TargetInfo.cpp revision faf23b72f171ef997d48c453a5a4783c5759f8fe
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                               llvm::Value *Array,
28                               llvm::Value *Value,
29                               unsigned FirstIndex,
30                               unsigned LastIndex) {
31  // Alternatively, we could emit this as a loop in the source.
32  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34    Builder.CreateStore(Value, Cell);
35  }
36}
37
38ABIInfo::~ABIInfo() {}
39
40void ABIArgInfo::dump() const {
41  llvm::raw_ostream &OS = llvm::errs();
42  OS << "(ABIArgInfo Kind=";
43  switch (TheKind) {
44  case Direct:
45    OS << "Direct";
46    break;
47  case Extend:
48    OS << "Extend";
49    break;
50  case Ignore:
51    OS << "Ignore";
52    break;
53  case Coerce:
54    OS << "Coerce Type=";
55    getCoerceToType()->print(OS);
56    break;
57  case Indirect:
58    OS << "Indirect Align=" << getIndirectAlign()
59       << " Byal=" << getIndirectByVal();
60    break;
61  case Expand:
62    OS << "Expand";
63    break;
64  }
65  OS << ")\n";
66}
67
68TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
69
70static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
71
72/// isEmptyField - Return true iff a the field is "empty", that is it
73/// is an unnamed bit-field or an (array of) empty record(s).
74static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
75                         bool AllowArrays) {
76  if (FD->isUnnamedBitfield())
77    return true;
78
79  QualType FT = FD->getType();
80
81    // Constant arrays of empty records count as empty, strip them off.
82  if (AllowArrays)
83    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
84      FT = AT->getElementType();
85
86  const RecordType *RT = FT->getAs<RecordType>();
87  if (!RT)
88    return false;
89
90  // C++ record fields are never empty, at least in the Itanium ABI.
91  //
92  // FIXME: We should use a predicate for whether this behavior is true in the
93  // current ABI.
94  if (isa<CXXRecordDecl>(RT->getDecl()))
95    return false;
96
97  return isEmptyRecord(Context, FT, AllowArrays);
98}
99
100/// isEmptyRecord - Return true iff a structure contains only empty
101/// fields. Note that a structure with a flexible array member is not
102/// considered empty.
103static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
104  const RecordType *RT = T->getAs<RecordType>();
105  if (!RT)
106    return 0;
107  const RecordDecl *RD = RT->getDecl();
108  if (RD->hasFlexibleArrayMember())
109    return false;
110
111  // If this is a C++ record, check the bases first.
112  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
113    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
114           e = CXXRD->bases_end(); i != e; ++i)
115      if (!isEmptyRecord(Context, i->getType(), true))
116        return false;
117
118  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
119         i != e; ++i)
120    if (!isEmptyField(Context, *i, AllowArrays))
121      return false;
122  return true;
123}
124
125/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
126/// a non-trivial destructor or a non-trivial copy constructor.
127static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
128  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
129  if (!RD)
130    return false;
131
132  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
133}
134
135/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
136/// a record type with either a non-trivial destructor or a non-trivial copy
137/// constructor.
138static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
139  const RecordType *RT = T->getAs<RecordType>();
140  if (!RT)
141    return false;
142
143  return hasNonTrivialDestructorOrCopyConstructor(RT);
144}
145
146/// isSingleElementStruct - Determine if a structure is a "single
147/// element struct", i.e. it has exactly one non-empty field or
148/// exactly one field which is itself a single element
149/// struct. Structures with flexible array members are never
150/// considered single element structs.
151///
152/// \return The field declaration for the single non-empty field, if
153/// it exists.
154static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
155  const RecordType *RT = T->getAsStructureType();
156  if (!RT)
157    return 0;
158
159  const RecordDecl *RD = RT->getDecl();
160  if (RD->hasFlexibleArrayMember())
161    return 0;
162
163  const Type *Found = 0;
164
165  // If this is a C++ record, check the bases first.
166  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
167    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
168           e = CXXRD->bases_end(); i != e; ++i) {
169      // Ignore empty records.
170      if (isEmptyRecord(Context, i->getType(), true))
171        continue;
172
173      // If we already found an element then this isn't a single-element struct.
174      if (Found)
175        return 0;
176
177      // If this is non-empty and not a single element struct, the composite
178      // cannot be a single element struct.
179      Found = isSingleElementStruct(i->getType(), Context);
180      if (!Found)
181        return 0;
182    }
183  }
184
185  // Check for single element.
186  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
187         i != e; ++i) {
188    const FieldDecl *FD = *i;
189    QualType FT = FD->getType();
190
191    // Ignore empty fields.
192    if (isEmptyField(Context, FD, true))
193      continue;
194
195    // If we already found an element then this isn't a single-element
196    // struct.
197    if (Found)
198      return 0;
199
200    // Treat single element arrays as the element.
201    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
202      if (AT->getSize().getZExtValue() != 1)
203        break;
204      FT = AT->getElementType();
205    }
206
207    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
208      Found = FT.getTypePtr();
209    } else {
210      Found = isSingleElementStruct(FT, Context);
211      if (!Found)
212        return 0;
213    }
214  }
215
216  return Found;
217}
218
219static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
220  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
221      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
222      !Ty->isBlockPointerType())
223    return false;
224
225  uint64_t Size = Context.getTypeSize(Ty);
226  return Size == 32 || Size == 64;
227}
228
229/// canExpandIndirectArgument - Test whether an argument type which is to be
230/// passed indirectly (on the stack) would have the equivalent layout if it was
231/// expanded into separate arguments. If so, we prefer to do the latter to avoid
232/// inhibiting optimizations.
233///
234// FIXME: This predicate is missing many cases, currently it just follows
235// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
236// should probably make this smarter, or better yet make the LLVM backend
237// capable of handling it.
238static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
239  // We can only expand structure types.
240  const RecordType *RT = Ty->getAs<RecordType>();
241  if (!RT)
242    return false;
243
244  // We can only expand (C) structures.
245  //
246  // FIXME: This needs to be generalized to handle classes as well.
247  const RecordDecl *RD = RT->getDecl();
248  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
249    return false;
250
251  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
252         i != e; ++i) {
253    const FieldDecl *FD = *i;
254
255    if (!is32Or64BitBasicType(FD->getType(), Context))
256      return false;
257
258    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
259    // how to expand them yet, and the predicate for telling if a bitfield still
260    // counts as "basic" is more complicated than what we were doing previously.
261    if (FD->isBitField())
262      return false;
263  }
264
265  return true;
266}
267
268namespace {
269/// DefaultABIInfo - The default implementation for ABI specific
270/// details. This implementation provides information which results in
271/// self-consistent and sensible LLVM IR generation, but does not
272/// conform to any particular ABI.
273class DefaultABIInfo : public ABIInfo {
274  ABIArgInfo classifyReturnType(QualType RetTy,
275                                ASTContext &Context,
276                                llvm::LLVMContext &VMContext) const;
277
278  ABIArgInfo classifyArgumentType(QualType RetTy,
279                                  ASTContext &Context,
280                                  llvm::LLVMContext &VMContext) const;
281
282  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
283                           llvm::LLVMContext &VMContext) const {
284    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
285                                            VMContext);
286    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
287         it != ie; ++it)
288      it->info = classifyArgumentType(it->type, Context, VMContext);
289  }
290
291  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
292                                 CodeGenFunction &CGF) const;
293};
294
295class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
296public:
297  DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
298};
299
300llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
301                                       CodeGenFunction &CGF) const {
302  return 0;
303}
304
305ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
306                                                ASTContext &Context,
307                                          llvm::LLVMContext &VMContext) const {
308  if (CodeGenFunction::hasAggregateLLVMType(Ty))
309    return ABIArgInfo::getIndirect(0);
310
311  // Treat an enum type as its underlying type.
312  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
313    Ty = EnumTy->getDecl()->getIntegerType();
314
315  return (Ty->isPromotableIntegerType() ?
316          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
317}
318
319/// X86_32ABIInfo - The X86-32 ABI information.
