CGStmt.cpp revision 2b124ea9d2c27c6d002ecd4623f6321e305d907e
1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/PrettyStackTrace.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25using namespace clang;
26using namespace CodeGen;
27
28//===----------------------------------------------------------------------===//
29//                              Statement Emission
30//===----------------------------------------------------------------------===//
31
32void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33  if (CGDebugInfo *DI = getDebugInfo()) {
34    SourceLocation Loc;
35    if (isa<DeclStmt>(S))
36      Loc = S->getLocEnd();
37    else
38      Loc = S->getLocStart();
39    DI->EmitLocation(Builder, Loc);
40  }
41}
42
43void CodeGenFunction::EmitStmt(const Stmt *S) {
44  assert(S && "Null statement?");
45
46  // These statements have their own debug info handling.
47  if (EmitSimpleStmt(S))
48    return;
49
50  // Check if we are generating unreachable code.
51  if (!HaveInsertPoint()) {
52    // If so, and the statement doesn't contain a label, then we do not need to
53    // generate actual code. This is safe because (1) the current point is
54    // unreachable, so we don't need to execute the code, and (2) we've already
55    // handled the statements which update internal data structures (like the
56    // local variable map) which could be used by subsequent statements.
57    if (!ContainsLabel(S)) {
58      // Verify that any decl statements were handled as simple, they may be in
59      // scope of subsequent reachable statements.
60      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61      return;
62    }
63
64    // Otherwise, make a new block to hold the code.
65    EnsureInsertPoint();
66  }
67
68  // Generate a stoppoint if we are emitting debug info.
69  EmitStopPoint(S);
70
71  switch (S->getStmtClass()) {
72  case Stmt::NoStmtClass:
73  case Stmt::CXXCatchStmtClass:
74  case Stmt::SEHExceptStmtClass:
75  case Stmt::SEHFinallyStmtClass:
76  case Stmt::MSDependentExistsStmtClass:
77    llvm_unreachable("invalid statement class to emit generically");
78  case Stmt::NullStmtClass:
79  case Stmt::CompoundStmtClass:
80  case Stmt::DeclStmtClass:
81  case Stmt::LabelStmtClass:
82  case Stmt::GotoStmtClass:
83  case Stmt::BreakStmtClass:
84  case Stmt::ContinueStmtClass:
85  case Stmt::DefaultStmtClass:
86  case Stmt::CaseStmtClass:
87    llvm_unreachable("should have emitted these statements as simple");
88
89#define STMT(Type, Base)
90#define ABSTRACT_STMT(Op)
91#define EXPR(Type, Base) \
92  case Stmt::Type##Class:
93#include "clang/AST/StmtNodes.inc"
94  {
95    // Remember the block we came in on.
96    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97    assert(incoming && "expression emission must have an insertion point");
98
99    EmitIgnoredExpr(cast<Expr>(S));
100
101    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102    assert(outgoing && "expression emission cleared block!");
103
104    // The expression emitters assume (reasonably!) that the insertion
105    // point is always set.  To maintain that, the call-emission code
106    // for noreturn functions has to enter a new block with no
107    // predecessors.  We want to kill that block and mark the current
108    // insertion point unreachable in the common case of a call like
109    // "exit();".  Since expression emission doesn't otherwise create
110    // blocks with no predecessors, we can just test for that.
111    // However, we must be careful not to do this to our incoming
112    // block, because *statement* emission does sometimes create
113    // reachable blocks which will have no predecessors until later in
114    // the function.  This occurs with, e.g., labels that are not
115    // reachable by fallthrough.
116    if (incoming != outgoing && outgoing->use_empty()) {
117      outgoing->eraseFromParent();
118      Builder.ClearInsertionPoint();
119    }
120    break;
121  }
122
123  case Stmt::IndirectGotoStmtClass:
124    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125
126  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130
131  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132
133  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135
136  case Stmt::ObjCAtTryStmtClass:
137    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138    break;
139  case Stmt::ObjCAtCatchStmtClass:
140    llvm_unreachable(
141                    "@catch statements should be handled by EmitObjCAtTryStmt");
142  case Stmt::ObjCAtFinallyStmtClass:
143    llvm_unreachable(
144                  "@finally statements should be handled by EmitObjCAtTryStmt");
145  case Stmt::ObjCAtThrowStmtClass:
146    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147    break;
148  case Stmt::ObjCAtSynchronizedStmtClass:
149    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150    break;
151  case Stmt::ObjCForCollectionStmtClass:
152    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153    break;
154  case Stmt::ObjCAutoreleasePoolStmtClass:
155    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
156    break;
157
158  case Stmt::CXXTryStmtClass:
159    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
160    break;
161  case Stmt::CXXForRangeStmtClass:
162    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
163  case Stmt::SEHTryStmtClass:
164    // FIXME Not yet implemented
165    break;
166  }
167}
168
169bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
170  switch (S->getStmtClass()) {
171  default: return false;
172  case Stmt::NullStmtClass: break;
173  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
174  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
175  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
176  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
177  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
178  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
179  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
180  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
181  }
182
183  return true;
184}
185
186/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
187/// this captures the expression result of the last sub-statement and returns it
188/// (for use by the statement expression extension).
189RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
190                                         AggValueSlot AggSlot) {
191  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
192                             "LLVM IR generation of compound statement ('{}')");
193
194  // Keep track of the current cleanup stack depth, including debug scopes.
195  LexicalScope Scope(*this, S.getSourceRange());
196
197  for (CompoundStmt::const_body_iterator I = S.body_begin(),
198       E = S.body_end()-GetLast; I != E; ++I)
199    EmitStmt(*I);
200
201  RValue RV;
202  if (!GetLast)
203    RV = RValue::get(0);
204  else {
205    // We have to special case labels here.  They are statements, but when put
206    // at the end of a statement expression, they yield the value of their
207    // subexpression.  Handle this by walking through all labels we encounter,
208    // emitting them before we evaluate the subexpr.
209    const Stmt *LastStmt = S.body_back();
210    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
211      EmitLabel(LS->getDecl());
212      LastStmt = LS->getSubStmt();
213    }
214
215    EnsureInsertPoint();
216
217    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
218  }
219
220  return RV;
221}
222
223void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
224  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
225
226  // If there is a cleanup stack, then we it isn't worth trying to
227  // simplify this block (we would need to remove it from the scope map
228  // and cleanup entry).
229  if (!EHStack.empty())
230    return;
231
232  // Can only simplify direct branches.
