TargetInfo.cpp revision 82d0a418c8699fc6f4a9417457ffe93d43bba1c1
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// These classes wrap the information about a call or function 11// definition used to handle ABI compliancy. 12// 13//===----------------------------------------------------------------------===// 14 15#include "TargetInfo.h" 16#include "ABIInfo.h" 17#include "CodeGenFunction.h" 18#include "clang/AST/RecordLayout.h" 19#include "llvm/Type.h" 20#include "llvm/ADT/StringExtras.h" 21#include "llvm/ADT/Triple.h" 22#include "llvm/Support/raw_ostream.h" 23using namespace clang; 24using namespace CodeGen; 25 26ABIInfo::~ABIInfo() {} 27 28void ABIArgInfo::dump() const { 29 llvm::raw_ostream &OS = llvm::errs(); 30 OS << "(ABIArgInfo Kind="; 31 switch (TheKind) { 32 case Direct: 33 OS << "Direct"; 34 break; 35 case Extend: 36 OS << "Extend"; 37 break; 38 case Ignore: 39 OS << "Ignore"; 40 break; 41 case Coerce: 42 OS << "Coerce Type="; 43 getCoerceToType()->print(OS); 44 break; 45 case Indirect: 46 OS << "Indirect Align=" << getIndirectAlign(); 47 break; 48 case Expand: 49 OS << "Expand"; 50 break; 51 } 52 OS << ")\n"; 53} 54 55TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 56 57static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 58 59/// isEmptyField - Return true iff a the field is "empty", that is it 60/// is an unnamed bit-field or an (array of) empty record(s). 61static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 62 bool AllowArrays) { 63 if (FD->isUnnamedBitfield()) 64 return true; 65 66 QualType FT = FD->getType(); 67 68 // Constant arrays of empty records count as empty, strip them off. 69 if (AllowArrays) 70 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) 71 FT = AT->getElementType(); 72 73 return isEmptyRecord(Context, FT, AllowArrays); 74} 75 76/// isEmptyRecord - Return true iff a structure contains only empty 77/// fields. Note that a structure with a flexible array member is not 78/// considered empty. 79static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 80 const RecordType *RT = T->getAs<RecordType>(); 81 if (!RT) 82 return 0; 83 const RecordDecl *RD = RT->getDecl(); 84 if (RD->hasFlexibleArrayMember()) 85 return false; 86 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 87 i != e; ++i) 88 if (!isEmptyField(Context, *i, AllowArrays)) 89 return false; 90 return true; 91} 92 93/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either 94/// a non-trivial destructor or a non-trivial copy constructor. 95static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { 96 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 97 if (!RD) 98 return false; 99 100 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); 101} 102 103/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is 104/// a record type with either a non-trivial destructor or a non-trivial copy 105/// constructor. 106static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { 107 const RecordType *RT = T->getAs<RecordType>(); 108 if (!RT) 109 return false; 110 111 return hasNonTrivialDestructorOrCopyConstructor(RT); 112} 113 114/// isSingleElementStruct - Determine if a structure is a "single 115/// element struct", i.e. it has exactly one non-empty field or 116/// exactly one field which is itself a single element 117/// struct. Structures with flexible array members are never 118/// considered single element structs. 119/// 120/// \return The field declaration for the single non-empty field, if 121/// it exists. 122static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 123 const RecordType *RT = T->getAsStructureType(); 124 if (!RT) 125 return 0; 126 127 const RecordDecl *RD = RT->getDecl(); 128 if (RD->hasFlexibleArrayMember()) 129 return 0; 130 131 const Type *Found = 0; 132 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 133 i != e; ++i) { 134 const FieldDecl *FD = *i; 135 QualType FT = FD->getType(); 136 137 // Ignore empty fields. 138 if (isEmptyField(Context, FD, true)) 139 continue; 140 141 // If we already found an element then this isn't a single-element 142 // struct. 143 if (Found) 144 return 0; 145 146 // Treat single element arrays as the element. 147 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 148 if (AT->getSize().getZExtValue() != 1) 149 break; 150 FT = AT->getElementType(); 151 } 152 153 if (!CodeGenFunction::hasAggregateLLVMType(FT)) { 154 Found = FT.getTypePtr(); 155 } else { 156 Found = isSingleElementStruct(FT, Context); 157 if (!Found) 158 return 0; 159 } 160 } 161 162 return Found; 163} 164 165static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 166 if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() && 167 !Ty->isAnyComplexType() && !Ty->isEnumeralType() && 168 !Ty->isBlockPointerType()) 169 return false; 170 171 uint64_t Size = Context.getTypeSize(Ty); 172 return Size == 32 || Size == 64; 173} 174 175/// canExpandIndirectArgument - Test whether an argument type which is to be 176/// passed indirectly (on the stack) would have the equivalent layout if it was 177/// expanded into separate arguments. If so, we prefer to do the latter to avoid 178/// inhibiting optimizations. 179/// 180// FIXME: This predicate is missing many cases, currently it just follows 181// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 182// should probably make this smarter, or better yet make the LLVM backend 183// capable of handling it. 184static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 185 // We can only expand structure types. 186 const RecordType *RT = Ty->getAs<RecordType>(); 187 if (!RT) 188 return false; 189 190 // We can only expand (C) structures. 191 // 192 // FIXME: This needs to be generalized to handle classes as well. 193 const RecordDecl *RD = RT->getDecl(); 194 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 195 return false; 196 197 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 198 i != e; ++i) { 199 const FieldDecl *FD = *i; 200 201 if (!is32Or64BitBasicType(FD->getType(), Context)) 202 return false; 203 204 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 205 // how to expand them yet, and the predicate for telling if a bitfield still 206 // counts as "basic" is more complicated than what we were doing previously. 207 if (FD->isBitField()) 208 return false; 209 } 210 211 return true; 212} 213 214static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) { 215 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 216 i != e; ++i) { 217 const FieldDecl *FD = *i; 218 219 if (FD->getType()->isVectorType() && 220 Context.getTypeSize(FD->getType()) >= 128) 221 return true; 222 223 if (const RecordType* RT = FD->getType()->getAs<RecordType>()) 224 if (typeContainsSSEVector(RT->getDecl(), Context)) 225 return true; 226 } 227 228 return false; 229} 230 231namespace { 232/// DefaultABIInfo - The default implementation for ABI specific 233/// details. This implementation provides information which results in 234/// self-consistent and sensible LLVM IR generation, but does not 235/// conform to any particular ABI. 236class DefaultABIInfo : public ABIInfo { 237 ABIArgInfo classifyReturnType(QualType RetTy, 238 ASTContext &Context, 239 llvm::LLVMContext &VMContext) const; 240 241 ABIArgInfo classifyArgumentType(QualType RetTy, 242 ASTContext &Context, 243 llvm::LLVMContext &VMContext) const; 244 245 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 246 llvm::LLVMContext &VMContext) const { 247 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 248 VMContext); 249 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 250 it != ie; ++it) 251 it->info = classifyArgumentType(it->type, Context, VMContext); 252 } 253 254 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 255 CodeGenFunction &CGF) const; 256}; 257 258class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 259public: 260 DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}; 261}; 262 263llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 264 CodeGenFunction &CGF) const { 265 return 0; 266} 267 268ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, 269 ASTContext &Context, 270 llvm::LLVMContext &VMContext) const { 271 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 272 return ABIArgInfo::getIndirect(0); 273 } else { 274 return (Ty->isPromotableIntegerType() ? 