (RD->isUnion() && Val.getUnionField() != *Field)
440      continue;
441
442    // Don't emit anonymous bitfields, they just affect layout.
443    if (Field->isUnnamedBitfield()) {
444      LastFD = (*Field);
445      continue;
446    }
447
448    // Emit the value of the initializer.
449    const APValue &FieldValue =
450      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
451    llvm::Constant *EltInit =
452      CGM.EmitConstantValue(FieldValue, Field->getType(), CGF);
453    assert(EltInit && "EmitConstantValue can't fail");
454
455    if (!Field->isBitField()) {
456      // Handle non-bitfield members.
457      AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
458    } else {
459      // Otherwise we have a bitfield.
460      AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
461                     cast<llvm::ConstantInt>(EltInit));
462    }
463  }
464}
465
466llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
467  RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
468  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
469
470  CharUnits LayoutSizeInChars = Layout.getSize();
471
472  if (NextFieldOffsetInChars > LayoutSizeInChars) {
473    // If the struct is bigger than the size of the record type,
474    // we must have a flexible array member at the end.
475    assert(RD->hasFlexibleArrayMember() &&
476           "Must have flexible array member if struct is bigger than type!");
477
478    // No tail padding is necessary.
479  } else {
480    // Append tail padding if necessary.
481    AppendTailPadding(LayoutSizeInChars);
482
483    CharUnits LLVMSizeInChars =
484      NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
485
486    // Check if we need to convert the struct to a packed struct.
487    if (NextFieldOffsetInChars <= LayoutSizeInChars &&
488        LLVMSizeInChars > LayoutSizeInChars) {
489      assert(!Packed && "Size mismatch!");
490
491      ConvertStructToPacked();
492      assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
493             "Converting to packed did not help!");
494    }
495
496    assert(LayoutSizeInChars == NextFieldOffsetInChars &&
497           "Tail padding mismatch!");
498  }
499
500  // Pick the type to use.  If the type is layout identical to the ConvertType
501  // type then use it, otherwise use whatever the builder produced for us.
502  llvm::StructType *STy =
503      llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
504                                               Elements, Packed);
505  llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
506  if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
507    if (ValSTy->isLayoutIdentical(STy))
508      STy = ValSTy;
509  }
510
511  llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
512
513  assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
514         getSizeInChars(Result) && "Size mismatch!");
515
516  return Result;
517}
518
519llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
520                                                CodeGenFunction *CGF,
521                                                InitListExpr *ILE) {
522  ConstStructBuilder Builder(CGM, CGF);
523
524  if (!Builder.Build(ILE))
525    return 0;
526
527  return Builder.Finalize(ILE->getType());
528}
529
530llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
531                                                CodeGenFunction *CGF,
532                                                const APValue &Val,
533                                                QualType ValTy) {
534  ConstStructBuilder Builder(CGM, CGF);
535  Builder.Build(Val, ValTy);
536  return Builder.Finalize(ValTy);
537}
538
539
540//===----------------------------------------------------------------------===//
541//                             ConstExprEmitter
542//===----------------------------------------------------------------------===//
543
544/// This class only needs to handle two cases:
545/// 1) Literals (this is used by APValue emission to emit literals).
546/// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
547///    constant fold these types).