233  if (!BI || !BI->isUnconditional())
234    return;
235
236  BB->replaceAllUsesWith(BI->getSuccessor(0));
237  BI->eraseFromParent();
238  BB->eraseFromParent();
239}
240
241void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
242  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
243
244  // Fall out of the current block (if necessary).
245  EmitBranch(BB);
246
247  if (IsFinished && BB->use_empty()) {
248    delete BB;
249    return;
250  }
251
252  // Place the block after the current block, if possible, or else at
253  // the end of the function.
254  if (CurBB && CurBB->getParent())
255    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
256  else
257    CurFn->getBasicBlockList().push_back(BB);
258  Builder.SetInsertPoint(BB);
259}
260
261void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
262  // Emit a branch from the current block to the target one if this
263  // was a real block.  If this was just a fall-through block after a
264  // terminator, don't emit it.
265  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
266
267  if (!CurBB || CurBB->getTerminator()) {
268    // If there is no insert point or the previous block is already
269    // terminated, don't touch it.
270  } else {
271    // Otherwise, create a fall-through branch.
272    Builder.CreateBr(Target);
273  }
274
275  Builder.ClearInsertionPoint();
276}
277
278void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
279  bool inserted = false;
280  for (llvm::BasicBlock::use_iterator
281         i = block->use_begin(), e = block->use_end(); i != e; ++i) {
282    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
283      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
284      inserted = true;
285      break;
286    }
287  }
288
289  if (!inserted)
290    CurFn->getBasicBlockList().push_back(block);
291
292  Builder.SetInsertPoint(block);
293}
294
295CodeGenFunction::JumpDest
296CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
297  JumpDest &Dest = LabelMap[D];
298  if (Dest.isValid()) return Dest;
299
300  // Create, but don't insert, the new block.
301  Dest = JumpDest(createBasicBlock(D->getName()),
302                  EHScopeStack::stable_iterator::invalid(),
303                  NextCleanupDestIndex++);
304  return Dest;
305}
306
307void CodeGenFunction::EmitLabel(const LabelDecl *D) {
308  JumpDest &Dest = LabelMap[D];
309
310  // If we didn't need a forward reference to this label, just go
311  // ahead and create a destination at the current scope.
312  if (!Dest.isValid()) {
313    Dest = getJumpDestInCurrentScope(D->getName());
314
315  // Otherwise, we need to give this label a target depth and remove
316  // it from the branch-fixups list.
317  } else {
318    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
319    Dest = JumpDest(Dest.getBlock(),
320                    EHStack.stable_begin(),
321                    Dest.getDestIndex());
322
323    ResolveBranchFixups(Dest.getBlock());
324  }
325
326  EmitBlock(Dest.getBlock());
327}
328
329
330void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
331  EmitLabel(S.getDecl());
332  EmitStmt(S.getSubStmt());
333}
334
335void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
336  // If this code is reachable then emit a stop point (if generating
337  // debug info). We have to do this ourselves because we are on the
338  // "simple" statement path.
339  if (HaveInsertPoint())
340    EmitStopPoint(&S);
341
342  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
343}
344
345
346void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
347  if (const LabelDecl *Target = S.getConstantTarget()) {
348    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
349    return;
350  }
351
352  // Ensure that we have an i8* for our PHI node.
353  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
354                                         Int8PtrTy, "addr");
355  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
356
357
358  // Get the basic block for the indirect goto.
359  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
360
361  // The first instruction in the block has to be the PHI for the switch dest,
362  // add an entry for this branch.
363  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
364
365  EmitBranch(IndGotoBB);
366}
367
368void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
369  // C99 6.8.4.1: The first substatement is executed if the expression compares
370  // unequal to 0.  The condition must be a scalar type.
371  RunCleanupsScope ConditionScope(*this);
372
373  if (S.getConditionVariable())
374    EmitAutoVarDecl(*S.getConditionVariable());
375
376  // If the condition constant folds and can be elided, try to avoid emitting
377  // the condition and the dead arm of the if/else.
378  bool CondConstant;
379  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
380    // Figure out which block (then or else) is executed.
381    const Stmt *Executed = S.getThen();
382    const Stmt *Skipped  = S.getElse();
383    if (!CondConstant)  // Condition false?
384      std::swap(Executed, Skipped);
385
386    // If the skipped block has no labels in it, just emit the executed block.
387    // This avoids emitting dead code and simplifies the CFG substantially.
388    if (!ContainsLabel(Skipped)) {
389      if (Executed) {
390        RunCleanupsScope ExecutedScope(*this);
391        EmitStmt(Executed);
392      }
393      return;
394    }
395  }
396
397  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
398  // the conditional branch.
399  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
400  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
401  llvm::BasicBlock *ElseBlock = ContBlock;
402  if (S.getElse())
403    ElseBlock = createBasicBlock("if.else");
404  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
405
406  // Emit the 'then' code.
407  EmitBlock(ThenBlock);
408  {
409    RunCleanupsScope ThenScope(*this);
410    EmitStmt(S.getThen());
411  }
412  EmitBranch(ContBlock);
413
414  // Emit the 'else' code if present.
415  if (const Stmt *Else = S.getElse()) {
416    // There is no need to emit line number for unconditional branch.
417    if (getDebugInfo())
418      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
419    EmitBlock(ElseBlock);
420    {
421      RunCleanupsScope ElseScope(*this);
422      EmitStmt(Else);
423    }
424    // There is no need to emit line number for unconditional branch.
425    if (getDebugInfo())
426      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
427    EmitBranch(ContBlock);
428  }
429
430  // Emit the continuation block for code after the if.
431  EmitBlock(ContBlock, true);
432}
433
434void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
435  // Emit the header for the loop, which will also become
436  // the continue target.
437  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
438  EmitBlock(LoopHeader.getBlock());
439
440  // Create an exit block for when the condition fails, which will
441  // also become the break target.
442  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
443
444  // Store the blocks to use for break and continue.
445  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
446
447  // C++ [stmt.while]p2:
448  //   When the condition of a while statement is a declaration, the
449  //   scope of the variable that is declared extends from its point
450  //   of declaration (3.3.2) to the end of the while statement.
451  //   [...]
452  //   The object created in a condition is destroyed and created
453  //   with each iteration of the loop.
454  RunCleanupsScope ConditionScope(*this);
455
456  if (S.getConditionVariable())
457    EmitAutoVarDecl(*S.getConditionVariable());
458
459  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
460  // evaluation of the controlling expression takes place before each
461  // execution of the loop body.
