CGExprScalar.cpp revision 8f39f5e96ce4a5f401f431f61db7df1cf05dce6f
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/CFG.h"
26#include <cstdarg>
27
28using namespace clang;
29using namespace CodeGen;
30using llvm::Value;
31
32//===----------------------------------------------------------------------===//
33//                         Scalar Expression Emitter
34//===----------------------------------------------------------------------===//
35
36struct BinOpInfo {
37  Value *LHS;
38  Value *RHS;
39  QualType Ty;  // Computation Type.
40  const BinaryOperator *E;
41};
42
43namespace {
44class VISIBILITY_HIDDEN ScalarExprEmitter
45  : public StmtVisitor<ScalarExprEmitter, Value*> {
46  CodeGenFunction &CGF;
47  CGBuilderTy &Builder;
48
49public:
50
51  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
52    Builder(CGF.Builder) {
53  }
54
55  //===--------------------------------------------------------------------===//
56  //                               Utilities
57  //===--------------------------------------------------------------------===//
58
59  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
60  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
61
62  Value *EmitLoadOfLValue(LValue LV, QualType T) {
63    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
64  }
65
66  /// EmitLoadOfLValue - Given an expression with complex type that represents a
67  /// value l-value, this method emits the address of the l-value, then loads
68  /// and returns the result.
69  Value *EmitLoadOfLValue(const Expr *E) {
70    // FIXME: Volatile
71    return EmitLoadOfLValue(EmitLValue(E), E->getType());
72  }
73
74  /// EmitConversionToBool - Convert the specified expression value to a
75  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
76  Value *EmitConversionToBool(Value *Src, QualType DstTy);
77
78  /// EmitScalarConversion - Emit a conversion from the specified type to the
79  /// specified destination type, both of which are LLVM scalar types.
80  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
81
82  /// EmitComplexToScalarConversion - Emit a conversion from the specified
83  /// complex type to the specified destination type, where the destination
84  /// type is an LLVM scalar type.
85  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
86                                       QualType SrcTy, QualType DstTy);
87
88  //===--------------------------------------------------------------------===//
89  //                            Visitor Methods
90  //===--------------------------------------------------------------------===//
91
92  Value *VisitStmt(Stmt *S) {
93    S->dump(CGF.getContext().getSourceManager());
94    assert(0 && "Stmt can't have complex result type!");
95    return 0;
96  }
97  Value *VisitExpr(Expr *S);
98  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
99
100  // Leaves.
101  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
102    return llvm::ConstantInt::get(E->getValue());
103  }
104  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
105    return llvm::ConstantFP::get(E->getValue());
106  }
107  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
108    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
109  }
110  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
111    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
112  }
113  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
114    return llvm::Constant::getNullValue(ConvertType(E->getType()));
115  }
116  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
117    return llvm::ConstantInt::get(ConvertType(E->getType()),
118                                  CGF.getContext().typesAreCompatible(
119                                    E->getArgType1(), E->getArgType2()));
120  }
121  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
122  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
123    llvm::Value *V =
124      llvm::ConstantInt::get(llvm::Type::Int32Ty,
125                             CGF.GetIDForAddrOfLabel(E->getLabel()));
126
127    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
128  }
129
130  // l-values.
131  Value *VisitDeclRefExpr(DeclRefExpr *E) {
132    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
133      return llvm::ConstantInt::get(EC->getInitVal());
134    return EmitLoadOfLValue(E);
135  }
136  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
137    return CGF.EmitObjCSelectorExpr(E);
138  }
139  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
140    return CGF.EmitObjCProtocolExpr(E);
141  }
142  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
143    return EmitLoadOfLValue(E);
144  }
145  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
146    return EmitLoadOfLValue(E);
147  }
148  Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
152    return CGF.EmitObjCMessageExpr(E).getScalarVal();
153  }
154
155  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
156  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
157  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
158  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
159  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
160    return EmitLoadOfLValue(E);
161  }
162  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
163  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
164
165  Value *VisitInitListExpr(InitListExpr *E) {
166    unsigned NumInitElements = E->getNumInits();
167
168    const llvm::VectorType *VType =
169      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
170
171    // We have a scalar in braces. Just use the first element.
172    if (!VType)
173      return Visit(E->getInit(0));
174
175    if (E->hadDesignators()) {
176      CGF.ErrorUnsupported(E, "initializer list with designators");
177      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
178    }
179
180    unsigned NumVectorElements = VType->getNumElements();
181    const llvm::Type *ElementType = VType->getElementType();
182
183    // Emit individual vector element stores.
