CGStmt.cpp revision ba0513de93d2fab6db5ab30b6927209fcc883078
1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/PrettyStackTrace.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25using namespace clang;
26using namespace CodeGen;
27
28//===----------------------------------------------------------------------===//
29//                              Statement Emission
30//===----------------------------------------------------------------------===//
31
32void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33  if (CGDebugInfo *DI = getDebugInfo()) {
34    SourceLocation Loc;
35    if (isa<DeclStmt>(S))
36      Loc = S->getLocEnd();
37    else
38      Loc = S->getLocStart();
39    DI->EmitLocation(Builder, Loc);
40  }
41}
42
43void CodeGenFunction::EmitStmt(const Stmt *S) {
44  assert(S && "Null statement?");
45
46  // These statements have their own debug info handling.
47  if (EmitSimpleStmt(S))
48    return;
49
50  // Check if we are generating unreachable code.
51  if (!HaveInsertPoint()) {
52    // If so, and the statement doesn't contain a label, then we do not need to
53    // generate actual code. This is safe because (1) the current point is
54    // unreachable, so we don't need to execute the code, and (2) we've already
55    // handled the statements which update internal data structures (like the
56    // local variable map) which could be used by subsequent statements.
57    if (!ContainsLabel(S)) {
58      // Verify that any decl statements were handled as simple, they may be in
59      // scope of subsequent reachable statements.
60      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61      return;
62    }
63
64    // Otherwise, make a new block to hold the code.
65    EnsureInsertPoint();
66  }
67
68  // Generate a stoppoint if we are emitting debug info.
69  EmitStopPoint(S);
70
71  switch (S->getStmtClass()) {
72  case Stmt::NoStmtClass:
73  case Stmt::CXXCatchStmtClass:
74  case Stmt::SEHExceptStmtClass:
75  case Stmt::SEHFinallyStmtClass:
76  case Stmt::MSDependentExistsStmtClass:
77    llvm_unreachable("invalid statement class to emit generically");
78  case Stmt::NullStmtClass:
79  case Stmt::CompoundStmtClass:
80  case Stmt::DeclStmtClass:
81  case Stmt::LabelStmtClass:
82  case Stmt::GotoStmtClass:
83  case Stmt::BreakStmtClass:
84  case Stmt::ContinueStmtClass:
85  case Stmt::DefaultStmtClass:
86  case Stmt::CaseStmtClass:
87    llvm_unreachable("should have emitted these statements as simple");
88
89#define STMT(Type, Base)
90#define ABSTRACT_STMT(Op)
91#define EXPR(Type, Base) \
92  case Stmt::Type##Class:
93#include "clang/AST/StmtNodes.inc"
94  {
95    // Remember the block we came in on.
96    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97    assert(incoming && "expression emission must have an insertion point");
98
99    EmitIgnoredExpr(cast<Expr>(S));
100
101    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102    assert(outgoing && "expression emission cleared block!");
103
104    // The expression emitters assume (reasonably!) that the insertion
105    // point is always set.  To maintain that, the call-emission code
106    // for noreturn functions has to enter a new block with no
107    // predecessors.  We want to kill that block and mark the current
108    // insertion point unreachable in the common case of a call like
109    // "exit();".  Since expression emission doesn't otherwise create
110    // blocks with no predecessors, we can just test for that.
111    // However, we must be careful not to do this to our incoming
112    // block, because *statement* emission does sometimes create
113    // reachable blocks which will have no predecessors until later in
114    // the function.  This occurs with, e.g., labels that are not
115    // reachable by fallthrough.
116    if (incoming != outgoing && outgoing->use_empty()) {
117      outgoing->eraseFromParent();
118      Builder.ClearInsertionPoint();
119    }
120    break;
121  }
122
123  case Stmt::IndirectGotoStmtClass:
124    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125
126  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130
131  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132
133  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135
136  case Stmt::ObjCAtTryStmtClass:
137    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138    break;
139  case Stmt::ObjCAtCatchStmtClass:
140    llvm_unreachable(
141                    "@catch statements should be handled by EmitObjCAtTryStmt");
142  case Stmt::ObjCAtFinallyStmtClass:
143    llvm_unreachable(
144                  "@finally statements should be handled by EmitObjCAtTryStmt");
145  case Stmt::ObjCAtThrowStmtClass:
146    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147    break;
148  case Stmt::ObjCAtSynchronizedStmtClass:
149    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150    break;
151  case Stmt::ObjCForCollectionStmtClass:
152    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153    break;
154  case Stmt::ObjCAutoreleasePoolStmtClass:
155    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
156    break;
157
158  case Stmt::CXXTryStmtClass:
159    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
160    break;
161  case Stmt::CXXForRangeStmtClass:
162    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
163  case Stmt::SEHTryStmtClass:
164    // FIXME Not yet implemented
165    break;
166  }
167}
168
169bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
170  switch (S->getStmtClass()) {
171  default: return false;
172  case Stmt::NullStmtClass: break;
173  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
174  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
175  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
176  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
177  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
178  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
179  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
180  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
181  }
182
183  return true;
184}
185
186/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
187/// this captures the expression result of the last sub-statement and returns it
188/// (for use by the statement expression extension).
189RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
190                                         AggValueSlot AggSlot) {
191  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
192                             "LLVM IR generation of compound statement ('{}')");
193
194  CGDebugInfo *DI = getDebugInfo();
195  if (DI)
196    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
197
198  // Keep track of the current cleanup stack depth.
199  RunCleanupsScope Scope(*this);
200
201  for (CompoundStmt::const_body_iterator I = S.body_begin(),
202       E = S.body_end()-GetLast; I != E; ++I)
203    EmitStmt(*I);
204
205  if (DI)
206    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
207
208  RValue RV;
209  if (!GetLast)
210    RV = RValue::get(0);
211  else {
212    // We have to special case labels here.  They are statements, but when put
213    // at the end of a statement expression, they yield the value of their
214    // subexpression.  Handle this by walking through all labels we encounter,
215    // emitting them before we evaluate the subexpr.
216    const Stmt *LastStmt = S.body_back();
217    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
218      EmitLabel(LS->getDecl());
219      LastStmt = LS->getSubStmt();
220    }
221
222    EnsureInsertPoint();
223
224    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
225  }
226
227  return RV;
228}
229
230void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
231  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
232
233  // If there is a cleanup stack, then we it isn't worth trying to
234  // simplify this block (we would need to remove it from the scope map
235  // and cleanup entry).
