TargetInfo.cpp revision faf23b72f171ef997d48c453a5a4783c5759f8fe
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// These classes wrap the information about a call or function 11// definition used to handle ABI compliancy. 12// 13//===----------------------------------------------------------------------===// 14 15#include "TargetInfo.h" 16#include "ABIInfo.h" 17#include "CodeGenFunction.h" 18#include "clang/AST/RecordLayout.h" 19#include "llvm/Type.h" 20#include "llvm/ADT/StringExtras.h" 21#include "llvm/ADT/Triple.h" 22#include "llvm/Support/raw_ostream.h" 23using namespace clang; 24using namespace CodeGen; 25 26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 27 llvm::Value *Array, 28 llvm::Value *Value, 29 unsigned FirstIndex, 30 unsigned LastIndex) { 31 // Alternatively, we could emit this as a loop in the source. 32 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 33 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I); 34 Builder.CreateStore(Value, Cell); 35 } 36} 37 38ABIInfo::~ABIInfo() {} 39 40void ABIArgInfo::dump() const { 41 llvm::raw_ostream &OS = llvm::errs(); 42 OS << "(ABIArgInfo Kind="; 43 switch (TheKind) { 44 case Direct: 45 OS << "Direct"; 46 break; 47 case Extend: 48 OS << "Extend"; 49 break; 50 case Ignore: 51 OS << "Ignore"; 52 break; 53 case Coerce: 54 OS << "Coerce Type="; 55 getCoerceToType()->print(OS); 56 break; 57 case Indirect: 58 OS << "Indirect Align=" << getIndirectAlign() 59 << " Byal=" << getIndirectByVal(); 60 break; 61 case Expand: 62 OS << "Expand"; 63 break; 64 } 65 OS << ")\n"; 66} 67 68TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 69 70static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 71 72/// isEmptyField - Return true iff a the field is "empty", that is it 73/// is an unnamed bit-field or an (array of) empty record(s). 74static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 75 bool AllowArrays) { 76 if (FD->isUnnamedBitfield()) 77 return true; 78 79 QualType FT = FD->getType(); 80 81 // Constant arrays of empty records count as empty, strip them off. 82 if (AllowArrays) 83 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) 84 FT = AT->getElementType(); 85 86 const RecordType *RT = FT->getAs<RecordType>(); 87 if (!RT) 88 return false; 89 90 // C++ record fields are never empty, at least in the Itanium ABI. 91 // 92 // FIXME: We should use a predicate for whether this behavior is true in the 93 // current ABI. 94 if (isa<CXXRecordDecl>(RT->getDecl())) 95 return false; 96 97 return isEmptyRecord(Context, FT, AllowArrays); 98} 99 100/// isEmptyRecord - Return true iff a structure contains only empty 101/// fields. Note that a structure with a flexible array member is not 102/// considered empty. 103static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 104 const RecordType *RT = T->getAs<RecordType>(); 105 if (!RT) 106 return 0; 107 const RecordDecl *RD = RT->getDecl(); 108 if (RD->hasFlexibleArrayMember()) 109 return false; 110 111 // If this is a C++ record, check the bases first. 112 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 113 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 114 e = CXXRD->bases_end(); i != e; ++i) 115 if (!isEmptyRecord(Context, i->getType(), true)) 116 return false; 117 118 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 119 i != e; ++i) 120 if (!isEmptyField(Context, *i, AllowArrays)) 121 return false; 122 return true; 123} 124 125/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either 126/// a non-trivial destructor or a non-trivial copy constructor. 127static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) { 128 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 129 if (!RD) 130 return false; 131 132 return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor(); 133} 134 135/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is 136/// a record type with either a non-trivial destructor or a non-trivial copy 137/// constructor. 138static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) { 139 const RecordType *RT = T->getAs<RecordType>(); 140 if (!RT) 141 return false; 142 143 return hasNonTrivialDestructorOrCopyConstructor(RT); 144} 145 146/// isSingleElementStruct - Determine if a structure is a "single 147/// element struct", i.e. it has exactly one non-empty field or 148/// exactly one field which is itself a single element 149/// struct. Structures with flexible array members are never 150/// considered single element structs. 151/// 152/// \return The field declaration for the single non-empty field, if 153/// it exists. 154static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 155 const RecordType *RT = T->getAsStructureType(); 156 if (!RT) 157 return 0; 158 159 const RecordDecl *RD = RT->getDecl(); 160 if (RD->hasFlexibleArrayMember()) 161 return 0; 162 163 const Type *Found = 0; 164 165 // If this is a C++ record, check the bases first. 166 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 167 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 168 e = CXXRD->bases_end(); i != e; ++i) { 169 // Ignore empty records. 170 if (isEmptyRecord(Context, i->getType(), true)) 171 continue; 172 173 // If we already found an element then this isn't a single-element struct. 174 if (Found) 175 return 0; 176 177 // If this is non-empty and not a single element struct, the composite 178 // cannot be a single element struct. 179 Found = isSingleElementStruct(i->getType(), Context); 180 if (!Found) 181 return 0; 182 } 183 } 184 185 // Check for single element. 186 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 187 i != e; ++i) { 188 const FieldDecl *FD = *i; 189 QualType FT = FD->getType(); 190 191 // Ignore empty fields. 192 if (isEmptyField(Context, FD, true)) 193 continue; 194 195 // If we already found an element then this isn't a single-element 196 // struct. 197 if (Found) 198 return 0; 199 200 // Treat single element arrays as the element. 201 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 202 if (AT->getSize().getZExtValue() != 1) 203 break; 204 FT = AT->getElementType(); 205 } 206 207 if (!CodeGenFunction::hasAggregateLLVMType(FT)) { 208 Found = FT.getTypePtr(); 209 } else { 210 Found = isSingleElementStruct(FT, Context); 211 if (!Found) 212 return 0; 213 } 214 } 215 216 return Found; 217} 218 219static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 220 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 221 !Ty->isAnyComplexType() && !Ty->isEnumeralType() && 222 !Ty->isBlockPointerType()) 223 return false; 224 225 uint64_t Size = Context.getTypeSize(Ty); 226 return Size == 32 || Size == 64; 227} 228 229/// canExpandIndirectArgument - Test whether an argument type which is to be 230/// passed indirectly (on the stack) would have the equivalent layout if it was 231/// expanded into separate arguments. If so, we prefer to do the latter to avoid 232/// inhibiting optimizations. 