275 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 276 } 277} 278 279/// X86_32ABIInfo - The X86-32 ABI information. 280class X86_32ABIInfo : public ABIInfo { 281 ASTContext &Context; 282 bool IsDarwinVectorABI; 283 bool IsSmallStructInRegABI; 284 285 static bool isRegisterSize(unsigned Size) { 286 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 287 } 288 289 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); 290 291 static unsigned getIndirectArgumentAlignment(QualType Ty, 292 ASTContext &Context); 293 294public: 295 ABIArgInfo classifyReturnType(QualType RetTy, 296 ASTContext &Context, 297 llvm::LLVMContext &VMContext) const; 298 299 ABIArgInfo classifyArgumentType(QualType RetTy, 300 ASTContext &Context, 301 llvm::LLVMContext &VMContext) const; 302 303 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 304 llvm::LLVMContext &VMContext) const { 305 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 306 VMContext); 307 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 308 it != ie; ++it) 309 it->info = classifyArgumentType(it->type, Context, VMContext); 310 } 311 312 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 313 CodeGenFunction &CGF) const; 314 315 X86_32ABIInfo(ASTContext &Context, bool d, bool p) 316 : ABIInfo(), Context(Context), IsDarwinVectorABI(d), 317 IsSmallStructInRegABI(p) {} 318}; 319 320class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 321public: 322 X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p) 323 :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}; 324}; 325 326} 327 328/// shouldReturnTypeInRegister - Determine if the given type should be 329/// passed in a register (for the Darwin ABI). 330bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 331 ASTContext &Context) { 332 uint64_t Size = Context.getTypeSize(Ty); 333 334 // Type must be register sized. 335 if (!isRegisterSize(Size)) 336 return false; 337 338 if (Ty->isVectorType()) { 339 // 64- and 128- bit vectors inside structures are not returned in 340 // registers. 341 if (Size == 64 || Size == 128) 342 return false; 343 344 return true; 345 } 346 347 // If this is a builtin, pointer, enum, or complex type, it is ok. 348 if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() || 349 Ty->isAnyComplexType() || Ty->isEnumeralType() || 350 Ty->isBlockPointerType()) 351 return true; 352 353 // Arrays are treated like records. 354 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 355 return shouldReturnTypeInRegister(AT->getElementType(), Context); 356 357 // Otherwise, it must be a record type. 358 const RecordType *RT = Ty->getAs<RecordType>(); 359 if (!RT) return false; 360 361 // Structure types are passed in register if all fields would be 362 // passed in a register. 363 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 364 e = RT->getDecl()->field_end(); i != e; ++i) { 365 const FieldDecl *FD = *i; 366 367 // Empty fields are ignored. 368 if (isEmptyField(Context, FD, true)) 369 continue; 370 371 // Check fields recursively. 372 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 373 return false; 374 } 375 376 return true; 377} 378 379ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 380 ASTContext &Context, 381 llvm::LLVMContext &VMContext) const { 382 if (RetTy->isVoidType()) { 383 return ABIArgInfo::getIgnore(); 384 } else if (const VectorType *VT = RetTy->getAs<VectorType>()) { 385 // On Darwin, some vectors are returned in registers. 386 if (IsDarwinVectorABI) { 387 uint64_t Size = Context.getTypeSize(RetTy); 388 389 // 128-bit vectors are a special case; they are returned in 390 // registers and we need to make sure to pick a type the LLVM 391 // backend will like. 392 if (Size == 128) 393 return ABIArgInfo::getCoerce(llvm::VectorType::get( 394 llvm::Type::getInt64Ty(VMContext), 2)); 395 396 // Always return in register if it fits in a general purpose 397 // register, or if it is 64 bits and has a single element. 398 if ((Size == 8 || Size == 16 || Size == 32) || 399 (Size == 64 && VT->getNumElements() == 1)) 400 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size)); 401 402 return ABIArgInfo::getIndirect(0); 403 } 404 405 return ABIArgInfo::getDirect(); 406 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 407 if (const RecordType *RT = RetTy->getAsStructureType()) { 408 // Structures with either a non-trivial destructor or a non-trivial 409 // copy constructor are always indirect. 410 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 411 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 412 413 // Structures with flexible arrays are always indirect. 414 if (RT->getDecl()->hasFlexibleArrayMember()) 415 return ABIArgInfo::getIndirect(0); 416 } 417 418 // If specified, structs and unions are always indirect. 419 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 420 return ABIArgInfo::getIndirect(0); 421 422 // Classify "single element" structs as their element type. 423 if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { 424 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) { 425 if (BT->isIntegerType()) { 426 // We need to use the size of the structure, padding 427 // bit-fields can adjust that to be larger than the single 428 // element type. 429 uint64_t Size = Context.getTypeSize(RetTy); 430 return ABIArgInfo::getCoerce( 431 llvm::IntegerType::get(VMContext, (unsigned) Size)); 432 } else if (BT->getKind() == BuiltinType::Float) { 433 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && 434 "Unexpect single element structure size!"); 435 return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext)); 436 } else if (BT->getKind() == BuiltinType::Double) { 437 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && 438 "Unexpect single element structure size!"); 439 return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext)); 440 } 441 } else if (SeltTy->isPointerType()) { 442 // FIXME: It would be really nice if this could come out as the proper 443 // pointer type. 444 const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); 445 return ABIArgInfo::getCoerce(PtrTy); 446 } else if (SeltTy->isVectorType()) { 447 // 64- and 128-bit vectors are never returned in a 448 // register when inside a structure. 449 uint64_t Size = Context.getTypeSize(RetTy); 450 if (Size == 64 || Size == 128) 451 return ABIArgInfo::getIndirect(0); 452 453 return classifyReturnType(QualType(SeltTy, 0), Context, VMContext); 454 } 455 } 456 457 // Small structures which are register sized are generally returned 458 // in a register. 459 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { 460 uint64_t Size = Context.getTypeSize(RetTy); 461 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size)); 462 } 463 464 return ABIArgInfo::getIndirect(0); 465 } else { 466 return (RetTy->isPromotableIntegerType() ? 467 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 468 } 469} 470 471unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty, 472 ASTContext &Context) { 473 unsigned Align = Context.getTypeAlign(Ty); 474 if (Align < 128) return 0; 475 if (const RecordType* RT = Ty->getAs<RecordType>()) 476 if (typeContainsSSEVector(RT->getDecl(), Context)) 477 return 16; 478 return 0; 479} 480 481ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 482 ASTContext &Context, 483 llvm::LLVMContext &VMContext) const { 484 // FIXME: Set alignment on indirect arguments. 485 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 486 // Structures with flexible arrays are always indirect. 487 if (const RecordType *RT = Ty->getAsStructureType()) 488 if (RT->getDecl()->hasFlexibleArrayMember()) 489 return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, 490 Context)); 491 492 // Ignore empty structs. 