184    llvm::Value *V = llvm::UndefValue::get(VType);
185
186    // Emit initializers
187    unsigned i;
188    for (i = 0; i < NumInitElements; ++i) {
189      Value *NewV = Visit(E->getInit(i));
190      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
191      V = Builder.CreateInsertElement(V, NewV, Idx);
192    }
193
194    // Emit remaining default initializers
195    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
196      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
197      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
198      V = Builder.CreateInsertElement(V, NewV, Idx);
199    }
200
201    return V;
202  }
203
204  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
205  Value *VisitCastExpr(const CastExpr *E) {
206    return EmitCastExpr(E->getSubExpr(), E->getType());
207  }
208  Value *EmitCastExpr(const Expr *E, QualType T);
209
210  Value *VisitCallExpr(const CallExpr *E) {
211    return CGF.EmitCallExpr(E).getScalarVal();
212  }
213
214  Value *VisitStmtExpr(const StmtExpr *E);
215
216  // Unary Operators.
217  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
218  Value *VisitUnaryPostDec(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, false, false);
220  }
221  Value *VisitUnaryPostInc(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, true, false);
223  }
224  Value *VisitUnaryPreDec(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, false, true);
226  }
227  Value *VisitUnaryPreInc(const UnaryOperator *E) {
228    return VisitPrePostIncDec(E, true, true);
229  }
230  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
231    return EmitLValue(E->getSubExpr()).getAddress();
232  }
233  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
234  Value *VisitUnaryPlus(const UnaryOperator *E) {
235    return Visit(E->getSubExpr());
236  }
237  Value *VisitUnaryMinus    (const UnaryOperator *E);
238  Value *VisitUnaryNot      (const UnaryOperator *E);
239  Value *VisitUnaryLNot     (const UnaryOperator *E);
240  Value *VisitUnaryReal     (const UnaryOperator *E);
241  Value *VisitUnaryImag     (const UnaryOperator *E);
242  Value *VisitUnaryExtension(const UnaryOperator *E) {
243    return Visit(E->getSubExpr());
244  }
245  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
246  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
247    return Visit(DAE->getExpr());
248  }
249
250  // Binary Operators.
251  Value *EmitMul(const BinOpInfo &Ops) {
252    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
253  }
254  Value *EmitDiv(const BinOpInfo &Ops);
255  Value *EmitRem(const BinOpInfo &Ops);
256  Value *EmitAdd(const BinOpInfo &Ops);
257  Value *EmitSub(const BinOpInfo &Ops);
258  Value *EmitShl(const BinOpInfo &Ops);
259  Value *EmitShr(const BinOpInfo &Ops);
260  Value *EmitAnd(const BinOpInfo &Ops) {
261    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
262  }
263  Value *EmitXor(const BinOpInfo &Ops) {
264    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
265  }
266  Value *EmitOr (const BinOpInfo &Ops) {
267    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
268  }
269
270  BinOpInfo EmitBinOps(const BinaryOperator *E);
271  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
272                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
273
274  // Binary operators and binary compound assignment operators.
275#define HANDLEBINOP(OP) \
276  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
277    return Emit ## OP(EmitBinOps(E));                                      \
278  }                                                                        \
279  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
280    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
281  }
282  HANDLEBINOP(Mul);
283  HANDLEBINOP(Div);
284  HANDLEBINOP(Rem);
285  HANDLEBINOP(Add);
286  HANDLEBINOP(Sub);
287  HANDLEBINOP(Shl);
288  HANDLEBINOP(Shr);
289  HANDLEBINOP(And);
290  HANDLEBINOP(Xor);
291  HANDLEBINOP(Or);
292#undef HANDLEBINOP
293
294  // Comparisons.
295  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
296                     unsigned SICmpOpc, unsigned FCmpOpc);
297#define VISITCOMP(CODE, UI, SI, FP) \
298    Value *VisitBin##CODE(const BinaryOperator *E) { \
299      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
300                         llvm::FCmpInst::FP); }
301  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
302  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
303  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
304  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
305  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
306  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
307#undef VISITCOMP
308
309  Value *VisitBinAssign     (const BinaryOperator *E);
310
311  Value *VisitBinLAnd       (const BinaryOperator *E);
312  Value *VisitBinLOr        (const BinaryOperator *E);
313  Value *VisitBinComma      (const BinaryOperator *E);
314
315  // Other Operators.
316  Value *VisitConditionalOperator(const ConditionalOperator *CO);
317  Value *VisitChooseExpr(ChooseExpr *CE);
318  Value *VisitOverloadExpr(OverloadExpr *OE);
319  Value *VisitVAArgExpr(VAArgExpr *VE);
320  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
321    return CGF.EmitObjCStringLiteral(E);
322  }
323  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
324};
325}  // end anonymous namespace.
326
327//===----------------------------------------------------------------------===//
328//                                Utilities
329//===----------------------------------------------------------------------===//
330
331/// EmitConversionToBool - Convert the specified expression value to a
332/// boolean (i1) truth value.  This is equivalent to "Val != 0".
333Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
334  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
335
336  if (SrcType->isRealFloatingType()) {
337    // Compare against 0.0 for fp scalars.
338    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
339    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
340  }
341
342  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
343         "Unknown scalar type to convert");
344
345  // Because of the type rules of C, we often end up computing a logical value,
346  // then zero extending it to int, then wanting it as a logical value again.