233/// 234// FIXME: This predicate is missing many cases, currently it just follows 235// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We 236// should probably make this smarter, or better yet make the LLVM backend 237// capable of handling it. 238static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) { 239 // We can only expand structure types. 240 const RecordType *RT = Ty->getAs<RecordType>(); 241 if (!RT) 242 return false; 243 244 // We can only expand (C) structures. 245 // 246 // FIXME: This needs to be generalized to handle classes as well. 247 const RecordDecl *RD = RT->getDecl(); 248 if (!RD->isStruct() || isa<CXXRecordDecl>(RD)) 249 return false; 250 251 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 252 i != e; ++i) { 253 const FieldDecl *FD = *i; 254 255 if (!is32Or64BitBasicType(FD->getType(), Context)) 256 return false; 257 258 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 259 // how to expand them yet, and the predicate for telling if a bitfield still 260 // counts as "basic" is more complicated than what we were doing previously. 261 if (FD->isBitField()) 262 return false; 263 } 264 265 return true; 266} 267 268namespace { 269/// DefaultABIInfo - The default implementation for ABI specific 270/// details. This implementation provides information which results in 271/// self-consistent and sensible LLVM IR generation, but does not 272/// conform to any particular ABI. 273class DefaultABIInfo : public ABIInfo { 274 ABIArgInfo classifyReturnType(QualType RetTy, 275 ASTContext &Context, 276 llvm::LLVMContext &VMContext) const; 277 278 ABIArgInfo classifyArgumentType(QualType RetTy, 279 ASTContext &Context, 280 llvm::LLVMContext &VMContext) const; 281 282 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 283 llvm::LLVMContext &VMContext) const { 284 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 285 VMContext); 286 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 287 it != ie; ++it) 288 it->info = classifyArgumentType(it->type, Context, VMContext); 289 } 290 291 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 292 CodeGenFunction &CGF) const; 293}; 294 295class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 296public: 297 DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {} 298}; 299 300llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 301 CodeGenFunction &CGF) const { 302 return 0; 303} 304 305ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, 306 ASTContext &Context, 307 llvm::LLVMContext &VMContext) const { 308 if (CodeGenFunction::hasAggregateLLVMType(Ty)) 309 return ABIArgInfo::getIndirect(0); 310 311 // Treat an enum type as its underlying type. 312 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 313 Ty = EnumTy->getDecl()->getIntegerType(); 314 315 return (Ty->isPromotableIntegerType() ? 316 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 317} 318 319/// X86_32ABIInfo - The X86-32 ABI information. 320class X86_32ABIInfo : public ABIInfo { 321 ASTContext &Context; 322 bool IsDarwinVectorABI; 323 bool IsSmallStructInRegABI; 324 325 static bool isRegisterSize(unsigned Size) { 326 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 327 } 328 329 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); 330 331 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 332 /// such that the argument will be passed in memory. 333 ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context, 334 bool ByVal = true) const; 335 336public: 337 ABIArgInfo classifyReturnType(QualType RetTy, 338 ASTContext &Context, 339 llvm::LLVMContext &VMContext) const; 340 341 ABIArgInfo classifyArgumentType(QualType RetTy, 342 ASTContext &Context, 343 llvm::LLVMContext &VMContext) const; 344 345 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 346 llvm::LLVMContext &VMContext) const { 347 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 348 VMContext); 349 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 350 it != ie; ++it) 351 it->info = classifyArgumentType(it->type, Context, VMContext); 352 } 353 354 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 355 CodeGenFunction &CGF) const; 356 357 X86_32ABIInfo(ASTContext &Context, bool d, bool p) 358 : ABIInfo(), Context(Context), IsDarwinVectorABI(d), 359 IsSmallStructInRegABI(p) {} 360}; 361 362class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 363public: 364 X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p) 365 :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {} 366 367 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 368 CodeGen::CodeGenModule &CGM) const; 369 370 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 371 // Darwin uses different dwarf register numbers for EH. 372 if (CGM.isTargetDarwin()) return 5; 373 374 return 4; 375 } 376 377 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 378 llvm::Value *Address) const; 379}; 380 381} 382 383/// shouldReturnTypeInRegister - Determine if the given type should be 384/// passed in a register (for the Darwin ABI). 385bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 386 ASTContext &Context) { 387 uint64_t Size = Context.getTypeSize(Ty); 388 389 // Type must be register sized. 390 if (!isRegisterSize(Size)) 391 return false; 392 393 if (Ty->isVectorType()) { 394 // 64- and 128- bit vectors inside structures are not returned in 395 // registers. 396 if (Size == 64 || Size == 128) 397 return false; 398 399 return true; 400 } 401 402 // If this is a builtin, pointer, enum, complex type, member pointer, or 403 // member function pointer it is ok. 404 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 405 Ty->isAnyComplexType() || Ty->isEnumeralType() || 406 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 407 return true; 408 409 // Arrays are treated like records. 410 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 411 return shouldReturnTypeInRegister(AT->getElementType(), Context); 412 413 // Otherwise, it must be a record type. 414 const RecordType *RT = Ty->getAs<RecordType>(); 415 if (!RT) return false; 416 417 // FIXME: Traverse bases here too. 418 419 // Structure types are passed in register if all fields would be 420 // passed in a register. 421 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(), 422 e = RT->getDecl()->field_end(); i != e; ++i) { 423 const FieldDecl *FD = *i; 424 425 // Empty fields are ignored. 426 if (isEmptyField(Context, FD, true)) 427 continue; 428 429 // Check fields recursively. 430 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 431 return false; 432 } 433 434 return true; 435} 436 437ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 438 ASTContext &Context, 439 llvm::LLVMContext &VMContext) const { 440 if (RetTy->isVoidType()) { 441 return ABIArgInfo::getIgnore(); 442 } else if (const VectorType *VT = RetTy->getAs<VectorType>()) { 443 // On Darwin, some vectors are returned in registers. 