493 if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0) 494 return ABIArgInfo::getIgnore(); 495 496 // Expand small (<= 128-bit) record types when we know that the stack layout 497 // of those arguments will match the struct. This is important because the 498 // LLVM backend isn't smart enough to remove byval, which inhibits many 499 // optimizations. 500 if (Context.getTypeSize(Ty) <= 4*32 && 501 canExpandIndirectArgument(Ty, Context)) 502 return ABIArgInfo::getExpand(); 503 504 return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context)); 505 } else { 506 return (Ty->isPromotableIntegerType() ? 507 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 508 } 509} 510 511llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 512 CodeGenFunction &CGF) const { 513 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 514 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 515 516 CGBuilderTy &Builder = CGF.Builder; 517 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 518 "ap"); 519 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 520 llvm::Type *PTy = 521 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 522 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 523 524 uint64_t Offset = 525 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 526 llvm::Value *NextAddr = 527 Builder.CreateGEP(Addr, llvm::ConstantInt::get( 528 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset), 529 "ap.next"); 530 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 531 532 return AddrTyped; 533} 534 535namespace { 536/// X86_64ABIInfo - The X86_64 ABI information. 537class X86_64ABIInfo : public ABIInfo { 538 enum Class { 539 Integer = 0, 540 SSE, 541 SSEUp, 542 X87, 543 X87Up, 544 ComplexX87, 545 NoClass, 546 Memory 547 }; 548 549 /// merge - Implement the X86_64 ABI merging algorithm. 550 /// 551 /// Merge an accumulating classification \arg Accum with a field 552 /// classification \arg Field. 553 /// 554 /// \param Accum - The accumulating classification. This should 555 /// always be either NoClass or the result of a previous merge 556 /// call. In addition, this should never be Memory (the caller 557 /// should just return Memory for the aggregate). 558 Class merge(Class Accum, Class Field) const; 559 560 /// classify - Determine the x86_64 register classes in which the 561 /// given type T should be passed. 562 /// 563 /// \param Lo - The classification for the parts of the type 564 /// residing in the low word of the containing object. 565 /// 566 /// \param Hi - The classification for the parts of the type 567 /// residing in the high word of the containing object. 568 /// 569 /// \param OffsetBase - The bit offset of this type in the 570 /// containing object. Some parameters are classified different 571 /// depending on whether they straddle an eightbyte boundary. 572 /// 573 /// If a word is unused its result will be NoClass; if a type should 574 /// be passed in Memory then at least the classification of \arg Lo 575 /// will be Memory. 576 /// 577 /// The \arg Lo class will be NoClass iff the argument is ignored. 578 /// 579 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 580 /// also be ComplexX87. 581 void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, 582 Class &Lo, Class &Hi) const; 583 584 /// getCoerceResult - Given a source type \arg Ty and an LLVM type 585 /// to coerce to, chose the best way to pass Ty in the same place 586 /// that \arg CoerceTo would be passed, but while keeping the 587 /// emitted code as simple as possible. 588 /// 589 /// FIXME: Note, this should be cleaned up to just take an enumeration of all 590 /// the ways we might want to pass things, instead of constructing an LLVM 591 /// type. This makes this code more explicit, and it makes it clearer that we 592 /// are also doing this for correctness in the case of passing scalar types. 593 ABIArgInfo getCoerceResult(QualType Ty, 594 const llvm::Type *CoerceTo, 595 ASTContext &Context) const; 596 597 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 598 /// such that the argument will be passed in memory. 599 ABIArgInfo getIndirectResult(QualType Ty, 600 ASTContext &Context) const; 601 602 ABIArgInfo classifyReturnType(QualType RetTy, 603 ASTContext &Context, 604 llvm::LLVMContext &VMContext) const; 605 606 ABIArgInfo classifyArgumentType(QualType Ty, 607 ASTContext &Context, 608 llvm::LLVMContext &VMContext, 609 unsigned &neededInt, 610 unsigned &neededSSE) const; 611 612public: 613 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 614 llvm::LLVMContext &VMContext) const; 615 616 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 617 CodeGenFunction &CGF) const; 618}; 619 620class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 621public: 622 X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}; 623}; 624 625} 626 627X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, 628 Class Field) const { 629 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 630 // classified recursively so that always two fields are 631 // considered. The resulting class is calculated according to 632 // the classes of the fields in the eightbyte: 633 // 634 // (a) If both classes are equal, this is the resulting class. 635 // 636 // (b) If one of the classes is NO_CLASS, the resulting class is 637 // the other class. 638 // 639 // (c) If one of the classes is MEMORY, the result is the MEMORY 640 // class. 641 // 642 // (d) If one of the classes is INTEGER, the result is the 643 // INTEGER. 644 // 645 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 646 // MEMORY is used as class. 647 // 648 // (f) Otherwise class SSE is used. 649 650 // Accum should never be memory (we should have returned) or 651 // ComplexX87 (because this cannot be passed in a structure). 652 assert((Accum != Memory && Accum != ComplexX87) && 653 "Invalid accumulated classification during merge."); 654 if (Accum == Field || Field == NoClass) 655 return Accum; 656 else if (Field == Memory) 657 return Memory; 658 else if (Accum == NoClass) 659 return Field; 660 else if (Accum == Integer || Field == Integer) 661 return Integer; 662 else if (Field == X87 || Field == X87Up || Field == ComplexX87 || 663 Accum == X87 || Accum == X87Up) 664 return Memory; 665 else 666 return SSE; 667} 668 669void X86_64ABIInfo::classify(QualType Ty, 670 ASTContext &Context, 671 uint64_t OffsetBase, 672 Class &Lo, Class &Hi) const { 673 // FIXME: This code can be simplified by introducing a simple value class for 674 // Class pairs with appropriate constructor methods for the various 675 // situations. 676 677 // FIXME: Some of the split computations are wrong; unaligned vectors 678 // shouldn't be passed in registers for example, so there is no chance they 679 // can straddle an eightbyte. Verify & simplify. 680 681 Lo = Hi = NoClass; 682 683 Class &Current = OffsetBase < 64 ? Lo : Hi; 684 Current = Memory; 685 686 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 687 BuiltinType::Kind k = BT->getKind(); 688 689 if (k == BuiltinType::Void) { 690 Current = NoClass; 691 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 692 Lo = Integer; 693 Hi = Integer; 694 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 695 Current = Integer; 696 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 697 Current = SSE; 698 } else if (k == BuiltinType::LongDouble) { 699 Lo = X87; 700 Hi = X87Up; 701 } 702 // FIXME: _Decimal32 and _Decimal64 are SSE. 703 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 704 } else if (const EnumType *ET = Ty->getAs<EnumType>()) { 705 // Classify the underlying integer type. 706 classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); 707 } else if (Ty->hasPointerRepresentation()) { 708 Current = Integer; 709 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 710 uint64_t Size = Context.getTypeSize(VT); 711 if (Size == 32) { 712 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 713 // float> as integer. 714 Current = Integer; 715 716 // If this type crosses an eightbyte boundary, it should be 717 // split. 