462  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
463
464  // while(1) is common, avoid extra exit blocks.  Be sure
465  // to correctly handle break/continue though.
466  bool EmitBoolCondBranch = true;
467  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
468    if (C->isOne())
469      EmitBoolCondBranch = false;
470
471  // As long as the condition is true, go to the loop body.
472  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
473  if (EmitBoolCondBranch) {
474    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
475    if (ConditionScope.requiresCleanups())
476      ExitBlock = createBasicBlock("while.exit");
477
478    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
479
480    if (ExitBlock != LoopExit.getBlock()) {
481      EmitBlock(ExitBlock);
482      EmitBranchThroughCleanup(LoopExit);
483    }
484  }
485
486  // Emit the loop body.  We have to emit this in a cleanup scope
487  // because it might be a singleton DeclStmt.
488  {
489    RunCleanupsScope BodyScope(*this);
490    EmitBlock(LoopBody);
491    EmitStmt(S.getBody());
492  }
493
494  BreakContinueStack.pop_back();
495
496  // Immediately force cleanup.
497  ConditionScope.ForceCleanup();
498
499  // Branch to the loop header again.
500  EmitBranch(LoopHeader.getBlock());
501
502  // Emit the exit block.
503  EmitBlock(LoopExit.getBlock(), true);
504
505  // The LoopHeader typically is just a branch if we skipped emitting
506  // a branch, try to erase it.
507  if (!EmitBoolCondBranch)
508    SimplifyForwardingBlocks(LoopHeader.getBlock());
509}
510
511void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
512  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
513  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
514
515  // Store the blocks to use for break and continue.
516  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
517
518  // Emit the body of the loop.
519  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
520  EmitBlock(LoopBody);
521  {
522    RunCleanupsScope BodyScope(*this);
523    EmitStmt(S.getBody());
524  }
525
526  BreakContinueStack.pop_back();
527
528  EmitBlock(LoopCond.getBlock());
529
530  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
531  // after each execution of the loop body."
532
533  // Evaluate the conditional in the while header.
534  // C99 6.8.5p2/p4: The first substatement is executed if the expression
535  // compares unequal to 0.  The condition must be a scalar type.
536  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
537
538  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
539  // to correctly handle break/continue though.
540  bool EmitBoolCondBranch = true;
541  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
542    if (C->isZero())
543      EmitBoolCondBranch = false;
544
545  // As long as the condition is true, iterate the loop.
546  if (EmitBoolCondBranch)
547    Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
548
549  // Emit the exit block.
550  EmitBlock(LoopExit.getBlock());
551
552  // The DoCond block typically is just a branch if we skipped
553  // emitting a branch, try to erase it.
554  if (!EmitBoolCondBranch)
555    SimplifyForwardingBlocks(LoopCond.getBlock());
556}
557
558void CodeGenFunction::EmitForStmt(const ForStmt &S) {
559  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
560
561  RunCleanupsScope ForScope(*this);
562
563  CGDebugInfo *DI = getDebugInfo();
564  if (DI)
565    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
566
567  // Evaluate the first part before the loop.
568  if (S.getInit())
569    EmitStmt(S.getInit());
570
571  // Start the loop with a block that tests the condition.
572  // If there's an increment, the continue scope will be overwritten
573  // later.
574  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
575  llvm::BasicBlock *CondBlock = Continue.getBlock();
576  EmitBlock(CondBlock);
577
578  // Create a cleanup scope for the condition variable cleanups.
579  RunCleanupsScope ConditionScope(*this);
580
581  llvm::Value *BoolCondVal = 0;
582  if (S.getCond()) {
583    // If the for statement has a condition scope, emit the local variable
584    // declaration.
585    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
586    if (S.getConditionVariable()) {
587      EmitAutoVarDecl(*S.getConditionVariable());
588    }
589
590    // If there are any cleanups between here and the loop-exit scope,
591    // create a block to stage a loop exit along.
592    if (ForScope.requiresCleanups())
593      ExitBlock = createBasicBlock("for.cond.cleanup");
594
595    // As long as the condition is true, iterate the loop.
596    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
597
598    // C99 6.8.5p2/p4: The first substatement is executed if the expression
599    // compares unequal to 0.  The condition must be a scalar type.
600    BoolCondVal = EvaluateExprAsBool(S.getCond());
601    Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
602
603    if (ExitBlock != LoopExit.getBlock()) {
604      EmitBlock(ExitBlock);
605      EmitBranchThroughCleanup(LoopExit);
606    }
607
608    EmitBlock(ForBody);
609  } else {
610    // Treat it as a non-zero constant.  Don't even create a new block for the
611    // body, just fall into it.
612  }
613
614  // If the for loop doesn't have an increment we can just use the
615  // condition as the continue block.  Otherwise we'll need to create
616  // a block for it (in the current scope, i.e. in the scope of the
617  // condition), and that we will become our continue block.
618  if (S.getInc())
619    Continue = getJumpDestInCurrentScope("for.inc");
620
621  // Store the blocks to use for break and continue.
622  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
623
624  {
625    // Create a separate cleanup scope for the body, in case it is not
626    // a compound statement.
627    RunCleanupsScope BodyScope(*this);
628    EmitStmt(S.getBody());
629  }
630
631  // If there is an increment, emit it next.
632  if (S.getInc()) {
633    EmitBlock(Continue.getBlock());
634    EmitStmt(S.getInc());
635  }
636
637  BreakContinueStack.pop_back();
638
639  ConditionScope.ForceCleanup();
640  EmitBranch(CondBlock);
641
642  ForScope.ForceCleanup();
643
644  if (DI)
645    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
646
647  // Emit the fall-through block.
648  EmitBlock(LoopExit.getBlock(), true);
649}
650
651void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
652  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
653
654  RunCleanupsScope ForScope(*this);
655
656  CGDebugInfo *DI = getDebugInfo();
657  if (DI)
658    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
659
660  // Evaluate the first pieces before the loop.
661  EmitStmt(S.getRangeStmt());
662  EmitStmt(S.getBeginEndStmt());
663
664  // Start the loop with a block that tests the condition.
665  // If there's an increment, the continue scope will be overwritten
666  // later.
667  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
668  EmitBlock(CondBlock);
669
670  // If there are any cleanups between here and the loop-exit scope,
671  // create a block to stage a loop exit along.
672  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
673  if (ForScope.requiresCleanups())
674    ExitBlock = createBasicBlock("for.cond.cleanup");
675
676  // The loop body, consisting of the specified body and the loop variable.
677  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
678
679  // The body is executed if the expression, contextually converted
680  // to bool, is true.