444 if (IsDarwinVectorABI) { 445 uint64_t Size = Context.getTypeSize(RetTy); 446 447 // 128-bit vectors are a special case; they are returned in 448 // registers and we need to make sure to pick a type the LLVM 449 // backend will like. 450 if (Size == 128) 451 return ABIArgInfo::getCoerce(llvm::VectorType::get( 452 llvm::Type::getInt64Ty(VMContext), 2)); 453 454 // Always return in register if it fits in a general purpose 455 // register, or if it is 64 bits and has a single element. 456 if ((Size == 8 || Size == 16 || Size == 32) || 457 (Size == 64 && VT->getNumElements() == 1)) 458 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size)); 459 460 return ABIArgInfo::getIndirect(0); 461 } 462 463 return ABIArgInfo::getDirect(); 464 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 465 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 466 // Structures with either a non-trivial destructor or a non-trivial 467 // copy constructor are always indirect. 468 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 469 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 470 471 // Structures with flexible arrays are always indirect. 472 if (RT->getDecl()->hasFlexibleArrayMember()) 473 return ABIArgInfo::getIndirect(0); 474 } 475 476 // If specified, structs and unions are always indirect. 477 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType()) 478 return ABIArgInfo::getIndirect(0); 479 480 // Classify "single element" structs as their element type. 481 if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { 482 if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) { 483 if (BT->isIntegerType()) { 484 // We need to use the size of the structure, padding 485 // bit-fields can adjust that to be larger than the single 486 // element type. 487 uint64_t Size = Context.getTypeSize(RetTy); 488 return ABIArgInfo::getCoerce( 489 llvm::IntegerType::get(VMContext, (unsigned) Size)); 490 } else if (BT->getKind() == BuiltinType::Float) { 491 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && 492 "Unexpect single element structure size!"); 493 return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext)); 494 } else if (BT->getKind() == BuiltinType::Double) { 495 assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && 496 "Unexpect single element structure size!"); 497 return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext)); 498 } 499 } else if (SeltTy->isPointerType()) { 500 // FIXME: It would be really nice if this could come out as the proper 501 // pointer type. 502 const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext); 503 return ABIArgInfo::getCoerce(PtrTy); 504 } else if (SeltTy->isVectorType()) { 505 // 64- and 128-bit vectors are never returned in a 506 // register when inside a structure. 507 uint64_t Size = Context.getTypeSize(RetTy); 508 if (Size == 64 || Size == 128) 509 return ABIArgInfo::getIndirect(0); 510 511 return classifyReturnType(QualType(SeltTy, 0), Context, VMContext); 512 } 513 } 514 515 // Small structures which are register sized are generally returned 516 // in a register. 517 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { 518 uint64_t Size = Context.getTypeSize(RetTy); 519 return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size)); 520 } 521 522 return ABIArgInfo::getIndirect(0); 523 } else { 524 // Treat an enum type as its underlying type. 525 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 526 RetTy = EnumTy->getDecl()->getIntegerType(); 527 528 return (RetTy->isPromotableIntegerType() ? 529 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 530 } 531} 532 533ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, 534 ASTContext &Context, 535 bool ByVal) const { 536 if (!ByVal) 537 return ABIArgInfo::getIndirect(0, false); 538 539 // Compute the byval alignment. We trust the back-end to honor the 540 // minimum ABI alignment for byval, to make cleaner IR. 541 const unsigned MinABIAlign = 4; 542 unsigned Align = Context.getTypeAlign(Ty) / 8; 543 if (Align > MinABIAlign) 544 return ABIArgInfo::getIndirect(Align); 545 return ABIArgInfo::getIndirect(0); 546} 547 548ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 549 ASTContext &Context, 550 llvm::LLVMContext &VMContext) const { 551 // FIXME: Set alignment on indirect arguments. 552 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 553 // Structures with flexible arrays are always indirect. 554 if (const RecordType *RT = Ty->getAs<RecordType>()) { 555 // Structures with either a non-trivial destructor or a non-trivial 556 // copy constructor are always indirect. 557 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 558 return getIndirectResult(Ty, Context, /*ByVal=*/false); 559 560 if (RT->getDecl()->hasFlexibleArrayMember()) 561 return getIndirectResult(Ty, Context); 562 } 563 564 // Ignore empty structs. 565 if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0) 566 return ABIArgInfo::getIgnore(); 567 568 // Expand small (<= 128-bit) record types when we know that the stack layout 569 // of those arguments will match the struct. This is important because the 570 // LLVM backend isn't smart enough to remove byval, which inhibits many 571 // optimizations. 572 if (Context.getTypeSize(Ty) <= 4*32 && 573 canExpandIndirectArgument(Ty, Context)) 574 return ABIArgInfo::getExpand(); 575 576 return getIndirectResult(Ty, Context); 577 } else { 578 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 579 Ty = EnumTy->getDecl()->getIntegerType(); 580 581 return (Ty->isPromotableIntegerType() ? 582 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 583 } 584} 585 586llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 587 CodeGenFunction &CGF) const { 588 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 589 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 590 591 CGBuilderTy &Builder = CGF.Builder; 592 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 593 "ap"); 594 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 595 llvm::Type *PTy = 596 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 597 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 598 599 uint64_t Offset = 600 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 601 llvm::Value *NextAddr = 602 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 603 "ap.next"); 604 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 605 606 return AddrTyped; 607} 608 609void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 610 llvm::GlobalValue *GV, 611 CodeGen::CodeGenModule &CGM) const { 612 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 613 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 614 // Get the LLVM function. 615 llvm::Function *Fn = cast<llvm::Function>(GV); 616 617 // Now add the 'alignstack' attribute with a value of 16. 