548class ConstExprEmitter :
549  public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
550  CodeGenModule &CGM;
551  CodeGenFunction *CGF;
552  llvm::LLVMContext &VMContext;
553public:
554  ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
555    : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
556  }
557
558  //===--------------------------------------------------------------------===//
559  //                            Visitor Methods
560  //===--------------------------------------------------------------------===//
561
562  llvm::Constant *VisitStmt(Stmt *S) {
563    return 0;
564  }
565
566  llvm::Constant *VisitParenExpr(ParenExpr *PE) {
567    return Visit(PE->getSubExpr());
568  }
569
570  llvm::Constant *
571  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
572    return Visit(PE->getReplacement());
573  }
574
575  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
576    return Visit(GE->getResultExpr());
577  }
578
579  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
580    return Visit(E->getInitializer());
581  }
582
583  llvm::Constant *VisitCastExpr(CastExpr* E) {
584    Expr *subExpr = E->getSubExpr();
585    llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
586    if (!C) return 0;
587
588    llvm::Type *destType = ConvertType(E->getType());
589
590    switch (E->getCastKind()) {
591    case CK_ToUnion: {
592      // GCC cast to union extension
593      assert(E->getType()->isUnionType() &&
594             "Destination type is not union type!");
595
596      // Build a struct with the union sub-element as the first member,
597      // and padded to the appropriate size
598      SmallVector<llvm::Constant*, 2> Elts;
599      SmallVector<llvm::Type*, 2> Types;
600      Elts.push_back(C);
601      Types.push_back(C->getType());
602      unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
603      unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType);
604
605      assert(CurSize <= TotalSize && "Union size mismatch!");
606      if (unsigned NumPadBytes = TotalSize - CurSize) {
607        llvm::Type *Ty = CGM.Int8Ty;
608        if (NumPadBytes > 1)
609          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
610
611        Elts.push_back(llvm::UndefValue::get(Ty));
612        Types.push_back(Ty);
613      }
614
615      llvm::StructType* STy =
616        llvm::StructType::get(C->getType()->getContext(), Types, false);
617      return llvm::ConstantStruct::get(STy, Elts);
618    }
619
620    case CK_LValueToRValue:
621    case CK_AtomicToNonAtomic:
622    case CK_NonAtomicToAtomic:
623    case CK_NoOp:
624      return C;
625
626    case CK_Dependent: llvm_unreachable("saw dependent cast!");
627
628    case CK_ReinterpretMemberPointer:
629    case CK_DerivedToBaseMemberPointer:
630    case CK_BaseToDerivedMemberPointer:
631      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
632
633    // These will never be supported.
634    case CK_ObjCObjectLValueCast:
635    case CK_ARCProduceObject:
636    case CK_ARCConsumeObject:
637    case CK_ARCReclaimReturnedObject:
638    case CK_ARCExtendBlockObject:
639      return 0;
640
641    // These don't need to be handled here because Evaluate knows how to
642    // evaluate them in the cases where they can be folded.
643    case CK_BitCast:
644    case CK_ToVoid:
645    case CK_Dynamic:
646    case CK_LValueBitCast:
647    case CK_NullToMemberPointer:
648    case CK_UserDefinedConversion:
649    case CK_ConstructorConversion:
650    case CK_CPointerToObjCPointerCast:
651    case CK_BlockPointerToObjCPointerCast:
652    case CK_AnyPointerToBlockPointerCast:
653    case CK_ArrayToPointerDecay:
654    case CK_FunctionToPointerDecay:
655    case CK_BaseToDerived:
656    case CK_DerivedToBase:
657    case CK_UncheckedDerivedToBase:
658    case CK_MemberPointerToBoolean:
659    case CK_VectorSplat:
660    case CK_FloatingRealToComplex:
661    case CK_FloatingComplexToReal:
662    case CK_FloatingComplexToBoolean:
663    case CK_FloatingComplexCast:
664    case CK_FloatingComplexToIntegralComplex:
665    case CK_IntegralRealToComplex:
666    case CK_IntegralComplexToReal:
667    case CK_IntegralComplexToBoolean:
668    case CK_IntegralComplexCast:
669    case CK_IntegralComplexToFloatingComplex:
670    case CK_PointerToIntegral:
671    case CK_PointerToBoolean:
672    case CK_NullToPointer:
673    case CK_IntegralCast:
674    case CK_IntegralToPointer:
675    case CK_IntegralToBoolean:
676    case CK_IntegralToFloating:
677    case CK_FloatingToIntegral:
678    case CK_FloatingToBoolean:
679    case CK_FloatingCast:
680      return 0;
681    }
682    llvm_unreachable("Invalid CastKind");
683  }
684
685  llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
686    return Visit(DAE->getExpr());
687  }
688
689  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
690    return Visit(E->GetTemporaryExpr());
691  }
692
693  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
694    unsigned NumInitElements = ILE->getNumInits();
695    if (NumInitElements == 1 && ILE->getType() == ILE->getInit(0)->getType() &&
696        (isa<StringLiteral>(ILE->getInit(0)) ||
697         isa<ObjCEncodeExpr>(ILE->getInit(0))))
698      return Visit(ILE->getInit(0));
699
700    llvm::ArrayType *AType =
701        cast<llvm::ArrayType>(ConvertType(ILE->getType()));
702    llvm::Type *ElemTy = AType->getElementType();
703    unsigned NumElements = AType->getNumElements();
704
705    // Initialising an array requires us to automatically
706    // initialise any elements that have not been initialised explicitly
707    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
708
709    // Copy initializer elements.