681  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
682  Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
683
684  if (ExitBlock != LoopExit.getBlock()) {
685    EmitBlock(ExitBlock);
686    EmitBranchThroughCleanup(LoopExit);
687  }
688
689  EmitBlock(ForBody);
690
691  // Create a block for the increment. In case of a 'continue', we jump there.
692  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
693
694  // Store the blocks to use for break and continue.
695  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
696
697  {
698    // Create a separate cleanup scope for the loop variable and body.
699    RunCleanupsScope BodyScope(*this);
700    EmitStmt(S.getLoopVarStmt());
701    EmitStmt(S.getBody());
702  }
703
704  // If there is an increment, emit it next.
705  EmitBlock(Continue.getBlock());
706  EmitStmt(S.getInc());
707
708  BreakContinueStack.pop_back();
709
710  EmitBranch(CondBlock);
711
712  ForScope.ForceCleanup();
713
714  if (DI)
715    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
716
717  // Emit the fall-through block.
718  EmitBlock(LoopExit.getBlock(), true);
719}
720
721void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
722  if (RV.isScalar()) {
723    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
724  } else if (RV.isAggregate()) {
725    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
726  } else {
727    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
728  }
729  EmitBranchThroughCleanup(ReturnBlock);
730}
731
732/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
733/// if the function returns void, or may be missing one if the function returns
734/// non-void.  Fun stuff :).
735void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
736  // Emit the result value, even if unused, to evalute the side effects.
737  const Expr *RV = S.getRetValue();
738
739  // FIXME: Clean this up by using an LValue for ReturnTemp,
740  // EmitStoreThroughLValue, and EmitAnyExpr.
741  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
742      !Target.useGlobalsForAutomaticVariables()) {
743    // Apply the named return value optimization for this return statement,
744    // which means doing nothing: the appropriate result has already been
745    // constructed into the NRVO variable.
746
747    // If there is an NRVO flag for this variable, set it to 1 into indicate
748    // that the cleanup code should not destroy the variable.
749    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
750      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
751  } else if (!ReturnValue) {
752    // Make sure not to return anything, but evaluate the expression
753    // for side effects.
754    if (RV)
755      EmitAnyExpr(RV);
756  } else if (RV == 0) {
757    // Do nothing (return value is left uninitialized)
758  } else if (FnRetTy->isReferenceType()) {
759    // If this function returns a reference, take the address of the expression
760    // rather than the value.
761    RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
762    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
763  } else if (!hasAggregateLLVMType(RV->getType())) {
764    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
765  } else if (RV->getType()->isAnyComplexType()) {
766    EmitComplexExprIntoAddr(RV, ReturnValue, false);
767  } else {
768    CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
769    EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
770                                          AggValueSlot::IsDestructed,
771                                          AggValueSlot::DoesNotNeedGCBarriers,
772                                          AggValueSlot::IsNotAliased));
773  }
774
775  EmitBranchThroughCleanup(ReturnBlock);
776}
777
778void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
779  // As long as debug info is modeled with instructions, we have to ensure we
780  // have a place to insert here and write the stop point here.
781  if (HaveInsertPoint())
782    EmitStopPoint(&S);
783
784  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
785       I != E; ++I)
786    EmitDecl(**I);
787}
788
789void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
790  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
791
792  // If this code is reachable then emit a stop point (if generating
793  // debug info). We have to do this ourselves because we are on the
794  // "simple" statement path.
795  if (HaveInsertPoint())
796    EmitStopPoint(&S);
797
798  JumpDest Block = BreakContinueStack.back().BreakBlock;
799  EmitBranchThroughCleanup(Block);
800}
801
802void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
803  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
804
805  // If this code is reachable then emit a stop point (if generating
806  // debug info). We have to do this ourselves because we are on the
807  // "simple" statement path.
808  if (HaveInsertPoint())
809    EmitStopPoint(&S);
810
811  JumpDest Block = BreakContinueStack.back().ContinueBlock;
812  EmitBranchThroughCleanup(Block);
813}
814
815/// EmitCaseStmtRange - If case statement range is not too big then
816/// add multiple cases to switch instruction, one for each value within
817/// the range. If range is too big then emit "if" condition check.
818void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
819  assert(S.getRHS() && "Expected RHS value in CaseStmt");
820
821  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
822  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
823
824  // Emit the code for this case. We do this first to make sure it is
825  // properly chained from our predecessor before generating the
826  // switch machinery to enter this block.
827  EmitBlock(createBasicBlock("sw.bb"));
828  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
829  EmitStmt(S.getSubStmt());
830
831  // If range is empty, do nothing.
832  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
833    return;
834
835  llvm::APInt Range = RHS - LHS;
836  // FIXME: parameters such as this should not be hardcoded.
837  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
838    // Range is small enough to add multiple switch instruction cases.
839    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
840      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
841      LHS++;
842    }
843    return;
844  }
845
846  // The range is too big. Emit "if" condition into a new block,
847  // making sure to save and restore the current insertion point.
848  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
849
850  // Push this test onto the chain of range checks (which terminates
851  // in the default basic block). The switch's default will be changed
852  // to the top of this chain after switch emission is complete.
853  llvm::BasicBlock *FalseDest = CaseRangeBlock;
854  CaseRangeBlock = createBasicBlock("sw.caserange");
855
856  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
857  Builder.SetInsertPoint(CaseRangeBlock);
858
859  // Emit range check.
860  llvm::Value *Diff =
861    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
862  llvm::Value *Cond =
863    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
864  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
865
866  // Restore the appropriate insertion point.
867  if (RestoreBB)
868    Builder.SetInsertPoint(RestoreBB);
869  else
870    Builder.ClearInsertionPoint();
871}
872
873void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
874  // If there is no enclosing switch instance that we're aware of, then this
875  // case statement and its block can be elided.  This situation only happens
876  // when we've constant-folded the switch, are emitting the constant case,
877  // and part of the constant case includes another case statement.  For
878  // instance: switch (4) { case 4: do { case 5: } while (1); }
879  if (!SwitchInsn) {
880    EmitStmt(S.getSubStmt());
881    return;
882  }
883
884  // Handle case ranges.
885  if (S.getRHS()) {
886    EmitCaseStmtRange(S);
887    return;
888  }
889
890  llvm::ConstantInt *CaseVal =
891    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
892
893  // If the body of the case is just a 'break', and if there was no fallthrough,
894  // try to not emit an empty block.