320class X86_32ABIInfo : public ABIInfo {
321  ASTContext &Context;
322  bool IsDarwinVectorABI;
323  bool IsSmallStructInRegABI;
324
325  static bool isRegisterSize(unsigned Size) {
326    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
327  }
328
329  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
330
331  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
332  /// such that the argument will be passed in memory.
333  ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context,
334                               bool ByVal = true) const;
335
336public:
337  ABIArgInfo classifyReturnType(QualType RetTy,
338                                ASTContext &Context,
339                                llvm::LLVMContext &VMContext) const;
340
341  ABIArgInfo classifyArgumentType(QualType RetTy,
342                                  ASTContext &Context,
343                                  llvm::LLVMContext &VMContext) const;
344
345  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
346                           llvm::LLVMContext &VMContext) const {
347    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
348                                            VMContext);
349    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
350         it != ie; ++it)
351      it->info = classifyArgumentType(it->type, Context, VMContext);
352  }
353
354  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                 CodeGenFunction &CGF) const;
356
357  X86_32ABIInfo(ASTContext &Context, bool d, bool p)
358    : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
359      IsSmallStructInRegABI(p) {}
360};
361
362class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
363public:
364  X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
365    :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
366
367  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
368                           CodeGen::CodeGenModule &CGM) const;
369
370  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
371    // Darwin uses different dwarf register numbers for EH.
372    if (CGM.isTargetDarwin()) return 5;
373
374    return 4;
375  }
376
377  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
378                               llvm::Value *Address) const;
379};
380
381}
382
383/// shouldReturnTypeInRegister - Determine if the given type should be
384/// passed in a register (for the Darwin ABI).
385bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
386                                               ASTContext &Context) {
387  uint64_t Size = Context.getTypeSize(Ty);
388
389  // Type must be register sized.
390  if (!isRegisterSize(Size))
391    return false;
392
393  if (Ty->isVectorType()) {
394    // 64- and 128- bit vectors inside structures are not returned in
395    // registers.
396    if (Size == 64 || Size == 128)
397      return false;
398
399    return true;
400  }
401
402  // If this is a builtin, pointer, enum, complex type, member pointer, or
403  // member function pointer it is ok.
404  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
405      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
406      Ty->isBlockPointerType() || Ty->isMemberPointerType())
407    return true;
408
409  // Arrays are treated like records.
410  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
411    return shouldReturnTypeInRegister(AT->getElementType(), Context);
412
413  // Otherwise, it must be a record type.
414  const RecordType *RT = Ty->getAs<RecordType>();
415  if (!RT) return false;
416
417  // FIXME: Traverse bases here too.
418
419  // Structure types are passed in register if all fields would be
420  // passed in a register.
421  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
422         e = RT->getDecl()->field_end(); i != e; ++i) {
423    const FieldDecl *FD = *i;
424
425    // Empty fields are ignored.
426    if (isEmptyField(Context, FD, true))
427      continue;
428
429    // Check fields recursively.
430    if (!shouldReturnTypeInRegister(FD->getType(), Context))
431      return false;
432  }
433
434  return true;
435}
436
437ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
438                                            ASTContext &Context,
439                                          llvm::LLVMContext &VMContext) const {
440  if (RetTy->isVoidType()) {
441    return ABIArgInfo::getIgnore();
442  } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
443    // On Darwin, some vectors are returned in registers.
444    if (IsDarwinVectorABI) {
445      uint64_t Size = Context.getTypeSize(RetTy);
446
447      // 128-bit vectors are a special case; they are returned in
448      // registers and we need to make sure to pick a type the LLVM
449      // backend will like.
450      if (Size == 128)
451        return ABIArgInfo::getCoerce(llvm::VectorType::get(
452                  llvm::Type::getInt64Ty(VMContext), 2));
453
454      // Always return in register if it fits in a general purpose
455      // register, or if it is 64 bits and has a single element.
456      if ((Size == 8 || Size == 16 || Size == 32) ||
457          (Size == 64 && VT->getNumElements() == 1))
458        return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
459
460      return ABIArgInfo::getIndirect(0);
461    }
462
463    return ABIArgInfo::getDirect();
464  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
465    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
466      // Structures with either a non-trivial destructor or a non-trivial
467      // copy constructor are always indirect.
468      if (hasNonTrivialDestructorOrCopyConstructor(RT))
469        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
470
471      // Structures with flexible arrays are always indirect.
472      if (RT->getDecl()->hasFlexibleArrayMember())
473        return ABIArgInfo::getIndirect(0);
474    }
475
476    // If specified, structs and unions are always indirect.
477    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
478      return ABIArgInfo::getIndirect(0);
479
480    // Classify "single element" structs as their element type.
481    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
482      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
483        if (BT->isIntegerType()) {
484          // We need to use the size of the structure, padding
485          // bit-fields can adjust that to be larger than the single
486          // element type.
487          uint64_t Size = Context.getTypeSize(RetTy);
488          return ABIArgInfo::getCoerce(
489            llvm::IntegerType::get(VMContext, (unsigned) Size));
490        } else if (BT->getKind() == BuiltinType::Float) {
491          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
492                 "Unexpect single element structure size!");
493          return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
494        } else if (BT->getKind() == BuiltinType::Double) {
495          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
496                 "Unexpect single element structure size!");
497          return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
498        }
499      } else if (SeltTy->isPointerType()) {
500        // FIXME: It would be really nice if this could come out as the proper
501        // pointer type.
502        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
503        return ABIArgInfo::getCoerce(PtrTy);
504      } else if (SeltTy->isVectorType()) {
505        // 64- and 128-bit vectors are never returned in a
506        // register when inside a structure.
507        uint64_t Size = Context.getTypeSize(RetTy);
508        if (Size == 64 || Size == 128)
509          return ABIArgInfo::getIndirect(0);
510
511        return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
512      }
513    }
514
515    // Small structures which are register sized are generally returned
516    // in a register.
517    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
518      uint64_t Size = Context.getTypeSize(RetTy);
519      return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
520    }
521
522    return ABIArgInfo::getIndirect(0);
523  } else {
524    // Treat an enum type as its underlying type.
525    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
526      RetTy = EnumTy->getDecl()->getIntegerType();
527
528    return (RetTy->isPromotableIntegerType() ?
529            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
530  }
531}
532
533ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty,
534                                            ASTContext &Context,
535                                            bool ByVal) const {
536  if (!ByVal)
537    return ABIArgInfo::getIndirect(0, false);
538
539  // Compute the byval alignment. We trust the back-end to honor the
540  // minimum ABI alignment for byval, to make cleaner IR.
541  const unsigned MinABIAlign = 4;
542  unsigned Align = Context.getTypeAlign(Ty) / 8;
543  if (Align > MinABIAlign)
544    return ABIArgInfo::getIndirect(Align);
545  return ABIArgInfo::getIndirect(0);
546}
547
548ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
549                                               ASTContext &Context,
550                                           llvm::LLVMContext &VMContext) const {
551  // FIXME: Set alignment on indirect arguments.
552  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
553    // Structures with flexible arrays are always indirect.
554    if (const RecordType *RT = Ty->getAs<RecordType>()) {
555      // Structures with either a non-trivial destructor or a non-trivial
556      // copy constructor are always indirect.
557      if (hasNonTrivialDestructorOrCopyConstructor(RT))
558        return getIndirectResult(Ty, Context, /*ByVal=*/false);
559
560      if (RT->getDecl()->hasFlexibleArrayMember())
561        return getIndirectResult(Ty, Context);
562    }
563
564    // Ignore empty structs.
565    if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
566      return ABIArgInfo::getIgnore();
567
568    // Expand small (<= 128-bit) record types when we know that the stack layout
569    // of those arguments will match the struct. This is important because the
570    // LLVM backend isn't smart enough to remove byval, which inhibits many
571    // optimizations.
572    if (Context.getTypeSize(Ty) <= 4*32 &&
573        canExpandIndirectArgument(Ty, Context))
574      return ABIArgInfo::getExpand();
575
576    return getIndirectResult(Ty, Context);
577  } else {
578    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
579      Ty = EnumTy->getDecl()->getIntegerType();
580
581    return (Ty->isPromotableIntegerType() ?