236  if (!EHStack.empty())
237    return;
238
239  // Can only simplify direct branches.
240  if (!BI || !BI->isUnconditional())
241    return;
242
243  BB->replaceAllUsesWith(BI->getSuccessor(0));
244  BI->eraseFromParent();
245  BB->eraseFromParent();
246}
247
248void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
249  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250
251  // Fall out of the current block (if necessary).
252  EmitBranch(BB);
253
254  if (IsFinished && BB->use_empty()) {
255    delete BB;
256    return;
257  }
258
259  // Place the block after the current block, if possible, or else at
260  // the end of the function.
261  if (CurBB && CurBB->getParent())
262    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
263  else
264    CurFn->getBasicBlockList().push_back(BB);
265  Builder.SetInsertPoint(BB);
266}
267
268void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
269  // Emit a branch from the current block to the target one if this
270  // was a real block.  If this was just a fall-through block after a
271  // terminator, don't emit it.
272  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
273
274  if (!CurBB || CurBB->getTerminator()) {
275    // If there is no insert point or the previous block is already
276    // terminated, don't touch it.
277  } else {
278    // Otherwise, create a fall-through branch.
279    Builder.CreateBr(Target);
280  }
281
282  Builder.ClearInsertionPoint();
283}
284
285void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
286  bool inserted = false;
287  for (llvm::BasicBlock::use_iterator
288         i = block->use_begin(), e = block->use_end(); i != e; ++i) {
289    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
290      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
291      inserted = true;
292      break;
293    }
294  }
295
296  if (!inserted)
297    CurFn->getBasicBlockList().push_back(block);
298
299  Builder.SetInsertPoint(block);
300}
301
302CodeGenFunction::JumpDest
303CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
304  JumpDest &Dest = LabelMap[D];
305  if (Dest.isValid()) return Dest;
306
307  // Create, but don't insert, the new block.
308  Dest = JumpDest(createBasicBlock(D->getName()),
309                  EHScopeStack::stable_iterator::invalid(),
310                  NextCleanupDestIndex++);
311  return Dest;
312}
313
314void CodeGenFunction::EmitLabel(const LabelDecl *D) {
315  JumpDest &Dest = LabelMap[D];
316
317  // If we didn't need a forward reference to this label, just go
318  // ahead and create a destination at the current scope.
319  if (!Dest.isValid()) {
320    Dest = getJumpDestInCurrentScope(D->getName());
321
322  // Otherwise, we need to give this label a target depth and remove
323  // it from the branch-fixups list.
324  } else {
325    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
326    Dest = JumpDest(Dest.getBlock(),
327                    EHStack.stable_begin(),
328                    Dest.getDestIndex());
329
330    ResolveBranchFixups(Dest.getBlock());
331  }
332
333  EmitBlock(Dest.getBlock());
334}
335
336
337void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
338  EmitLabel(S.getDecl());
339  EmitStmt(S.getSubStmt());
340}
341
342void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
343  // If this code is reachable then emit a stop point (if generating
344  // debug info). We have to do this ourselves because we are on the
345  // "simple" statement path.
346  if (HaveInsertPoint())
347    EmitStopPoint(&S);
348
349  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
350}
351
352
353void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
354  if (const LabelDecl *Target = S.getConstantTarget()) {
355    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
356    return;
357  }
358
359  // Ensure that we have an i8* for our PHI node.
360  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
361                                         Int8PtrTy, "addr");
362  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
363
364
365  // Get the basic block for the indirect goto.
366  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
367
368  // The first instruction in the block has to be the PHI for the switch dest,
369  // add an entry for this branch.
370  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
371
372  EmitBranch(IndGotoBB);
373}
374
375void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
376  // C99 6.8.4.1: The first substatement is executed if the expression compares
377  // unequal to 0.  The condition must be a scalar type.
378  RunCleanupsScope ConditionScope(*this);
379
380  if (S.getConditionVariable())
381    EmitAutoVarDecl(*S.getConditionVariable());
382
383  // If the condition constant folds and can be elided, try to avoid emitting
384  // the condition and the dead arm of the if/else.
385  bool CondConstant;
386  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
387    // Figure out which block (then or else) is executed.
388    const Stmt *Executed = S.getThen();
389    const Stmt *Skipped  = S.getElse();
390    if (!CondConstant)  // Condition false?
391      std::swap(Executed, Skipped);
392
393    // If the skipped block has no labels in it, just emit the executed block.
394    // This avoids emitting dead code and simplifies the CFG substantially.
395    if (!ContainsLabel(Skipped)) {
396      if (Executed) {
397        RunCleanupsScope ExecutedScope(*this);
398        EmitStmt(Executed);
399      }
400      return;
401    }
402  }
403
404  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
405  // the conditional branch.
406  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
407  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
408  llvm::BasicBlock *ElseBlock = ContBlock;
409  if (S.getElse())
410    ElseBlock = createBasicBlock("if.else");
411  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
412
413  // Emit the 'then' code.
414  EmitBlock(ThenBlock);
415  {
416    RunCleanupsScope ThenScope(*this);
417    EmitStmt(S.getThen());
418  }
419  EmitBranch(ContBlock);
420
421  // Emit the 'else' code if present.
422  if (const Stmt *Else = S.getElse()) {
423    // There is no need to emit line number for unconditional branch.
424    if (getDebugInfo())
425      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
426    EmitBlock(ElseBlock);
427    {
428      RunCleanupsScope ElseScope(*this);
429      EmitStmt(Else);
430    }
431    // There is no need to emit line number for unconditional branch.
432    if (getDebugInfo())
433      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
434    EmitBranch(ContBlock);
435  }
436
437  // Emit the continuation block for code after the if.
438  EmitBlock(ContBlock, true);
439}
440
441void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
442  // Emit the header for the loop, which will also become
443  // the continue target.
444  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
445  EmitBlock(LoopHeader.getBlock());
446
447  // Create an exit block for when the condition fails, which will
448  // also become the break target.
449  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
450
451  // Store the blocks to use for break and continue.
452  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
453
454  // C++ [stmt.while]p2:
455  //   When the condition of a while statement is a declaration, the
456  //   scope of the variable that is declared extends from its point
457  //   of declaration (3.3.2) to the end of the while statement.
458  //   [...]
459  //   The object created in a condition is destroyed and created
460  //   with each iteration of the loop.