618 Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16)); 619 } 620 } 621} 622 623bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 624 CodeGen::CodeGenFunction &CGF, 625 llvm::Value *Address) const { 626 CodeGen::CGBuilderTy &Builder = CGF.Builder; 627 llvm::LLVMContext &Context = CGF.getLLVMContext(); 628 629 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 630 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 631 632 // 0-7 are the eight integer registers; the order is different 633 // on Darwin (for EH), but the range is the same. 634 // 8 is %eip. 635 AssignToArrayRange(Builder, Address, Four8, 0, 8); 636 637 if (CGF.CGM.isTargetDarwin()) { 638 // 12-16 are st(0..4). Not sure why we stop at 4. 639 // These have size 16, which is sizeof(long double) on 640 // platforms with 8-byte alignment for that type. 641 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 642 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 643 644 } else { 645 // 9 is %eflags, which doesn't get a size on Darwin for some 646 // reason. 647 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9)); 648 649 // 11-16 are st(0..5). Not sure why we stop at 5. 650 // These have size 12, which is sizeof(long double) on 651 // platforms with 4-byte alignment for that type. 652 llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12); 653 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 654 } 655 656 return false; 657} 658 659namespace { 660/// X86_64ABIInfo - The X86_64 ABI information. 661class X86_64ABIInfo : public ABIInfo { 662 enum Class { 663 Integer = 0, 664 SSE, 665 SSEUp, 666 X87, 667 X87Up, 668 ComplexX87, 669 NoClass, 670 Memory 671 }; 672 673 /// merge - Implement the X86_64 ABI merging algorithm. 674 /// 675 /// Merge an accumulating classification \arg Accum with a field 676 /// classification \arg Field. 677 /// 678 /// \param Accum - The accumulating classification. This should 679 /// always be either NoClass or the result of a previous merge 680 /// call. In addition, this should never be Memory (the caller 681 /// should just return Memory for the aggregate). 682 Class merge(Class Accum, Class Field) const; 683 684 /// classify - Determine the x86_64 register classes in which the 685 /// given type T should be passed. 686 /// 687 /// \param Lo - The classification for the parts of the type 688 /// residing in the low word of the containing object. 689 /// 690 /// \param Hi - The classification for the parts of the type 691 /// residing in the high word of the containing object. 692 /// 693 /// \param OffsetBase - The bit offset of this type in the 694 /// containing object. Some parameters are classified different 695 /// depending on whether they straddle an eightbyte boundary. 696 /// 697 /// If a word is unused its result will be NoClass; if a type should 698 /// be passed in Memory then at least the classification of \arg Lo 699 /// will be Memory. 700 /// 701 /// The \arg Lo class will be NoClass iff the argument is ignored. 702 /// 703 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 704 /// also be ComplexX87. 705 void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, 706 Class &Lo, Class &Hi) const; 707 708 /// getCoerceResult - Given a source type \arg Ty and an LLVM type 709 /// to coerce to, chose the best way to pass Ty in the same place 710 /// that \arg CoerceTo would be passed, but while keeping the 711 /// emitted code as simple as possible. 712 /// 713 /// FIXME: Note, this should be cleaned up to just take an enumeration of all 714 /// the ways we might want to pass things, instead of constructing an LLVM 715 /// type. This makes this code more explicit, and it makes it clearer that we 716 /// are also doing this for correctness in the case of passing scalar types. 717 ABIArgInfo getCoerceResult(QualType Ty, 718 const llvm::Type *CoerceTo, 719 ASTContext &Context) const; 720 721 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 722 /// such that the argument will be returned in memory. 723 ABIArgInfo getIndirectReturnResult(QualType Ty, ASTContext &Context) const; 724 725 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 726 /// such that the argument will be passed in memory. 727 ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context) const; 728 729 ABIArgInfo classifyReturnType(QualType RetTy, 730 ASTContext &Context, 731 llvm::LLVMContext &VMContext) const; 732 733 ABIArgInfo classifyArgumentType(QualType Ty, 734 ASTContext &Context, 735 llvm::LLVMContext &VMContext, 736 unsigned &neededInt, 737 unsigned &neededSSE) const; 738 739public: 740 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 741 llvm::LLVMContext &VMContext) const; 742 743 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 744 CodeGenFunction &CGF) const; 745}; 746 747class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 748public: 749 X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {} 750 751 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 752 return 7; 753 } 754 755 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 756 llvm::Value *Address) const { 757 CodeGen::CGBuilderTy &Builder = CGF.Builder; 758 llvm::LLVMContext &Context = CGF.getLLVMContext(); 759 760 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 761 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 762 763 // 0-15 are the 16 integer registers. 764 // 16 is %rip. 765 AssignToArrayRange(Builder, Address, Eight8, 0, 16); 766 767 return false; 768 } 769}; 770 771} 772 773X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, 774 Class Field) const { 775 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 776 // classified recursively so that always two fields are 777 // considered. The resulting class is calculated according to 778 // the classes of the fields in the eightbyte: 779 // 780 // (a) If both classes are equal, this is the resulting class. 781 // 782 // (b) If one of the classes is NO_CLASS, the resulting class is 783 // the other class. 784 // 785 // (c) If one of the classes is MEMORY, the result is the MEMORY 786 // class. 787 // 788 // (d) If one of the classes is INTEGER, the result is the 789 // INTEGER. 790 // 791 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 792 // MEMORY is used as class. 793 // 794 // (f) Otherwise class SSE is used. 795 796 // Accum should never be memory (we should have returned) or 797 // ComplexX87 (because this cannot be passed in a structure). 798 assert((Accum != Memory && Accum != ComplexX87) && 799 "Invalid accumulated classification during merge."); 800 if (Accum == Field || Field == NoClass) 801 return Accum; 802 else if (Field == Memory) 803 return Memory; 804 else if (Accum == NoClass) 805 return Field; 806 else if (Accum == Integer || Field == Integer) 807 return Integer; 808 else if (Field == X87 || Field == X87Up || Field == ComplexX87 || 809 Accum == X87 || Accum == X87Up) 810 return Memory; 811 else 812 return SSE; 813} 814 815void X86_64ABIInfo::classify(QualType Ty, 816 ASTContext &Context, 817 uint64_t OffsetBase, 818 Class &Lo, Class &Hi) const { 819 // FIXME: This code can be simplified by introducing a simple value class for 820 // Class pairs with appropriate constructor methods for the various 821 // situations. 