CGStmt.cpp revision 92b9bd96ce25630f73717965fcaf4b5a761e49e5
1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "clang/AST/StmtVisitor.h"
18#include "clang/Basic/PrettyStackTrace.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Target/TargetData.h"
24using namespace clang;
25using namespace CodeGen;
26
27//===----------------------------------------------------------------------===//
28//                              Statement Emission
29//===----------------------------------------------------------------------===//
30
31void CodeGenFunction::EmitStopPoint(const Stmt *S) {
32  if (CGDebugInfo *DI = getDebugInfo()) {
33    if (isa<DeclStmt>(S))
34      DI->setLocation(S->getLocEnd());
35    else
36      DI->setLocation(S->getLocStart());
37    DI->EmitStopPoint(CurFn, Builder);
38  }
39}
40
41void CodeGenFunction::EmitStmt(const Stmt *S) {
42  assert(S && "Null statement?");
43
44  // Check if we can handle this without bothering to generate an
45  // insert point or debug info.
46  if (EmitSimpleStmt(S))
47    return;
48
49  // Check if we are generating unreachable code.
50  if (!HaveInsertPoint()) {
51    // If so, and the statement doesn't contain a label, then we do not need to
52    // generate actual code. This is safe because (1) the current point is
53    // unreachable, so we don't need to execute the code, and (2) we've already
54    // handled the statements which update internal data structures (like the
55    // local variable map) which could be used by subsequent statements.
56    if (!ContainsLabel(S)) {
57      // Verify that any decl statements were handled as simple, they may be in
58      // scope of subsequent reachable statements.
59      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
60      return;
61    }
62
63    // Otherwise, make a new block to hold the code.
64    EnsureInsertPoint();
65  }
66
67  // Generate a stoppoint if we are emitting debug info.
68  EmitStopPoint(S);
69
70  switch (S->getStmtClass()) {
71  default:
72    // Must be an expression in a stmt context.  Emit the value (to get
73    // side-effects) and ignore the result.
74    if (!isa<Expr>(S))
75      ErrorUnsupported(S, "statement");
76
77    EmitAnyExpr(cast<Expr>(S), 0, false, true);
78
79    // Expression emitters don't handle unreachable blocks yet, so look for one
80    // explicitly here. This handles the common case of a call to a noreturn
81    // function.
82    if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) {
83      if (CurBB->empty() && CurBB->use_empty() && !BlockScopes.count(CurBB)) {
84        CurBB->eraseFromParent();
85        Builder.ClearInsertionPoint();
86      }
87    }
88    break;
89  case Stmt::IndirectGotoStmtClass:
90    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
91
92  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
93  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
94  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
95  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
96
97  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
98
99  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
100  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
101
102  case Stmt::ObjCAtTryStmtClass:
103    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
104    break;
105  case Stmt::ObjCAtCatchStmtClass:
106    assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
107    break;
108  case Stmt::ObjCAtFinallyStmtClass:
109    assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
110    break;
111  case Stmt::ObjCAtThrowStmtClass:
112    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
113    break;
114  case Stmt::ObjCAtSynchronizedStmtClass:
115    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
116    break;
117  case Stmt::ObjCForCollectionStmtClass:
118    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
119    break;
120
121  case Stmt::CXXTryStmtClass:
122    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
123    break;
124  }
125}
126
127bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
128  switch (S->getStmtClass()) {
129  default: return false;
130  case Stmt::NullStmtClass: break;
131  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
132  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
133  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
134  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
135  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
136  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
137  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
138  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
139  }
140
141  return true;
142}
143
144/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
145/// this captures the expression result of the last sub-statement and returns it
146/// (for use by the statement expression extension).
147RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
148                                         llvm::Value *AggLoc, bool isAggVol) {
149  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
150                             "LLVM IR generation of compound statement ('{}')");
151
152  CGDebugInfo *DI = getDebugInfo();
153  if (DI) {
154    DI->setLocation(S.getLBracLoc());
155    DI->EmitRegionStart(CurFn, Builder);
156  }
157
158  // Keep track of the current cleanup stack depth.
159  CleanupScope Scope(*this);
160
161  for (CompoundStmt::const_body_iterator I = S.body_begin(),
162       E = S.body_end()-GetLast; I != E; ++I)
163    EmitStmt(*I);
164
165  if (DI) {
166    DI->setLocation(S.getRBracLoc());
167    DI->EmitRegionEnd(CurFn, Builder);
168  }
169
170  RValue RV;
171  if (!GetLast)
172    RV = RValue::get(0);
173  else {
174    // We have to special case labels here.  They are statements, but when put
175    // at the end of a statement expression, they yield the value of their
176    // subexpression.  Handle this by walking through all labels we encounter,
177    // emitting them before we evaluate the subexpr.