461  RunCleanupsScope ConditionScope(*this);
462
463  if (S.getConditionVariable())
464    EmitAutoVarDecl(*S.getConditionVariable());
465
466  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
467  // evaluation of the controlling expression takes place before each
468  // execution of the loop body.
469  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
470
471  // while(1) is common, avoid extra exit blocks.  Be sure
472  // to correctly handle break/continue though.
473  bool EmitBoolCondBranch = true;
474  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
475    if (C->isOne())
476      EmitBoolCondBranch = false;
477
478  // As long as the condition is true, go to the loop body.
479  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
480  if (EmitBoolCondBranch) {
481    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
482    if (ConditionScope.requiresCleanups())
483      ExitBlock = createBasicBlock("while.exit");
484
485    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
486
487    if (ExitBlock != LoopExit.getBlock()) {
488      EmitBlock(ExitBlock);
489      EmitBranchThroughCleanup(LoopExit);
490    }
491  }
492
493  // Emit the loop body.  We have to emit this in a cleanup scope
494  // because it might be a singleton DeclStmt.
495  {
496    RunCleanupsScope BodyScope(*this);
497    EmitBlock(LoopBody);
498    EmitStmt(S.getBody());
499  }
500
501  BreakContinueStack.pop_back();
502
503  // Immediately force cleanup.
504  ConditionScope.ForceCleanup();
505
506  // Branch to the loop header again.
507  EmitBranch(LoopHeader.getBlock());
508
509  // Emit the exit block.
510  EmitBlock(LoopExit.getBlock(), true);
511
512  // The LoopHeader typically is just a branch if we skipped emitting
513  // a branch, try to erase it.
514  if (!EmitBoolCondBranch)
515    SimplifyForwardingBlocks(LoopHeader.getBlock());
516}
517
518void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
519  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
520  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
521
522  // Store the blocks to use for break and continue.
523  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
524
525  // Emit the body of the loop.
526  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
527  EmitBlock(LoopBody);
528  {
529    RunCleanupsScope BodyScope(*this);
530    EmitStmt(S.getBody());
531  }
532
533  BreakContinueStack.pop_back();
534
535  EmitBlock(LoopCond.getBlock());
536
537  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
538  // after each execution of the loop body."
539
540  // Evaluate the conditional in the while header.
541  // C99 6.8.5p2/p4: The first substatement is executed if the expression
542  // compares unequal to 0.  The condition must be a scalar type.
543  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
544
545  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
546  // to correctly handle break/continue though.
547  bool EmitBoolCondBranch = true;
548  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
549    if (C->isZero())
550      EmitBoolCondBranch = false;
551
552  // As long as the condition is true, iterate the loop.
553  if (EmitBoolCondBranch)
554    Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
555
556  // Emit the exit block.
557  EmitBlock(LoopExit.getBlock());
558
559  // The DoCond block typically is just a branch if we skipped
560  // emitting a branch, try to erase it.
561  if (!EmitBoolCondBranch)
562    SimplifyForwardingBlocks(LoopCond.getBlock());
563}
564
565void CodeGenFunction::EmitForStmt(const ForStmt &S) {
566  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
567
568  RunCleanupsScope ForScope(*this);
569
570  CGDebugInfo *DI = getDebugInfo();
571  if (DI)
572    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
573
574  // Evaluate the first part before the loop.
575  if (S.getInit())
576    EmitStmt(S.getInit());
577
578  // Start the loop with a block that tests the condition.
579  // If there's an increment, the continue scope will be overwritten
580  // later.
581  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
582  llvm::BasicBlock *CondBlock = Continue.getBlock();
583  EmitBlock(CondBlock);
584
585  // Create a cleanup scope for the condition variable cleanups.
586  RunCleanupsScope ConditionScope(*this);
587
588  llvm::Value *BoolCondVal = 0;
589  if (S.getCond()) {
590    // If the for statement has a condition scope, emit the local variable
591    // declaration.
592    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
593    if (S.getConditionVariable()) {
594      EmitAutoVarDecl(*S.getConditionVariable());
595    }
596
597    // If there are any cleanups between here and the loop-exit scope,
598    // create a block to stage a loop exit along.
599    if (ForScope.requiresCleanups())
600      ExitBlock = createBasicBlock("for.cond.cleanup");
601
602    // As long as the condition is true, iterate the loop.
603    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
604
605    // C99 6.8.5p2/p4: The first substatement is executed if the expression
606    // compares unequal to 0.  The condition must be a scalar type.
607    BoolCondVal = EvaluateExprAsBool(S.getCond());
608    Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
609
610    if (ExitBlock != LoopExit.getBlock()) {
611      EmitBlock(ExitBlock);
612      EmitBranchThroughCleanup(LoopExit);
613    }
614
615    EmitBlock(ForBody);
616  } else {
617    // Treat it as a non-zero constant.  Don't even create a new block for the
618    // body, just fall into it.
619  }
620
621  // If the for loop doesn't have an increment we can just use the
622  // condition as the continue block.  Otherwise we'll need to create
623  // a block for it (in the current scope, i.e. in the scope of the
624  // condition), and that we will become our continue block.
625  if (S.getInc())
626    Continue = getJumpDestInCurrentScope("for.inc");
627
628  // Store the blocks to use for break and continue.
629  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
630
631  {
632    // Create a separate cleanup scope for the body, in case it is not
633    // a compound statement.
634    RunCleanupsScope BodyScope(*this);
635    EmitStmt(S.getBody());
636  }
637
638  // If there is an increment, emit it next.
639  if (S.getInc()) {
640    EmitBlock(Continue.getBlock());
641    EmitStmt(S.getInc());
642  }
643
644  BreakContinueStack.pop_back();
645
646  ConditionScope.ForceCleanup();
647  EmitBranch(CondBlock);
648
649  ForScope.ForceCleanup();
650
651  if (DI)
652    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
653
654  // Emit the fall-through block.
655  EmitBlock(LoopExit.getBlock(), true);
656}
657
658void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
659  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
660
661  RunCleanupsScope ForScope(*this);
662
663  CGDebugInfo *DI = getDebugInfo();
664  if (DI)
665    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
666
667  // Evaluate the first pieces before the loop.
668  EmitStmt(S.getRangeStmt());
669  EmitStmt(S.getBeginEndStmt());
670
671  // Start the loop with a block that tests the condition.
672  // If there's an increment, the continue scope will be overwritten
673  // later.