822 823 // FIXME: Some of the split computations are wrong; unaligned vectors 824 // shouldn't be passed in registers for example, so there is no chance they 825 // can straddle an eightbyte. Verify & simplify. 826 827 Lo = Hi = NoClass; 828 829 Class &Current = OffsetBase < 64 ? Lo : Hi; 830 Current = Memory; 831 832 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 833 BuiltinType::Kind k = BT->getKind(); 834 835 if (k == BuiltinType::Void) { 836 Current = NoClass; 837 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 838 Lo = Integer; 839 Hi = Integer; 840 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 841 Current = Integer; 842 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 843 Current = SSE; 844 } else if (k == BuiltinType::LongDouble) { 845 Lo = X87; 846 Hi = X87Up; 847 } 848 // FIXME: _Decimal32 and _Decimal64 are SSE. 849 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 850 } else if (const EnumType *ET = Ty->getAs<EnumType>()) { 851 // Classify the underlying integer type. 852 classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); 853 } else if (Ty->hasPointerRepresentation()) { 854 Current = Integer; 855 } else if (Ty->isMemberPointerType()) { 856 if (Ty->isMemberFunctionPointerType()) 857 Lo = Hi = Integer; 858 else 859 Current = Integer; 860 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 861 uint64_t Size = Context.getTypeSize(VT); 862 if (Size == 32) { 863 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x 864 // float> as integer. 865 Current = Integer; 866 867 // If this type crosses an eightbyte boundary, it should be 868 // split. 869 uint64_t EB_Real = (OffsetBase) / 64; 870 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; 871 if (EB_Real != EB_Imag) 872 Hi = Lo; 873 } else if (Size == 64) { 874 // gcc passes <1 x double> in memory. :( 875 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) 876 return; 877 878 // gcc passes <1 x long long> as INTEGER. 879 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) 880 Current = Integer; 881 else 882 Current = SSE; 883 884 // If this type crosses an eightbyte boundary, it should be 885 // split. 886 if (OffsetBase && OffsetBase != 64) 887 Hi = Lo; 888 } else if (Size == 128) { 889 Lo = SSE; 890 Hi = SSEUp; 891 } 892 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 893 QualType ET = Context.getCanonicalType(CT->getElementType()); 894 895 uint64_t Size = Context.getTypeSize(Ty); 896 if (ET->isIntegralOrEnumerationType()) { 897 if (Size <= 64) 898 Current = Integer; 899 else if (Size <= 128) 900 Lo = Hi = Integer; 901 } else if (ET == Context.FloatTy) 902 Current = SSE; 903 else if (ET == Context.DoubleTy) 904 Lo = Hi = SSE; 905 else if (ET == Context.LongDoubleTy) 906 Current = ComplexX87; 907 908 // If this complex type crosses an eightbyte boundary then it 909 // should be split. 910 uint64_t EB_Real = (OffsetBase) / 64; 911 uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; 912 if (Hi == NoClass && EB_Real != EB_Imag) 913 Hi = Lo; 914 } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 915 // Arrays are treated like structures. 916 917 uint64_t Size = Context.getTypeSize(Ty); 918 919 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 920 // than two eightbytes, ..., it has class MEMORY. 921 if (Size > 128) 922 return; 923 924 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 925 // fields, it has class MEMORY. 926 // 927 // Only need to check alignment of array base. 928 if (OffsetBase % Context.getTypeAlign(AT->getElementType())) 929 return; 930 931 // Otherwise implement simplified merge. We could be smarter about 932 // this, but it isn't worth it and would be harder to verify. 933 Current = NoClass; 934 uint64_t EltSize = Context.getTypeSize(AT->getElementType()); 935 uint64_t ArraySize = AT->getSize().getZExtValue(); 936 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 937 Class FieldLo, FieldHi; 938 classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); 939 Lo = merge(Lo, FieldLo); 940 Hi = merge(Hi, FieldHi); 941 if (Lo == Memory || Hi == Memory) 942 break; 943 } 944 945 // Do post merger cleanup (see below). Only case we worry about is Memory. 946 if (Hi == Memory) 947 Lo = Memory; 948 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 949 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 950 uint64_t Size = Context.getTypeSize(Ty); 951 952 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 953 // than two eightbytes, ..., it has class MEMORY. 954 if (Size > 128) 955 return; 956 957 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 958 // copy constructor or a non-trivial destructor, it is passed by invisible 959 // reference. 960 if (hasNonTrivialDestructorOrCopyConstructor(RT)) 961 return; 962 963 const RecordDecl *RD = RT->getDecl(); 964 965 // Assume variable sized types are passed in memory. 966 if (RD->hasFlexibleArrayMember()) 967 return; 968 969 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 970 971 // Reset Lo class, this will be recomputed. 972 Current = NoClass; 973 974 // If this is a C++ record, classify the bases first. 975 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 976 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(), 977 e = CXXRD->bases_end(); i != e; ++i) { 978 assert(!i->isVirtual() && !i->getType()->isDependentType() && 979 "Unexpected base class!"); 980 const CXXRecordDecl *Base = 981 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 982 983 // Classify this field. 984 // 985 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 986 // single eightbyte, each is classified separately. Each eightbyte gets 987 // initialized to class NO_CLASS. 988 Class FieldLo, FieldHi; 989 uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base); 990 classify(i->getType(), Context, Offset, FieldLo, FieldHi); 991 Lo = merge(Lo, FieldLo); 992 Hi = merge(Hi, FieldHi); 993 if (Lo == Memory || Hi == Memory) 994 break; 995 } 996 997 // If this record has no fields but isn't empty, classify as INTEGER. 998 if (RD->field_empty() && Size) 999 Current = Integer; 1000 } 1001 1002 // Classify the fields one at a time, merging the results. 1003 unsigned idx = 0; 1004 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1005 i != e; ++i, ++idx) { 1006 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1007 bool BitField = i->isBitField(); 1008 1009 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1010 // fields, it has class MEMORY. 1011 // 1012 // Note, skip this test for bit-fields, see below. 1013 if (!BitField && Offset % Context.getTypeAlign(i->getType())) { 1014 Lo = Memory; 1015 return; 1016 } 1017 1018 // Classify this field. 1019 // 1020 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 1021 // exceeds a single eightbyte, each is classified 1022 // separately. Each eightbyte gets initialized to class 1023 // NO_CLASS. 