895  if (isa<BreakStmt>(S.getSubStmt())) {
896    JumpDest Block = BreakContinueStack.back().BreakBlock;
897
898    // Only do this optimization if there are no cleanups that need emitting.
899    if (isObviouslyBranchWithoutCleanups(Block)) {
900      SwitchInsn->addCase(CaseVal, Block.getBlock());
901
902      // If there was a fallthrough into this case, make sure to redirect it to
903      // the end of the switch as well.
904      if (Builder.GetInsertBlock()) {
905        Builder.CreateBr(Block.getBlock());
906        Builder.ClearInsertionPoint();
907      }
908      return;
909    }
910  }
911
912  EmitBlock(createBasicBlock("sw.bb"));
913  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
914  SwitchInsn->addCase(CaseVal, CaseDest);
915
916  // Recursively emitting the statement is acceptable, but is not wonderful for
917  // code where we have many case statements nested together, i.e.:
918  //  case 1:
919  //    case 2:
920  //      case 3: etc.
921  // Handling this recursively will create a new block for each case statement
922  // that falls through to the next case which is IR intensive.  It also causes
923  // deep recursion which can run into stack depth limitations.  Handle
924  // sequential non-range case statements specially.
925  const CaseStmt *CurCase = &S;
926  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
927
928  // Otherwise, iteratively add consecutive cases to this switch stmt.
929  while (NextCase && NextCase->getRHS() == 0) {
930    CurCase = NextCase;
931    llvm::ConstantInt *CaseVal =
932      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
933    SwitchInsn->addCase(CaseVal, CaseDest);
934    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
935  }
936
937  // Normal default recursion for non-cases.
938  EmitStmt(CurCase->getSubStmt());
939}
940
941void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
942  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
943  assert(DefaultBlock->empty() &&
944         "EmitDefaultStmt: Default block already defined?");
945  EmitBlock(DefaultBlock);
946  EmitStmt(S.getSubStmt());
947}
948
949/// CollectStatementsForCase - Given the body of a 'switch' statement and a
950/// constant value that is being switched on, see if we can dead code eliminate
951/// the body of the switch to a simple series of statements to emit.  Basically,
952/// on a switch (5) we want to find these statements:
953///    case 5:
954///      printf(...);    <--
955///      ++i;            <--
956///      break;
957///
958/// and add them to the ResultStmts vector.  If it is unsafe to do this
959/// transformation (for example, one of the elided statements contains a label
960/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
961/// should include statements after it (e.g. the printf() line is a substmt of
962/// the case) then return CSFC_FallThrough.  If we handled it and found a break
963/// statement, then return CSFC_Success.
964///
965/// If Case is non-null, then we are looking for the specified case, checking
966/// that nothing we jump over contains labels.  If Case is null, then we found
967/// the case and are looking for the break.
968///
969/// If the recursive walk actually finds our Case, then we set FoundCase to
970/// true.
971///
972enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
973static CSFC_Result CollectStatementsForCase(const Stmt *S,
974                                            const SwitchCase *Case,
975                                            bool &FoundCase,
976                              SmallVectorImpl<const Stmt*> &ResultStmts) {
977  // If this is a null statement, just succeed.
978  if (S == 0)
979    return Case ? CSFC_Success : CSFC_FallThrough;
980
981  // If this is the switchcase (case 4: or default) that we're looking for, then
982  // we're in business.  Just add the substatement.
983  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
984    if (S == Case) {
985      FoundCase = true;
986      return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
987                                      ResultStmts);
988    }
989
990    // Otherwise, this is some other case or default statement, just ignore it.
991    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
992                                    ResultStmts);
993  }
994
995  // If we are in the live part of the code and we found our break statement,
996  // return a success!
997  if (Case == 0 && isa<BreakStmt>(S))
998    return CSFC_Success;
999
1000  // If this is a switch statement, then it might contain the SwitchCase, the
1001  // break, or neither.
1002  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1003    // Handle this as two cases: we might be looking for the SwitchCase (if so
1004    // the skipped statements must be skippable) or we might already have it.
1005    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1006    if (Case) {
1007      // Keep track of whether we see a skipped declaration.  The code could be
1008      // using the declaration even if it is skipped, so we can't optimize out
1009      // the decl if the kept statements might refer to it.
1010      bool HadSkippedDecl = false;
1011
1012      // If we're looking for the case, just see if we can skip each of the
1013      // substatements.
1014      for (; Case && I != E; ++I) {
1015        HadSkippedDecl |= isa<DeclStmt>(*I);
1016
1017        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1018        case CSFC_Failure: return CSFC_Failure;
1019        case CSFC_Success:
1020          // A successful result means that either 1) that the statement doesn't
1021          // have the case and is skippable, or 2) does contain the case value
1022          // and also contains the break to exit the switch.  In the later case,
1023          // we just verify the rest of the statements are elidable.
1024          if (FoundCase) {
1025            // If we found the case and skipped declarations, we can't do the
1026            // optimization.
1027            if (HadSkippedDecl)
1028              return CSFC_Failure;
1029
1030            for (++I; I != E; ++I)
1031              if (CodeGenFunction::ContainsLabel(*I, true))
1032                return CSFC_Failure;
1033            return CSFC_Success;
1034          }
1035          break;
1036        case CSFC_FallThrough:
1037          // If we have a fallthrough condition, then we must have found the
1038          // case started to include statements.  Consider the rest of the
1039          // statements in the compound statement as candidates for inclusion.
1040          assert(FoundCase && "Didn't find case but returned fallthrough?");
1041          // We recursively found Case, so we're not looking for it anymore.
1042          Case = 0;
1043
1044          // If we found the case and skipped declarations, we can't do the
1045          // optimization.
1046          if (HadSkippedDecl)
1047            return CSFC_Failure;
1048          break;
1049        }
1050      }
1051    }
1052
1053    // If we have statements in our range, then we know that the statements are
1054    // live and need to be added to the set of statements we're tracking.
1055    for (; I != E; ++I) {
1056      switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1057      case CSFC_Failure: return CSFC_Failure;
1058      case CSFC_FallThrough:
1059        // A fallthrough result means that the statement was simple and just
1060        // included in ResultStmt, keep adding them afterwards.
1061        break;
1062      case CSFC_Success:
1063        // A successful result means that we found the break statement and
1064        // stopped statement inclusion.  We just ensure that any leftover stmts
1065        // are skippable and return success ourselves.