347  // Optimize this common case.
348  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
349    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
350      Value *Result = ZI->getOperand(0);
351      // If there aren't any more uses, zap the instruction to save space.
352      // Note that there can be more uses, for example if this
353      // is the result of an assignment.
354      if (ZI->use_empty())
355        ZI->eraseFromParent();
356      return Result;
357    }
358  }
359
360  // Compare against an integer or pointer null.
361  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
362  return Builder.CreateICmpNE(Src, Zero, "tobool");
363}
364
365/// EmitScalarConversion - Emit a conversion from the specified type to the
366/// specified destination type, both of which are LLVM scalar types.
367Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
368                                               QualType DstType) {
369  SrcType = CGF.getContext().getCanonicalType(SrcType);
370  DstType = CGF.getContext().getCanonicalType(DstType);
371  if (SrcType == DstType) return Src;
372
373  if (DstType->isVoidType()) return 0;
374
375  // Handle conversions to bool first, they are special: comparisons against 0.
376  if (DstType->isBooleanType())
377    return EmitConversionToBool(Src, SrcType);
378
379  const llvm::Type *DstTy = ConvertType(DstType);
380
381  // Ignore conversions like int -> uint.
382  if (Src->getType() == DstTy)
383    return Src;
384
385  // Handle pointer conversions next: pointers can only be converted
386  // to/from other pointers and integers. Check for pointer types in
387  // terms of LLVM, as some native types (like Obj-C id) may map to a
388  // pointer type.
389  if (isa<llvm::PointerType>(DstTy)) {
390    // The source value may be an integer, or a pointer.
391    if (isa<llvm::PointerType>(Src->getType()))
392      return Builder.CreateBitCast(Src, DstTy, "conv");
393    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
394    return Builder.CreateIntToPtr(Src, DstTy, "conv");
395  }
396
397  if (isa<llvm::PointerType>(Src->getType())) {
398    // Must be an ptr to int cast.
399    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
400    return Builder.CreatePtrToInt(Src, DstTy, "conv");
401  }
402
403  // A scalar can be splatted to an extended vector of the same element type
404  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
405      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
406    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
407                          true);
408
409  // Allow bitcast from vector to integer/fp of the same size.
410  if (isa<llvm::VectorType>(Src->getType()) ||
411      isa<llvm::VectorType>(DstTy))
412    return Builder.CreateBitCast(Src, DstTy, "conv");
413
414  // Finally, we have the arithmetic types: real int/float.
415  if (isa<llvm::IntegerType>(Src->getType())) {
416    bool InputSigned = SrcType->isSignedIntegerType();
417    if (isa<llvm::IntegerType>(DstTy))
418      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
419    else if (InputSigned)
420      return Builder.CreateSIToFP(Src, DstTy, "conv");
421    else
422      return Builder.CreateUIToFP(Src, DstTy, "conv");
423  }
424
425  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
426  if (isa<llvm::IntegerType>(DstTy)) {
427    if (DstType->isSignedIntegerType())
428      return Builder.CreateFPToSI(Src, DstTy, "conv");
429    else
430      return Builder.CreateFPToUI(Src, DstTy, "conv");
431  }
432
433  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
434  if (DstTy->getTypeID() < Src->getType()->getTypeID())
435    return Builder.CreateFPTrunc(Src, DstTy, "conv");
436  else
437    return Builder.CreateFPExt(Src, DstTy, "conv");
438}
439
440/// EmitComplexToScalarConversion - Emit a conversion from the specified
441/// complex type to the specified destination type, where the destination
442/// type is an LLVM scalar type.
443Value *ScalarExprEmitter::
444EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
445                              QualType SrcTy, QualType DstTy) {
446  // Get the source element type.
447  SrcTy = SrcTy->getAsComplexType()->getElementType();
448
449  // Handle conversions to bool first, they are special: comparisons against 0.
450  if (DstTy->isBooleanType()) {
451    //  Complex != 0  -> (Real != 0) | (Imag != 0)
452    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
453    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
454    return Builder.CreateOr(Src.first, Src.second, "tobool");
455  }
456
457  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
458  // the imaginary part of the complex value is discarded and the value of the
459  // real part is converted according to the conversion rules for the
460  // corresponding real type.
461  return EmitScalarConversion(Src.first, SrcTy, DstTy);
462}
463
464
465//===----------------------------------------------------------------------===//
466//                            Visitor Methods
467//===----------------------------------------------------------------------===//
468
469Value *ScalarExprEmitter::VisitExpr(Expr *E) {
470  CGF.ErrorUnsupported(E, "scalar expression");
471  if (E->getType()->isVoidType())
472    return 0;
473  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
474}
475
476Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
477  llvm::SmallVector<llvm::Constant*, 32> indices;
478  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
479    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
480  }
481  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
482  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
483  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
484  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
485}
486
487Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
488  // Emit subscript expressions in rvalue context's.  For most cases, this just
489  // loads the lvalue formed by the subscript expr.  However, we have to be
490  // careful, because the base of a vector subscript is occasionally an rvalue,
491  // so we can't get it as an lvalue.