718 uint64_t EB_Real = (OffsetBase) / 64; 719 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 720 if (EB_Real != EB_Imag) 721 Hi = Lo; 722 } else if (Size == 64) { 723 // gcc passes <1 x double> in memory. :( 724 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 725 return; 726 727 // gcc passes <1 x long long> as INTEGER. 728 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) 729 Current = Integer; 730 else 731 Current = SSE; 732 733 // If this type crosses an eightbyte boundary, it should be 734 // split. 735 if (OffsetBase && OffsetBase != 64) 736 Hi = Lo; 737 } else if (Size == 128) { 738 Lo = SSE; 739 Hi = SSEUp; 740 } 741 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 742 QualType ET = Context.getCanonicalType(CT->getElementType()); 743 744 uint64_t Size = Context.getTypeSize(Ty); 745 if (ET->isIntegralType()) { 746 if (Size <= 64) 747 Current = Integer; 748 else if (Size <= 128) 749 Lo = Hi = Integer; 750 } else if (ET == Context.FloatTy) 751 Current = SSE; 752 else if (ET == Context.DoubleTy) 753 Lo = Hi = SSE; 754 else if (ET == Context.LongDoubleTy) 755 Current = ComplexX87; 756 757 // If this complex type crosses an eightbyte boundary then it 758 // should be split. 759 uint64_t EB_Real = (OffsetBase) / 64; 760 uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; 761 if (Hi == NoClass && EB_Real != EB_Imag) 762 Hi = Lo; 763 } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 764 // Arrays are treated like structures. 765 766 uint64_t Size = Context.getTypeSize(Ty); 767 768 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 769 // than two eightbytes, ..., it has class MEMORY. 770 if (Size > 128) 771 return; 772 773 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 774 // fields, it has class MEMORY. 775 // 776 // Only need to check alignment of array base. 777 if (OffsetBase % Context.getTypeAlign(AT->getElementType())) 778 return; 779 780 // Otherwise implement simplified merge. We could be smarter about 781 // this, but it isn't worth it and would be harder to verify. 782 Current = NoClass; 783 uint64_t EltSize = Context.getTypeSize(AT->getElementType()); 784 uint64_t ArraySize = AT->getSize().getZExtValue(); 785 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 786 Class FieldLo, FieldHi; 787 classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); 788 Lo = merge(Lo, FieldLo); 789 Hi = merge(Hi, FieldHi); 790 if (Lo == Memory || Hi == Memory) 791 break; 792 } 793 794 // Do post merger cleanup (see below). Only case we worry about is Memory. 795 if (Hi == Memory) 796 Lo = Memory; 797 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 798 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 799 uint64_t Size = Context.getTypeSize(Ty); 800 801 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 802 // than two eightbytes, ..., it has class MEMORY. 803 if (Size > 128) 804 return; 805 806 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 807 // copy constructor or a non-trivial destructor, it is passed by invisible 808 // reference. 809 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 810 return; 811 812 const RecordDecl *RD = RT->getDecl(); 813 814 // Assume variable sized types are passed in memory. 815 if (RD->hasFlexibleArrayMember()) 816 return; 817 818 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 819 820 // Reset Lo class, this will be recomputed. 821 Current = NoClass; 822 823 // If this is a C++ record, classify the bases first. 824 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 825 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 826 e = CXXRD->bases_end(); i != e; ++i) { 827 assert(!i->isVirtual() && !i->getType()->isDependentType() && 828 "Unexpected base class!"); 829 const CXXRecordDecl *Base = 830 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 831 832 // Classify this field. 833 // 834 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 835 // single eightbyte, each is classified separately. Each eightbyte gets 836 // initialized to class NO_CLASS. 837 Class FieldLo, FieldHi; 838 uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base); 839 classify(i->getType(), Context, Offset, FieldLo, FieldHi); 840 Lo = merge(Lo, FieldLo); 841 Hi = merge(Hi, FieldHi); 842 if (Lo == Memory || Hi == Memory) 843 break; 844 } 845 846 // If this record has no fields but isn't empty, classify as INTEGER. 847 if (RD->field_empty() && Size) 848 Current = Integer; 849 } 850 851 // Classify the fields one at a time, merging the results. 852 unsigned idx = 0; 853 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 854 i != e; ++i, ++idx) { 855 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 856 bool BitField = i->isBitField(); 857 858 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 859 // fields, it has class MEMORY. 860 // 861 // Note, skip this test for bit-fields, see below. 862 if (!BitField && Offset % Context.getTypeAlign(i->getType())) { 863 Lo = Memory; 864 return; 865 } 866 867 // Classify this field. 868 // 869 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 870 // exceeds a single eightbyte, each is classified 871 // separately. Each eightbyte gets initialized to class 872 // NO_CLASS. 873 Class FieldLo, FieldHi; 874 875 // Bit-fields require special handling, they do not force the 876 // structure to be passed in memory even if unaligned, and 877 // therefore they can straddle an eightbyte. 878 if (BitField) { 879 // Ignore padding bit-fields. 880 if (i->isUnnamedBitfield()) 881 continue; 882 883 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 884 uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); 885 886 uint64_t EB_Lo = Offset / 64; 887 uint64_t EB_Hi = (Offset + Size - 1) / 64; 888 FieldLo = FieldHi = NoClass; 889 if (EB_Lo) { 890 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 891 FieldLo = NoClass; 892 FieldHi = Integer; 893 } else { 894 FieldLo = Integer; 895 FieldHi = EB_Hi ? Integer : NoClass; 896 } 897 } else 898 classify(i->getType(), Context, Offset, FieldLo, FieldHi); 899 Lo = merge(Lo, FieldLo); 900 Hi = merge(Hi, FieldHi); 901 if (Lo == Memory || Hi == Memory) 902 break; 903 } 904 905 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 906 // 907 // (a) If one of the classes is MEMORY, the whole argument is 908 // passed in memory. 909 // 910 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. 911 912 // The first of these conditions is guaranteed by how we implement 913 // the merge (just bail). 914 // 915 // The second condition occurs in the case of unions; for example 916 // union { _Complex double; unsigned; }. 917 if (Hi == Memory) 918 Lo = Memory; 919 if (Hi == SSEUp && Lo != SSE) 920 Hi = SSE; 921 } 922} 923 924ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, 925 const llvm::Type *CoerceTo, 926 ASTContext &Context) const { 927 if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) { 928 // Integer and pointer types will end up in a general purpose 929 // register. 930 if (Ty->isIntegralType() || Ty->hasPointerRepresentation()) 931 return (Ty->isPromotableIntegerType() ? 932 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 933 } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) { 934 // FIXME: It would probably be better to make CGFunctionInfo only map using 935 // canonical types than to canonize here. 936 QualType CTy = Context.getCanonicalType(Ty); 937 938 // Float and double end up in a single SSE reg. 939 if (CTy == Context.FloatTy || CTy == Context.DoubleTy) 940 return ABIArgInfo::getDirect(); 941 942 } 943 944 return ABIArgInfo::getCoerce(CoerceTo); 945} 946 947ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 948 ASTContext &Context) const { 949 // If this is a scalar LLVM value then assume LLVM will pass it in the right 950 // place naturally. 951 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) 952 return (Ty->isPromotableIntegerType() ? 953 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 954 955 bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty); 956 957 // FIXME: Set alignment correctly. 