710    std::vector<llvm::Constant*> Elts;
711    Elts.reserve(NumInitableElts + NumElements);
712
713    bool RewriteType = false;
714    for (unsigned i = 0; i < NumInitableElts; ++i) {
715      Expr *Init = ILE->getInit(i);
716      llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
717      if (!C)
718        return 0;
719      RewriteType |= (C->getType() != ElemTy);
720      Elts.push_back(C);
721    }
722
723    // Initialize remaining array elements.
724    // FIXME: This doesn't handle member pointers correctly!
725    llvm::Constant *fillC;
726    if (Expr *filler = ILE->getArrayFiller())
727      fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
728    else
729      fillC = llvm::Constant::getNullValue(ElemTy);
730    if (!fillC)
731      return 0;
732    RewriteType |= (fillC->getType() != ElemTy);
733    Elts.resize(NumElements, fillC);
734
735    if (RewriteType) {
736      // FIXME: Try to avoid packing the array
737      std::vector<llvm::Type*> Types;
738      Types.reserve(NumInitableElts + NumElements);
739      for (unsigned i = 0, e = Elts.size(); i < e; ++i)
740        Types.push_back(Elts[i]->getType());
741      llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
742                                                            Types, true);
743      return llvm::ConstantStruct::get(SType, Elts);
744    }
745
746    return llvm::ConstantArray::get(AType, Elts);
747  }
748
749  llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
750    return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
751  }
752
753  llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
754    return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
755  }
756
757  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
758    return CGM.EmitNullConstant(E->getType());
759  }
760
761  llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
762    if (ILE->getType()->isArrayType())
763      return EmitArrayInitialization(ILE);
764
765    if (ILE->getType()->isRecordType())
766      return EmitStructInitialization(ILE);
767
768    if (ILE->getType()->isUnionType())
769      return EmitUnionInitialization(ILE);
770
771    return 0;
772  }
773
774  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
775    if (!E->getConstructor()->isTrivial())
776      return 0;
777
778    QualType Ty = E->getType();
779
780    // FIXME: We should not have to call getBaseElementType here.
781    const RecordType *RT =
782      CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
783    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
784
785    // If the class doesn't have a trivial destructor, we can't emit it as a
786    // constant expr.
787    if (!RD->hasTrivialDestructor())
788      return 0;
789
790    // Only copy and default constructors can be trivial.
791
792
793    if (E->getNumArgs()) {
794      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
795      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
796             "trivial ctor has argument but isn't a copy/move ctor");
797
798      Expr *Arg = E->getArg(0);
799      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
800             "argument to copy ctor is of wrong type");
801
802      return Visit(Arg);
803    }
804
805    return CGM.EmitNullConstant(Ty);
806  }
807
808  llvm::Constant *VisitStringLiteral(StringLiteral *E) {
809    return CGM.GetConstantArrayFromStringLiteral(E);
810  }
811
812  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
813    // This must be an @encode initializing an array in a static initializer.
814    // Don't emit it as the address of the string, emit the string data itself
815    // as an inline array.
816    std::string Str;
817    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
818    const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
819
820    // Resize the string to the right size, adding zeros at the end, or
821    // truncating as needed.