492  if (!E->getBase()->getType()->isVectorType())
493    return EmitLoadOfLValue(E);
494
495  // Handle the vector case.  The base must be a vector, the index must be an
496  // integer value.
497  Value *Base = Visit(E->getBase());
498  Value *Idx  = Visit(E->getIdx());
499
500  // FIXME: Convert Idx to i32 type.
501  return Builder.CreateExtractElement(Base, Idx, "vecext");
502}
503
504/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
505/// also handle things like function to pointer-to-function decay, and array to
506/// pointer decay.
507Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
508  const Expr *Op = E->getSubExpr();
509
510  // If this is due to array->pointer conversion, emit the array expression as
511  // an l-value.
512  if (Op->getType()->isArrayType()) {
513    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
514    // will not true when we add support for VLAs.
515    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
516
517    if (!Op->getType()->isVariableArrayType()) {
518      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
519      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
520                                 ->getElementType()) &&
521             "Expected pointer to array");
522      V = Builder.CreateStructGEP(V, 0, "arraydecay");
523    }
524
525    // The resultant pointer type can be implicitly casted to other pointer
526    // types as well (e.g. void*) and can be implicitly converted to integer.
527    const llvm::Type *DestTy = ConvertType(E->getType());
528    if (V->getType() != DestTy) {
529      if (isa<llvm::PointerType>(DestTy))
530        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
531      else {
532        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
533        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
534      }
535    }
536    return V;
537
538  } else if (E->getType()->isReferenceType()) {
539    return EmitLValue(Op).getAddress();
540  }
541
542  return EmitCastExpr(Op, E->getType());
543}
544
545
546// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
547// have to handle a more broad range of conversions than explicit casts, as they
548// handle things like function to ptr-to-function decay etc.
549Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
550  // Handle cases where the source is an non-complex type.
551
552  if (!CGF.hasAggregateLLVMType(E->getType())) {
553    Value *Src = Visit(const_cast<Expr*>(E));
554
555    // Use EmitScalarConversion to perform the conversion.
556    return EmitScalarConversion(Src, E->getType(), DestTy);
557  }
558
559  if (E->getType()->isAnyComplexType()) {
560    // Handle cases where the source is a complex type.
561    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
562                                         DestTy);
563  }
564
565  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
566  // evaluate the result and return.
567  CGF.EmitAggExpr(E, 0, false);
568  return 0;
569}
570
571Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
572  return CGF.EmitCompoundStmt(*E->getSubStmt(),
573                              !E->getType()->isVoidType()).getScalarVal();
574}
575
576
577//===----------------------------------------------------------------------===//
578//                             Unary Operators
579//===----------------------------------------------------------------------===//
580
581Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
582                                             bool isInc, bool isPre) {
583  LValue LV = EmitLValue(E->getSubExpr());
584  // FIXME: Handle volatile!
585  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
586                                     E->getSubExpr()->getType()).getScalarVal();
587
588  int AmountVal = isInc ? 1 : -1;
589
590  Value *NextVal;
591  if (isa<llvm::PointerType>(InVal->getType())) {
592    // FIXME: This isn't right for VLAs.
593    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
594    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
595  } else {
596    // Add the inc/dec to the real part.
597    if (isa<llvm::IntegerType>(InVal->getType()))
598      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
599    else if (InVal->getType() == llvm::Type::FloatTy)
600      NextVal =
601        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
602    else if (InVal->getType() == llvm::Type::DoubleTy)
603      NextVal =
604        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
605    else {
606      llvm::APFloat F(static_cast<float>(AmountVal));
607      bool ignored;
608      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
609                &ignored);
610      NextVal = llvm::ConstantFP::get(F);
611    }
612    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
613  }
614
615  // Store the updated result through the lvalue.
616  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
617                             E->getSubExpr()->getType());
618
619  // If this is a postinc, return the value read from memory, otherwise use the
620  // updated value.
621  return isPre ? NextVal : InVal;
622}
623
624
625Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
626  Value *Op = Visit(E->getSubExpr());
627  return Builder.CreateNeg(Op, "neg");
628}
629
630Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
631  Value *Op = Visit(E->getSubExpr());
632  return Builder.CreateNot(Op, "neg");
633}
634
635Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
636  // Compare operand to zero.
637  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
638
639  // Invert value.
640  // TODO: Could dynamically modify easy computations here.  For example, if
641  // the operand is an icmp ne, turn into icmp eq.
642  BoolVal = Builder.CreateNot(BoolVal, "lnot");
643
644  // ZExt result to int.
645  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
646}
647
648/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
649/// argument of the sizeof expression as an integer.