582            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
583  }
584}
585
586llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
587                                      CodeGenFunction &CGF) const {
588  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
589  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
590
591  CGBuilderTy &Builder = CGF.Builder;
592  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
593                                                       "ap");
594  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
595  llvm::Type *PTy =
596    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
597  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
598
599  uint64_t Offset =
600    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
601  llvm::Value *NextAddr =
602    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
603                      "ap.next");
604  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
605
606  return AddrTyped;
607}
608
609void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
610                                                  llvm::GlobalValue *GV,
611                                            CodeGen::CodeGenModule &CGM) const {
612  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
613    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
614      // Get the LLVM function.
615      llvm::Function *Fn = cast<llvm::Function>(GV);
616
617      // Now add the 'alignstack' attribute with a value of 16.
618      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
619    }
620  }
621}
622
623bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
624                                               CodeGen::CodeGenFunction &CGF,
625                                               llvm::Value *Address) const {
626  CodeGen::CGBuilderTy &Builder = CGF.Builder;
627  llvm::LLVMContext &Context = CGF.getLLVMContext();
628
629  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
630  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
631
632  // 0-7 are the eight integer registers;  the order is different
633  //   on Darwin (for EH), but the range is the same.
634  // 8 is %eip.
635  AssignToArrayRange(Builder, Address, Four8, 0, 8);
636
637  if (CGF.CGM.isTargetDarwin()) {
638    // 12-16 are st(0..4).  Not sure why we stop at 4.
639    // These have size 16, which is sizeof(long double) on
640    // platforms with 8-byte alignment for that type.
641    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
642    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
643
644  } else {
645    // 9 is %eflags, which doesn't get a size on Darwin for some
646    // reason.
647    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
648
649    // 11-16 are st(0..5).  Not sure why we stop at 5.
650    // These have size 12, which is sizeof(long double) on
651    // platforms with 4-byte alignment for that type.
652    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
653    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
654  }
655
656  return false;
657}
658
659namespace {
660/// X86_64ABIInfo - The X86_64 ABI information.
661class X86_64ABIInfo : public ABIInfo {
662  enum Class {
663    Integer = 0,
664    SSE,
665    SSEUp,
666    X87,
667    X87Up,
668    ComplexX87,
669    NoClass,
670    Memory
671  };
672
673  /// merge - Implement the X86_64 ABI merging algorithm.
674  ///
675  /// Merge an accumulating classification \arg Accum with a field
676  /// classification \arg Field.
677  ///
678  /// \param Accum - The accumulating classification. This should
679  /// always be either NoClass or the result of a previous merge
680  /// call. In addition, this should never be Memory (the caller
681  /// should just return Memory for the aggregate).
682  Class merge(Class Accum, Class Field) const;
683
684  /// classify - Determine the x86_64 register classes in which the
685  /// given type T should be passed.
686  ///
687  /// \param Lo - The classification for the parts of the type
688  /// residing in the low word of the containing object.
689  ///
690  /// \param Hi - The classification for the parts of the type
691  /// residing in the high word of the containing object.
692  ///
693  /// \param OffsetBase - The bit offset of this type in the
694  /// containing object.  Some parameters are classified different
695  /// depending on whether they straddle an eightbyte boundary.
696  ///
697  /// If a word is unused its result will be NoClass; if a type should
698  /// be passed in Memory then at least the classification of \arg Lo
699  /// will be Memory.
700  ///
701  /// The \arg Lo class will be NoClass iff the argument is ignored.
702  ///
703  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
704  /// also be ComplexX87.
705  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
706                Class &Lo, Class &Hi) const;
707
708  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
709  /// to coerce to, chose the best way to pass Ty in the same place
710  /// that \arg CoerceTo would be passed, but while keeping the
711  /// emitted code as simple as possible.
712  ///
713  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
714  /// the ways we might want to pass things, instead of constructing an LLVM
715  /// type. This makes this code more explicit, and it makes it clearer that we
716  /// are also doing this for correctness in the case of passing scalar types.
717  ABIArgInfo getCoerceResult(QualType Ty,
718                             const llvm::Type *CoerceTo,
719                             ASTContext &Context) const;
720
721  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
722  /// such that the argument will be returned in memory.
723  ABIArgInfo getIndirectReturnResult(QualType Ty, ASTContext &Context) const;
724
725  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
726  /// such that the argument will be passed in memory.
727  ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context) const;
728
729  ABIArgInfo classifyReturnType(QualType RetTy,
730                                ASTContext &Context,
731                                llvm::LLVMContext &VMContext) const;
732
733  ABIArgInfo classifyArgumentType(QualType Ty,
734                                  ASTContext &Context,
735                                  llvm::LLVMContext &VMContext,
736                                  unsigned &neededInt,
737                                  unsigned &neededSSE) const;
738
739public:
740  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
741                           llvm::LLVMContext &VMContext) const;
742
743  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
744                                 CodeGenFunction &CGF) const;
745};
746
747class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
748public:
749  X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
750
751  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
752    return 7;
753  }
754
755  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
756                               llvm::Value *Address) const {
757    CodeGen::CGBuilderTy &Builder = CGF.Builder;
758    llvm::LLVMContext &Context = CGF.getLLVMContext();
759
760    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
761    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
762
763    // 0-15 are the 16 integer registers.
764    // 16 is %rip.
765    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
766
767    return false;
768  }
769};
770
771}
772
773X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
774                                          Class Field) const {
775  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
776  // classified recursively so that always two fields are
777  // considered. The resulting class is calculated according to
778  // the classes of the fields in the eightbyte:
779  //
780  // (a) If both classes are equal, this is the resulting class.
781  //
782  // (b) If one of the classes is NO_CLASS, the resulting class is
783  // the other class.
784  //
785  // (c) If one of the classes is MEMORY, the result is the MEMORY
786  // class.
787  //
788  // (d) If one of the classes is INTEGER, the result is the
789  // INTEGER.
790  //
791  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
792  // MEMORY is used as class.
793  //
794  // (f) Otherwise class SSE is used.
795
796  // Accum should never be memory (we should have returned) or
797  // ComplexX87 (because this cannot be passed in a structure).
798  assert((Accum != Memory && Accum != ComplexX87) &&
799         "Invalid accumulated classification during merge.");
800  if (Accum == Field || Field == NoClass)
801    return Accum;
802  else if (Field == Memory)
803    return Memory;
804  else if (Accum == NoClass)
805    return Field;
806  else if (Accum == Integer || Field == Integer)
807    return Integer;
808  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
809           Accum == X87 || Accum == X87Up)
810    return Memory;
811  else
812    return SSE;
813}
814
815void X86_64ABIInfo::classify(QualType Ty,
816                             ASTContext &Context,
817                             uint64_t OffsetBase,
818                             Class &Lo, Class &Hi) const {
819  // FIXME: This code can be simplified by introducing a simple value class for
820  // Class pairs with appropriate constructor methods for the various
821  // situations.
822
823  // FIXME: Some of the split computations are wrong; unaligned vectors
824  // shouldn't be passed in registers for example, so there is no chance they
825  // can straddle an eightbyte. Verify & simplify.
826
827  Lo = Hi = NoClass;
828
829  Class &Current = OffsetBase < 64 ? Lo : Hi;
830  Current = Memory;
831
832  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
833    BuiltinType::Kind k = BT->getKind();
834
835    if (k == BuiltinType::Void) {
836      Current = NoClass;
837    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
838      Lo = Integer;
839      Hi = Integer;
840    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
841      Current = Integer;
842    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
843      Current = SSE;
844    } else if (k == BuiltinType::LongDouble) {
845      Lo = X87;
846      Hi = X87Up;
847    }
848    // FIXME: _Decimal32 and _Decimal64 are SSE.
849    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
850  } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
851    // Classify the underlying integer type.
852    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
853  } else if (Ty->hasPointerRepresentation()) {
854    Current = Integer;
855  } else if (Ty->isMemberPointerType()) {
856    if (Ty->isMemberFunctionPointerType())
857      Lo = Hi = Integer;
858    else
859      Current = Integer;
860  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
861    uint64_t Size = Context.getTypeSize(VT);
862    if (Size == 32) {
863      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
864      // float> as integer.
865      Current = Integer;
866
867      // If this type crosses an eightbyte boundary, it should be
868      // split.