822    Str.resize(CAT->getSize().getZExtValue(), '\0');
823    return llvm::ConstantDataArray::getString(VMContext, Str, false);
824  }
825
826  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
827    return Visit(E->getSubExpr());
828  }
829
830  // Utility methods
831  llvm::Type *ConvertType(QualType T) {
832    return CGM.getTypes().ConvertType(T);
833  }
834
835public:
836  llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
837    if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
838      if (Decl->hasAttr<WeakRefAttr>())
839        return CGM.GetWeakRefReference(Decl);
840      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
841        return CGM.GetAddrOfFunction(FD);
842      if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
843        // We can never refer to a variable with local storage.
844        if (!VD->hasLocalStorage()) {
845          if (VD->isFileVarDecl() || VD->hasExternalStorage())
846            return CGM.GetAddrOfGlobalVar(VD);
847          else if (VD->isLocalVarDecl()) {
848            assert(CGF && "Can't access static local vars without CGF");
849            return CGF->GetAddrOfStaticLocalVar(VD);
850          }
851        }
852      }
853      return 0;
854    }
855
856    Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
857    switch (E->getStmtClass()) {
858    default: break;
859    case Expr::CompoundLiteralExprClass: {
860      // Note that due to the nature of compound literals, this is guaranteed
861      // to be the only use of the variable, so we just generate it here.
862      CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
863      llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
864                                               CLE->getType(), CGF);
865      // FIXME: "Leaked" on failure.
866      if (C)
867        C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
868                                     E->getType().isConstant(CGM.getContext()),
869                                     llvm::GlobalValue::InternalLinkage,
870                                     C, ".compoundliteral", 0, false,
871                          CGM.getContext().getTargetAddressSpace(E->getType()));
872      return C;
873    }
874    case Expr::StringLiteralClass:
875      return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
876    case Expr::ObjCEncodeExprClass:
877      return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
878    case Expr::ObjCStringLiteralClass: {
879      ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
880      llvm::Constant *C =
881          CGM.getObjCRuntime().GenerateConstantString(SL->getString());
882      return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
883    }
884    case Expr::PredefinedExprClass: {
885      unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
886      if (CGF) {
887        LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
888        return cast<llvm::Constant>(Res.getAddress());
889      } else if (Type == PredefinedExpr::PrettyFunction) {
890        return CGM.GetAddrOfConstantCString("top level", ".tmp");
891      }
892
893      return CGM.GetAddrOfConstantCString("", ".tmp");
894    }
895    case Expr::AddrLabelExprClass: {
896      assert(CGF && "Invalid address of label expression outside function.");
897      llvm::Constant *Ptr =
898        CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
899      return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
900    }
901    case Expr::CallExprClass: {
902      CallExpr* CE = cast<CallExpr>(E);
903      unsigned builtin = CE->isBuiltinCall();
904      if (builtin !=
905            Builtin::BI__builtin___CFStringMakeConstantString &&
906          builtin !=
907            Builtin::BI__builtin___NSStringMakeConstantString)
908        break;
909      const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
910      const StringLiteral *Literal = cast<StringLiteral>(Arg);
911      if (builtin ==
912            Builtin::BI__builtin___NSStringMakeConstantString) {
913        return CGM.getObjCRuntime().GenerateConstantString(Literal);
914      }
915      // FIXME: need to deal with UCN conversion issues.
916      return CGM.GetAddrOfConstantCFString(Literal);
917    }
918    case Expr::BlockExprClass: {
919      std::string FunctionName;
920      if (CGF)
921        FunctionName = CGF->CurFn->getName();
922      else
923        FunctionName = "global";
924
925      return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
926    }
927    case Expr::CXXTypeidExprClass: {
928      CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
929      QualType T;
930      if (Typeid->isTypeOperand())
931        T = Typeid->getTypeOperand();
932      else
933        T = Typeid->getExprOperand()->getType();
934      return CGM.GetAddrOfRTTIDescriptor(T);
935    }
936    }
937
938    return 0;
939  }
940};
941
942}  // end anonymous namespace.