650Value *
651ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
652  QualType RetType = E->getType();
653  assert(RetType->isIntegerType() && "Result type must be an integer!");
654  uint32_t ResultWidth =
655    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
656
657  QualType TypeToSize = E->getTypeOfArgument();
658  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
659  // for function types.
660  // FIXME: what is alignof a function type in gcc?
661  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
662    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
663
664  if (const VariableArrayType *VAT =
665        CGF.getContext().getAsVariableArrayType(TypeToSize)) {
666    if (E->isSizeOf())
667      return CGF.GetVLASize(VAT);
668    // FIXME: This should be an UNSUPPORTED error.
669    assert(0 && "alignof VLAs not implemented yet");
670  }
671
672  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
673
674  uint64_t Val = E->isSizeOf() ? Info.first : Info.second;
675  Val /= 8;  // Return size in bytes, not bits.
676
677  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
678}
679
680Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
681  Expr *Op = E->getSubExpr();
682  if (Op->getType()->isAnyComplexType())
683    return CGF.EmitComplexExpr(Op).first;
684  return Visit(Op);
685}
686Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
687  Expr *Op = E->getSubExpr();
688  if (Op->getType()->isAnyComplexType())
689    return CGF.EmitComplexExpr(Op).second;
690
691  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
692  // effects are evaluated.
693  CGF.EmitScalarExpr(Op);
694  return llvm::Constant::getNullValue(ConvertType(E->getType()));
695}
696
697Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
698{
699  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
700
701  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
702
703  uint32_t ResultWidth =
704    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
705  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
706}
707
708//===----------------------------------------------------------------------===//
709//                           Binary Operators
710//===----------------------------------------------------------------------===//
711
712BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
713  BinOpInfo Result;
714  Result.LHS = Visit(E->getLHS());
715  Result.RHS = Visit(E->getRHS());
716  Result.Ty  = E->getType();
717  Result.E = E;
718  return Result;
719}
720
721Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
722                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
723  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
724
725  BinOpInfo OpInfo;
726
727  // Load the LHS and RHS operands.
728  LValue LHSLV = EmitLValue(E->getLHS());
729  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
730
731  // Determine the computation type.  If the RHS is complex, then this is one of
732  // the add/sub/mul/div operators.  All of these operators can be computed in
733  // with just their real component even though the computation domain really is
734  // complex.
735  QualType ComputeType = E->getComputationType();
736
737  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
738  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
739    ComputeType = CT->getElementType();
740
741    // Emit the RHS, only keeping the real component.
742    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
743    RHSTy = RHSTy->getAsComplexType()->getElementType();
744  } else {
745    // Otherwise the RHS is a simple scalar value.
746    OpInfo.RHS = Visit(E->getRHS());
747  }
748
749  QualType LComputeTy, RComputeTy, ResultTy;
750
751  // Compound assignment does not contain enough information about all
752  // the types involved for pointer arithmetic cases. Figure it out
753  // here for now.
754  if (E->getLHS()->getType()->isPointerType()) {
755    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
756    assert((E->getOpcode() == BinaryOperator::AddAssign ||
757            E->getOpcode() == BinaryOperator::SubAssign) &&
758           "Invalid compound assignment operator on pointer type.");
759    LComputeTy = E->getLHS()->getType();
760
761    if (E->getRHS()->getType()->isPointerType()) {
762      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
763      // extension, the conversion from the pointer difference back to
764      // the LHS type is handled at the end.
765      assert(E->getOpcode() == BinaryOperator::SubAssign &&
766             "Invalid compound assignment operator on pointer type.");
767      RComputeTy = E->getLHS()->getType();
768      ResultTy = CGF.getContext().getPointerDiffType();
769    } else {
770      RComputeTy = E->getRHS()->getType();
771      ResultTy = LComputeTy;
772    }
773  } else if (E->getRHS()->getType()->isPointerType()) {
774    // Degenerate case of (int += ptr) allowed by GCC implicit cast
775    // extension.
776    assert(E->getOpcode() == BinaryOperator::AddAssign &&
777           "Invalid compound assignment operator on pointer type.");
778    LComputeTy = E->getLHS()->getType();
779    RComputeTy = E->getRHS()->getType();
780    ResultTy = RComputeTy;
781  } else {
782    LComputeTy = RComputeTy = ResultTy = ComputeType;
783  }
784
785  // Convert the LHS/RHS values to the computation type.
786  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
787  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
788  OpInfo.Ty = ResultTy;
789  OpInfo.E = E;
790
791  // Expand the binary operator.
792  Value *Result = (this->*Func)(OpInfo);
793
794  // Convert the result back to the LHS type.
795  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
796
797  // Store the result value into the LHS lvalue. Bit-fields are
798  // handled specially because the result is altered by the store,
799  // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
800  // the left operand after the assignment...'.