869      uint64_t EB_Real = (OffsetBase) / 64;
870      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
871      if (EB_Real != EB_Imag)
872        Hi = Lo;
873    } else if (Size == 64) {
874      // gcc passes <1 x double> in memory. :(
875      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
876        return;
877
878      // gcc passes <1 x long long> as INTEGER.
879      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
880        Current = Integer;
881      else
882        Current = SSE;
883
884      // If this type crosses an eightbyte boundary, it should be
885      // split.
886      if (OffsetBase && OffsetBase != 64)
887        Hi = Lo;
888    } else if (Size == 128) {
889      Lo = SSE;
890      Hi = SSEUp;
891    }
892  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
893    QualType ET = Context.getCanonicalType(CT->getElementType());
894
895    uint64_t Size = Context.getTypeSize(Ty);
896    if (ET->isIntegralOrEnumerationType()) {
897      if (Size <= 64)
898        Current = Integer;
899      else if (Size <= 128)
900        Lo = Hi = Integer;
901    } else if (ET == Context.FloatTy)
902      Current = SSE;
903    else if (ET == Context.DoubleTy)
904      Lo = Hi = SSE;
905    else if (ET == Context.LongDoubleTy)
906      Current = ComplexX87;
907
908    // If this complex type crosses an eightbyte boundary then it
909    // should be split.
910    uint64_t EB_Real = (OffsetBase) / 64;
911    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
912    if (Hi == NoClass && EB_Real != EB_Imag)
913      Hi = Lo;
914  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
915    // Arrays are treated like structures.
916
917    uint64_t Size = Context.getTypeSize(Ty);
918
919    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
920    // than two eightbytes, ..., it has class MEMORY.
921    if (Size > 128)
922      return;
923
924    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
925    // fields, it has class MEMORY.
926    //
927    // Only need to check alignment of array base.
928    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
929      return;
930
931    // Otherwise implement simplified merge. We could be smarter about
932    // this, but it isn't worth it and would be harder to verify.
933    Current = NoClass;
934    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
935    uint64_t ArraySize = AT->getSize().getZExtValue();
936    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
937      Class FieldLo, FieldHi;
938      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
939      Lo = merge(Lo, FieldLo);
940      Hi = merge(Hi, FieldHi);
941      if (Lo == Memory || Hi == Memory)
942        break;
943    }
944
945    // Do post merger cleanup (see below). Only case we worry about is Memory.
946    if (Hi == Memory)
947      Lo = Memory;
948    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
949  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
950    uint64_t Size = Context.getTypeSize(Ty);
951
952    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
953    // than two eightbytes, ..., it has class MEMORY.
954    if (Size > 128)
955      return;
956
957    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
958    // copy constructor or a non-trivial destructor, it is passed by invisible
959    // reference.
960    if (hasNonTrivialDestructorOrCopyConstructor(RT))
961      return;
962
963    const RecordDecl *RD = RT->getDecl();
964
965    // Assume variable sized types are passed in memory.
966    if (RD->hasFlexibleArrayMember())
967      return;
968
969    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
970
971    // Reset Lo class, this will be recomputed.
972    Current = NoClass;
973
974    // If this is a C++ record, classify the bases first.
975    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
976      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
977             e = CXXRD->bases_end(); i != e; ++i) {
978        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
979               "Unexpected base class!");
980        const CXXRecordDecl *Base =
981          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
982
983        // Classify this field.
984        //
985        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
986        // single eightbyte, each is classified separately. Each eightbyte gets
987        // initialized to class NO_CLASS.
988        Class FieldLo, FieldHi;
989        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
990        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
991        Lo = merge(Lo, FieldLo);
992        Hi = merge(Hi, FieldHi);
993        if (Lo == Memory || Hi == Memory)
994          break;
995      }
996
997      // If this record has no fields but isn't empty, classify as INTEGER.
998      if (RD->field_empty() && Size)
999        Current = Integer;
1000    }
1001
1002    // Classify the fields one at a time, merging the results.
1003    unsigned idx = 0;
1004    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1005           i != e; ++i, ++idx) {
1006      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1007      bool BitField = i->isBitField();
1008
1009      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1010      // fields, it has class MEMORY.
1011      //
1012      // Note, skip this test for bit-fields, see below.
1013      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
1014        Lo = Memory;
1015        return;
1016      }
1017
1018      // Classify this field.
1019      //
1020      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1021      // exceeds a single eightbyte, each is classified
1022      // separately. Each eightbyte gets initialized to class
1023      // NO_CLASS.
1024      Class FieldLo, FieldHi;
1025
1026      // Bit-fields require special handling, they do not force the
1027      // structure to be passed in memory even if unaligned, and
1028      // therefore they can straddle an eightbyte.
1029      if (BitField) {
1030        // Ignore padding bit-fields.
1031        if (i->isUnnamedBitfield())
1032          continue;
1033
1034        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1035        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
1036
1037        uint64_t EB_Lo = Offset / 64;
1038        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1039        FieldLo = FieldHi = NoClass;
1040        if (EB_Lo) {
1041          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1042          FieldLo = NoClass;
1043          FieldHi = Integer;
1044        } else {
1045          FieldLo = Integer;
1046          FieldHi = EB_Hi ? Integer : NoClass;
1047        }
1048      } else
1049        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
1050      Lo = merge(Lo, FieldLo);
1051      Hi = merge(Hi, FieldHi);
1052      if (Lo == Memory || Hi == Memory)
1053        break;
1054    }
1055
1056    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1057    //
1058    // (a) If one of the classes is MEMORY, the whole argument is
1059    // passed in memory.
1060    //
1061    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1062
1063    // The first of these conditions is guaranteed by how we implement
1064    // the merge (just bail).
1065    //
1066    // The second condition occurs in the case of unions; for example
1067    // union { _Complex double; unsigned; }.
1068    if (Hi == Memory)
1069      Lo = Memory;
1070    if (Hi == SSEUp && Lo != SSE)
1071      Hi = SSE;
1072  }
1073}
1074
1075ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1076                                          const llvm::Type *CoerceTo,
1077                                          ASTContext &Context) const {
1078  if (CoerceTo->isIntegerTy(64)) {
1079    // Integer and pointer types will end up in a general purpose
1080    // register.
1081
1082    // Treat an enum type as its underlying type.
1083    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1084      Ty = EnumTy->getDecl()->getIntegerType();
1085
1086    if (Ty->isIntegralOrEnumerationType() || Ty->hasPointerRepresentation())
1087      return (Ty->isPromotableIntegerType() ?
1088              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1089
1090    // If this is a 32-bit structure that is passed as an int64, then it will be
1091    // passed in the low 32-bits of a 64-bit GPR, which is the same as how an
1092    // i32 is passed.  Coerce to a i32 instead of a i64.
1093    if (Context.getTypeSizeInChars(Ty).getQuantity() == 4)
1094      CoerceTo = llvm::Type::getInt32Ty(CoerceTo->getContext());
1095
1096  } else if (CoerceTo->isDoubleTy()) {
1097    assert(Ty.isCanonical() && "should always have a canonical type here");
1098    assert(!Ty.hasQualifiers() && "should never have a qualified type here");
1099
1100    // Float and double end up in a single SSE reg.
1101    if (Ty == Context.FloatTy || Ty == Context.DoubleTy)
1102      return ABIArgInfo::getDirect();
1103
1104    // If this is a 32-bit structure that is passed as a double, then it will be
1105    // passed in the low 32-bits of the XMM register, which is the same as how a
1106    // float is passed.  Coerce to a float instead of a double.
1107    if (Context.getTypeSizeInChars(Ty).getQuantity() == 4)
1108      CoerceTo = llvm::Type::getFloatTy(CoerceTo->getContext());
1109  }
1110
1111  return ABIArgInfo::getCoerce(CoerceTo);
1112}
1113
1114ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty,
1115                                                  ASTContext &Context) const {
1116  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1117  // place naturally.
1118  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1119    // Treat an enum type as its underlying type.
1120    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1121      Ty = EnumTy->getDecl()->getIntegerType();
1122
1123    return (Ty->isPromotableIntegerType() ?