674  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
675  EmitBlock(CondBlock);
676
677  // If there are any cleanups between here and the loop-exit scope,
678  // create a block to stage a loop exit along.
679  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
680  if (ForScope.requiresCleanups())
681    ExitBlock = createBasicBlock("for.cond.cleanup");
682
683  // The loop body, consisting of the specified body and the loop variable.
684  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685
686  // The body is executed if the expression, contextually converted
687  // to bool, is true.
688  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689  Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
690
691  if (ExitBlock != LoopExit.getBlock()) {
692    EmitBlock(ExitBlock);
693    EmitBranchThroughCleanup(LoopExit);
694  }
695
696  EmitBlock(ForBody);
697
698  // Create a block for the increment. In case of a 'continue', we jump there.
699  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
700
701  // Store the blocks to use for break and continue.
702  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
703
704  {
705    // Create a separate cleanup scope for the loop variable and body.
706    RunCleanupsScope BodyScope(*this);
707    EmitStmt(S.getLoopVarStmt());
708    EmitStmt(S.getBody());
709  }
710
711  // If there is an increment, emit it next.
712  EmitBlock(Continue.getBlock());
713  EmitStmt(S.getInc());
714
715  BreakContinueStack.pop_back();
716
717  EmitBranch(CondBlock);
718
719  ForScope.ForceCleanup();
720
721  if (DI)
722    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
723
724  // Emit the fall-through block.
725  EmitBlock(LoopExit.getBlock(), true);
726}
727
728void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
729  if (RV.isScalar()) {
730    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
731  } else if (RV.isAggregate()) {
732    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
733  } else {
734    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
735  }
736  EmitBranchThroughCleanup(ReturnBlock);
737}
738
739/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
740/// if the function returns void, or may be missing one if the function returns
741/// non-void.  Fun stuff :).
742void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
743  // Emit the result value, even if unused, to evalute the side effects.
744  const Expr *RV = S.getRetValue();
745
746  // FIXME: Clean this up by using an LValue for ReturnTemp,
747  // EmitStoreThroughLValue, and EmitAnyExpr.
748  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
749      !Target.useGlobalsForAutomaticVariables()) {
750    // Apply the named return value optimization for this return statement,
751    // which means doing nothing: the appropriate result has already been
752    // constructed into the NRVO variable.
753
754    // If there is an NRVO flag for this variable, set it to 1 into indicate
755    // that the cleanup code should not destroy the variable.
756    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
757      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
758  } else if (!ReturnValue) {
759    // Make sure not to return anything, but evaluate the expression
760    // for side effects.
761    if (RV)
762      EmitAnyExpr(RV);
763  } else if (RV == 0) {
764    // Do nothing (return value is left uninitialized)
765  } else if (FnRetTy->isReferenceType()) {
766    // If this function returns a reference, take the address of the expression
767    // rather than the value.
768    RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
769    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
770  } else if (!hasAggregateLLVMType(RV->getType())) {
771    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
772  } else if (RV->getType()->isAnyComplexType()) {
773    EmitComplexExprIntoAddr(RV, ReturnValue, false);
774  } else {
775    EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(),
776                                          AggValueSlot::IsDestructed,
777                                          AggValueSlot::DoesNotNeedGCBarriers,
778                                          AggValueSlot::IsNotAliased));
779  }
780
781  EmitBranchThroughCleanup(ReturnBlock);
782}
783
784void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
785  // As long as debug info is modeled with instructions, we have to ensure we
786  // have a place to insert here and write the stop point here.
787  if (getDebugInfo() && HaveInsertPoint())
788    EmitStopPoint(&S);
789
790  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
791       I != E; ++I)
792    EmitDecl(**I);
793}
794
795void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
796  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
797
798  // If this code is reachable then emit a stop point (if generating
799  // debug info). We have to do this ourselves because we are on the
800  // "simple" statement path.
801  if (HaveInsertPoint())
802    EmitStopPoint(&S);
803
804  JumpDest Block = BreakContinueStack.back().BreakBlock;
805  EmitBranchThroughCleanup(Block);
806}
807
808void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
809  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
810
811  // If this code is reachable then emit a stop point (if generating
812  // debug info). We have to do this ourselves because we are on the
813  // "simple" statement path.
814  if (HaveInsertPoint())
815    EmitStopPoint(&S);
816
817  JumpDest Block = BreakContinueStack.back().ContinueBlock;
818  EmitBranchThroughCleanup(Block);
819}
820
821/// EmitCaseStmtRange - If case statement range is not too big then
822/// add multiple cases to switch instruction, one for each value within
823/// the range. If range is too big then emit "if" condition check.
824void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
825  assert(S.getRHS() && "Expected RHS value in CaseStmt");
826
827  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
828  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
829
830  // Emit the code for this case. We do this first to make sure it is
831  // properly chained from our predecessor before generating the
832  // switch machinery to enter this block.
833  EmitBlock(createBasicBlock("sw.bb"));
834  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
835  EmitStmt(S.getSubStmt());
836
837  // If range is empty, do nothing.
838  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
839    return;
840
841  llvm::APInt Range = RHS - LHS;
842  // FIXME: parameters such as this should not be hardcoded.
843  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
844    // Range is small enough to add multiple switch instruction cases.
845    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
846      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
847      LHS++;
848    }
849    return;
850  }
851
852  // The range is too big. Emit "if" condition into a new block,
853  // making sure to save and restore the current insertion point.
854  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
855
856  // Push this test onto the chain of range checks (which terminates
857  // in the default basic block). The switch's default will be changed
858  // to the top of this chain after switch emission is complete.
859  llvm::BasicBlock *FalseDest = CaseRangeBlock;
860  CaseRangeBlock = createBasicBlock("sw.caserange");
861
862  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
863  Builder.SetInsertPoint(CaseRangeBlock);
864
865  // Emit range check.
866  llvm::Value *Diff =
867    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
868  llvm::Value *Cond =
869    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
870  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
871
872  // Restore the appropriate insertion point.
873  if (RestoreBB)
874    Builder.SetInsertPoint(RestoreBB);
875  else
876    Builder.ClearInsertionPoint();
877}
878
879void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
880  // Handle case ranges.
881  if (S.getRHS()) {
882    EmitCaseStmtRange(S);
883    return;
884  }
885
886  llvm::ConstantInt *CaseVal =
887    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
888
889  // If the body of the case is just a 'break', and if there was no fallthrough,
890  // try to not emit an empty block.