958 return ABIArgInfo::getIndirect(0, ByVal); 959} 960 961ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, 962 ASTContext &Context, 963 llvm::LLVMContext &VMContext) const { 964 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 965 // classification algorithm. 966 X86_64ABIInfo::Class Lo, Hi; 967 classify(RetTy, Context, 0, Lo, Hi); 968 969 // Check some invariants. 970 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 971 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); 972 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 973 974 const llvm::Type *ResType = 0; 975 switch (Lo) { 976 case NoClass: 977 return ABIArgInfo::getIgnore(); 978 979 case SSEUp: 980 case X87Up: 981 assert(0 && "Invalid classification for lo word."); 982 983 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 984 // hidden argument. 985 case Memory: 986 return getIndirectResult(RetTy, Context); 987 988 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 989 // available register of the sequence %rax, %rdx is used. 990 case Integer: 991 ResType = llvm::Type::getInt64Ty(VMContext); break; 992 993 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 994 // available SSE register of the sequence %xmm0, %xmm1 is used. 995 case SSE: 996 ResType = llvm::Type::getDoubleTy(VMContext); break; 997 998 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 999 // returned on the X87 stack in %st0 as 80-bit x87 number. 1000 case X87: 1001 ResType = llvm::Type::getX86_FP80Ty(VMContext); break; 1002 1003 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 1004 // part of the value is returned in %st0 and the imaginary part in 1005 // %st1. 1006 case ComplexX87: 1007 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 1008 ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext), 1009 llvm::Type::getX86_FP80Ty(VMContext), 1010 NULL); 1011 break; 1012 } 1013 1014 switch (Hi) { 1015 // Memory was handled previously and X87 should 1016 // never occur as a hi class. 1017 case Memory: 1018 case X87: 1019 assert(0 && "Invalid classification for hi word."); 1020 1021 case ComplexX87: // Previously handled. 1022 case NoClass: break; 1023 1024 case Integer: 1025 ResType = llvm::StructType::get(VMContext, ResType, 1026 llvm::Type::getInt64Ty(VMContext), NULL); 1027 break; 1028 case SSE: 1029 ResType = llvm::StructType::get(VMContext, ResType, 1030 llvm::Type::getDoubleTy(VMContext), NULL); 1031 break; 1032 1033 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 1034 // is passed in the upper half of the last used SSE register. 1035 // 1036 // SSEUP should always be preceeded by SSE, just widen. 1037 case SSEUp: 1038 assert(Lo == SSE && "Unexpected SSEUp classification."); 1039 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2); 1040 break; 1041 1042 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 1043 // returned together with the previous X87 value in %st0. 1044 case X87Up: 1045 // If X87Up is preceeded by X87, we don't need to do 1046 // anything. However, in some cases with unions it may not be 1047 // preceeded by X87. In such situations we follow gcc and pass the 1048 // extra bits in an SSE reg. 1049 if (Lo != X87) 1050 ResType = llvm::StructType::get(VMContext, ResType, 1051 llvm::Type::getDoubleTy(VMContext), NULL); 1052 break; 1053 } 1054 1055 return getCoerceResult(RetTy, ResType, Context); 1056} 1057 1058ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, 1059 llvm::LLVMContext &VMContext, 1060 unsigned &neededInt, 1061 unsigned &neededSSE) const { 1062 X86_64ABIInfo::Class Lo, Hi; 1063 classify(Ty, Context, 0, Lo, Hi); 1064 1065 // Check some invariants. 1066 // FIXME: Enforce these by construction. 1067 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1068 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); 1069 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1070 1071 neededInt = 0; 1072 neededSSE = 0; 1073 const llvm::Type *ResType = 0; 1074 switch (Lo) { 1075 case NoClass: 1076 return ABIArgInfo::getIgnore(); 1077 1078 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 1079 // on the stack. 1080 case Memory: 1081 1082 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 1083 // COMPLEX_X87, it is passed in memory. 1084 case X87: 1085 case ComplexX87: 1086 return getIndirectResult(Ty, Context); 1087 1088 case SSEUp: 1089 case X87Up: 1090 assert(0 && "Invalid classification for lo word."); 1091 1092 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 1093 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 1094 // and %r9 is used. 1095 case Integer: 1096 ++neededInt; 1097 ResType = llvm::Type::getInt64Ty(VMContext); 1098 break; 1099 1100 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 1101 // available SSE register is used, the registers are taken in the 1102 // order from %xmm0 to %xmm7. 1103 case SSE: 1104 ++neededSSE; 1105 ResType = llvm::Type::getDoubleTy(VMContext); 1106 break; 1107 } 1108 1109 switch (Hi) { 1110 // Memory was handled previously, ComplexX87 and X87 should 1111 // never occur as hi classes, and X87Up must be preceed by X87, 1112 // which is passed in memory. 1113 case Memory: 1114 case X87: 1115 case ComplexX87: 1116 assert(0 && "Invalid classification for hi word."); 1117 break; 1118 1119 case NoClass: break; 1120 case Integer: 1121 ResType = llvm::StructType::get(VMContext, ResType, 1122 llvm::Type::getInt64Ty(VMContext), NULL); 1123 ++neededInt; 1124 break; 1125 1126 // X87Up generally doesn't occur here (long double is passed in 1127 // memory), except in situations involving unions. 1128 case X87Up: 1129 case SSE: 1130 ResType = llvm::StructType::get(VMContext, ResType, 1131 llvm::Type::getDoubleTy(VMContext), NULL); 1132 ++neededSSE; 1133 break; 1134 1135 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 1136 // eightbyte is passed in the upper half of the last used SSE 1137 // register. 1138 case SSEUp: 1139 assert(Lo == SSE && "Unexpected SSEUp classification."); 1140 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2); 1141 break; 1142 } 1143 1144 return getCoerceResult(Ty, ResType, Context); 1145} 1146 1147void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1148 llvm::LLVMContext &VMContext) const { 1149 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 1150 Context, VMContext); 1151 1152 // Keep track of the number of assigned registers. 1153 unsigned freeIntRegs = 6, freeSSERegs = 8; 1154 1155 // If the return value is indirect, then the hidden argument is consuming one 1156 // integer register. 1157 if (FI.getReturnInfo().isIndirect()) 1158 --freeIntRegs; 1159 1160 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 1161 // get assigned (in left-to-right order) for passing as follows... 1162 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1163 it != ie; ++it) { 1164 unsigned neededInt, neededSSE; 1165 it->info = classifyArgumentType(it->type, Context, VMContext, 1166 neededInt, neededSSE); 1167 1168 // AMD64-ABI 3.2.3p3: If there are no registers available for any 1169 // eightbyte of an argument, the whole argument is passed on the 1170 // stack. If registers have already been assigned for some 1171 // eightbytes of such an argument, the assignments get reverted. 1172 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 1173 freeIntRegs -= neededInt; 1174 freeSSERegs -= neededSSE; 1175 } else { 1176 it->info = getIndirectResult(it->type, Context); 1177 } 1178 } 1179} 1180 1181static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 1182 QualType Ty, 1183 CodeGenFunction &CGF) { 1184 llvm::Value *overflow_arg_area_p = 1185 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 1186 llvm::Value *overflow_arg_area = 1187 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 1188 1189 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 1190 // byte boundary if alignment needed by type exceeds 8 byte boundary. 