178    const Stmt *LastStmt = S.body_back();
179    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
180      EmitLabel(*LS);
181      LastStmt = LS->getSubStmt();
182    }
183
184    EnsureInsertPoint();
185
186    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
187  }
188
189  return RV;
190}
191
192void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
193  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
194
195  // If there is a cleanup stack, then we it isn't worth trying to
196  // simplify this block (we would need to remove it from the scope map
197  // and cleanup entry).
198  if (!CleanupEntries.empty())
199    return;
200
201  // Can only simplify direct branches.
202  if (!BI || !BI->isUnconditional())
203    return;
204
205  BB->replaceAllUsesWith(BI->getSuccessor(0));
206  BI->eraseFromParent();
207  BB->eraseFromParent();
208}
209
210void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
211  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
212
213  // Fall out of the current block (if necessary).
214  EmitBranch(BB);
215
216  if (IsFinished && BB->use_empty()) {
217    delete BB;
218    return;
219  }
220
221  // If necessary, associate the block with the cleanup stack size.
222  if (!CleanupEntries.empty()) {
223    // Check if the basic block has already been inserted.
224    BlockScopeMap::iterator I = BlockScopes.find(BB);
225    if (I != BlockScopes.end()) {
226      assert(I->second == CleanupEntries.size() - 1);
227    } else {
228      BlockScopes[BB] = CleanupEntries.size() - 1;
229      CleanupEntries.back().Blocks.push_back(BB);
230    }
231  }
232
233  // Place the block after the current block, if possible, or else at
234  // the end of the function.
235  if (CurBB && CurBB->getParent())
236    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
237  else
238    CurFn->getBasicBlockList().push_back(BB);
239  Builder.SetInsertPoint(BB);
240}
241
242void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
243  // Emit a branch from the current block to the target one if this
244  // was a real block.  If this was just a fall-through block after a
245  // terminator, don't emit it.
246  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
247
248  if (!CurBB || CurBB->getTerminator()) {
249    // If there is no insert point or the previous block is already
250    // terminated, don't touch it.
251  } else {
252    // Otherwise, create a fall-through branch.
253    Builder.CreateBr(Target);
254  }
255
256  Builder.ClearInsertionPoint();
257}
258
259void CodeGenFunction::EmitLabel(const LabelStmt &S) {
260  EmitBlock(getBasicBlockForLabel(&S));
261}
262
263
264void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
265  EmitLabel(S);
266  EmitStmt(S.getSubStmt());
267}
268
269void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
270  // If this code is reachable then emit a stop point (if generating
271  // debug info). We have to do this ourselves because we are on the
272  // "simple" statement path.
273  if (HaveInsertPoint())
274    EmitStopPoint(&S);
275
276  EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
277}
278
279
280void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
281  // Ensure that we have an i8* for our PHI node.
282  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
283                                         llvm::Type::getInt8PtrTy(VMContext),
284                                          "addr");
285  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
286
287
288  // Get the basic block for the indirect goto.
289  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
290
291  // The first instruction in the block has to be the PHI for the switch dest,
292  // add an entry for this branch.
293  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
294
295  EmitBranch(IndGotoBB);
296}
297
298void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
299  // C99 6.8.4.1: The first substatement is executed if the expression compares
300  // unequal to 0.  The condition must be a scalar type.
301  CleanupScope ConditionScope(*this);
302
303  if (S.getConditionVariable())
304    EmitLocalBlockVarDecl(*S.getConditionVariable());
305
306  // If the condition constant folds and can be elided, try to avoid emitting
307  // the condition and the dead arm of the if/else.
308  if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
309    // Figure out which block (then or else) is executed.
310    const Stmt *Executed = S.getThen(), *Skipped  = S.getElse();
311    if (Cond == -1)  // Condition false?
312      std::swap(Executed, Skipped);
313
314    // If the skipped block has no labels in it, just emit the executed block.
315    // This avoids emitting dead code and simplifies the CFG substantially.
316    if (!ContainsLabel(Skipped)) {
317      if (Executed) {
318        CleanupScope ExecutedScope(*this);
319        EmitStmt(Executed);
320      }
321      return;
322    }
323  }
324
325  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
326  // the conditional branch.