891  if (isa<BreakStmt>(S.getSubStmt())) {
892    JumpDest Block = BreakContinueStack.back().BreakBlock;
893
894    // Only do this optimization if there are no cleanups that need emitting.
895    if (isObviouslyBranchWithoutCleanups(Block)) {
896      SwitchInsn->addCase(CaseVal, Block.getBlock());
897
898      // If there was a fallthrough into this case, make sure to redirect it to
899      // the end of the switch as well.
900      if (Builder.GetInsertBlock()) {
901        Builder.CreateBr(Block.getBlock());
902        Builder.ClearInsertionPoint();
903      }
904      return;
905    }
906  }
907
908  EmitBlock(createBasicBlock("sw.bb"));
909  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
910  SwitchInsn->addCase(CaseVal, CaseDest);
911
912  // Recursively emitting the statement is acceptable, but is not wonderful for
913  // code where we have many case statements nested together, i.e.:
914  //  case 1:
915  //    case 2:
916  //      case 3: etc.
917  // Handling this recursively will create a new block for each case statement
918  // that falls through to the next case which is IR intensive.  It also causes
919  // deep recursion which can run into stack depth limitations.  Handle
920  // sequential non-range case statements specially.
921  const CaseStmt *CurCase = &S;
922  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
923
924  // Otherwise, iteratively add consecutive cases to this switch stmt.
925  while (NextCase && NextCase->getRHS() == 0) {
926    CurCase = NextCase;
927    llvm::ConstantInt *CaseVal =
928      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
929    SwitchInsn->addCase(CaseVal, CaseDest);
930    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
931  }
932
933  // Normal default recursion for non-cases.
934  EmitStmt(CurCase->getSubStmt());
935}
936
937void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
938  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
939  assert(DefaultBlock->empty() &&
940         "EmitDefaultStmt: Default block already defined?");
941  EmitBlock(DefaultBlock);
942  EmitStmt(S.getSubStmt());
943}
944
945/// CollectStatementsForCase - Given the body of a 'switch' statement and a
946/// constant value that is being switched on, see if we can dead code eliminate
947/// the body of the switch to a simple series of statements to emit.  Basically,
948/// on a switch (5) we want to find these statements:
949///    case 5:
950///      printf(...);    <--
951///      ++i;            <--
952///      break;
953///
954/// and add them to the ResultStmts vector.  If it is unsafe to do this
955/// transformation (for example, one of the elided statements contains a label
956/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
957/// should include statements after it (e.g. the printf() line is a substmt of
958/// the case) then return CSFC_FallThrough.  If we handled it and found a break
959/// statement, then return CSFC_Success.
960///
961/// If Case is non-null, then we are looking for the specified case, checking
962/// that nothing we jump over contains labels.  If Case is null, then we found
963/// the case and are looking for the break.
964///
965/// If the recursive walk actually finds our Case, then we set FoundCase to
966/// true.
967///
968enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
969static CSFC_Result CollectStatementsForCase(const Stmt *S,
970                                            const SwitchCase *Case,
971                                            bool &FoundCase,
972                              SmallVectorImpl<const Stmt*> &ResultStmts) {
973  // If this is a null statement, just succeed.
974  if (S == 0)
975    return Case ? CSFC_Success : CSFC_FallThrough;
976
977  // If this is the switchcase (case 4: or default) that we're looking for, then
978  // we're in business.  Just add the substatement.
979  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
980    if (S == Case) {
981      FoundCase = true;
982      return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
983                                      ResultStmts);
984    }
985
986    // Otherwise, this is some other case or default statement, just ignore it.
987    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
988                                    ResultStmts);
989  }
990
991  // If we are in the live part of the code and we found our break statement,
992  // return a success!
993  if (Case == 0 && isa<BreakStmt>(S))
994    return CSFC_Success;
995
996  // If this is a switch statement, then it might contain the SwitchCase, the
997  // break, or neither.
998  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
999    // Handle this as two cases: we might be looking for the SwitchCase (if so
1000    // the skipped statements must be skippable) or we might already have it.
1001    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1002    if (Case) {
1003      // Keep track of whether we see a skipped declaration.  The code could be
1004      // using the declaration even if it is skipped, so we can't optimize out
1005      // the decl if the kept statements might refer to it.
1006      bool HadSkippedDecl = false;
1007
1008      // If we're looking for the case, just see if we can skip each of the
1009      // substatements.
1010      for (; Case && I != E; ++I) {
1011        HadSkippedDecl |= isa<DeclStmt>(*I);
1012
1013        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1014        case CSFC_Failure: return CSFC_Failure;
1015        case CSFC_Success:
1016          // A successful result means that either 1) that the statement doesn't
1017          // have the case and is skippable, or 2) does contain the case value
1018          // and also contains the break to exit the switch.  In the later case,
1019          // we just verify the rest of the statements are elidable.
1020          if (FoundCase) {
1021            // If we found the case and skipped declarations, we can't do the
1022            // optimization.
1023            if (HadSkippedDecl)
1024              return CSFC_Failure;
1025
1026            for (++I; I != E; ++I)
1027              if (CodeGenFunction::ContainsLabel(*I, true))
1028                return CSFC_Failure;
1029            return CSFC_Success;
1030          }
1031          break;
1032        case CSFC_FallThrough:
1033          // If we have a fallthrough condition, then we must have found the
1034          // case started to include statements.  Consider the rest of the
1035          // statements in the compound statement as candidates for inclusion.
1036          assert(FoundCase && "Didn't find case but returned fallthrough?");
1037          // We recursively found Case, so we're not looking for it anymore.
1038          Case = 0;
1039
1040          // If we found the case and skipped declarations, we can't do the
1041          // optimization.
1042          if (HadSkippedDecl)
1043            return CSFC_Failure;
1044          break;
1045        }
1046      }
1047    }
1048
1049    // If we have statements in our range, then we know that the statements are
1050    // live and need to be added to the set of statements we're tracking.
1051    for (; I != E; ++I) {
1052      switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1053      case CSFC_Failure: return CSFC_Failure;
1054      case CSFC_FallThrough:
1055        // A fallthrough result means that the statement was simple and just
1056        // included in ResultStmt, keep adding them afterwards.
1057        break;
1058      case CSFC_Success:
1059        // A successful result means that we found the break statement and
1060        // stopped statement inclusion.  We just ensure that any leftover stmts
1061        // are skippable and return success ourselves.