1124            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1125  }
1126
1127  return ABIArgInfo::getIndirect(0);
1128}
1129
1130ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1131                                            ASTContext &Context) const {
1132  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1133  // place naturally.
1134  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1135    // Treat an enum type as its underlying type.
1136    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1137      Ty = EnumTy->getDecl()->getIntegerType();
1138
1139    return (Ty->isPromotableIntegerType() ?
1140            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1141  }
1142
1143  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1144    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1145
1146  // Compute the byval alignment. We trust the back-end to honor the
1147  // minimum ABI alignment for byval, to make cleaner IR.
1148  const unsigned MinABIAlign = 8;
1149  unsigned Align = Context.getTypeAlign(Ty) / 8;
1150  if (Align > MinABIAlign)
1151    return ABIArgInfo::getIndirect(Align);
1152  return ABIArgInfo::getIndirect(0);
1153}
1154
1155ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
1156                                            ASTContext &Context,
1157                                          llvm::LLVMContext &VMContext) const {
1158  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1159  // classification algorithm.
1160  X86_64ABIInfo::Class Lo, Hi;
1161  classify(RetTy, Context, 0, Lo, Hi);
1162
1163  // Check some invariants.
1164  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1165  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1166  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1167
1168  const llvm::Type *ResType = 0;
1169  switch (Lo) {
1170  case NoClass:
1171    return ABIArgInfo::getIgnore();
1172
1173  case SSEUp:
1174  case X87Up:
1175    assert(0 && "Invalid classification for lo word.");
1176
1177    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1178    // hidden argument.
1179  case Memory:
1180    return getIndirectReturnResult(RetTy, Context);
1181
1182    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1183    // available register of the sequence %rax, %rdx is used.
1184  case Integer:
1185    ResType = llvm::Type::getInt64Ty(VMContext); break;
1186
1187    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1188    // available SSE register of the sequence %xmm0, %xmm1 is used.
1189  case SSE:
1190    ResType = llvm::Type::getDoubleTy(VMContext); break;
1191
1192    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1193    // returned on the X87 stack in %st0 as 80-bit x87 number.
1194  case X87:
1195    ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
1196
1197    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1198    // part of the value is returned in %st0 and the imaginary part in
1199    // %st1.
1200  case ComplexX87:
1201    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1202    ResType = llvm::StructType::get(VMContext,
1203                                    llvm::Type::getX86_FP80Ty(VMContext),
1204                                    llvm::Type::getX86_FP80Ty(VMContext),
1205                                    NULL);
1206    break;
1207  }
1208
1209  switch (Hi) {
1210    // Memory was handled previously and X87 should
1211    // never occur as a hi class.
1212  case Memory:
1213  case X87:
1214    assert(0 && "Invalid classification for hi word.");
1215
1216  case ComplexX87: // Previously handled.
1217  case NoClass: break;
1218
1219  case Integer:
1220    ResType = llvm::StructType::get(VMContext, ResType,
1221                                    llvm::Type::getInt64Ty(VMContext), NULL);
1222    break;
1223  case SSE:
1224    ResType = llvm::StructType::get(VMContext, ResType,
1225                                    llvm::Type::getDoubleTy(VMContext), NULL);
1226    break;
1227
1228    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1229    // is passed in the upper half of the last used SSE register.
1230    //
1231    // SSEUP should always be preceeded by SSE, just widen.
1232  case SSEUp:
1233    assert(Lo == SSE && "Unexpected SSEUp classification.");
1234    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1235    break;
1236
1237    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1238    // returned together with the previous X87 value in %st0.
1239  case X87Up:
1240    // If X87Up is preceeded by X87, we don't need to do
1241    // anything. However, in some cases with unions it may not be
1242    // preceeded by X87. In such situations we follow gcc and pass the
1243    // extra bits in an SSE reg.
1244    if (Lo != X87)
1245      ResType = llvm::StructType::get(VMContext, ResType,
1246                                      llvm::Type::getDoubleTy(VMContext), NULL);
1247    break;
1248  }
1249
1250  return getCoerceResult(RetTy, ResType, Context);
1251}
1252
1253ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
1254                                               llvm::LLVMContext &VMContext,
1255                                               unsigned &neededInt,
1256                                               unsigned &neededSSE) const {
1257  X86_64ABIInfo::Class Lo, Hi;
1258  classify(Ty, Context, 0, Lo, Hi);
1259
1260  // Check some invariants.
1261  // FIXME: Enforce these by construction.
1262  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1263  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1264  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1265
1266  neededInt = 0;
1267  neededSSE = 0;
1268  const llvm::Type *ResType = 0;
1269  switch (Lo) {
1270  case NoClass:
1271    return ABIArgInfo::getIgnore();
1272
1273    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1274    // on the stack.
1275  case Memory:
1276
1277    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1278    // COMPLEX_X87, it is passed in memory.
1279  case X87:
1280  case ComplexX87:
1281    return getIndirectResult(Ty, Context);
1282
1283  case SSEUp:
1284  case X87Up:
1285    assert(0 && "Invalid classification for lo word.");
1286
1287    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1288    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1289    // and %r9 is used.
1290  case Integer:
1291    ++neededInt;
1292    ResType = llvm::Type::getInt64Ty(VMContext);
1293    break;
1294
1295    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1296    // available SSE register is used, the registers are taken in the
1297    // order from %xmm0 to %xmm7.
1298  case SSE:
1299    ++neededSSE;
1300    ResType = llvm::Type::getDoubleTy(VMContext);
1301    break;
1302  }
1303
1304  switch (Hi) {
1305    // Memory was handled previously, ComplexX87 and X87 should
1306    // never occur as hi classes, and X87Up must be preceed by X87,
1307    // which is passed in memory.
1308  case Memory:
1309  case X87:
1310  case ComplexX87:
1311    assert(0 && "Invalid classification for hi word.");
1312    break;
1313
1314  case NoClass: break;
1315  case Integer:
1316    ResType = llvm::StructType::get(VMContext, ResType,
1317                                    llvm::Type::getInt64Ty(VMContext), NULL);
1318    ++neededInt;
1319    break;
1320
1321    // X87Up generally doesn't occur here (long double is passed in
1322    // memory), except in situations involving unions.
1323  case X87Up:
1324  case SSE:
1325    ResType = llvm::StructType::get(VMContext, ResType,
1326                                    llvm::Type::getDoubleTy(VMContext), NULL);
1327    ++neededSSE;
1328    break;
1329
1330    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1331    // eightbyte is passed in the upper half of the last used SSE
1332    // register.
1333  case SSEUp:
1334    assert(Lo == SSE && "Unexpected SSEUp classification.");
1335    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1336    break;
1337  }
1338
1339  return getCoerceResult(Ty, ResType, Context);
1340}
1341
1342void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1343                                llvm::LLVMContext &VMContext) const {
1344  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1345                                          Context, VMContext);
1346
1347  // Keep track of the number of assigned registers.
1348  unsigned freeIntRegs = 6, freeSSERegs = 8;
1349
1350  // If the return value is indirect, then the hidden argument is consuming one
1351  // integer register.
1352  if (FI.getReturnInfo().isIndirect())
1353    --freeIntRegs;
1354
1355  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1356  // get assigned (in left-to-right order) for passing as follows...
1357  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1358       it != ie; ++it) {
1359    unsigned neededInt, neededSSE;
1360    it->info = classifyArgumentType(it->type, Context, VMContext,
1361                                    neededInt, neededSSE);
1362
1363    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1364    // eightbyte of an argument, the whole argument is passed on the
1365    // stack. If registers have already been assigned for some
1366    // eightbytes of such an argument, the assignments get reverted.
1367    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1368      freeIntRegs -= neededInt;
1369      freeSSERegs -= neededSSE;
1370    } else {
1371      it->info = getIndirectResult(it->type, Context);
1372    }
1373  }
1374}
1375
1376static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1377                                        QualType Ty,
1378                                        CodeGenFunction &CGF) {
1379  llvm::Value *overflow_arg_area_p =
1380    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1381  llvm::Value *overflow_arg_area =
1382    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1383
1384  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1385  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1386  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1387  if (Align > 8) {
1388    // Note that we follow the ABI & gcc here, even though the type
1389    // could in theory have an alignment greater than 16. This case
1390    // shouldn't ever matter in practice.