327  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
328  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
329  llvm::BasicBlock *ElseBlock = ContBlock;
330  if (S.getElse())
331    ElseBlock = createBasicBlock("if.else");
332  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
333
334  // Emit the 'then' code.
335  EmitBlock(ThenBlock);
336  {
337    CleanupScope ThenScope(*this);
338    EmitStmt(S.getThen());
339  }
340  EmitBranch(ContBlock);
341
342  // Emit the 'else' code if present.
343  if (const Stmt *Else = S.getElse()) {
344    EmitBlock(ElseBlock);
345    {
346      CleanupScope ElseScope(*this);
347      EmitStmt(Else);
348    }
349    EmitBranch(ContBlock);
350  }
351
352  // Emit the continuation block for code after the if.
353  EmitBlock(ContBlock, true);
354}
355
356void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
357  // Emit the header for the loop, insert it, which will create an uncond br to
358  // it.
359  llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
360  EmitBlock(LoopHeader);
361
362  // Create an exit block for when the condition fails, create a block for the
363  // body of the loop.
364  llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
365  llvm::BasicBlock *LoopBody  = createBasicBlock("while.body");
366  llvm::BasicBlock *CleanupBlock = 0;
367  llvm::BasicBlock *EffectiveExitBlock = ExitBlock;
368
369  // Store the blocks to use for break and continue.
370  BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
371
372  // C++ [stmt.while]p2:
373  //   When the condition of a while statement is a declaration, the
374  //   scope of the variable that is declared extends from its point
375  //   of declaration (3.3.2) to the end of the while statement.
376  //   [...]
377  //   The object created in a condition is destroyed and created
378  //   with each iteration of the loop.
379  CleanupScope ConditionScope(*this);
380
381  if (S.getConditionVariable()) {
382    EmitLocalBlockVarDecl(*S.getConditionVariable());
383
384    // If this condition variable requires cleanups, create a basic
385    // block to handle those cleanups.
386    if (ConditionScope.requiresCleanups()) {
387      CleanupBlock = createBasicBlock("while.cleanup");
388      EffectiveExitBlock = CleanupBlock;
389    }
390  }
391
392  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
393  // evaluation of the controlling expression takes place before each
394  // execution of the loop body.
395  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
396
397  // while(1) is common, avoid extra exit blocks.  Be sure
398  // to correctly handle break/continue though.
399  bool EmitBoolCondBranch = true;
400  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
401    if (C->isOne())
402      EmitBoolCondBranch = false;
403
404  // As long as the condition is true, go to the loop body.
405  if (EmitBoolCondBranch)
406    Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock);
407
408  // Emit the loop body.
409  {
410    CleanupScope BodyScope(*this);
411    EmitBlock(LoopBody);
412    EmitStmt(S.getBody());
413  }
414
415  BreakContinueStack.pop_back();
416
417  if (CleanupBlock) {
418    // If we have a cleanup block, jump there to perform cleanups
419    // before looping.
420    EmitBranch(CleanupBlock);
421
422    // Emit the cleanup block, performing cleanups for the condition
423    // and then jumping to either the loop header or the exit block.
424    EmitBlock(CleanupBlock);
425    ConditionScope.ForceCleanup();
426    Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock);
427  } else {
428    // Cycle to the condition.
429    EmitBranch(LoopHeader);
430  }
431
432  // Emit the exit block.
433  EmitBlock(ExitBlock, true);
434
435
436  // The LoopHeader typically is just a branch if we skipped emitting
437  // a branch, try to erase it.
438  if (!EmitBoolCondBranch && !CleanupBlock)
439    SimplifyForwardingBlocks(LoopHeader);
440}
441
442void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
443  // Emit the body for the loop, insert it, which will create an uncond br to
444  // it.
445  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
446  llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
447  EmitBlock(LoopBody);
448
449  llvm::BasicBlock *DoCond = createBasicBlock("do.cond");
450
451  // Store the blocks to use for break and continue.
452  BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
453
454  // Emit the body of the loop into the block.
455  EmitStmt(S.getBody());
456
457  BreakContinueStack.pop_back();
458
459  EmitBlock(DoCond);
460
461  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
462  // after each execution of the loop body."
463
464  // Evaluate the conditional in the while header.
465  // C99 6.8.5p2/p4: The first substatement is executed if the expression
466  // compares unequal to 0.  The condition must be a scalar type.
467  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
468
469  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
470  // to correctly handle break/continue though.