1066        for (++I; I != E; ++I)
1067          if (CodeGenFunction::ContainsLabel(*I, true))
1068            return CSFC_Failure;
1069        return CSFC_Success;
1070      }
1071    }
1072
1073    return Case ? CSFC_Success : CSFC_FallThrough;
1074  }
1075
1076  // Okay, this is some other statement that we don't handle explicitly, like a
1077  // for statement or increment etc.  If we are skipping over this statement,
1078  // just verify it doesn't have labels, which would make it invalid to elide.
1079  if (Case) {
1080    if (CodeGenFunction::ContainsLabel(S, true))
1081      return CSFC_Failure;
1082    return CSFC_Success;
1083  }
1084
1085  // Otherwise, we want to include this statement.  Everything is cool with that
1086  // so long as it doesn't contain a break out of the switch we're in.
1087  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1088
1089  // Otherwise, everything is great.  Include the statement and tell the caller
1090  // that we fall through and include the next statement as well.
1091  ResultStmts.push_back(S);
1092  return CSFC_FallThrough;
1093}
1094
1095/// FindCaseStatementsForValue - Find the case statement being jumped to and
1096/// then invoke CollectStatementsForCase to find the list of statements to emit
1097/// for a switch on constant.  See the comment above CollectStatementsForCase
1098/// for more details.
1099static bool FindCaseStatementsForValue(const SwitchStmt &S,
1100                                       const llvm::APInt &ConstantCondValue,
1101                                SmallVectorImpl<const Stmt*> &ResultStmts,
1102                                       ASTContext &C) {
1103  // First step, find the switch case that is being branched to.  We can do this
1104  // efficiently by scanning the SwitchCase list.
1105  const SwitchCase *Case = S.getSwitchCaseList();
1106  const DefaultStmt *DefaultCase = 0;
1107
1108  for (; Case; Case = Case->getNextSwitchCase()) {
1109    // It's either a default or case.  Just remember the default statement in
1110    // case we're not jumping to any numbered cases.
1111    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1112      DefaultCase = DS;
1113      continue;
1114    }
1115
1116    // Check to see if this case is the one we're looking for.
1117    const CaseStmt *CS = cast<CaseStmt>(Case);
1118    // Don't handle case ranges yet.
1119    if (CS->getRHS()) return false;
1120
1121    // If we found our case, remember it as 'case'.
1122    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1123      break;
1124  }
1125
1126  // If we didn't find a matching case, we use a default if it exists, or we
1127  // elide the whole switch body!
1128  if (Case == 0) {
1129    // It is safe to elide the body of the switch if it doesn't contain labels
1130    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1131    if (DefaultCase == 0)
1132      return !CodeGenFunction::ContainsLabel(&S);
1133    Case = DefaultCase;
1134  }
1135
1136  // Ok, we know which case is being jumped to, try to collect all the
1137  // statements that follow it.  This can fail for a variety of reasons.  Also,
1138  // check to see that the recursive walk actually found our case statement.
1139  // Insane cases like this can fail to find it in the recursive walk since we
1140  // don't handle every stmt kind:
1141  // switch (4) {
1142  //   while (1) {
1143  //     case 4: ...
1144  bool FoundCase = false;
1145  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1146                                  ResultStmts) != CSFC_Failure &&
1147         FoundCase;
1148}
1149
1150void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1151  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1152
1153  RunCleanupsScope ConditionScope(*this);
1154
1155  if (S.getConditionVariable())
1156    EmitAutoVarDecl(*S.getConditionVariable());
1157
1158  // Handle nested switch statements.
1159  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1160  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1161
1162  // See if we can constant fold the condition of the switch and therefore only
1163  // emit the live case statement (if any) of the switch.
1164  llvm::APInt ConstantCondValue;
1165  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1166    SmallVector<const Stmt*, 4> CaseStmts;
1167    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1168                                   getContext())) {
1169      RunCleanupsScope ExecutedScope(*this);
1170
1171      // At this point, we are no longer "within" a switch instance, so
1172      // we can temporarily enforce this to ensure that any embedded case
1173      // statements are not emitted.
1174      SwitchInsn = 0;
1175
1176      // Okay, we can dead code eliminate everything except this case.  Emit the
1177      // specified series of statements and we're good.
1178      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1179        EmitStmt(CaseStmts[i]);
1180
1181      // Now we want to restore the saved switch instance so that nested
1182      // switches continue to function properly
1183      SwitchInsn = SavedSwitchInsn;
1184
1185      return;
1186    }
1187  }
1188
1189  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1190
1191  // Create basic block to hold stuff that comes after switch
1192  // statement. We also need to create a default block now so that
1193  // explicit case ranges tests can have a place to jump to on
1194  // failure.
1195  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1196  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1197  CaseRangeBlock = DefaultBlock;
1198
1199  // Clear the insertion point to indicate we are in unreachable code.
1200  Builder.ClearInsertionPoint();
1201
1202  // All break statements jump to NextBlock. If BreakContinueStack is non empty
1203  // then reuse last ContinueBlock.
1204  JumpDest OuterContinue;
1205  if (!BreakContinueStack.empty())
1206    OuterContinue = BreakContinueStack.back().ContinueBlock;
1207
1208  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1209
1210  // Emit switch body.
1211  EmitStmt(S.getBody());
1212
1213  BreakContinueStack.pop_back();
1214
1215  // Update the default block in case explicit case range tests have
1216  // been chained on top.
1217  SwitchInsn->setDefaultDest(CaseRangeBlock);
1218
1219  // If a default was never emitted:
1220  if (!DefaultBlock->getParent()) {
1221    // If we have cleanups, emit the default block so that there's a
1222    // place to jump through the cleanups from.
1223    if (ConditionScope.requiresCleanups()) {
1224      EmitBlock(DefaultBlock);
1225
1226    // Otherwise, just forward the default block to the switch end.
1227    } else {
1228      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1229      delete DefaultBlock;
1230    }
1231  }
1232
1233  ConditionScope.ForceCleanup();
1234
1235  // Emit continuation.
1236  EmitBlock(SwitchExit.getBlock(), true);
1237
1238  SwitchInsn = SavedSwitchInsn;
1239  CaseRangeBlock = SavedCRBlock;
1240}
1241
1242static std::string
1243SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1244                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1245  std::string Result;
1246
1247  while (*Constraint) {
1248    switch (*Constraint) {
1249    default:
1250      Result += Target.convertConstraint(Constraint);
1251      break;
1252    // Ignore these
1253    case '*':
1254    case '?':
1255    case '!':
1256    case '=': // Will see this and the following in mult-alt constraints.