1024 Class FieldLo, FieldHi; 1025 1026 // Bit-fields require special handling, they do not force the 1027 // structure to be passed in memory even if unaligned, and 1028 // therefore they can straddle an eightbyte. 1029 if (BitField) { 1030 // Ignore padding bit-fields. 1031 if (i->isUnnamedBitfield()) 1032 continue; 1033 1034 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 1035 uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); 1036 1037 uint64_t EB_Lo = Offset / 64; 1038 uint64_t EB_Hi = (Offset + Size - 1) / 64; 1039 FieldLo = FieldHi = NoClass; 1040 if (EB_Lo) { 1041 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 1042 FieldLo = NoClass; 1043 FieldHi = Integer; 1044 } else { 1045 FieldLo = Integer; 1046 FieldHi = EB_Hi ? Integer : NoClass; 1047 } 1048 } else 1049 classify(i->getType(), Context, Offset, FieldLo, FieldHi); 1050 Lo = merge(Lo, FieldLo); 1051 Hi = merge(Hi, FieldHi); 1052 if (Lo == Memory || Hi == Memory) 1053 break; 1054 } 1055 1056 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1057 // 1058 // (a) If one of the classes is MEMORY, the whole argument is 1059 // passed in memory. 1060 // 1061 // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. 1062 1063 // The first of these conditions is guaranteed by how we implement 1064 // the merge (just bail). 1065 // 1066 // The second condition occurs in the case of unions; for example 1067 // union { _Complex double; unsigned; }. 1068 if (Hi == Memory) 1069 Lo = Memory; 1070 if (Hi == SSEUp && Lo != SSE) 1071 Hi = SSE; 1072 } 1073} 1074 1075ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, 1076 const llvm::Type *CoerceTo, 1077 ASTContext &Context) const { 1078 if (CoerceTo->isIntegerTy(64)) { 1079 // Integer and pointer types will end up in a general purpose 1080 // register. 1081 1082 // Treat an enum type as its underlying type. 1083 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1084 Ty = EnumTy->getDecl()->getIntegerType(); 1085 1086 if (Ty->isIntegralOrEnumerationType() || Ty->hasPointerRepresentation()) 1087 return (Ty->isPromotableIntegerType() ? 1088 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1089 1090 // If this is a 32-bit structure that is passed as an int64, then it will be 1091 // passed in the low 32-bits of a 64-bit GPR, which is the same as how an 1092 // i32 is passed. Coerce to a i32 instead of a i64. 1093 if (Context.getTypeSizeInChars(Ty).getQuantity() == 4) 1094 CoerceTo = llvm::Type::getInt32Ty(CoerceTo->getContext()); 1095 1096 } else if (CoerceTo->isDoubleTy()) { 1097 assert(Ty.isCanonical() && "should always have a canonical type here"); 1098 assert(!Ty.hasQualifiers() && "should never have a qualified type here"); 1099 1100 // Float and double end up in a single SSE reg. 1101 if (Ty == Context.FloatTy || Ty == Context.DoubleTy) 1102 return ABIArgInfo::getDirect(); 1103 1104 // If this is a 32-bit structure that is passed as a double, then it will be 1105 // passed in the low 32-bits of the XMM register, which is the same as how a 1106 // float is passed. Coerce to a float instead of a double. 1107 if (Context.getTypeSizeInChars(Ty).getQuantity() == 4) 1108 CoerceTo = llvm::Type::getFloatTy(CoerceTo->getContext()); 1109 } 1110 1111 return ABIArgInfo::getCoerce(CoerceTo); 1112} 1113 1114ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty, 1115 ASTContext &Context) const { 1116 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1117 // place naturally. 1118 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1119 // Treat an enum type as its underlying type. 1120 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1121 Ty = EnumTy->getDecl()->getIntegerType(); 1122 1123 return (Ty->isPromotableIntegerType() ? 1124 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1125 } 1126 1127 return ABIArgInfo::getIndirect(0); 1128} 1129 1130ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 1131 ASTContext &Context) const { 1132 // If this is a scalar LLVM value then assume LLVM will pass it in the right 1133 // place naturally. 1134 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1135 // Treat an enum type as its underlying type. 1136 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1137 Ty = EnumTy->getDecl()->getIntegerType(); 1138 1139 return (Ty->isPromotableIntegerType() ? 1140 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1141 } 1142 1143 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 1144 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 1145 1146 // Compute the byval alignment. We trust the back-end to honor the 1147 // minimum ABI alignment for byval, to make cleaner IR. 1148 const unsigned MinABIAlign = 8; 1149 unsigned Align = Context.getTypeAlign(Ty) / 8; 1150 if (Align > MinABIAlign) 1151 return ABIArgInfo::getIndirect(Align); 1152 return ABIArgInfo::getIndirect(0); 1153} 1154 1155ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, 1156 ASTContext &Context, 1157 llvm::LLVMContext &VMContext) const { 1158 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 1159 // classification algorithm. 1160 X86_64ABIInfo::Class Lo, Hi; 1161 classify(RetTy, Context, 0, Lo, Hi); 1162 1163 // Check some invariants. 1164 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1165 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); 1166 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1167 1168 const llvm::Type *ResType = 0; 1169 switch (Lo) { 1170 case NoClass: 1171 return ABIArgInfo::getIgnore(); 1172 1173 case SSEUp: 1174 case X87Up: 1175 assert(0 && "Invalid classification for lo word."); 1176 1177 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 1178 // hidden argument. 1179 case Memory: 1180 return getIndirectReturnResult(RetTy, Context); 1181 1182 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 1183 // available register of the sequence %rax, %rdx is used. 1184 case Integer: 1185 ResType = llvm::Type::getInt64Ty(VMContext); break; 1186 1187 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 1188 // available SSE register of the sequence %xmm0, %xmm1 is used. 1189 case SSE: 1190 ResType = llvm::Type::getDoubleTy(VMContext); break; 1191 1192 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 1193 // returned on the X87 stack in %st0 as 80-bit x87 number. 1194 case X87: 1195 ResType = llvm::Type::getX86_FP80Ty(VMContext); break; 1196 1197 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 1198 // part of the value is returned in %st0 and the imaginary part in 1199 // %st1. 1200 case ComplexX87: 1201 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 1202 ResType = llvm::StructType::get(VMContext, 1203 llvm::Type::getX86_FP80Ty(VMContext), 1204 llvm::Type::getX86_FP80Ty(VMContext), 1205 NULL); 1206 break; 1207 } 1208 1209 switch (Hi) { 1210 // Memory was handled previously and X87 should 1211 // never occur as a hi class. 1212 case Memory: 1213 case X87: 1214 assert(0 && "Invalid classification for hi word."); 1215 1216 case ComplexX87: // Previously handled. 