1062        for (++I; I != E; ++I)
1063          if (CodeGenFunction::ContainsLabel(*I, true))
1064            return CSFC_Failure;
1065        return CSFC_Success;
1066      }
1067    }
1068
1069    return Case ? CSFC_Success : CSFC_FallThrough;
1070  }
1071
1072  // Okay, this is some other statement that we don't handle explicitly, like a
1073  // for statement or increment etc.  If we are skipping over this statement,
1074  // just verify it doesn't have labels, which would make it invalid to elide.
1075  if (Case) {
1076    if (CodeGenFunction::ContainsLabel(S, true))
1077      return CSFC_Failure;
1078    return CSFC_Success;
1079  }
1080
1081  // Otherwise, we want to include this statement.  Everything is cool with that
1082  // so long as it doesn't contain a break out of the switch we're in.
1083  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1084
1085  // Otherwise, everything is great.  Include the statement and tell the caller
1086  // that we fall through and include the next statement as well.
1087  ResultStmts.push_back(S);
1088  return CSFC_FallThrough;
1089}
1090
1091/// FindCaseStatementsForValue - Find the case statement being jumped to and
1092/// then invoke CollectStatementsForCase to find the list of statements to emit
1093/// for a switch on constant.  See the comment above CollectStatementsForCase
1094/// for more details.
1095static bool FindCaseStatementsForValue(const SwitchStmt &S,
1096                                       const llvm::APInt &ConstantCondValue,
1097                                SmallVectorImpl<const Stmt*> &ResultStmts,
1098                                       ASTContext &C) {
1099  // First step, find the switch case that is being branched to.  We can do this
1100  // efficiently by scanning the SwitchCase list.
1101  const SwitchCase *Case = S.getSwitchCaseList();
1102  const DefaultStmt *DefaultCase = 0;
1103
1104  for (; Case; Case = Case->getNextSwitchCase()) {
1105    // It's either a default or case.  Just remember the default statement in
1106    // case we're not jumping to any numbered cases.
1107    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1108      DefaultCase = DS;
1109      continue;
1110    }
1111
1112    // Check to see if this case is the one we're looking for.
1113    const CaseStmt *CS = cast<CaseStmt>(Case);
1114    // Don't handle case ranges yet.
1115    if (CS->getRHS()) return false;
1116
1117    // If we found our case, remember it as 'case'.
1118    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1119      break;
1120  }
1121
1122  // If we didn't find a matching case, we use a default if it exists, or we
1123  // elide the whole switch body!
1124  if (Case == 0) {
1125    // It is safe to elide the body of the switch if it doesn't contain labels
1126    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1127    if (DefaultCase == 0)
1128      return !CodeGenFunction::ContainsLabel(&S);
1129    Case = DefaultCase;
1130  }
1131
1132  // Ok, we know which case is being jumped to, try to collect all the
1133  // statements that follow it.  This can fail for a variety of reasons.  Also,
1134  // check to see that the recursive walk actually found our case statement.
1135  // Insane cases like this can fail to find it in the recursive walk since we
1136  // don't handle every stmt kind:
1137  // switch (4) {
1138  //   while (1) {
1139  //     case 4: ...
1140  bool FoundCase = false;
1141  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1142                                  ResultStmts) != CSFC_Failure &&
1143         FoundCase;
1144}
1145
1146void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1147  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1148
1149  RunCleanupsScope ConditionScope(*this);
1150
1151  if (S.getConditionVariable())
1152    EmitAutoVarDecl(*S.getConditionVariable());
1153
1154  // See if we can constant fold the condition of the switch and therefore only
1155  // emit the live case statement (if any) of the switch.
1156  llvm::APInt ConstantCondValue;
1157  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1158    SmallVector<const Stmt*, 4> CaseStmts;
1159    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1160                                   getContext())) {
1161      RunCleanupsScope ExecutedScope(*this);
1162
1163      // Okay, we can dead code eliminate everything except this case.  Emit the
1164      // specified series of statements and we're good.
1165      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1166        EmitStmt(CaseStmts[i]);
1167      return;
1168    }
1169  }
1170
1171  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1172
1173  // Handle nested switch statements.
1174  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1175  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1176
1177  // Create basic block to hold stuff that comes after switch
1178  // statement. We also need to create a default block now so that
1179  // explicit case ranges tests can have a place to jump to on
1180  // failure.
1181  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1182  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1183  CaseRangeBlock = DefaultBlock;
1184
1185  // Clear the insertion point to indicate we are in unreachable code.
1186  Builder.ClearInsertionPoint();
1187
1188  // All break statements jump to NextBlock. If BreakContinueStack is non empty
1189  // then reuse last ContinueBlock.
1190  JumpDest OuterContinue;
1191  if (!BreakContinueStack.empty())
1192    OuterContinue = BreakContinueStack.back().ContinueBlock;
1193
1194  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1195
1196  // Emit switch body.
1197  EmitStmt(S.getBody());
1198
1199  BreakContinueStack.pop_back();
1200
1201  // Update the default block in case explicit case range tests have
1202  // been chained on top.
1203  SwitchInsn->setSuccessor(0, CaseRangeBlock);
1204
1205  // If a default was never emitted:
1206  if (!DefaultBlock->getParent()) {
1207    // If we have cleanups, emit the default block so that there's a
1208    // place to jump through the cleanups from.
1209    if (ConditionScope.requiresCleanups()) {
1210      EmitBlock(DefaultBlock);
1211
1212    // Otherwise, just forward the default block to the switch end.
1213    } else {
1214      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1215      delete DefaultBlock;
1216    }
1217  }
1218
1219  ConditionScope.ForceCleanup();
1220
1221  // Emit continuation.
1222  EmitBlock(SwitchExit.getBlock(), true);
1223
1224  SwitchInsn = SavedSwitchInsn;
1225  CaseRangeBlock = SavedCRBlock;
1226}
1227
1228static std::string
1229SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1230                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1231  std::string Result;
1232
1233  while (*Constraint) {
1234    switch (*Constraint) {
1235    default:
1236      Result += Target.convertConstraint(Constraint);
1237      break;
1238    // Ignore these
1239    case '*':
1240    case '?':
1241    case '!':
1242    case '=': // Will see this and the following in mult-alt constraints.