471  bool EmitBoolCondBranch = true;
472  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
473    if (C->isZero())
474      EmitBoolCondBranch = false;
475
476  // As long as the condition is true, iterate the loop.
477  if (EmitBoolCondBranch)
478    Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
479
480  // Emit the exit block.
481  EmitBlock(AfterDo);
482
483  // The DoCond block typically is just a branch if we skipped
484  // emitting a branch, try to erase it.
485  if (!EmitBoolCondBranch)
486    SimplifyForwardingBlocks(DoCond);
487}
488
489void CodeGenFunction::EmitForStmt(const ForStmt &S) {
490  CleanupScope ForScope(*this);
491
492  // Evaluate the first part before the loop.
493  if (S.getInit())
494    EmitStmt(S.getInit());
495
496  // Start the loop with a block that tests the condition.
497  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
498  llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
499  llvm::BasicBlock *IncBlock = 0;
500  llvm::BasicBlock *CondCleanup = 0;
501  llvm::BasicBlock *EffectiveExitBlock = AfterFor;
502  EmitBlock(CondBlock);
503
504  // Create a cleanup scope for the condition variable cleanups.
505  CleanupScope ConditionScope(*this);
506
507  llvm::Value *BoolCondVal = 0;
508  if (S.getCond()) {
509    // If the for statement has a condition scope, emit the local variable
510    // declaration.
511    if (S.getConditionVariable()) {
512      EmitLocalBlockVarDecl(*S.getConditionVariable());
513
514      if (ConditionScope.requiresCleanups()) {
515        CondCleanup = createBasicBlock("for.cond.cleanup");
516        EffectiveExitBlock = CondCleanup;
517      }
518    }
519
520    // As long as the condition is true, iterate the loop.
521    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
522
523    // C99 6.8.5p2/p4: The first substatement is executed if the expression
524    // compares unequal to 0.  The condition must be a scalar type.
525    BoolCondVal = EvaluateExprAsBool(S.getCond());
526    Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock);
527
528    EmitBlock(ForBody);
529  } else {
530    // Treat it as a non-zero constant.  Don't even create a new block for the
531    // body, just fall into it.
532  }
533
534  // If the for loop doesn't have an increment we can just use the
535  // condition as the continue block.
536  llvm::BasicBlock *ContinueBlock;
537  if (S.getInc())
538    ContinueBlock = IncBlock = createBasicBlock("for.inc");
539  else
540    ContinueBlock = CondBlock;
541
542  // Store the blocks to use for break and continue.
543  BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
544
545  // If the condition is true, execute the body of the for stmt.
546  CGDebugInfo *DI = getDebugInfo();
547  if (DI) {
548    DI->setLocation(S.getSourceRange().getBegin());
549    DI->EmitRegionStart(CurFn, Builder);
550  }
551
552  {
553    // Create a separate cleanup scope for the body, in case it is not
554    // a compound statement.
555    CleanupScope BodyScope(*this);
556    EmitStmt(S.getBody());
557  }
558
559  // If there is an increment, emit it next.
560  if (S.getInc()) {
561    EmitBlock(IncBlock);
562    EmitStmt(S.getInc());
563  }
564
565  BreakContinueStack.pop_back();
566
567  // Finally, branch back up to the condition for the next iteration.
568  if (CondCleanup) {
569    // Branch to the cleanup block.
570    EmitBranch(CondCleanup);
571
572    // Emit the cleanup block, which branches back to the loop body or
573    // outside of the for statement once it is done.
574    EmitBlock(CondCleanup);
575    ConditionScope.ForceCleanup();
576    Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor);
577  } else
578    EmitBranch(CondBlock);
579  if (DI) {
580    DI->setLocation(S.getSourceRange().getEnd());
581    DI->EmitRegionEnd(CurFn, Builder);
582  }
583
584  // Emit the fall-through block.
585  EmitBlock(AfterFor, true);
586}
587
588void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
589  if (RV.isScalar()) {
590    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
591  } else if (RV.isAggregate()) {
592    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
593  } else {
594    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
595  }
596  EmitBranchThroughCleanup(ReturnBlock);
597}
598
599/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
600/// if the function returns void, or may be missing one if the function returns
601/// non-void.  Fun stuff :).
602void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
603  // Emit the result value, even if unused, to evalute the side effects.
604  const Expr *RV = S.getRetValue();
605
606  // FIXME: Clean this up by using an LValue for ReturnTemp,
607  // EmitStoreThroughLValue, and EmitAnyExpr.