1257    case '+':
1258      break;
1259    case ',':
1260      Result += "|";
1261      break;
1262    case 'g':
1263      Result += "imr";
1264      break;
1265    case '[': {
1266      assert(OutCons &&
1267             "Must pass output names to constraints with a symbolic name");
1268      unsigned Index;
1269      bool result = Target.resolveSymbolicName(Constraint,
1270                                               &(*OutCons)[0],
1271                                               OutCons->size(), Index);
1272      assert(result && "Could not resolve symbolic name"); (void)result;
1273      Result += llvm::utostr(Index);
1274      break;
1275    }
1276    }
1277
1278    Constraint++;
1279  }
1280
1281  return Result;
1282}
1283
1284/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1285/// as using a particular register add that as a constraint that will be used
1286/// in this asm stmt.
1287static std::string
1288AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1289                       const TargetInfo &Target, CodeGenModule &CGM,
1290                       const AsmStmt &Stmt) {
1291  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1292  if (!AsmDeclRef)
1293    return Constraint;
1294  const ValueDecl &Value = *AsmDeclRef->getDecl();
1295  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1296  if (!Variable)
1297    return Constraint;
1298  if (Variable->getStorageClass() != SC_Register)
1299    return Constraint;
1300  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1301  if (!Attr)
1302    return Constraint;
1303  StringRef Register = Attr->getLabel();
1304  assert(Target.isValidGCCRegisterName(Register));
1305  // We're using validateOutputConstraint here because we only care if
1306  // this is a register constraint.
1307  TargetInfo::ConstraintInfo Info(Constraint, "");
1308  if (Target.validateOutputConstraint(Info) &&
1309      !Info.allowsRegister()) {
1310    CGM.ErrorUnsupported(&Stmt, "__asm__");
1311    return Constraint;
1312  }
1313  // Canonicalize the register here before returning it.
1314  Register = Target.getNormalizedGCCRegisterName(Register);
1315  return "{" + Register.str() + "}";
1316}
1317
1318llvm::Value*
1319CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1320                                    const TargetInfo::ConstraintInfo &Info,
1321                                    LValue InputValue, QualType InputType,
1322                                    std::string &ConstraintStr) {
1323  llvm::Value *Arg;
1324  if (Info.allowsRegister() || !Info.allowsMemory()) {
1325    if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1326      Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1327    } else {
1328      llvm::Type *Ty = ConvertType(InputType);
1329      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1330      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1331        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1332        Ty = llvm::PointerType::getUnqual(Ty);
1333
1334        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1335                                                       Ty));
1336      } else {
1337        Arg = InputValue.getAddress();
1338        ConstraintStr += '*';
1339      }
1340    }
1341  } else {
1342    Arg = InputValue.getAddress();
1343    ConstraintStr += '*';
1344  }
1345
1346  return Arg;
1347}
1348
1349llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1350                                         const TargetInfo::ConstraintInfo &Info,
1351                                           const Expr *InputExpr,
1352                                           std::string &ConstraintStr) {
1353  if (Info.allowsRegister() || !Info.allowsMemory())
1354    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1355      return EmitScalarExpr(InputExpr);
1356
1357  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1358  LValue Dest = EmitLValue(InputExpr);
1359  return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1360}
1361
1362/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1363/// asm call instruction.  The !srcloc MDNode contains a list of constant
1364/// integers which are the source locations of the start of each line in the
1365/// asm.
1366static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1367                                      CodeGenFunction &CGF) {
1368  SmallVector<llvm::Value *, 8> Locs;
1369  // Add the location of the first line to the MDNode.
1370  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1371                                        Str->getLocStart().getRawEncoding()));
1372  StringRef StrVal = Str->getString();
1373  if (!StrVal.empty()) {
1374    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1375    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1376
1377    // Add the location of the start of each subsequent line of the asm to the
1378    // MDNode.
1379    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1380      if (StrVal[i] != '\n') continue;
1381      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1382                                                      CGF.Target);
1383      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1384                                            LineLoc.getRawEncoding()));
1385    }
1386  }
1387
1388  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1389}
1390
1391void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1392  // Analyze the asm string to decompose it into its pieces.  We know that Sema
1393  // has already done this, so it is guaranteed to be successful.
1394  SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1395  unsigned DiagOffs;
1396  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1397
1398  // Assemble the pieces into the final asm string.
1399  std::string AsmString;
1400  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1401    if (Pieces[i].isString())
1402      AsmString += Pieces[i].getString();
1403    else if (Pieces[i].getModifier() == '\0')
1404      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1405    else
1406      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1407                   Pieces[i].getModifier() + '}';
1408  }
1409
1410  // Get all the output and input constraints together.
1411  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1412  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1413
1414  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1415    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1416                                    S.getOutputName(i));
1417    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1418    assert(IsValid && "Failed to parse output constraint");
1419    OutputConstraintInfos.push_back(Info);
1420  }
1421
1422  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1423    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1424                                    S.getInputName(i));
1425    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1426                                                  S.getNumOutputs(), Info);
1427    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1428    InputConstraintInfos.push_back(Info);
1429  }
1430
1431  std::string Constraints;
1432
1433  std::vector<LValue> ResultRegDests;
1434  std::vector<QualType> ResultRegQualTys;
1435  std::vector<llvm::Type *> ResultRegTypes;
1436  std::vector<llvm::Type *> ResultTruncRegTypes;
1437  std::vector<llvm::Type*> ArgTypes;
1438  std::vector<llvm::Value*> Args;
1439
1440  // Keep track of inout constraints.
1441  std::string InOutConstraints;
1442  std::vector<llvm::Value*> InOutArgs;
1443  std::vector<llvm::Type*> InOutArgTypes;
1444
1445  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1446    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1447
1448    // Simplify the output constraint.
1449    std::string OutputConstraint(S.getOutputConstraint(i));
1450    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1451
1452    const Expr *OutExpr = S.getOutputExpr(i);
1453    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1454
1455    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1456                                              Target, CGM, S);
1457
1458    LValue Dest = EmitLValue(OutExpr);
1459    if (!Constraints.empty())
1460      Constraints += ',';
1461
1462    // If this is a register output, then make the inline asm return it
1463    // by-value.  If this is a memory result, return the value by-reference.
1464    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1465      Constraints += "=" + OutputConstraint;
1466      ResultRegQualTys.push_back(OutExpr->getType());
1467      ResultRegDests.push_back(Dest);
1468      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1469      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1470
1471      // If this output is tied to an input, and if the input is larger, then
1472      // we need to set the actual result type of the inline asm node to be the
1473      // same as the input type.