943
944llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
945                                                CodeGenFunction *CGF) {
946  if (const APValue *Value = D.evaluateValue())
947    return EmitConstantValue(*Value, D.getType(), CGF);
948
949  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
950  // reference is a constant expression, and the reference binds to a temporary,
951  // then constant initialization is performed. ConstExprEmitter will
952  // incorrectly emit a prvalue constant in this case, and the calling code
953  // interprets that as the (pointer) value of the reference, rather than the
954  // desired value of the referee.
955  if (D.getType()->isReferenceType())
956    return 0;
957
958  const Expr *E = D.getInit();
959  assert(E && "No initializer to emit");
960
961  llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
962  if (C && C->getType()->isIntegerTy(1)) {
963    llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
964    C = llvm::ConstantExpr::getZExt(C, BoolTy);
965  }
966  return C;
967}
968
969llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
970                                                QualType DestType,
971                                                CodeGenFunction *CGF) {
972  Expr::EvalResult Result;
973
974  bool Success = false;
975
976  if (DestType->isReferenceType())
977    Success = E->EvaluateAsLValue(Result, Context);
978  else
979    Success = E->EvaluateAsRValue(Result, Context);
980
981  if (Success && !Result.HasSideEffects)
982    return EmitConstantValue(Result.Val, DestType, CGF);
983
984  llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
985  if (C && C->getType()->isIntegerTy(1)) {
986    llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
987    C = llvm::ConstantExpr::getZExt(C, BoolTy);
988  }
989  return C;
990}
991
992llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
993                                                 QualType DestType,
994                                                 CodeGenFunction *CGF) {
995  switch (Value.getKind()) {
996  case APValue::Uninitialized:
997    llvm_unreachable("Constant expressions should be initialized.");
998  case APValue::LValue: {
999    llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
1000    llvm::Constant *Offset =
1001      llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
1002
1003    llvm::Constant *C;
1004    if (APValue::LValueBase LVBase = Value.getLValueBase()) {
1005      // An array can be represented as an lvalue referring to the base.
1006      if (isa<llvm::ArrayType>(DestTy)) {
1007        assert(Offset->isNullValue() && "offset on array initializer");
1008        return ConstExprEmitter(*this, CGF).Visit(
1009          const_cast<Expr*>(LVBase.get<const Expr*>()));
1010      }
1011
1012      C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
1013
1014      // Apply offset if necessary.
1015      if (!Offset->isNullValue()) {
1016        llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
1017        Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
1018        C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
1019      }
1020
1021      // Convert to the appropriate type; this could be an lvalue for
1022      // an integer.
1023      if (isa<llvm::PointerType>(DestTy))
1024        return llvm::ConstantExpr::getBitCast(C, DestTy);
1025
1026      return llvm::ConstantExpr::getPtrToInt(C, DestTy);
1027    } else {
1028      C = Offset;
1029
1030      // Convert to the appropriate type; this could be an lvalue for
1031      // an integer.
1032      if (isa<llvm::PointerType>(DestTy))
1033        return llvm::ConstantExpr::getIntToPtr(C, DestTy);
1034
1035      // If the types don't match this should only be a truncate.
1036      if (C->getType() != DestTy)
1037        return llvm::ConstantExpr::getTrunc(C, DestTy);
1038
1039      return C;
1040    }
1041  }
1042  case APValue::Int: {
1043    llvm::Constant *C = llvm::ConstantInt::get(VMContext,
1044                                               Value.getInt());
1045
1046    if (C->getType()->isIntegerTy(1)) {
1047      llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
1048      C = llvm::ConstantExpr::getZExt(C, BoolTy);
1049    }
1050    return C;
1051  }
1052  case APValue::ComplexInt: {
1053    llvm::Constant *Complex[2];
1054
1055    Complex[0] = llvm::ConstantInt::get(VMContext,
1056                                        Value.getComplexIntReal());
1057    Complex[1] = llvm::ConstantInt::get(VMContext,
1058                                        Value.getComplexIntImag());
1059
1060    // FIXME: the target may want to specify that this is packed.