608  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
609      !Target.useGlobalsForAutomaticVariables()) {
610    // Apply the named return value optimization for this return statement,
611    // which means doing nothing: the appropriate result has already been
612    // constructed into the NRVO variable.
613
614    // If there is an NRVO flag for this variable, set it to 1 into indicate
615    // that the cleanup code should not destroy the variable.
616    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) {
617      const llvm::Type *BoolTy = llvm::Type::getInt1Ty(VMContext);
618      llvm::Value *One = llvm::ConstantInt::get(BoolTy, 1);
619      Builder.CreateStore(One, NRVOFlag);
620    }
621  } else if (!ReturnValue) {
622    // Make sure not to return anything, but evaluate the expression
623    // for side effects.
624    if (RV)
625      EmitAnyExpr(RV);
626  } else if (RV == 0) {
627    // Do nothing (return value is left uninitialized)
628  } else if (FnRetTy->isReferenceType()) {
629    // If this function returns a reference, take the address of the expression
630    // rather than the value.
631    RValue Result = EmitReferenceBindingToExpr(RV, false);
632    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
633  } else if (!hasAggregateLLVMType(RV->getType())) {
634    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
635  } else if (RV->getType()->isAnyComplexType()) {
636    EmitComplexExprIntoAddr(RV, ReturnValue, false);
637  } else {
638    EmitAggExpr(RV, ReturnValue, false);
639  }
640
641  EmitBranchThroughCleanup(ReturnBlock);
642}
643
644void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
645  // As long as debug info is modeled with instructions, we have to ensure we
646  // have a place to insert here and write the stop point here.
647  if (getDebugInfo()) {
648    EnsureInsertPoint();
649    EmitStopPoint(&S);
650  }
651
652  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
653       I != E; ++I)
654    EmitDecl(**I);
655}
656
657void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
658  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
659
660  // If this code is reachable then emit a stop point (if generating
661  // debug info). We have to do this ourselves because we are on the
662  // "simple" statement path.
663  if (HaveInsertPoint())
664    EmitStopPoint(&S);
665
666  llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
667  EmitBranchThroughCleanup(Block);
668}
669
670void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
671  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
672
673  // If this code is reachable then emit a stop point (if generating
674  // debug info). We have to do this ourselves because we are on the
675  // "simple" statement path.
676  if (HaveInsertPoint())
677    EmitStopPoint(&S);
678
679  llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
680  EmitBranchThroughCleanup(Block);
681}
682
683/// EmitCaseStmtRange - If case statement range is not too big then
684/// add multiple cases to switch instruction, one for each value within
685/// the range. If range is too big then emit "if" condition check.
686void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
687  assert(S.getRHS() && "Expected RHS value in CaseStmt");
688
689  llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
690  llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
691
692  // Emit the code for this case. We do this first to make sure it is
693  // properly chained from our predecessor before generating the
694  // switch machinery to enter this block.
695  EmitBlock(createBasicBlock("sw.bb"));
696  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
697  EmitStmt(S.getSubStmt());
698
699  // If range is empty, do nothing.
700  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
701    return;
702
703  llvm::APInt Range = RHS - LHS;
704  // FIXME: parameters such as this should not be hardcoded.
705  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
706    // Range is small enough to add multiple switch instruction cases.
707    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
708      SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
709      LHS++;
710    }
711    return;
712  }
713
714  // The range is too big. Emit "if" condition into a new block,
715  // making sure to save and restore the current insertion point.
716  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
717
718  // Push this test onto the chain of range checks (which terminates
719  // in the default basic block). The switch's default will be changed
720  // to the top of this chain after switch emission is complete.
721  llvm::BasicBlock *FalseDest = CaseRangeBlock;
722  CaseRangeBlock = createBasicBlock("sw.caserange");
723
724  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
725  Builder.SetInsertPoint(CaseRangeBlock);
726
727  // Emit range check.
728  llvm::Value *Diff =
729    Builder.CreateSub(SwitchInsn->getCondition(),
730                      llvm::ConstantInt::get(VMContext, LHS),  "tmp");
731  llvm::Value *Cond =
732    Builder.CreateICmpULE(Diff,
733                          llvm::ConstantInt::get(VMContext, Range), "tmp");
734  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
735
736  // Restore the appropriate insertion point.