1243    case '+':
1244      break;
1245    case ',':
1246      Result += "|";
1247      break;
1248    case 'g':
1249      Result += "imr";
1250      break;
1251    case '[': {
1252      assert(OutCons &&
1253             "Must pass output names to constraints with a symbolic name");
1254      unsigned Index;
1255      bool result = Target.resolveSymbolicName(Constraint,
1256                                               &(*OutCons)[0],
1257                                               OutCons->size(), Index);
1258      assert(result && "Could not resolve symbolic name"); (void)result;
1259      Result += llvm::utostr(Index);
1260      break;
1261    }
1262    }
1263
1264    Constraint++;
1265  }
1266
1267  return Result;
1268}
1269
1270/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1271/// as using a particular register add that as a constraint that will be used
1272/// in this asm stmt.
1273static std::string
1274AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1275                       const TargetInfo &Target, CodeGenModule &CGM,
1276                       const AsmStmt &Stmt) {
1277  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1278  if (!AsmDeclRef)
1279    return Constraint;
1280  const ValueDecl &Value = *AsmDeclRef->getDecl();
1281  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1282  if (!Variable)
1283    return Constraint;
1284  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1285  if (!Attr)
1286    return Constraint;
1287  StringRef Register = Attr->getLabel();
1288  assert(Target.isValidGCCRegisterName(Register));
1289  // We're using validateOutputConstraint here because we only care if
1290  // this is a register constraint.
1291  TargetInfo::ConstraintInfo Info(Constraint, "");
1292  if (Target.validateOutputConstraint(Info) &&
1293      !Info.allowsRegister()) {
1294    CGM.ErrorUnsupported(&Stmt, "__asm__");
1295    return Constraint;
1296  }
1297  // Canonicalize the register here before returning it.
1298  Register = Target.getNormalizedGCCRegisterName(Register);
1299  return "{" + Register.str() + "}";
1300}
1301
1302llvm::Value*
1303CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1304                                    const TargetInfo::ConstraintInfo &Info,
1305                                    LValue InputValue, QualType InputType,
1306                                    std::string &ConstraintStr) {
1307  llvm::Value *Arg;
1308  if (Info.allowsRegister() || !Info.allowsMemory()) {
1309    if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1310      Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1311    } else {
1312      llvm::Type *Ty = ConvertType(InputType);
1313      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1314      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1315        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1316        Ty = llvm::PointerType::getUnqual(Ty);
1317
1318        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1319                                                       Ty));
1320      } else {
1321        Arg = InputValue.getAddress();
1322        ConstraintStr += '*';
1323      }
1324    }
1325  } else {
1326    Arg = InputValue.getAddress();
1327    ConstraintStr += '*';
1328  }
1329
1330  return Arg;
1331}
1332
1333llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1334                                         const TargetInfo::ConstraintInfo &Info,
1335                                           const Expr *InputExpr,
1336                                           std::string &ConstraintStr) {
1337  if (Info.allowsRegister() || !Info.allowsMemory())
1338    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1339      return EmitScalarExpr(InputExpr);
1340
1341  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1342  LValue Dest = EmitLValue(InputExpr);
1343  return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1344}
1345
1346/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1347/// asm call instruction.  The !srcloc MDNode contains a list of constant
1348/// integers which are the source locations of the start of each line in the
1349/// asm.
1350static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1351                                      CodeGenFunction &CGF) {
1352  SmallVector<llvm::Value *, 8> Locs;
1353  // Add the location of the first line to the MDNode.
1354  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1355                                        Str->getLocStart().getRawEncoding()));
1356  StringRef StrVal = Str->getString();
1357  if (!StrVal.empty()) {
1358    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1359    const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1360
1361    // Add the location of the start of each subsequent line of the asm to the
1362    // MDNode.
1363    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1364      if (StrVal[i] != '\n') continue;
1365      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1366                                                      CGF.Target);
1367      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1368                                            LineLoc.getRawEncoding()));
1369    }
1370  }
1371
1372  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1373}
1374
1375void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1376  // Analyze the asm string to decompose it into its pieces.  We know that Sema
1377  // has already done this, so it is guaranteed to be successful.
1378  SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1379  unsigned DiagOffs;
1380  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1381
1382  // Assemble the pieces into the final asm string.
1383  std::string AsmString;
1384  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1385    if (Pieces[i].isString())
1386      AsmString += Pieces[i].getString();
1387    else if (Pieces[i].getModifier() == '\0')
1388      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1389    else
1390      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1391                   Pieces[i].getModifier() + '}';
1392  }
1393
1394  // Get all the output and input constraints together.
1395  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1396  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1397
1398  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1399    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1400                                    S.getOutputName(i));
1401    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1402    assert(IsValid && "Failed to parse output constraint");
1403    OutputConstraintInfos.push_back(Info);
1404  }
1405
1406  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1407    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1408                                    S.getInputName(i));
1409    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1410                                                  S.getNumOutputs(), Info);
1411    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1412    InputConstraintInfos.push_back(Info);
1413  }
1414
1415  std::string Constraints;
1416
1417  std::vector<LValue> ResultRegDests;
1418  std::vector<QualType> ResultRegQualTys;
1419  std::vector<llvm::Type *> ResultRegTypes;
1420  std::vector<llvm::Type *> ResultTruncRegTypes;
1421  std::vector<llvm::Type*> ArgTypes;
1422  std::vector<llvm::Value*> Args;
1423
1424  // Keep track of inout constraints.
1425  std::string InOutConstraints;
1426  std::vector<llvm::Value*> InOutArgs;
1427  std::vector<llvm::Type*> InOutArgTypes;
1428
1429  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1430    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1431
1432    // Simplify the output constraint.
1433    std::string OutputConstraint(S.getOutputConstraint(i));
1434    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1435
1436    const Expr *OutExpr = S.getOutputExpr(i);
1437    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1438
1439    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1440                                              Target, CGM, S);
1441
1442    LValue Dest = EmitLValue(OutExpr);
1443    if (!Constraints.empty())
1444      Constraints += ',';
1445
1446    // If this is a register output, then make the inline asm return it
1447    // by-value.  If this is a memory result, return the value by-reference.
1448    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1449      Constraints += "=" + OutputConstraint;
1450      ResultRegQualTys.push_back(OutExpr->getType());
1451      ResultRegDests.push_back(Dest);
1452      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1453      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1454
1455      // If this output is tied to an input, and if the input is larger, then
1456      // we need to set the actual result type of the inline asm node to be the
1457      // same as the input type.