1061    llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1062                                                  Complex[1]->getType(),
1063                                                  NULL);
1064    return llvm::ConstantStruct::get(STy, Complex);
1065  }
1066  case APValue::Float: {
1067    const llvm::APFloat &Init = Value.getFloat();
1068    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf)
1069      return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
1070    else
1071      return llvm::ConstantFP::get(VMContext, Init);
1072  }
1073  case APValue::ComplexFloat: {
1074    llvm::Constant *Complex[2];
1075
1076    Complex[0] = llvm::ConstantFP::get(VMContext,
1077                                       Value.getComplexFloatReal());
1078    Complex[1] = llvm::ConstantFP::get(VMContext,
1079                                       Value.getComplexFloatImag());
1080
1081    // FIXME: the target may want to specify that this is packed.
1082    llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
1083                                                  Complex[1]->getType(),
1084                                                  NULL);
1085    return llvm::ConstantStruct::get(STy, Complex);
1086  }
1087  case APValue::Vector: {
1088    SmallVector<llvm::Constant *, 4> Inits;
1089    unsigned NumElts = Value.getVectorLength();
1090
1091    for (unsigned i = 0; i != NumElts; ++i) {
1092      const APValue &Elt = Value.getVectorElt(i);
1093      if (Elt.isInt())
1094        Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
1095      else
1096        Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
1097    }
1098    return llvm::ConstantVector::get(Inits);
1099  }
1100  case APValue::AddrLabelDiff: {
1101    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
1102    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
1103    llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
1104    llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
1105
1106    // Compute difference
1107    llvm::Type *ResultType = getTypes().ConvertType(DestType);
1108    LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
1109    RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
1110    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
1111
1112    // LLVM is a bit sensitive about the exact format of the
1113    // address-of-label difference; make sure to truncate after
1114    // the subtraction.
1115    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
1116  }
1117  case APValue::Struct:
1118  case APValue::Union:
1119    return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
1120  case APValue::Array: {
1121    const ArrayType *CAT = Context.getAsArrayType(DestType);
1122    unsigned NumElements = Value.getArraySize();
1123    unsigned NumInitElts = Value.getArrayInitializedElts();
1124
1125    std::vector<llvm::Constant*> Elts;
1126    Elts.reserve(NumElements);
1127
1128    // Emit array filler, if there is one.
1129    llvm::Constant *Filler = 0;
1130    if (Value.hasArrayFiller())
1131      Filler = EmitConstantValue(Value.getArrayFiller(),
1132                                 CAT->getElementType(), CGF);
1133
1134    // Emit initializer elements.
1135    llvm::Type *CommonElementType = 0;
1136    for (unsigned I = 0; I < NumElements; ++I) {
1137      llvm::Constant *C = Filler;
1138      if (I < NumInitElts)
1139        C = EmitConstantValue(Value.getArrayInitializedElt(I),
1140                              CAT->getElementType(), CGF);
1141      if (I == 0)
1142        CommonElementType = C->getType();
1143      else if (C->getType() != CommonElementType)
1144        CommonElementType = 0;
1145      Elts.push_back(C);
1146    }
1147
1148    if (!CommonElementType) {
1149      // FIXME: Try to avoid packing the array
1150      std::vector<llvm::Type*> Types;
1151      Types.reserve(NumElements);
1152      for (unsigned i = 0, e = Elts.size(); i < e; ++i)
1153        Types.push_back(Elts[i]->getType());
1154      llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
1155      return llvm::ConstantStruct::get(SType, Elts);
1156    }
1157
1158    llvm::ArrayType *AType =
1159      llvm::ArrayType::get(CommonElementType, NumElements);
1160    return llvm::ConstantArray::get(AType, Elts);
1161  }
1162  case APValue::MemberPointer:
1163    return getCXXABI().EmitMemberPointer(Value, DestType);
1164  }
1165  llvm_unreachable("Unknown APValue kind");
1166}
1167
1168llvm::Constant *
1169CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
1170  assert(E->isFileScope() && "not a file-scope compound literal expr");
1171  return ConstExprEmitter(*this, 0).EmitLValue(E);
1172}
1173
1174llvm::Constant *
1175CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
1176  // Member pointer constants always have a very particular form.