737  if (RestoreBB)
738    Builder.SetInsertPoint(RestoreBB);
739  else
740    Builder.ClearInsertionPoint();
741}
742
743void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
744  if (S.getRHS()) {
745    EmitCaseStmtRange(S);
746    return;
747  }
748
749  EmitBlock(createBasicBlock("sw.bb"));
750  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
751  llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
752  SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
753
754  // Recursively emitting the statement is acceptable, but is not wonderful for
755  // code where we have many case statements nested together, i.e.:
756  //  case 1:
757  //    case 2:
758  //      case 3: etc.
759  // Handling this recursively will create a new block for each case statement
760  // that falls through to the next case which is IR intensive.  It also causes
761  // deep recursion which can run into stack depth limitations.  Handle
762  // sequential non-range case statements specially.
763  const CaseStmt *CurCase = &S;
764  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
765
766  // Otherwise, iteratively add consequtive cases to this switch stmt.
767  while (NextCase && NextCase->getRHS() == 0) {
768    CurCase = NextCase;
769    CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
770    SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
771
772    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
773  }
774
775  // Normal default recursion for non-cases.
776  EmitStmt(CurCase->getSubStmt());
777}
778
779void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
780  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
781  assert(DefaultBlock->empty() &&
782         "EmitDefaultStmt: Default block already defined?");
783  EmitBlock(DefaultBlock);
784  EmitStmt(S.getSubStmt());
785}
786
787void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
788  CleanupScope ConditionScope(*this);
789
790  if (S.getConditionVariable())
791    EmitLocalBlockVarDecl(*S.getConditionVariable());
792
793  llvm::Value *CondV = EmitScalarExpr(S.getCond());
794
795  // Handle nested switch statements.
796  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
797  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
798
799  // Create basic block to hold stuff that comes after switch
800  // statement. We also need to create a default block now so that
801  // explicit case ranges tests can have a place to jump to on
802  // failure.
803  llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
804  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
805  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
806  CaseRangeBlock = DefaultBlock;
807
808  // Clear the insertion point to indicate we are in unreachable code.
809  Builder.ClearInsertionPoint();
810
811  // All break statements jump to NextBlock. If BreakContinueStack is non empty
812  // then reuse last ContinueBlock.
813  llvm::BasicBlock *ContinueBlock = 0;
814  if (!BreakContinueStack.empty())
815    ContinueBlock = BreakContinueStack.back().ContinueBlock;
816
817  // Ensure any vlas created between there and here, are undone
818  BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));
819
820  // Emit switch body.
821  EmitStmt(S.getBody());
822
823  BreakContinueStack.pop_back();
824
825  // Update the default block in case explicit case range tests have
826  // been chained on top.
827  SwitchInsn->setSuccessor(0, CaseRangeBlock);
828
829  // If a default was never emitted then reroute any jumps to it and
830  // discard.
831  if (!DefaultBlock->getParent()) {
832    DefaultBlock->replaceAllUsesWith(NextBlock);
833    delete DefaultBlock;
834  }
835
836  // Emit continuation.
837  EmitBlock(NextBlock, true);
838
839  SwitchInsn = SavedSwitchInsn;
840  CaseRangeBlock = SavedCRBlock;
841}
842
843static std::string
844SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
845                 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
846  std::string Result;
847
848  while (*Constraint) {
849    switch (*Constraint) {
850    default:
851      Result += Target.convertConstraint(*Constraint);
852      break;
853    // Ignore these
854    case '*':
855    case '?':
856    case '!':
857      break;
858    case 'g':
859      Result += "imr";
860      break;
861    case '[': {
862      assert(OutCons &&
863             "Must pass output names to constraints with a symbolic name");
864      unsigned Index;
865      bool result = Target.resolveSymbolicName(Constraint,
866                                               &(*OutCons)[0],
867                                               OutCons->size(), Index);
868      assert(result && "Could not resolve symbolic name"); result=result;
869      Result += llvm::utostr(Index);
870      break;
871    }
872    }
873
874    Constraint++;
875  }
876
877  return Result;
878}
879
880llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
881                                         const TargetInfo::ConstraintInfo &Info,
882                                           const Expr *InputExpr,
883                                           std::string &ConstraintStr) {
884  llvm::Value *Arg;
885  if (Info.allowsRegister() || !Info.allowsMemory()) {
886    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) {
887      Arg = EmitScalarExpr(InputExpr);
888    } else {
889      InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
890      LValue Dest = EmitLValue(InputExpr);
891
892      const llvm::Type *Ty = ConvertType(InputExpr->getType());
893      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
894      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
895        Ty = llvm::IntegerType::get(VMContext, Size);
896        Ty = llvm::PointerType::getUnqual(Ty);
897
898        Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
899      } else {
900        Arg = Dest.getAddress();
901        ConstraintStr += '*';
902      }
903    }
904  } else {
905    InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
906    LValue Dest = EmitLValue(InputExpr);
907    Arg = Dest.getAddress();
908    ConstraintStr += '*';
909  }
910
911  return Arg;
912}
913
914void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
915  // Analyze the asm string to decompose it into its pieces.  We know that Sema
916  // has already done this, so it is guaranteed to be successful.