1391
1392    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1393    llvm::Value *Offset =
1394      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1395    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1396    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1397                                                    CGF.Int64Ty);
1398    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1399    overflow_arg_area =
1400      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1401                                 overflow_arg_area->getType(),
1402                                 "overflow_arg_area.align");
1403  }
1404
1405  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1406  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1407  llvm::Value *Res =
1408    CGF.Builder.CreateBitCast(overflow_arg_area,
1409                              llvm::PointerType::getUnqual(LTy));
1410
1411  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1412  // l->overflow_arg_area + sizeof(type).
1413  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1414  // an 8 byte boundary.
1415
1416  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1417  llvm::Value *Offset =
1418      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1419  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1420                                            "overflow_arg_area.next");
1421  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1422
1423  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1424  return Res;
1425}
1426
1427llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1428                                      CodeGenFunction &CGF) const {
1429  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1430  const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1431
1432  // Assume that va_list type is correct; should be pointer to LLVM type:
1433  // struct {
1434  //   i32 gp_offset;
1435  //   i32 fp_offset;
1436  //   i8* overflow_arg_area;
1437  //   i8* reg_save_area;
1438  // };
1439  unsigned neededInt, neededSSE;
1440
1441  Ty = CGF.getContext().getCanonicalType(Ty);
1442  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
1443                                       neededInt, neededSSE);
1444
1445  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1446  // in the registers. If not go to step 7.
1447  if (!neededInt && !neededSSE)
1448    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1449
1450  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1451  // general purpose registers needed to pass type and num_fp to hold
1452  // the number of floating point registers needed.
1453
1454  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1455  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1456  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1457  //
1458  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1459  // register save space).
1460
1461  llvm::Value *InRegs = 0;
1462  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1463  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1464  if (neededInt) {
1465    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1466    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1467    InRegs =
1468      CGF.Builder.CreateICmpULE(gp_offset,
1469                                llvm::ConstantInt::get(CGF.Int32Ty,
1470                                                       48 - neededInt * 8),
1471                                "fits_in_gp");
1472  }
1473
1474  if (neededSSE) {
1475    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1476    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1477    llvm::Value *FitsInFP =
1478      CGF.Builder.CreateICmpULE(fp_offset,
1479                                llvm::ConstantInt::get(CGF.Int32Ty,
1480                                                       176 - neededSSE * 16),
1481                                "fits_in_fp");
1482    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1483  }
1484
1485  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1486  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1487  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1488  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1489
1490  // Emit code to load the value if it was passed in registers.
1491
1492  CGF.EmitBlock(InRegBlock);
1493
1494  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1495  // an offset of l->gp_offset and/or l->fp_offset. This may require
1496  // copying to a temporary location in case the parameter is passed
1497  // in different register classes or requires an alignment greater
1498  // than 8 for general purpose registers and 16 for XMM registers.
1499  //
1500  // FIXME: This really results in shameful code when we end up needing to
1501  // collect arguments from different places; often what should result in a
1502  // simple assembling of a structure from scattered addresses has many more
1503  // loads than necessary. Can we clean this up?
1504  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1505  llvm::Value *RegAddr =
1506    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1507                           "reg_save_area");
1508  if (neededInt && neededSSE) {
1509    // FIXME: Cleanup.
1510    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1511    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1512    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1513    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1514    const llvm::Type *TyLo = ST->getElementType(0);
1515    const llvm::Type *TyHi = ST->getElementType(1);
1516    assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1517           "Unexpected ABI info for mixed regs");
1518    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1519    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1520    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1521    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1522    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1523    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1524    llvm::Value *V =
1525      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1526    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1527    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1528    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1529
1530    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1531                                        llvm::PointerType::getUnqual(LTy));
1532  } else if (neededInt) {
1533    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1534    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1535                                        llvm::PointerType::getUnqual(LTy));
1536  } else {
1537    if (neededSSE == 1) {
1538      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1539      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1540                                          llvm::PointerType::getUnqual(LTy));
1541    } else {
1542      assert(neededSSE == 2 && "Invalid number of needed registers!");
1543      // SSE registers are spaced 16 bytes apart in the register save
1544      // area, we need to collect the two eightbytes together.
1545      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1546      llvm::Value *RegAddrHi =
1547        CGF.Builder.CreateGEP(RegAddrLo,
1548                            llvm::ConstantInt::get(CGF.Int32Ty, 16));
1549      const llvm::Type *DblPtrTy =
1550        llvm::PointerType::getUnqual(DoubleTy);
1551      const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1552                                                         DoubleTy, NULL);
1553      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1554      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1555                                                           DblPtrTy));
1556      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1557      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1558                                                           DblPtrTy));
1559      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1560      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1561                                          llvm::PointerType::getUnqual(LTy));
1562    }
1563  }
1564
1565  // AMD64-ABI 3.5.7p5: Step 5. Set:
1566  // l->gp_offset = l->gp_offset + num_gp * 8
1567  // l->fp_offset = l->fp_offset + num_fp * 16.
1568  if (neededInt) {
1569    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
1570    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1571                            gp_offset_p);
1572  }
1573  if (neededSSE) {
1574    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
1575    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1576                            fp_offset_p);
1577  }
1578  CGF.EmitBranch(ContBlock);
1579
1580  // Emit code to load the value if it was passed in memory.
1581
1582  CGF.EmitBlock(InMemBlock);
1583  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1584
1585  // Return the appropriate result.
1586
1587  CGF.EmitBlock(ContBlock);
1588  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1589                                                 "vaarg.addr");
1590  ResAddr->reserveOperandSpace(2);
1591  ResAddr->addIncoming(RegAddr, InRegBlock);
1592  ResAddr->addIncoming(MemAddr, InMemBlock);
1593
1594  return ResAddr;
1595}
1596
1597// PIC16 ABI Implementation
1598
1599namespace {
1600
1601class PIC16ABIInfo : public ABIInfo {
1602  ABIArgInfo classifyReturnType(QualType RetTy,
1603                                ASTContext &Context,
1604                                llvm::LLVMContext &VMContext) const;
1605
1606  ABIArgInfo classifyArgumentType(QualType RetTy,
1607                                  ASTContext &Context,
1608                                  llvm::LLVMContext &VMContext) const;
1609
1610  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1611                           llvm::LLVMContext &VMContext) const {
1612    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1613                                            VMContext);
1614    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1615         it != ie; ++it)
1616      it->info = classifyArgumentType(it->type, Context, VMContext);
1617  }
1618
1619  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1620                                 CodeGenFunction &CGF) const;
1621};
1622
1623class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1624public:
1625  PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
1626};
1627
1628}
1629
1630ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1631                                            ASTContext &Context,
1632                                          llvm::LLVMContext &VMContext) const {
1633  if (RetTy->isVoidType()) {
1634    return ABIArgInfo::getIgnore();
1635  } else {
1636    return ABIArgInfo::getDirect();
1637  }
1638}
1639
1640ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1641                                              ASTContext &Context,
1642                                          llvm::LLVMContext &VMContext) const {
1643  return ABIArgInfo::getDirect();
1644}
1645
1646llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1647                                     CodeGenFunction &CGF) const {
1648  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1649  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1650
1651  CGBuilderTy &Builder = CGF.Builder;
1652  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1653                                                       "ap");
1654  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1655  llvm::Type *PTy =
1656    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1657  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1658
1659  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1660
1661  llvm::Value *NextAddr =
1662    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1663                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1664                      "ap.next");
1665  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1666
1667  return AddrTyped;
1668}
1669
1670
1671// PowerPC-32
1672
1673namespace {
1674class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1675public:
1676  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1677    // This is recovered from gcc output.
1678    return 1; // r1 is the dedicated stack pointer
1679  }
1680
1681  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1682                               llvm::Value *Address) const;
1683};
1684
1685}
1686
1687bool
1688PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1689                                                llvm::Value *Address) const {
1690  // This is calculated from the LLVM and GCC tables and verified
1691  // against gcc output.  AFAIK all ABIs use the same encoding.