1177  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
1178  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
1179
1180  // A member function pointer.
1181  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
1182    return getCXXABI().EmitMemberPointer(method);
1183
1184  // Otherwise, a member data pointer.
1185  uint64_t fieldOffset = getContext().getFieldOffset(decl);
1186  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
1187  return getCXXABI().EmitMemberDataPointer(type, chars);
1188}
1189
1190static void
1191FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
1192                             SmallVectorImpl<llvm::Constant *> &Elements,
1193                             uint64_t StartOffset) {
1194  assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
1195         "StartOffset not byte aligned!");
1196
1197  if (CGM.getTypes().isZeroInitializable(T))
1198    return;
1199
1200  if (const ConstantArrayType *CAT =
1201        CGM.getContext().getAsConstantArrayType(T)) {
1202    QualType ElementTy = CAT->getElementType();
1203    uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
1204
1205    for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
1206      FillInNullDataMemberPointers(CGM, ElementTy, Elements,
1207                                   StartOffset + I * ElementSize);
1208    }
1209  } else if (const RecordType *RT = T->getAs<RecordType>()) {
1210    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1211    const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
1212
1213    // Go through all bases and fill in any null pointer to data members.
1214    for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
1215         E = RD->bases_end(); I != E; ++I) {
1216      if (I->isVirtual()) {
1217        // Ignore virtual bases.
1218        continue;
1219      }
1220
1221      const CXXRecordDecl *BaseDecl =
1222      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
1223
1224      // Ignore empty bases.
1225      if (BaseDecl->isEmpty())
1226        continue;
1227
1228      // Ignore bases that don't have any pointer to data members.
1229      if (CGM.getTypes().isZeroInitializable(BaseDecl))
1230        continue;
1231
1232      uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl);
1233      FillInNullDataMemberPointers(CGM, I->getType(),
1234                                   Elements, StartOffset + BaseOffset);
1235    }
1236
1237    // Visit all fields.
1238    unsigned FieldNo = 0;
1239    for (RecordDecl::field_iterator I = RD->field_begin(),
1240         E = RD->field_end(); I != E; ++I, ++FieldNo) {
1241      QualType FieldType = I->getType();
1242
1243      if (CGM.getTypes().isZeroInitializable(FieldType))
1244        continue;
1245
1246      uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
1247      FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
1248    }
1249  } else {
1250    assert(T->isMemberPointerType() && "Should only see member pointers here!");
1251    assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1252           "Should only see pointers to data members here!");
1253
1254    CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
1255    CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
1256
1257    // FIXME: hardcodes Itanium member pointer representation!
1258    llvm::Constant *NegativeOne =
1259      llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
1260
1261    // Fill in the null data member pointer.
1262    for (CharUnits I = StartIndex; I != EndIndex; ++I)
1263      Elements[I.getQuantity()] = NegativeOne;
1264  }
1265}
1266
1267static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1268                                               llvm::Type *baseType,
1269                                               const CXXRecordDecl *base);
1270
1271static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
1272                                        const CXXRecordDecl *record,
1273                                        bool asCompleteObject) {
1274  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
1275  llvm::StructType *structure =
1276    (asCompleteObject ? layout.getLLVMType()
1277                      : layout.getBaseSubobjectLLVMType());
1278
1279  unsigned numElements = structure->getNumElements();
1280  std::vector<llvm::Constant *> elements(numElements);
1281
1282  // Fill in all the bases.
1283  for (CXXRecordDecl::base_class_const_iterator
1284         I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
1285    if (I->isVirtual()) {
1286      // Ignore virtual bases; if we're laying out for a complete
1287      // object, we'll lay these out later.
1288      continue;
1289    }
1290
1291    const CXXRecordDecl *base =
1292      cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1293
1294    // Ignore empty bases.