1191 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 1192 if (Align > 8) { 1193 // Note that we follow the ABI & gcc here, even though the type 1194 // could in theory have an alignment greater than 16. This case 1195 // shouldn't ever matter in practice. 1196 1197 // overflow_arg_area = (overflow_arg_area + 15) & ~15; 1198 llvm::Value *Offset = 1199 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15); 1200 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 1201 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 1202 llvm::Type::getInt64Ty(CGF.getLLVMContext())); 1203 llvm::Value *Mask = llvm::ConstantInt::get( 1204 llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL); 1205 overflow_arg_area = 1206 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1207 overflow_arg_area->getType(), 1208 "overflow_arg_area.align"); 1209 } 1210 1211 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 1212 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 1213 llvm::Value *Res = 1214 CGF.Builder.CreateBitCast(overflow_arg_area, 1215 llvm::PointerType::getUnqual(LTy)); 1216 1217 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 1218 // l->overflow_arg_area + sizeof(type). 1219 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 1220 // an 8 byte boundary. 1221 1222 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 1223 llvm::Value *Offset = 1224 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 1225 (SizeInBytes + 7) & ~7); 1226 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 1227 "overflow_arg_area.next"); 1228 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 1229 1230 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 1231 return Res; 1232} 1233 1234llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1235 CodeGenFunction &CGF) const { 1236 llvm::LLVMContext &VMContext = CGF.getLLVMContext(); 1237 const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext); 1238 const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); 1239 1240 // Assume that va_list type is correct; should be pointer to LLVM type: 1241 // struct { 1242 // i32 gp_offset; 1243 // i32 fp_offset; 1244 // i8* overflow_arg_area; 1245 // i8* reg_save_area; 1246 // }; 1247 unsigned neededInt, neededSSE; 1248 ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext, 1249 neededInt, neededSSE); 1250 1251 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 1252 // in the registers. If not go to step 7. 1253 if (!neededInt && !neededSSE) 1254 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 1255 1256 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 1257 // general purpose registers needed to pass type and num_fp to hold 1258 // the number of floating point registers needed. 1259 1260 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 1261 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 1262 // l->fp_offset > 304 - num_fp * 16 go to step 7. 1263 // 1264 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 1265 // register save space). 1266 1267 llvm::Value *InRegs = 0; 1268 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 1269 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 1270 if (neededInt) { 1271 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 1272 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 1273 InRegs = 1274 CGF.Builder.CreateICmpULE(gp_offset, 1275 llvm::ConstantInt::get(i32Ty, 1276 48 - neededInt * 8), 1277 "fits_in_gp"); 1278 } 1279 1280 if (neededSSE) { 1281 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 1282 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 1283 llvm::Value *FitsInFP = 1284 CGF.Builder.CreateICmpULE(fp_offset, 1285 llvm::ConstantInt::get(i32Ty, 1286 176 - neededSSE * 16), 1287 "fits_in_fp"); 1288 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 1289 } 1290 1291 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 1292 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 1293 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 1294 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 1295 1296 // Emit code to load the value if it was passed in registers. 1297 1298 CGF.EmitBlock(InRegBlock); 1299 1300 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 1301 // an offset of l->gp_offset and/or l->fp_offset. This may require 1302 // copying to a temporary location in case the parameter is passed 1303 // in different register classes or requires an alignment greater 1304 // than 8 for general purpose registers and 16 for XMM registers. 1305 // 1306 // FIXME: This really results in shameful code when we end up needing to 1307 // collect arguments from different places; often what should result in a 1308 // simple assembling of a structure from scattered addresses has many more 1309 // loads than necessary. Can we clean this up? 1310 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 1311 llvm::Value *RegAddr = 1312 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 1313 "reg_save_area"); 1314 if (neededInt && neededSSE) { 1315 // FIXME: Cleanup. 1316 assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); 1317 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 1318 llvm::Value *Tmp = CGF.CreateTempAlloca(ST); 1319 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 1320 const llvm::Type *TyLo = ST->getElementType(0); 1321 const llvm::Type *TyHi = ST->getElementType(1); 1322 assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && 1323 "Unexpected ABI info for mixed regs"); 1324 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 1325 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 1326 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 1327 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1328 llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; 1329 llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; 1330 llvm::Value *V = 1331 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 1332 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 1333 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 1334 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 1335 1336 RegAddr = CGF.Builder.CreateBitCast(Tmp, 1337 llvm::PointerType::getUnqual(LTy)); 1338 } else if (neededInt) { 1339 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 1340 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 1341 llvm::PointerType::getUnqual(LTy)); 1342 } else { 1343 if (neededSSE == 1) { 1344 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1345 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 1346 llvm::PointerType::getUnqual(LTy)); 1347 } else { 1348 assert(neededSSE == 2 && "Invalid number of needed registers!"); 1349 // SSE registers are spaced 16 bytes apart in the register save 1350 // area, we need to collect the two eightbytes together. 1351 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1352 llvm::Value *RegAddrHi = 1353 CGF.Builder.CreateGEP(RegAddrLo, 1354 llvm::ConstantInt::get(i32Ty, 16)); 1355 const llvm::Type *DblPtrTy = 1356 llvm::PointerType::getUnqual(DoubleTy); 1357 const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy, 1358 DoubleTy, NULL); 1359 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); 1360 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 1361 DblPtrTy)); 1362 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 1363 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 1364 DblPtrTy)); 1365 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 1366 RegAddr = CGF.Builder.CreateBitCast(Tmp, 1367 llvm::PointerType::getUnqual(LTy)); 1368 } 1369 } 1370 1371 // AMD64-ABI 3.5.7p5: Step 5. Set: 1372 // l->gp_offset = l->gp_offset + num_gp * 8 1373 // l->fp_offset = l->fp_offset + num_fp * 16. 1374 if (neededInt) { 1375 llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8); 1376 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 1377 gp_offset_p); 1378 } 1379 if (neededSSE) { 1380 llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16); 1381 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 1382 fp_offset_p); 1383 } 1384 CGF.EmitBranch(ContBlock); 1385 1386 // Emit code to load the value if it was passed in memory. 