1692
1693  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1694  llvm::LLVMContext &Context = CGF.getLLVMContext();
1695
1696  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1697  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1698  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1699  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1700
1701  // 0-31: r0-31, the 4-byte general-purpose registers
1702  AssignToArrayRange(Builder, Address, Four8, 0, 31);
1703
1704  // 32-63: fp0-31, the 8-byte floating-point registers
1705  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
1706
1707  // 64-76 are various 4-byte special-purpose registers:
1708  // 64: mq
1709  // 65: lr
1710  // 66: ctr
1711  // 67: ap
1712  // 68-75 cr0-7
1713  // 76: xer
1714  AssignToArrayRange(Builder, Address, Four8, 64, 76);
1715
1716  // 77-108: v0-31, the 16-byte vector registers
1717  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
1718
1719  // 109: vrsave
1720  // 110: vscr
1721  // 111: spe_acc
1722  // 112: spefscr
1723  // 113: sfp
1724  AssignToArrayRange(Builder, Address, Four8, 109, 113);
1725
1726  return false;
1727}
1728
1729
1730// ARM ABI Implementation
1731
1732namespace {
1733
1734class ARMABIInfo : public ABIInfo {
1735public:
1736  enum ABIKind {
1737    APCS = 0,
1738    AAPCS = 1,
1739    AAPCS_VFP
1740  };
1741
1742private:
1743  ABIKind Kind;
1744
1745public:
1746  ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1747
1748private:
1749  ABIKind getABIKind() const { return Kind; }
1750
1751  ABIArgInfo classifyReturnType(QualType RetTy,
1752                                ASTContext &Context,
1753                                llvm::LLVMContext &VMCOntext) const;
1754
1755  ABIArgInfo classifyArgumentType(QualType RetTy,
1756                                  ASTContext &Context,
1757                                  llvm::LLVMContext &VMContext) const;
1758
1759  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1760                           llvm::LLVMContext &VMContext) const;
1761
1762  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1763                                 CodeGenFunction &CGF) const;
1764};
1765
1766class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1767public:
1768  ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
1769    :TargetCodeGenInfo(new ARMABIInfo(K)) {}
1770
1771  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1772    return 13;
1773  }
1774};
1775
1776}
1777
1778void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1779                             llvm::LLVMContext &VMContext) const {
1780  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1781                                          VMContext);
1782  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1783       it != ie; ++it) {
1784    it->info = classifyArgumentType(it->type, Context, VMContext);
1785  }
1786
1787  const llvm::Triple &Triple(Context.Target.getTriple());
1788  llvm::CallingConv::ID DefaultCC;
1789  if (Triple.getEnvironmentName() == "gnueabi" ||
1790      Triple.getEnvironmentName() == "eabi")
1791    DefaultCC = llvm::CallingConv::ARM_AAPCS;
1792  else
1793    DefaultCC = llvm::CallingConv::ARM_APCS;
1794
1795  switch (getABIKind()) {
1796  case APCS:
1797    if (DefaultCC != llvm::CallingConv::ARM_APCS)
1798      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
1799    break;
1800
1801  case AAPCS:
1802    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
1803      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
1804    break;
1805
1806  case AAPCS_VFP:
1807    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1808    break;
1809  }
1810}
1811
1812ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1813                                            ASTContext &Context,
1814                                          llvm::LLVMContext &VMContext) const {
1815  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1816    // Treat an enum type as its underlying type.
1817    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1818      Ty = EnumTy->getDecl()->getIntegerType();
1819
1820    return (Ty->isPromotableIntegerType() ?
1821            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1822  }
1823
1824  // Ignore empty records.
1825  if (isEmptyRecord(Context, Ty, true))
1826    return ABIArgInfo::getIgnore();
1827
1828  // Structures with either a non-trivial destructor or a non-trivial
1829  // copy constructor are always indirect.
1830  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1831    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1832
1833  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1834  // backend doesn't support byval.
1835  // FIXME: This doesn't handle alignment > 64 bits.
1836  const llvm::Type* ElemTy;
1837  unsigned SizeRegs;
1838  if (Context.getTypeAlign(Ty) > 32) {
1839    ElemTy = llvm::Type::getInt64Ty(VMContext);
1840    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1841  } else {
1842    ElemTy = llvm::Type::getInt32Ty(VMContext);
1843    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1844  }
1845  std::vector<const llvm::Type*> LLVMFields;
1846  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1847  const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
1848  return ABIArgInfo::getCoerce(STy);
1849}
1850
1851static bool isIntegerLikeType(QualType Ty,
1852                              ASTContext &Context,
1853                              llvm::LLVMContext &VMContext) {
1854  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1855  // is called integer-like if its size is less than or equal to one word, and
1856  // the offset of each of its addressable sub-fields is zero.
1857
1858  uint64_t Size = Context.getTypeSize(Ty);
1859
1860  // Check that the type fits in a word.
1861  if (Size > 32)
1862    return false;
1863
1864  // FIXME: Handle vector types!
1865  if (Ty->isVectorType())
1866    return false;
1867
1868  // Float types are never treated as "integer like".
1869  if (Ty->isRealFloatingType())
1870    return false;
1871
1872  // If this is a builtin or pointer type then it is ok.
1873  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
1874    return true;
1875
1876  // Small complex integer types are "integer like".
1877  if (const ComplexType *CT = Ty->getAs<ComplexType>())
1878    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
1879
1880  // Single element and zero sized arrays should be allowed, by the definition
1881  // above, but they are not.
1882
1883  // Otherwise, it must be a record type.
1884  const RecordType *RT = Ty->getAs<RecordType>();
1885  if (!RT) return false;
1886
1887  // Ignore records with flexible arrays.
1888  const RecordDecl *RD = RT->getDecl();
1889  if (RD->hasFlexibleArrayMember())
1890    return false;
1891
1892  // Check that all sub-fields are at offset 0, and are themselves "integer
1893  // like".
1894  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1895
1896  bool HadField = false;
1897  unsigned idx = 0;
1898  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1899       i != e; ++i, ++idx) {
1900    const FieldDecl *FD = *i;
1901
1902    // Bit-fields are not addressable, we only need to verify they are "integer
1903    // like". We still have to disallow a subsequent non-bitfield, for example:
1904    //   struct { int : 0; int x }
1905    // is non-integer like according to gcc.
1906    if (FD->isBitField()) {
1907      if (!RD->isUnion())
1908        HadField = true;
1909
1910      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1911        return false;
1912
1913      continue;
1914    }
1915
1916    // Check if this field is at offset 0.
1917    if (Layout.getFieldOffset(idx) != 0)
1918      return false;
1919
1920    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1921      return false;
1922
1923    // Only allow at most one field in a structure. This doesn't match the
1924    // wording above, but follows gcc in situations with a field following an
1925    // empty structure.
1926    if (!RD->isUnion()) {
1927      if (HadField)
1928        return false;
1929
1930      HadField = true;
1931    }
1932  }
1933
1934  return true;
1935}
1936
1937ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1938                                          ASTContext &Context,
1939                                          llvm::LLVMContext &VMContext) const {
1940  if (RetTy->isVoidType())
1941    return ABIArgInfo::getIgnore();
1942
1943  if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1944    // Treat an enum type as its underlying type.
1945    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1946      RetTy = EnumTy->getDecl()->getIntegerType();
1947
1948    return (RetTy->isPromotableIntegerType() ?
1949            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1950  }
1951
1952  // Structures with either a non-trivial destructor or a non-trivial
1953  // copy constructor are always indirect.
1954  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
1955    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1956
1957  // Are we following APCS?
1958  if (getABIKind() == APCS) {
1959    if (isEmptyRecord(Context, RetTy, false))
1960      return ABIArgInfo::getIgnore();
1961
1962    // Complex types are all returned as packed integers.
1963    //
1964    // FIXME: Consider using 2 x vector types if the back end handles them
1965    // correctly.
1966    if (RetTy->isAnyComplexType())
1967      return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1968                                     VMContext, Context.getTypeSize(RetTy)));
1969
1970    // Integer like structures are returned in r0.
1971    if (isIntegerLikeType(RetTy, Context, VMContext)) {
1972      // Return in the smallest viable integer type.