1217 case NoClass: break; 1218 1219 case Integer: 1220 ResType = llvm::StructType::get(VMContext, ResType, 1221 llvm::Type::getInt64Ty(VMContext), NULL); 1222 break; 1223 case SSE: 1224 ResType = llvm::StructType::get(VMContext, ResType, 1225 llvm::Type::getDoubleTy(VMContext), NULL); 1226 break; 1227 1228 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 1229 // is passed in the upper half of the last used SSE register. 1230 // 1231 // SSEUP should always be preceeded by SSE, just widen. 1232 case SSEUp: 1233 assert(Lo == SSE && "Unexpected SSEUp classification."); 1234 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2); 1235 break; 1236 1237 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 1238 // returned together with the previous X87 value in %st0. 1239 case X87Up: 1240 // If X87Up is preceeded by X87, we don't need to do 1241 // anything. However, in some cases with unions it may not be 1242 // preceeded by X87. In such situations we follow gcc and pass the 1243 // extra bits in an SSE reg. 1244 if (Lo != X87) 1245 ResType = llvm::StructType::get(VMContext, ResType, 1246 llvm::Type::getDoubleTy(VMContext), NULL); 1247 break; 1248 } 1249 1250 return getCoerceResult(RetTy, ResType, Context); 1251} 1252 1253ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, 1254 llvm::LLVMContext &VMContext, 1255 unsigned &neededInt, 1256 unsigned &neededSSE) const { 1257 X86_64ABIInfo::Class Lo, Hi; 1258 classify(Ty, Context, 0, Lo, Hi); 1259 1260 // Check some invariants. 1261 // FIXME: Enforce these by construction. 1262 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 1263 assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); 1264 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 1265 1266 neededInt = 0; 1267 neededSSE = 0; 1268 const llvm::Type *ResType = 0; 1269 switch (Lo) { 1270 case NoClass: 1271 return ABIArgInfo::getIgnore(); 1272 1273 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 1274 // on the stack. 1275 case Memory: 1276 1277 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 1278 // COMPLEX_X87, it is passed in memory. 1279 case X87: 1280 case ComplexX87: 1281 return getIndirectResult(Ty, Context); 1282 1283 case SSEUp: 1284 case X87Up: 1285 assert(0 && "Invalid classification for lo word."); 1286 1287 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 1288 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 1289 // and %r9 is used. 1290 case Integer: 1291 ++neededInt; 1292 ResType = llvm::Type::getInt64Ty(VMContext); 1293 break; 1294 1295 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 1296 // available SSE register is used, the registers are taken in the 1297 // order from %xmm0 to %xmm7. 1298 case SSE: 1299 ++neededSSE; 1300 ResType = llvm::Type::getDoubleTy(VMContext); 1301 break; 1302 } 1303 1304 switch (Hi) { 1305 // Memory was handled previously, ComplexX87 and X87 should 1306 // never occur as hi classes, and X87Up must be preceed by X87, 1307 // which is passed in memory. 1308 case Memory: 1309 case X87: 1310 case ComplexX87: 1311 assert(0 && "Invalid classification for hi word."); 1312 break; 1313 1314 case NoClass: break; 1315 case Integer: 1316 ResType = llvm::StructType::get(VMContext, ResType, 1317 llvm::Type::getInt64Ty(VMContext), NULL); 1318 ++neededInt; 1319 break; 1320 1321 // X87Up generally doesn't occur here (long double is passed in 1322 // memory), except in situations involving unions. 1323 case X87Up: 1324 case SSE: 1325 ResType = llvm::StructType::get(VMContext, ResType, 1326 llvm::Type::getDoubleTy(VMContext), NULL); 1327 ++neededSSE; 1328 break; 1329 1330 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 1331 // eightbyte is passed in the upper half of the last used SSE 1332 // register. 1333 case SSEUp: 1334 assert(Lo == SSE && "Unexpected SSEUp classification."); 1335 ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2); 1336 break; 1337 } 1338 1339 return getCoerceResult(Ty, ResType, Context); 1340} 1341 1342void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1343 llvm::LLVMContext &VMContext) const { 1344 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 1345 Context, VMContext); 1346 1347 // Keep track of the number of assigned registers. 1348 unsigned freeIntRegs = 6, freeSSERegs = 8; 1349 1350 // If the return value is indirect, then the hidden argument is consuming one 1351 // integer register. 1352 if (FI.getReturnInfo().isIndirect()) 1353 --freeIntRegs; 1354 1355 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 1356 // get assigned (in left-to-right order) for passing as follows... 1357 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1358 it != ie; ++it) { 1359 unsigned neededInt, neededSSE; 1360 it->info = classifyArgumentType(it->type, Context, VMContext, 1361 neededInt, neededSSE); 1362 1363 // AMD64-ABI 3.2.3p3: If there are no registers available for any 1364 // eightbyte of an argument, the whole argument is passed on the 1365 // stack. If registers have already been assigned for some 1366 // eightbytes of such an argument, the assignments get reverted. 1367 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { 1368 freeIntRegs -= neededInt; 1369 freeSSERegs -= neededSSE; 1370 } else { 1371 it->info = getIndirectResult(it->type, Context); 1372 } 1373 } 1374} 1375 1376static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, 1377 QualType Ty, 1378 CodeGenFunction &CGF) { 1379 llvm::Value *overflow_arg_area_p = 1380 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 1381 llvm::Value *overflow_arg_area = 1382 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 1383 1384 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 1385 // byte boundary if alignment needed by type exceeds 8 byte boundary. 1386 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 1387 if (Align > 8) { 1388 // Note that we follow the ABI & gcc here, even though the type 1389 // could in theory have an alignment greater than 16. This case 1390 // shouldn't ever matter in practice. 1391 1392 // overflow_arg_area = (overflow_arg_area + 15) & ~15; 1393 llvm::Value *Offset = 1394 llvm::ConstantInt::get(CGF.Int32Ty, 15); 1395 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); 1396 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, 1397 CGF.Int64Ty); 1398 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL); 1399 overflow_arg_area = 1400 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), 1401 overflow_arg_area->getType(), 1402 "overflow_arg_area.align"); 1403 } 1404 1405 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 1406 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 1407 llvm::Value *Res = 1408 CGF.Builder.CreateBitCast(overflow_arg_area, 1409 llvm::PointerType::getUnqual(LTy)); 1410 1411 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 1412 // l->overflow_arg_area + sizeof(type). 1413 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 1414 // an 8 byte boundary. 