917  llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
918  unsigned DiagOffs;
919  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
920
921  // Assemble the pieces into the final asm string.
922  std::string AsmString;
923  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
924    if (Pieces[i].isString())
925      AsmString += Pieces[i].getString();
926    else if (Pieces[i].getModifier() == '\0')
927      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
928    else
929      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
930                   Pieces[i].getModifier() + '}';
931  }
932
933  // Get all the output and input constraints together.
934  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
935  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
936
937  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
938    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
939                                    S.getOutputName(i));
940    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
941    assert(IsValid && "Failed to parse output constraint");
942    OutputConstraintInfos.push_back(Info);
943  }
944
945  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
946    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
947                                    S.getInputName(i));
948    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
949                                                  S.getNumOutputs(), Info);
950    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
951    InputConstraintInfos.push_back(Info);
952  }
953
954  std::string Constraints;
955
956  std::vector<LValue> ResultRegDests;
957  std::vector<QualType> ResultRegQualTys;
958  std::vector<const llvm::Type *> ResultRegTypes;
959  std::vector<const llvm::Type *> ResultTruncRegTypes;
960  std::vector<const llvm::Type*> ArgTypes;
961  std::vector<llvm::Value*> Args;
962
963  // Keep track of inout constraints.
964  std::string InOutConstraints;
965  std::vector<llvm::Value*> InOutArgs;
966  std::vector<const llvm::Type*> InOutArgTypes;
967
968  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
969    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
970
971    // Simplify the output constraint.
972    std::string OutputConstraint(S.getOutputConstraint(i));
973    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
974
975    const Expr *OutExpr = S.getOutputExpr(i);
976    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
977
978    LValue Dest = EmitLValue(OutExpr);
979    if (!Constraints.empty())
980      Constraints += ',';
981
982    // If this is a register output, then make the inline asm return it
983    // by-value.  If this is a memory result, return the value by-reference.
984    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
985      Constraints += "=" + OutputConstraint;
986      ResultRegQualTys.push_back(OutExpr->getType());
987      ResultRegDests.push_back(Dest);
988      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
989      ResultTruncRegTypes.push_back(ResultRegTypes.back());
990
991      // If this output is tied to an input, and if the input is larger, then
992      // we need to set the actual result type of the inline asm node to be the
993      // same as the input type.
994      if (Info.hasMatchingInput()) {
995        unsigned InputNo;
996        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
997          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
998          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
999            break;
1000        }
1001        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1002
1003        QualType InputTy = S.getInputExpr(InputNo)->getType();
1004        QualType OutputType = OutExpr->getType();
1005
1006        uint64_t InputSize = getContext().getTypeSize(InputTy);
1007        if (getContext().getTypeSize(OutputType) < InputSize) {
1008          // Form the asm to return the value as a larger integer or fp type.
1009          ResultRegTypes.back() = ConvertType(InputTy);
1010        }
1011      }
1012    } else {
1013      ArgTypes.push_back(Dest.getAddress()->getType());
1014      Args.push_back(Dest.getAddress());
1015      Constraints += "=*";
1016      Constraints += OutputConstraint;
1017    }
1018
1019    if (Info.isReadWrite()) {
1020      InOutConstraints += ',';
1021
1022      const Expr *InputExpr = S.getOutputExpr(i);
1023      llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);
1024
1025      if (Info.allowsRegister())
1026        InOutConstraints += llvm::utostr(i);
1027      else
1028        InOutConstraints += OutputConstraint;
1029
1030      InOutArgTypes.push_back(Arg->getType());
1031      InOutArgs.push_back(Arg);
1032    }
1033  }
1034
1035  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1036
1037  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1038    const Expr *InputExpr = S.getInputExpr(i);
1039
1040    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1041
1042    if (!Constraints.empty())
1043      Constraints += ',';
1044
1045    // Simplify the input constraint.