801  if (LHSLV.isBitfield())
802    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
803                                       &Result);
804  else
805    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
806
807  return Result;
808}
809
810
811Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
812  if (Ops.LHS->getType()->isFPOrFPVector())
813    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
814  else if (Ops.Ty->isUnsignedIntegerType())
815    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
816  else
817    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
818}
819
820Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
821  // Rem in C can't be a floating point type: C99 6.5.5p2.
822  if (Ops.Ty->isUnsignedIntegerType())
823    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
824  else
825    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
826}
827
828
829Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
830  if (!Ops.Ty->isPointerType())
831    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
832
833  // FIXME: What about a pointer to a VLA?
834  Value *Ptr, *Idx;
835  Expr *IdxExp;
836  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
837    Ptr = Ops.LHS;
838    Idx = Ops.RHS;
839    IdxExp = Ops.E->getRHS();
840  } else {                                           // int + pointer
841    Ptr = Ops.RHS;
842    Idx = Ops.LHS;
843    IdxExp = Ops.E->getLHS();
844  }
845
846  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
847  if (Width < CGF.LLVMPointerWidth) {
848    // Zero or sign extend the pointer value based on whether the index is
849    // signed or not.
850    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
851    if (IdxExp->getType()->isSignedIntegerType())
852      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
853    else
854      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
855  }
856
857  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
858}
859
860Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
861  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
862    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
863
864  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
865    // pointer - int
866    Value *Idx = Ops.RHS;
867    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
868    if (Width < CGF.LLVMPointerWidth) {
869      // Zero or sign extend the pointer value based on whether the index is
870      // signed or not.
871      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
872      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
873        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
874      else
875        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
876    }
877    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
878
879    // FIXME: The pointer could point to a VLA.
880    // The GNU void* - int case is automatically handled here because
881    // our LLVM type for void* is i8*.
882    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
883  } else {
884    // pointer - pointer
885    Value *LHS = Ops.LHS;
886    Value *RHS = Ops.RHS;
887
888    const QualType LHSType = Ops.E->getLHS()->getType();
889    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
890    uint64_t ElementSize;
891
892    // Handle GCC extension for pointer arithmetic on void* types.
893    if (LHSElementType->isVoidType()) {
894      ElementSize = 1;
895    } else {
896      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
897    }
898
899    const llvm::Type *ResultType = ConvertType(Ops.Ty);
900    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
901    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
902    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
903
904    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
905    // remainder.  As such, we handle common power-of-two cases here to generate
906    // better code. See PR2247.
907    if (llvm::isPowerOf2_64(ElementSize)) {
908      Value *ShAmt =
909        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
910      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
911    }
912
913    // Otherwise, do a full sdiv.
914    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
915    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
916  }
917}
918
919Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
920  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
921  // RHS to the same size as the LHS.
922  Value *RHS = Ops.RHS;
923  if (Ops.LHS->getType() != RHS->getType())
924    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
925
926  return Builder.CreateShl(Ops.LHS, RHS, "shl");
927}
928
929Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
930  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
931  // RHS to the same size as the LHS.
932  Value *RHS = Ops.RHS;
933  if (Ops.LHS->getType() != RHS->getType())
934    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
935
936  if (Ops.Ty->isUnsignedIntegerType())
937    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
938  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
939}
940
941Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
942                                      unsigned SICmpOpc, unsigned FCmpOpc) {
943  Value *Result;
944  QualType LHSTy = E->getLHS()->getType();
945  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
946    Value *LHS = Visit(E->getLHS());
947    Value *RHS = Visit(E->getRHS());
948
949    if (LHS->getType()->isFloatingPoint()) {
950      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
951                                  LHS, RHS, "cmp");
952    } else if (LHSTy->isSignedIntegerType()) {
953      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
954                                  LHS, RHS, "cmp");
955    } else {
956      // Unsigned integers and pointers.
957      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
958                                  LHS, RHS, "cmp");
959    }
960  } else if (LHSTy->isVectorType()) {
961    Value *LHS = Visit(E->getLHS());
962    Value *RHS = Visit(E->getRHS());
963
964    if (LHS->getType()->isFPOrFPVector()) {
965      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
966                                  LHS, RHS, "cmp");
967    } else if (LHSTy->isUnsignedIntegerType()) {
968      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
969                                  LHS, RHS, "cmp");
970    } else {
971      // Signed integers and pointers.
972      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
973                                  LHS, RHS, "cmp");
974    }
975    return Result;
976  } else {
977    // Complex Comparison: can only be an equality comparison.
978    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
979    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
980
981    QualType CETy = LHSTy->getAsComplexType()->getElementType();
982
983    Value *ResultR, *ResultI;
984    if (CETy->isRealFloatingType()) {
985      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
986                                   LHS.first, RHS.first, "cmp.r");
987      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
988                                   LHS.second, RHS.second, "cmp.i");
989    } else {
990      // Complex comparisons can only be equality comparisons.  As such, signed
991      // and unsigned opcodes are the same.