1973      uint64_t Size = Context.getTypeSize(RetTy);
1974      if (Size <= 8)
1975        return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1976      if (Size <= 16)
1977        return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1978      return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1979    }
1980
1981    // Otherwise return in memory.
1982    return ABIArgInfo::getIndirect(0);
1983  }
1984
1985  // Otherwise this is an AAPCS variant.
1986
1987  if (isEmptyRecord(Context, RetTy, true))
1988    return ABIArgInfo::getIgnore();
1989
1990  // Aggregates <= 4 bytes are returned in r0; other aggregates
1991  // are returned indirectly.
1992  uint64_t Size = Context.getTypeSize(RetTy);
1993  if (Size <= 32) {
1994    // Return in the smallest viable integer type.
1995    if (Size <= 8)
1996      return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1997    if (Size <= 16)
1998      return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1999    return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
2000  }
2001
2002  return ABIArgInfo::getIndirect(0);
2003}
2004
2005llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2006                                   CodeGenFunction &CGF) const {
2007  // FIXME: Need to handle alignment
2008  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2009  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2010
2011  CGBuilderTy &Builder = CGF.Builder;
2012  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2013                                                       "ap");
2014  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2015  llvm::Type *PTy =
2016    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2017  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2018
2019  uint64_t Offset =
2020    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2021  llvm::Value *NextAddr =
2022    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2023                      "ap.next");
2024  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2025
2026  return AddrTyped;
2027}
2028
2029ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
2030                                              ASTContext &Context,
2031                                          llvm::LLVMContext &VMContext) const {
2032  if (RetTy->isVoidType()) {
2033    return ABIArgInfo::getIgnore();
2034  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2035    return ABIArgInfo::getIndirect(0);
2036  } else {
2037    // Treat an enum type as its underlying type.
2038    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2039      RetTy = EnumTy->getDecl()->getIntegerType();
2040
2041    return (RetTy->isPromotableIntegerType() ?
2042            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2043  }
2044}
2045
2046// SystemZ ABI Implementation
2047
2048namespace {
2049
2050class SystemZABIInfo : public ABIInfo {
2051  bool isPromotableIntegerType(QualType Ty) const;
2052
2053  ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
2054                                llvm::LLVMContext &VMContext) const;
2055
2056  ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
2057                                  llvm::LLVMContext &VMContext) const;
2058
2059  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
2060                          llvm::LLVMContext &VMContext) const {
2061    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
2062                                            Context, VMContext);
2063    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2064         it != ie; ++it)
2065      it->info = classifyArgumentType(it->type, Context, VMContext);
2066  }
2067
2068  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2069                                 CodeGenFunction &CGF) const;
2070};
2071
2072class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2073public:
2074  SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
2075};
2076
2077}
2078
2079bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2080  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2081  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2082    switch (BT->getKind()) {
2083    case BuiltinType::Bool:
2084    case BuiltinType::Char_S:
2085    case BuiltinType::Char_U:
2086    case BuiltinType::SChar:
2087    case BuiltinType::UChar:
2088    case BuiltinType::Short:
2089    case BuiltinType::UShort:
2090    case BuiltinType::Int:
2091    case BuiltinType::UInt:
2092      return true;
2093    default:
2094      return false;
2095    }
2096  return false;
2097}
2098
2099llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2100                                       CodeGenFunction &CGF) const {
2101  // FIXME: Implement
2102  return 0;
2103}
2104
2105
2106ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
2107                                              ASTContext &Context,
2108                                           llvm::LLVMContext &VMContext) const {
2109  if (RetTy->isVoidType()) {
2110    return ABIArgInfo::getIgnore();
2111  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2112    return ABIArgInfo::getIndirect(0);
2113  } else {
2114    return (isPromotableIntegerType(RetTy) ?
2115            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2116  }
2117}
2118
2119ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
2120                                                ASTContext &Context,
2121                                           llvm::LLVMContext &VMContext) const {
2122  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
2123    return ABIArgInfo::getIndirect(0);
2124  } else {
2125    return (isPromotableIntegerType(Ty) ?
2126            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2127  }
2128}
2129
2130// MSP430 ABI Implementation
2131
2132namespace {
2133
2134class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2135public:
2136  MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
2137  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2138                           CodeGen::CodeGenModule &M) const;
2139};
2140
2141}
2142
2143void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2144                                                  llvm::GlobalValue *GV,
2145                                             CodeGen::CodeGenModule &M) const {
2146  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2147    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2148      // Handle 'interrupt' attribute:
2149      llvm::Function *F = cast<llvm::Function>(GV);
2150
2151      // Step 1: Set ISR calling convention.
2152      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2153
2154      // Step 2: Add attributes goodness.
2155      F->addFnAttr(llvm::Attribute::NoInline);
2156
2157      // Step 3: Emit ISR vector alias.
2158      unsigned Num = attr->getNumber() + 0xffe0;
2159      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2160                            "vector_" +
2161                            llvm::LowercaseString(llvm::utohexstr(Num)),
2162                            GV, &M.getModule());
2163    }
2164  }
2165}
2166
2167// MIPS ABI Implementation.  This works for both little-endian and
2168// big-endian variants.
2169namespace {
2170class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2171public:
2172  MIPSTargetCodeGenInfo(): TargetCodeGenInfo(new DefaultABIInfo()) {}
2173
2174  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2175    return 29;
2176  }
2177
2178  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2179                               llvm::Value *Address) const;
2180};
2181}
2182
2183bool
2184MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2185                                               llvm::Value *Address) const {
2186  // This information comes from gcc's implementation, which seems to
2187  // as canonical as it gets.
2188
2189  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2190  llvm::LLVMContext &Context = CGF.getLLVMContext();
2191
2192  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2193  // are aliased to pairs of single-precision FP registers.
2194  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2195  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2196
2197  // 0-31 are the general purpose registers, $0 - $31.
2198  // 32-63 are the floating-point registers, $f0 - $f31.
2199  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2200  // 66 is the (notional, I think) register for signal-handler return.
2201  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2202
2203  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2204  // They are one bit wide and ignored here.
2205
2206  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2207  // (coprocessor 1 is the FP unit)
2208  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2209  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2210  // 176-181 are the DSP accumulator registers.
2211  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2212
2213  return false;
2214}
2215
2216
2217const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
2218  if (TheTargetCodeGenInfo)
2219    return *TheTargetCodeGenInfo;
2220
2221  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2222  // free it.
2223
2224  const llvm::Triple &Triple(getContext().Target.getTriple());
2225  switch (Triple.getArch()) {
2226  default:
2227    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
2228
2229  case llvm::Triple::mips:
2230  case llvm::Triple::mipsel:
2231    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo());
2232
2233  case llvm::Triple::arm:
2234  case llvm::Triple::thumb:
2235    // FIXME: We want to know the float calling convention as well.
2236    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2237      return *(TheTargetCodeGenInfo =
2238               new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
2239
2240    return *(TheTargetCodeGenInfo =
2241             new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
2242
2243  case llvm::Triple::pic16:
2244    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
2245
2246  case llvm::Triple::ppc:
2247    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo());
2248
2249  case llvm::Triple::systemz:
2250    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
2251
2252  case llvm::Triple::msp430:
2253    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
2254
2255  case llvm::Triple::x86:
2256    switch (Triple.getOS()) {
2257    case llvm::Triple::Darwin:
2258      return *(TheTargetCodeGenInfo =
2259               new X86_32TargetCodeGenInfo(Context, true, true));
2260    case llvm::Triple::Cygwin:
2261    case llvm::Triple::MinGW32:
2262    case llvm::Triple::MinGW64:
2263    case llvm::Triple::AuroraUX:
2264    case llvm::Triple::DragonFly:
2265    case llvm::Triple::FreeBSD:
2266    case llvm::Triple::OpenBSD:
2267      return *(TheTargetCodeGenInfo =
2268               new X86_32TargetCodeGenInfo(Context, false, true));
2269
2270    default:
2271      return *(TheTargetCodeGenInfo =
2272               new X86_32TargetCodeGenInfo(Context, false, false));
2273    }
2274
2275  case llvm::Triple::x86_64:
2276    return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
2277  }
2278}
2279