1387 1388 CGF.EmitBlock(InMemBlock); 1389 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 1390 1391 // Return the appropriate result. 1392 1393 CGF.EmitBlock(ContBlock); 1394 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 1395 "vaarg.addr"); 1396 ResAddr->reserveOperandSpace(2); 1397 ResAddr->addIncoming(RegAddr, InRegBlock); 1398 ResAddr->addIncoming(MemAddr, InMemBlock); 1399 1400 return ResAddr; 1401} 1402 1403// PIC16 ABI Implementation 1404 1405namespace { 1406 1407class PIC16ABIInfo : public ABIInfo { 1408 ABIArgInfo classifyReturnType(QualType RetTy, 1409 ASTContext &Context, 1410 llvm::LLVMContext &VMContext) const; 1411 1412 ABIArgInfo classifyArgumentType(QualType RetTy, 1413 ASTContext &Context, 1414 llvm::LLVMContext &VMContext) const; 1415 1416 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1417 llvm::LLVMContext &VMContext) const { 1418 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 1419 VMContext); 1420 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1421 it != ie; ++it) 1422 it->info = classifyArgumentType(it->type, Context, VMContext); 1423 } 1424 1425 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1426 CodeGenFunction &CGF) const; 1427}; 1428 1429class PIC16TargetCodeGenInfo : public TargetCodeGenInfo { 1430public: 1431 PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}; 1432}; 1433 1434} 1435 1436ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, 1437 ASTContext &Context, 1438 llvm::LLVMContext &VMContext) const { 1439 if (RetTy->isVoidType()) { 1440 return ABIArgInfo::getIgnore(); 1441 } else { 1442 return ABIArgInfo::getDirect(); 1443 } 1444} 1445 1446ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, 1447 ASTContext &Context, 1448 llvm::LLVMContext &VMContext) const { 1449 return ABIArgInfo::getDirect(); 1450} 1451 1452llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1453 CodeGenFunction &CGF) const { 1454 return 0; 1455} 1456 1457// ARM ABI Implementation 1458 1459namespace { 1460 1461class ARMABIInfo : public ABIInfo { 1462public: 1463 enum ABIKind { 1464 APCS = 0, 1465 AAPCS = 1, 1466 AAPCS_VFP 1467 }; 1468 1469private: 1470 ABIKind Kind; 1471 1472public: 1473 ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {} 1474 1475private: 1476 ABIKind getABIKind() const { return Kind; } 1477 1478 ABIArgInfo classifyReturnType(QualType RetTy, 1479 ASTContext &Context, 1480 llvm::LLVMContext &VMCOntext) const; 1481 1482 ABIArgInfo classifyArgumentType(QualType RetTy, 1483 ASTContext &Context, 1484 llvm::LLVMContext &VMContext) const; 1485 1486 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1487 llvm::LLVMContext &VMContext) const; 1488 1489 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1490 CodeGenFunction &CGF) const; 1491}; 1492 1493class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 1494public: 1495 ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K) 1496 :TargetCodeGenInfo(new ARMABIInfo(K)) {}; 1497}; 1498 1499} 1500 1501void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1502 llvm::LLVMContext &VMContext) const { 1503 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 1504 VMContext); 1505 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1506 it != ie; ++it) { 1507 it->info = classifyArgumentType(it->type, Context, VMContext); 1508 } 1509 1510 // ARM always overrides the calling convention. 1511 switch (getABIKind()) { 1512 case APCS: 1513 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); 1514 break; 1515 1516 case AAPCS: 1517 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); 1518 break; 1519 1520 case AAPCS_VFP: 1521 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); 1522 break; 1523 } 1524} 1525 1526ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 1527 ASTContext &Context, 1528 llvm::LLVMContext &VMContext) const { 1529 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) 1530 return (Ty->isPromotableIntegerType() ? 1531 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1532 1533 // Ignore empty records. 1534 if (isEmptyRecord(Context, Ty, true)) 1535 return ABIArgInfo::getIgnore(); 1536 1537 // FIXME: This is kind of nasty... but there isn't much choice because the ARM 1538 // backend doesn't support byval. 1539 // FIXME: This doesn't handle alignment > 64 bits. 1540 const llvm::Type* ElemTy; 1541 unsigned SizeRegs; 1542 if (Context.getTypeAlign(Ty) > 32) { 1543 ElemTy = llvm::Type::getInt64Ty(VMContext); 1544 SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; 1545 } else { 1546 ElemTy = llvm::Type::getInt32Ty(VMContext); 1547 SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; 1548 } 1549 std::vector<const llvm::Type*> LLVMFields; 1550 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); 1551 const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true); 1552 return ABIArgInfo::getCoerce(STy); 1553} 1554 1555static bool isIntegerLikeType(QualType Ty, 1556 ASTContext &Context, 1557 llvm::LLVMContext &VMContext) { 1558 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 1559 // is called integer-like if its size is less than or equal to one word, and 1560 // the offset of each of its addressable sub-fields is zero. 1561 1562 uint64_t Size = Context.getTypeSize(Ty); 1563 1564 // Check that the type fits in a word. 1565 if (Size > 32) 1566 return false; 1567 1568 // FIXME: Handle vector types! 1569 if (Ty->isVectorType()) 1570 return false; 1571 1572 // Float types are never treated as "integer like". 1573 if (Ty->isRealFloatingType()) 1574 return false; 1575 1576 // If this is a builtin or pointer type then it is ok. 1577 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 1578 return true; 1579 1580 // Complex types "should" be ok by the definition above, but they are not. 1581 if (Ty->isAnyComplexType()) 1582 return false; 1583 1584 // Single element and zero sized arrays should be allowed, by the definition 1585 // above, but they are not. 1586 1587 // Otherwise, it must be a record type. 1588 const RecordType *RT = Ty->getAs<RecordType>(); 1589 if (!RT) return false; 1590 1591 // Ignore records with flexible arrays. 1592 const RecordDecl *RD = RT->getDecl(); 1593 if (RD->hasFlexibleArrayMember()) 1594 return false; 1595 1596 // Check that all sub-fields are at offset 0, and are themselves "integer 1597 // like". 1598 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1599 1600 bool HadField = false; 1601 unsigned idx = 0; 1602 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1603 i != e; ++i, ++idx) { 1604 const FieldDecl *FD = *i; 1605 1606 // Check if this field is at offset 0. 1607 uint64_t Offset = Layout.getFieldOffset(idx); 1608 if (Offset != 0) { 1609 // Allow padding bit-fields, but only if they are all at the end of the 1610 // structure (despite the wording above, this matches gcc). 1611 if (FD->isBitField() && 1612 !FD->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) { 1613 for (; i != e; ++i) 1614 if (!i->isBitField() || 1615 i->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) 1616 return false; 1617 1618 // All remaining fields are padding, allow this. 1619 return true; 1620 } 1621 1622 return false; 1623 } 1624 1625 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 1626 return false; 1627 1628 // Only allow at most one field in a structure. Again this doesn't match the 1629 // wording above, but follows gcc. 1630 if (!RD->isUnion()) { 1631 if (HadField) 1632 return false; 1633 1634 HadField = true; 1635 } 1636 } 1637 1638 return true; 1639} 1640 1641ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 1642 ASTContext &Context, 1643 llvm::LLVMContext &VMContext) const { 1644 if (RetTy->isVoidType()) 1645 return ABIArgInfo::getIgnore(); 1646 1647 if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) 1648 return (RetTy->isPromotableIntegerType() ? 1649 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1650 1651 // Are we following APCS? 1652 if (getABIKind() == APCS) { 1653 if (isEmptyRecord(Context, RetTy, false)) 1654 return ABIArgInfo::getIgnore(); 1655 1656 // Integer like structures are returned in r0. 