1458      if (Info.hasMatchingInput()) {
1459        unsigned InputNo;
1460        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1461          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1462          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1463            break;
1464        }
1465        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1466
1467        QualType InputTy = S.getInputExpr(InputNo)->getType();
1468        QualType OutputType = OutExpr->getType();
1469
1470        uint64_t InputSize = getContext().getTypeSize(InputTy);
1471        if (getContext().getTypeSize(OutputType) < InputSize) {
1472          // Form the asm to return the value as a larger integer or fp type.
1473          ResultRegTypes.back() = ConvertType(InputTy);
1474        }
1475      }
1476      if (llvm::Type* AdjTy =
1477            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1478                                                 ResultRegTypes.back()))
1479        ResultRegTypes.back() = AdjTy;
1480    } else {
1481      ArgTypes.push_back(Dest.getAddress()->getType());
1482      Args.push_back(Dest.getAddress());
1483      Constraints += "=*";
1484      Constraints += OutputConstraint;
1485    }
1486
1487    if (Info.isReadWrite()) {
1488      InOutConstraints += ',';
1489
1490      const Expr *InputExpr = S.getOutputExpr(i);
1491      llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1492                                            InOutConstraints);
1493
1494      if (Info.allowsRegister())
1495        InOutConstraints += llvm::utostr(i);
1496      else
1497        InOutConstraints += OutputConstraint;
1498
1499      InOutArgTypes.push_back(Arg->getType());
1500      InOutArgs.push_back(Arg);
1501    }
1502  }
1503
1504  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1505
1506  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1507    const Expr *InputExpr = S.getInputExpr(i);
1508
1509    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1510
1511    if (!Constraints.empty())
1512      Constraints += ',';
1513
1514    // Simplify the input constraint.
1515    std::string InputConstraint(S.getInputConstraint(i));
1516    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1517                                         &OutputConstraintInfos);
1518
1519    InputConstraint =
1520      AddVariableConstraints(InputConstraint,
1521                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1522                            Target, CGM, S);
1523
1524    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1525
1526    // If this input argument is tied to a larger output result, extend the
1527    // input to be the same size as the output.  The LLVM backend wants to see
1528    // the input and output of a matching constraint be the same size.  Note
1529    // that GCC does not define what the top bits are here.  We use zext because
1530    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1531    if (Info.hasTiedOperand()) {
1532      unsigned Output = Info.getTiedOperand();
1533      QualType OutputType = S.getOutputExpr(Output)->getType();
1534      QualType InputTy = InputExpr->getType();
1535
1536      if (getContext().getTypeSize(OutputType) >
1537          getContext().getTypeSize(InputTy)) {
1538        // Use ptrtoint as appropriate so that we can do our extension.
1539        if (isa<llvm::PointerType>(Arg->getType()))
1540          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1541        llvm::Type *OutputTy = ConvertType(OutputType);
1542        if (isa<llvm::IntegerType>(OutputTy))
1543          Arg = Builder.CreateZExt(Arg, OutputTy);
1544        else if (isa<llvm::PointerType>(OutputTy))
1545          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1546        else {
1547          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1548          Arg = Builder.CreateFPExt(Arg, OutputTy);
1549        }
1550      }
1551    }
1552    if (llvm::Type* AdjTy =
1553              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1554                                                   Arg->getType()))
1555      Arg = Builder.CreateBitCast(Arg, AdjTy);
1556
1557    ArgTypes.push_back(Arg->getType());
1558    Args.push_back(Arg);
1559    Constraints += InputConstraint;
1560  }
1561
1562  // Append the "input" part of inout constraints last.
1563  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1564    ArgTypes.push_back(InOutArgTypes[i]);
1565    Args.push_back(InOutArgs[i]);
1566  }
1567  Constraints += InOutConstraints;
1568
1569  // Clobbers
1570  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1571    StringRef Clobber = S.getClobber(i)->getString();
1572
1573    if (Clobber != "memory" && Clobber != "cc")
1574    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1575
1576    if (i != 0 || NumConstraints != 0)
1577      Constraints += ',';
1578
1579    Constraints += "~{";
1580    Constraints += Clobber;
1581    Constraints += '}';
1582  }
1583
1584  // Add machine specific clobbers
1585  std::string MachineClobbers = Target.getClobbers();
1586  if (!MachineClobbers.empty()) {
1587    if (!Constraints.empty())
1588      Constraints += ',';
1589    Constraints += MachineClobbers;
1590  }
1591
1592  llvm::Type *ResultType;
1593  if (ResultRegTypes.empty())
1594    ResultType = llvm::Type::getVoidTy(getLLVMContext());
1595  else if (ResultRegTypes.size() == 1)
1596    ResultType = ResultRegTypes[0];
1597  else
1598    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1599
1600  llvm::FunctionType *FTy =
1601    llvm::FunctionType::get(ResultType, ArgTypes, false);
1602
1603  llvm::InlineAsm *IA =
1604    llvm::InlineAsm::get(FTy, AsmString, Constraints,
1605                         S.isVolatile() || S.getNumOutputs() == 0);
1606  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1607  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1608
1609  // Slap the source location of the inline asm into a !srcloc metadata on the
1610  // call.
1611  Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1612
1613  // Extract all of the register value results from the asm.
1614  std::vector<llvm::Value*> RegResults;
1615  if (ResultRegTypes.size() == 1) {
1616    RegResults.push_back(Result);
1617  } else {
1618    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1619      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1620      RegResults.push_back(Tmp);
1621    }
1622  }
1623
1624  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1625    llvm::Value *Tmp = RegResults[i];
1626
1627    // If the result type of the LLVM IR asm doesn't match the result type of
1628    // the expression, do the conversion.
1629    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1630      llvm::Type *TruncTy = ResultTruncRegTypes[i];
1631
1632      // Truncate the integer result to the right size, note that TruncTy can be
1633      // a pointer.
1634      if (TruncTy->isFloatingPointTy())
1635        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1636      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1637        uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1638        Tmp = Builder.CreateTrunc(Tmp,
1639                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1640        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1641      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1642        uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1643        Tmp = Builder.CreatePtrToInt(Tmp,
1644                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1645        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1646      } else if (TruncTy->isIntegerTy()) {
1647        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1648      } else if (TruncTy->isVectorTy()) {
1649        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1650      }
1651    }
1652
1653    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1654  }
1655}
1656