992      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
993                                   LHS.first, RHS.first, "cmp.r");
994      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
995                                   LHS.second, RHS.second, "cmp.i");
996    }
997
998    if (E->getOpcode() == BinaryOperator::EQ) {
999      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1000    } else {
1001      assert(E->getOpcode() == BinaryOperator::NE &&
1002             "Complex comparison other than == or != ?");
1003      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1004    }
1005  }
1006
1007  // ZExt result to int.
1008  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
1009}
1010
1011Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1012  LValue LHS = EmitLValue(E->getLHS());
1013  Value *RHS = Visit(E->getRHS());
1014
1015  // Store the value into the LHS.  Bit-fields are handled specially
1016  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1017  // 'An assignment expression has the value of the left operand after
1018  // the assignment...'.
1019  // FIXME: Volatility!
1020  if (LHS.isBitfield())
1021    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1022                                       &RHS);
1023  else
1024    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1025
1026  // Return the RHS.
1027  return RHS;
1028}
1029
1030Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1031  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1032  // If we have 1 && X, just emit X without inserting the control flow.
1033  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1034    if (Cond == 1) { // If we have 1 && X, just emit X.
1035      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1036      // ZExt result to int.
1037      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1038    }
1039
1040    // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1041    if (!CGF.ContainsLabel(E->getRHS()))
1042      return llvm::Constant::getNullValue(CGF.LLVMIntTy);
1043  }
1044
1045  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1046  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1047
1048  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1049  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1050
1051  // Any edges into the ContBlock are now from an (indeterminate number of)
1052  // edges from this first condition.  All of these values will be false.  Start
1053  // setting up the PHI node in the Cont Block for this.
1054  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1055  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1056  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1057       PI != PE; ++PI)
1058    PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
1059
1060  CGF.EmitBlock(RHSBlock);
1061  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1062
1063  // Reaquire the RHS block, as there may be subblocks inserted.
1064  RHSBlock = Builder.GetInsertBlock();
1065
1066  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1067  // into the phi node for the edge with the value of RHSCond.
1068  CGF.EmitBlock(ContBlock);
1069  PN->addIncoming(RHSCond, RHSBlock);
1070
1071  // ZExt result to int.
1072  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1073}
1074
1075Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1076  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1077  // If we have 0 || X, just emit X without inserting the control flow.
1078  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1079    if (Cond == -1) { // If we have 0 || X, just emit X.
1080      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1081      // ZExt result to int.
1082      return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1083    }
1084
1085    // 1 || RHS: If it is safe, just elide the RHS, and return 1.
1086    if (!CGF.ContainsLabel(E->getRHS()))
1087      return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
1088  }
1089
1090  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1091  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1092
1093  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1094  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1095
1096  // Any edges into the ContBlock are now from an (indeterminate number of)
1097  // edges from this first condition.  All of these values will be true.  Start
1098  // setting up the PHI node in the Cont Block for this.
1099  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1100  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1101  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1102       PI != PE; ++PI)
1103    PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1104
1105  // Emit the RHS condition as a bool value.
1106  CGF.EmitBlock(RHSBlock);
1107  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1108
1109  // Reaquire the RHS block, as there may be subblocks inserted.
1110  RHSBlock = Builder.GetInsertBlock();
1111
1112  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1113  // into the phi node for the edge with the value of RHSCond.
1114  CGF.EmitBlock(ContBlock);
1115  PN->addIncoming(RHSCond, RHSBlock);
1116
1117  // ZExt result to int.
1118  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1119}
1120
1121Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1122  CGF.EmitStmt(E->getLHS());
1123  CGF.EnsureInsertPoint();
1124  return Visit(E->getRHS());
1125}
1126
1127//===----------------------------------------------------------------------===//
1128//                             Other Operators
1129//===----------------------------------------------------------------------===//
1130
1131/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1132/// expression is cheap enough and side-effect-free enough to evaluate
1133/// unconditionally instead of conditionally.  This is used to convert control
1134/// flow into selects in some cases.
1135static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1136  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1137    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1138
1139  // TODO: Allow anything we can constant fold to an integer or fp constant.
1140  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1141      isa<FloatingLiteral>(E))
1142    return true;
1143
1144  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1145  // X and Y are local variables.
1146  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1147    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1148      if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1149        return true;
1150
1151  return false;
1152}
1153
1154
1155Value *ScalarExprEmitter::
1156VisitConditionalOperator(const ConditionalOperator *E) {
1157  // If the condition constant folds and can be elided, try to avoid emitting
1158  // the condition and the dead arm.
1159  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1160    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1161    if (Cond == -1)
1162      std::swap(Live, Dead);
1163
1164    // If the dead side doesn't have labels we need, and if the Live side isn't
1165    // the gnu missing ?: extension (which we could handle, but don't bother
1166    // to), just emit the Live part.
1167    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1168        Live)                                   // Live part isn't missing.
1169      return Visit(Live);
1170  }
1171
1172
1173  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1174  // select instead of as control flow.  We can only do this if it is cheap and
1175  // safe to evaluate the LHS and RHS unconditionally.