1657 if (isIntegerLikeType(RetTy, Context, VMContext)) { 1658 // Return in the smallest viable integer type. 1659 uint64_t Size = Context.getTypeSize(RetTy); 1660 if (Size <= 8) 1661 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext)); 1662 if (Size <= 16) 1663 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext)); 1664 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext)); 1665 } 1666 1667 // Otherwise return in memory. 1668 return ABIArgInfo::getIndirect(0); 1669 } 1670 1671 // Otherwise this is an AAPCS variant. 1672 1673 if (isEmptyRecord(Context, RetTy, true)) 1674 return ABIArgInfo::getIgnore(); 1675 1676 // Aggregates <= 4 bytes are returned in r0; other aggregates 1677 // are returned indirectly. 1678 uint64_t Size = Context.getTypeSize(RetTy); 1679 if (Size <= 32) { 1680 // Return in the smallest viable integer type. 1681 if (Size <= 8) 1682 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext)); 1683 if (Size <= 16) 1684 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext)); 1685 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext)); 1686 } 1687 1688 return ABIArgInfo::getIndirect(0); 1689} 1690 1691llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1692 CodeGenFunction &CGF) const { 1693 // FIXME: Need to handle alignment 1694 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1695 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 1696 1697 CGBuilderTy &Builder = CGF.Builder; 1698 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1699 "ap"); 1700 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1701 llvm::Type *PTy = 1702 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1703 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1704 1705 uint64_t Offset = 1706 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 1707 llvm::Value *NextAddr = 1708 Builder.CreateGEP(Addr, llvm::ConstantInt::get( 1709 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset), 1710 "ap.next"); 1711 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1712 1713 return AddrTyped; 1714} 1715 1716ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, 1717 ASTContext &Context, 1718 llvm::LLVMContext &VMContext) const { 1719 if (RetTy->isVoidType()) { 1720 return ABIArgInfo::getIgnore(); 1721 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1722 return ABIArgInfo::getIndirect(0); 1723 } else { 1724 return (RetTy->isPromotableIntegerType() ? 1725 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1726 } 1727} 1728 1729// SystemZ ABI Implementation 1730 1731namespace { 1732 1733class SystemZABIInfo : public ABIInfo { 1734 bool isPromotableIntegerType(QualType Ty) const; 1735 1736 ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context, 1737 llvm::LLVMContext &VMContext) const; 1738 1739 ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context, 1740 llvm::LLVMContext &VMContext) const; 1741 1742 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1743 llvm::LLVMContext &VMContext) const { 1744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 1745 Context, VMContext); 1746 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1747 it != ie; ++it) 1748 it->info = classifyArgumentType(it->type, Context, VMContext); 1749 } 1750 1751 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1752 CodeGenFunction &CGF) const; 1753}; 1754 1755class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 1756public: 1757 SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}; 1758}; 1759 1760} 1761 1762bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 1763 // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended. 1764 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 1765 switch (BT->getKind()) { 1766 case BuiltinType::Bool: 1767 case BuiltinType::Char_S: 1768 case BuiltinType::Char_U: 1769 case BuiltinType::SChar: 1770 case BuiltinType::UChar: 1771 case BuiltinType::Short: 1772 case BuiltinType::UShort: 1773 case BuiltinType::Int: 1774 case BuiltinType::UInt: 1775 return true; 1776 default: 1777 return false; 1778 } 1779 return false; 1780} 1781 1782llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1783 CodeGenFunction &CGF) const { 1784 // FIXME: Implement 1785 return 0; 1786} 1787 1788 1789ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy, 1790 ASTContext &Context, 1791 llvm::LLVMContext &VMContext) const { 1792 if (RetTy->isVoidType()) { 1793 return ABIArgInfo::getIgnore(); 1794 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1795 return ABIArgInfo::getIndirect(0); 1796 } else { 1797 return (isPromotableIntegerType(RetTy) ? 1798 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1799 } 1800} 1801 1802ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty, 1803 ASTContext &Context, 1804 llvm::LLVMContext &VMContext) const { 1805 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 1806 return ABIArgInfo::getIndirect(0); 1807 } else { 1808 return (isPromotableIntegerType(Ty) ? 1809 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1810 } 1811} 1812 1813// MSP430 ABI Implementation 1814 1815namespace { 1816 1817class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 1818public: 1819 MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}; 1820 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1821 CodeGen::CodeGenModule &M) const; 1822}; 1823 1824} 1825 1826void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 1827 llvm::GlobalValue *GV, 1828 CodeGen::CodeGenModule &M) const { 1829 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1830 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 1831 // Handle 'interrupt' attribute: 1832 llvm::Function *F = cast<llvm::Function>(GV); 1833 1834 // Step 1: Set ISR calling convention. 1835 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 1836 1837 // Step 2: Add attributes goodness. 1838 F->addFnAttr(llvm::Attribute::NoInline); 1839 1840 // Step 3: Emit ISR vector alias. 1841 unsigned Num = attr->getNumber() + 0xffe0; 1842 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 1843 "vector_" + 1844 llvm::LowercaseString(llvm::utohexstr(Num)), 1845 GV, &M.getModule()); 1846 } 1847 } 1848} 1849 1850const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const { 1851 if (TheTargetCodeGenInfo) 1852 return *TheTargetCodeGenInfo; 1853 1854 // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't 1855 // free it. 1856 1857 const llvm::Triple &Triple(getContext().Target.getTriple()); 1858 switch (Triple.getArch()) { 1859 default: 1860 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo); 1861 1862 case llvm::Triple::arm: 1863 case llvm::Triple::thumb: 1864 // FIXME: We want to know the float calling convention as well. 1865 if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0) 1866 return *(TheTargetCodeGenInfo = 1867 new ARMTargetCodeGenInfo(ARMABIInfo::APCS)); 1868 1869 return *(TheTargetCodeGenInfo = 1870 new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS)); 1871 1872 case llvm::Triple::pic16: 1873 return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo()); 1874 1875 case llvm::Triple::systemz: 1876 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo()); 1877 1878 case llvm::Triple::msp430: 1879 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo()); 1880 1881 case llvm::Triple::x86: 1882 switch (Triple.getOS()) { 1883 case llvm::Triple::Darwin: 1884 return *(TheTargetCodeGenInfo = 1885 new X86_32TargetCodeGenInfo(Context, true, true)); 1886 case llvm::Triple::Cygwin: 1887 case llvm::Triple::MinGW32: 1888 case llvm::Triple::MinGW64: 1889 case llvm::Triple::AuroraUX: 1890 case llvm::Triple::DragonFly: 1891 case llvm::Triple::FreeBSD: 1892 case llvm::Triple::OpenBSD: 1893 return *(TheTargetCodeGenInfo = 1894 new X86_32TargetCodeGenInfo(Context, false, true)); 1895 1896 default: 1897 return *(TheTargetCodeGenInfo = 1898 new X86_32TargetCodeGenInfo(Context, false, false)); 1899 } 1900 1901 case llvm::Triple::x86_64: 1902 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo()); 1903 } 1904} 1905