1046    std::string InputConstraint(S.getInputConstraint(i));
1047    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1048                                         &OutputConstraintInfos);
1049
1050    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1051
1052    // If this input argument is tied to a larger output result, extend the
1053    // input to be the same size as the output.  The LLVM backend wants to see
1054    // the input and output of a matching constraint be the same size.  Note
1055    // that GCC does not define what the top bits are here.  We use zext because
1056    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1057    if (Info.hasTiedOperand()) {
1058      unsigned Output = Info.getTiedOperand();
1059      QualType OutputType = S.getOutputExpr(Output)->getType();
1060      QualType InputTy = InputExpr->getType();
1061
1062      if (getContext().getTypeSize(OutputType) >
1063          getContext().getTypeSize(InputTy)) {
1064        // Use ptrtoint as appropriate so that we can do our extension.
1065        if (isa<llvm::PointerType>(Arg->getType()))
1066          Arg = Builder.CreatePtrToInt(Arg,
1067                           llvm::IntegerType::get(VMContext, LLVMPointerWidth));
1068        const llvm::Type *OutputTy = ConvertType(OutputType);
1069        if (isa<llvm::IntegerType>(OutputTy))
1070          Arg = Builder.CreateZExt(Arg, OutputTy);
1071        else
1072          Arg = Builder.CreateFPExt(Arg, OutputTy);
1073      }
1074    }
1075
1076
1077    ArgTypes.push_back(Arg->getType());
1078    Args.push_back(Arg);
1079    Constraints += InputConstraint;
1080  }
1081
1082  // Append the "input" part of inout constraints last.
1083  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1084    ArgTypes.push_back(InOutArgTypes[i]);
1085    Args.push_back(InOutArgs[i]);
1086  }
1087  Constraints += InOutConstraints;
1088
1089  // Clobbers
1090  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1091    llvm::StringRef Clobber = S.getClobber(i)->getString();
1092
1093    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1094
1095    if (i != 0 || NumConstraints != 0)
1096      Constraints += ',';
1097
1098    Constraints += "~{";
1099    Constraints += Clobber;
1100    Constraints += '}';
1101  }
1102
1103  // Add machine specific clobbers
1104  std::string MachineClobbers = Target.getClobbers();
1105  if (!MachineClobbers.empty()) {
1106    if (!Constraints.empty())
1107      Constraints += ',';
1108    Constraints += MachineClobbers;
1109  }
1110
1111  const llvm::Type *ResultType;
1112  if (ResultRegTypes.empty())
1113    ResultType = llvm::Type::getVoidTy(VMContext);
1114  else if (ResultRegTypes.size() == 1)
1115    ResultType = ResultRegTypes[0];
1116  else
1117    ResultType = llvm::StructType::get(VMContext, ResultRegTypes);
1118
1119  const llvm::FunctionType *FTy =
1120    llvm::FunctionType::get(ResultType, ArgTypes, false);
1121
1122  llvm::InlineAsm *IA =
1123    llvm::InlineAsm::get(FTy, AsmString, Constraints,
1124                         S.isVolatile() || S.getNumOutputs() == 0);
1125  llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1126  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1127
1128  // Slap the source location of the inline asm into a !srcloc metadata on the
1129  // call.
1130  unsigned LocID = S.getAsmString()->getLocStart().getRawEncoding();
1131  llvm::Value *LocIDC =
1132    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LocID);
1133  Result->setMetadata("srcloc", llvm::MDNode::get(VMContext, &LocIDC, 1));
1134
1135  // Extract all of the register value results from the asm.
1136  std::vector<llvm::Value*> RegResults;
1137  if (ResultRegTypes.size() == 1) {
1138    RegResults.push_back(Result);
1139  } else {
1140    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1141      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1142      RegResults.push_back(Tmp);
1143    }
1144  }
1145
1146  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1147    llvm::Value *Tmp = RegResults[i];
1148
1149    // If the result type of the LLVM IR asm doesn't match the result type of
1150    // the expression, do the conversion.
1151    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1152      const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1153
1154      // Truncate the integer result to the right size, note that TruncTy can be
1155      // a pointer.
1156      if (TruncTy->isFloatingPointTy())
1157        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1158      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1159        uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1160        Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext,
1161                                                            (unsigned)ResSize));
1162        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1163      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1164        uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1165        Tmp = Builder.CreatePtrToInt(Tmp, llvm::IntegerType::get(VMContext,
1166                                                            (unsigned)TmpSize));
1167        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1168      } else if (TruncTy->isIntegerTy()) {
1169        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1170      }
1171    }
1172
1173    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1174                           ResultRegQualTys[i]);
1175  }
1176}
1177