1176  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1177      isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1178    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1179    llvm::Value *LHS = Visit(E->getLHS());
1180    llvm::Value *RHS = Visit(E->getRHS());
1181    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1182  }
1183
1184
1185  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1186  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1187  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1188  Value *CondVal = 0;
1189
1190  // If we have the GNU missing condition extension, evaluate the conditional
1191  // and then convert it to bool the hard way.  We do this explicitly
1192  // because we need the unconverted value for the missing middle value of
1193  // the ?:.
1194  if (E->getLHS() == 0) {
1195    CondVal = CGF.EmitScalarExpr(E->getCond());
1196    Value *CondBoolVal =
1197      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1198                               CGF.getContext().BoolTy);
1199    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1200  } else {
1201    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1202    // the branch on bool.
1203    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1204  }
1205
1206  CGF.EmitBlock(LHSBlock);
1207
1208  // Handle the GNU extension for missing LHS.
1209  Value *LHS;
1210  if (E->getLHS())
1211    LHS = Visit(E->getLHS());
1212  else    // Perform promotions, to handle cases like "short ?: int"
1213    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1214
1215  LHSBlock = Builder.GetInsertBlock();
1216  CGF.EmitBranch(ContBlock);
1217
1218  CGF.EmitBlock(RHSBlock);
1219
1220  Value *RHS = Visit(E->getRHS());
1221  RHSBlock = Builder.GetInsertBlock();
1222  CGF.EmitBranch(ContBlock);
1223
1224  CGF.EmitBlock(ContBlock);
1225
1226  if (!LHS || !RHS) {
1227    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1228    return 0;
1229  }
1230
1231  // Create a PHI node for the real part.
1232  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1233  PN->reserveOperandSpace(2);
1234  PN->addIncoming(LHS, LHSBlock);
1235  PN->addIncoming(RHS, RHSBlock);
1236  return PN;
1237}
1238
1239Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1240  // Emit the LHS or RHS as appropriate.
1241  return
1242    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1243}
1244
1245Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1246  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1247                          E->arg_end(CGF.getContext())).getScalarVal();
1248}
1249
1250Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1251  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1252
1253  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1254
1255  // If EmitVAArg fails, we fall back to the LLVM instruction.
1256  if (!ArgPtr)
1257    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1258
1259  // FIXME: volatile?
1260  return Builder.CreateLoad(ArgPtr);
1261}
1262
1263Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1264  std::string str;
1265  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
1266
1267  llvm::Constant *C = llvm::ConstantArray::get(str);
1268  C = new llvm::GlobalVariable(C->getType(), true,
1269                               llvm::GlobalValue::InternalLinkage,
1270                               C, ".str", &CGF.CGM.getModule());
1271  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1272  llvm::Constant *Zeros[] = { Zero, Zero };
1273  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1274
1275  return C;
1276}
1277
1278//===----------------------------------------------------------------------===//
1279//                         Entry Point into this File
1280//===----------------------------------------------------------------------===//
1281
1282/// EmitComplexExpr - Emit the computation of the specified expression of
1283/// complex type, ignoring the result.
1284Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1285  assert(E && !hasAggregateLLVMType(E->getType()) &&
1286         "Invalid scalar expression to emit");
1287
1288  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1289}
1290
1291/// EmitScalarConversion - Emit a conversion from the specified type to the
1292/// specified destination type, both of which are LLVM scalar types.
1293Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1294                                             QualType DstTy) {
1295  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1296         "Invalid scalar expression to emit");
1297  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1298}
1299
1300/// EmitComplexToScalarConversion - Emit a conversion from the specified
1301/// complex type to the specified destination type, where the destination
1302/// type is an LLVM scalar type.
1303Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1304                                                      QualType SrcTy,
1305                                                      QualType DstTy) {
1306  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1307         "Invalid complex -> scalar conversion");
1308  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1309                                                                DstTy);
1310}
1311
1312Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1313  assert(V1->getType() == V2->getType() &&
1314         "Vector operands must be of the same type");
1315  unsigned NumElements =
1316    cast<llvm::VectorType>(V1->getType())->getNumElements();
1317
1318  va_list va;
1319  va_start(va, V2);
1320
1321  llvm::SmallVector<llvm::Constant*, 16> Args;
1322  for (unsigned i = 0; i < NumElements; i++) {
1323    int n = va_arg(va, int);
1324    assert(n >= 0 && n < (int)NumElements * 2 &&
1325           "Vector shuffle index out of bounds!");
1326    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1327  }
1328
1329  const char *Name = va_arg(va, const char *);
1330  va_end(va);
1331
1332  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1333
1334  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1335}
1336
1337llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1338                                         unsigned NumVals, bool isSplat) {
1339  llvm::Value *Vec
1340    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1341
1342  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1343    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1344    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1345    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1346  }
1347
1348  return Vec;
1349}
1350