1295    if (base->isEmpty())
1296      continue;
1297
1298    unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
1299    llvm::Type *baseType = structure->getElementType(fieldIndex);
1300    elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1301  }
1302
1303  // Fill in all the fields.
1304  for (RecordDecl::field_iterator I = record->field_begin(),
1305         E = record->field_end(); I != E; ++I) {
1306    const FieldDecl *field = *I;
1307
1308    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
1309    // will fill in later.)
1310    if (!field->isBitField()) {
1311      unsigned fieldIndex = layout.getLLVMFieldNo(field);
1312      elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
1313    }
1314
1315    // For unions, stop after the first named field.
1316    if (record->isUnion() && field->getDeclName())
1317      break;
1318  }
1319
1320  // Fill in the virtual bases, if we're working with the complete object.
1321  if (asCompleteObject) {
1322    for (CXXRecordDecl::base_class_const_iterator
1323           I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
1324      const CXXRecordDecl *base =
1325        cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
1326
1327      // Ignore empty bases.
1328      if (base->isEmpty())
1329        continue;
1330
1331      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
1332
1333      // We might have already laid this field out.
1334      if (elements[fieldIndex]) continue;
1335
1336      llvm::Type *baseType = structure->getElementType(fieldIndex);
1337      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
1338    }
1339  }
1340
1341  // Now go through all other fields and zero them out.
1342  for (unsigned i = 0; i != numElements; ++i) {
1343    if (!elements[i])
1344      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
1345  }
1346
1347  return llvm::ConstantStruct::get(structure, elements);
1348}
1349
1350/// Emit the null constant for a base subobject.
1351static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
1352                                               llvm::Type *baseType,
1353                                               const CXXRecordDecl *base) {
1354  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
1355
1356  // Just zero out bases that don't have any pointer to data members.
1357  if (baseLayout.isZeroInitializableAsBase())
1358    return llvm::Constant::getNullValue(baseType);
1359
1360  // If the base type is a struct, we can just use its null constant.
1361  if (isa<llvm::StructType>(baseType)) {
1362    return EmitNullConstant(CGM, base, /*complete*/ false);
1363  }
1364
1365  // Otherwise, some bases are represented as arrays of i8 if the size
1366  // of the base is smaller than its corresponding LLVM type.  Figure
1367  // out how many elements this base array has.
1368  llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
1369  unsigned numBaseElements = baseArrayType->getNumElements();
1370
1371  // Fill in null data member pointers.
1372  SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
1373  FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
1374                               baseElements, 0);
1375
1376  // Now go through all other elements and zero them out.
1377  if (numBaseElements) {
1378    llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
1379    for (unsigned i = 0; i != numBaseElements; ++i) {
1380      if (!baseElements[i])
1381        baseElements[i] = i8_zero;
1382    }
1383  }
1384
1385  return llvm::ConstantArray::get(baseArrayType, baseElements);
1386}
1387
1388llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
1389  if (getTypes().isZeroInitializable(T))
1390    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
1391
1392  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
1393    llvm::ArrayType *ATy =
1394      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
1395
1396    QualType ElementTy = CAT->getElementType();
1397
1398    llvm::Constant *Element = EmitNullConstant(ElementTy);
1399    unsigned NumElements = CAT->getSize().getZExtValue();
1400
1401    if (Element->isNullValue())
1402      return llvm::ConstantAggregateZero::get(ATy);
1403
1404    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
1405    return llvm::ConstantArray::get(ATy, Array);
1406  }
1407
1408  if (const RecordType *RT = T->getAs<RecordType>()) {
1409    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1410    return ::EmitNullConstant(*this, RD, /*complete object*/ true);
1411  }
1412
1413  assert(T->isMemberPointerType() && "Should only see member pointers here!");
1414  assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
1415         "Should only see pointers to data members here!");
1416
1417  // Itanium C++ ABI 2.3:
1418  //   A NULL pointer is represented as -1.
1419  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
1420}
1421
1422llvm::Constant *
1423CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
1424  return ::EmitNullConstant(*this, Record, false);
1425}
1426