1474      if (Info.hasMatchingInput()) {
1475        unsigned InputNo;
1476        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1477          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1478          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1479            break;
1480        }
1481        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1482
1483        QualType InputTy = S.getInputExpr(InputNo)->getType();
1484        QualType OutputType = OutExpr->getType();
1485
1486        uint64_t InputSize = getContext().getTypeSize(InputTy);
1487        if (getContext().getTypeSize(OutputType) < InputSize) {
1488          // Form the asm to return the value as a larger integer or fp type.
1489          ResultRegTypes.back() = ConvertType(InputTy);
1490        }
1491      }
1492      if (llvm::Type* AdjTy =
1493            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1494                                                 ResultRegTypes.back()))
1495        ResultRegTypes.back() = AdjTy;
1496    } else {
1497      ArgTypes.push_back(Dest.getAddress()->getType());
1498      Args.push_back(Dest.getAddress());
1499      Constraints += "=*";
1500      Constraints += OutputConstraint;
1501    }
1502
1503    if (Info.isReadWrite()) {
1504      InOutConstraints += ',';
1505
1506      const Expr *InputExpr = S.getOutputExpr(i);
1507      llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1508                                            InOutConstraints);
1509
1510      if (llvm::Type* AdjTy =
1511            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1512                                                 Arg->getType()))
1513        Arg = Builder.CreateBitCast(Arg, AdjTy);
1514
1515      if (Info.allowsRegister())
1516        InOutConstraints += llvm::utostr(i);
1517      else
1518        InOutConstraints += OutputConstraint;
1519
1520      InOutArgTypes.push_back(Arg->getType());
1521      InOutArgs.push_back(Arg);
1522    }
1523  }
1524
1525  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1526
1527  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1528    const Expr *InputExpr = S.getInputExpr(i);
1529
1530    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1531
1532    if (!Constraints.empty())
1533      Constraints += ',';
1534
1535    // Simplify the input constraint.
1536    std::string InputConstraint(S.getInputConstraint(i));
1537    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1538                                         &OutputConstraintInfos);
1539
1540    InputConstraint =
1541      AddVariableConstraints(InputConstraint,
1542                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1543                            Target, CGM, S);
1544
1545    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1546
1547    // If this input argument is tied to a larger output result, extend the
1548    // input to be the same size as the output.  The LLVM backend wants to see
1549    // the input and output of a matching constraint be the same size.  Note
1550    // that GCC does not define what the top bits are here.  We use zext because
1551    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1552    if (Info.hasTiedOperand()) {
1553      unsigned Output = Info.getTiedOperand();
1554      QualType OutputType = S.getOutputExpr(Output)->getType();
1555      QualType InputTy = InputExpr->getType();
1556
1557      if (getContext().getTypeSize(OutputType) >
1558          getContext().getTypeSize(InputTy)) {
1559        // Use ptrtoint as appropriate so that we can do our extension.
1560        if (isa<llvm::PointerType>(Arg->getType()))
1561          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1562        llvm::Type *OutputTy = ConvertType(OutputType);
1563        if (isa<llvm::IntegerType>(OutputTy))
1564          Arg = Builder.CreateZExt(Arg, OutputTy);
1565        else if (isa<llvm::PointerType>(OutputTy))
1566          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1567        else {
1568          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1569          Arg = Builder.CreateFPExt(Arg, OutputTy);
1570        }
1571      }
1572    }
1573    if (llvm::Type* AdjTy =
1574              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1575                                                   Arg->getType()))
1576      Arg = Builder.CreateBitCast(Arg, AdjTy);
1577
1578    ArgTypes.push_back(Arg->getType());
1579    Args.push_back(Arg);
1580    Constraints += InputConstraint;
1581  }
1582
1583  // Append the "input" part of inout constraints last.
1584  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1585    ArgTypes.push_back(InOutArgTypes[i]);
1586    Args.push_back(InOutArgs[i]);
1587  }
1588  Constraints += InOutConstraints;
1589
1590  // Clobbers
1591  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1592    StringRef Clobber = S.getClobber(i)->getString();
1593
1594    if (Clobber != "memory" && Clobber != "cc")
1595    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1596
1597    if (i != 0 || NumConstraints != 0)
1598      Constraints += ',';
1599
1600    Constraints += "~{";
1601    Constraints += Clobber;
1602    Constraints += '}';
1603  }
1604
1605  // Add machine specific clobbers
1606  std::string MachineClobbers = Target.getClobbers();
1607  if (!MachineClobbers.empty()) {
1608    if (!Constraints.empty())
1609      Constraints += ',';
1610    Constraints += MachineClobbers;
1611  }
1612
1613  llvm::Type *ResultType;
1614  if (ResultRegTypes.empty())
1615    ResultType = VoidTy;
1616  else if (ResultRegTypes.size() == 1)
1617    ResultType = ResultRegTypes[0];
1618  else
1619    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1620
1621  llvm::FunctionType *FTy =
1622    llvm::FunctionType::get(ResultType, ArgTypes, false);
1623
1624  llvm::InlineAsm *IA =
1625    llvm::InlineAsm::get(FTy, AsmString, Constraints,
1626                         S.isVolatile() || S.getNumOutputs() == 0);
1627  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1628  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1629
1630  // Slap the source location of the inline asm into a !srcloc metadata on the
1631  // call.
1632  Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1633
1634  // Extract all of the register value results from the asm.
1635  std::vector<llvm::Value*> RegResults;
1636  if (ResultRegTypes.size() == 1) {
1637    RegResults.push_back(Result);
1638  } else {
1639    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1640      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1641      RegResults.push_back(Tmp);
1642    }
1643  }
1644
1645  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1646    llvm::Value *Tmp = RegResults[i];
1647
1648    // If the result type of the LLVM IR asm doesn't match the result type of
1649    // the expression, do the conversion.
1650    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1651      llvm::Type *TruncTy = ResultTruncRegTypes[i];
1652
1653      // Truncate the integer result to the right size, note that TruncTy can be
1654      // a pointer.
1655      if (TruncTy->isFloatingPointTy())
1656        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1657      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1658        uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1659        Tmp = Builder.CreateTrunc(Tmp,
1660                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1661        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1662      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1663        uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1664        Tmp = Builder.CreatePtrToInt(Tmp,
1665                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1666        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1667      } else if (TruncTy->isIntegerTy()) {
1668        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1669      } else if (TruncTy->isVectorTy()) {
1670        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1671      }
1672    }
1673
1674    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1675  }
1676}
1677