1415 1416 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 1417 llvm::Value *Offset = 1418 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 1419 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 1420 "overflow_arg_area.next"); 1421 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 1422 1423 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 1424 return Res; 1425} 1426 1427llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1428 CodeGenFunction &CGF) const { 1429 llvm::LLVMContext &VMContext = CGF.getLLVMContext(); 1430 const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext); 1431 1432 // Assume that va_list type is correct; should be pointer to LLVM type: 1433 // struct { 1434 // i32 gp_offset; 1435 // i32 fp_offset; 1436 // i8* overflow_arg_area; 1437 // i8* reg_save_area; 1438 // }; 1439 unsigned neededInt, neededSSE; 1440 1441 Ty = CGF.getContext().getCanonicalType(Ty); 1442 ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext, 1443 neededInt, neededSSE); 1444 1445 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 1446 // in the registers. If not go to step 7. 1447 if (!neededInt && !neededSSE) 1448 return EmitVAArgFromMemory(VAListAddr, Ty, CGF); 1449 1450 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 1451 // general purpose registers needed to pass type and num_fp to hold 1452 // the number of floating point registers needed. 1453 1454 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 1455 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 1456 // l->fp_offset > 304 - num_fp * 16 go to step 7. 1457 // 1458 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 1459 // register save space). 1460 1461 llvm::Value *InRegs = 0; 1462 llvm::Value *gp_offset_p = 0, *gp_offset = 0; 1463 llvm::Value *fp_offset_p = 0, *fp_offset = 0; 1464 if (neededInt) { 1465 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 1466 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 1467 InRegs = 1468 CGF.Builder.CreateICmpULE(gp_offset, 1469 llvm::ConstantInt::get(CGF.Int32Ty, 1470 48 - neededInt * 8), 1471 "fits_in_gp"); 1472 } 1473 1474 if (neededSSE) { 1475 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 1476 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 1477 llvm::Value *FitsInFP = 1478 CGF.Builder.CreateICmpULE(fp_offset, 1479 llvm::ConstantInt::get(CGF.Int32Ty, 1480 176 - neededSSE * 16), 1481 "fits_in_fp"); 1482 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 1483 } 1484 1485 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 1486 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 1487 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 1488 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 1489 1490 // Emit code to load the value if it was passed in registers. 1491 1492 CGF.EmitBlock(InRegBlock); 1493 1494 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 1495 // an offset of l->gp_offset and/or l->fp_offset. This may require 1496 // copying to a temporary location in case the parameter is passed 1497 // in different register classes or requires an alignment greater 1498 // than 8 for general purpose registers and 16 for XMM registers. 1499 // 1500 // FIXME: This really results in shameful code when we end up needing to 1501 // collect arguments from different places; often what should result in a 1502 // simple assembling of a structure from scattered addresses has many more 1503 // loads than necessary. Can we clean this up? 1504 const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 1505 llvm::Value *RegAddr = 1506 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), 1507 "reg_save_area"); 1508 if (neededInt && neededSSE) { 1509 // FIXME: Cleanup. 1510 assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); 1511 const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 1512 llvm::Value *Tmp = CGF.CreateTempAlloca(ST); 1513 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 1514 const llvm::Type *TyLo = ST->getElementType(0); 1515 const llvm::Type *TyHi = ST->getElementType(1); 1516 assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) && 1517 "Unexpected ABI info for mixed regs"); 1518 const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 1519 const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 1520 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 1521 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1522 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr; 1523 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr; 1524 llvm::Value *V = 1525 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); 1526 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 1527 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); 1528 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 1529 1530 RegAddr = CGF.Builder.CreateBitCast(Tmp, 1531 llvm::PointerType::getUnqual(LTy)); 1532 } else if (neededInt) { 1533 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); 1534 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 1535 llvm::PointerType::getUnqual(LTy)); 1536 } else { 1537 if (neededSSE == 1) { 1538 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1539 RegAddr = CGF.Builder.CreateBitCast(RegAddr, 1540 llvm::PointerType::getUnqual(LTy)); 1541 } else { 1542 assert(neededSSE == 2 && "Invalid number of needed registers!"); 1543 // SSE registers are spaced 16 bytes apart in the register save 1544 // area, we need to collect the two eightbytes together. 1545 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); 1546 llvm::Value *RegAddrHi = 1547 CGF.Builder.CreateGEP(RegAddrLo, 1548 llvm::ConstantInt::get(CGF.Int32Ty, 16)); 1549 const llvm::Type *DblPtrTy = 1550 llvm::PointerType::getUnqual(DoubleTy); 1551 const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy, 1552 DoubleTy, NULL); 1553 llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); 1554 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, 1555 DblPtrTy)); 1556 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 1557 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, 1558 DblPtrTy)); 1559 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 1560 RegAddr = CGF.Builder.CreateBitCast(Tmp, 1561 llvm::PointerType::getUnqual(LTy)); 1562 } 1563 } 1564 1565 // AMD64-ABI 3.5.7p5: Step 5. Set: 1566 // l->gp_offset = l->gp_offset + num_gp * 8 1567 // l->fp_offset = l->fp_offset + num_fp * 16. 1568 if (neededInt) { 1569 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 1570 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 1571 gp_offset_p); 1572 } 1573 if (neededSSE) { 1574 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 1575 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 1576 fp_offset_p); 1577 } 1578 CGF.EmitBranch(ContBlock); 1579 1580 // Emit code to load the value if it was passed in memory. 1581 1582 CGF.EmitBlock(InMemBlock); 1583 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); 1584 1585 // Return the appropriate result. 1586 1587 CGF.EmitBlock(ContBlock); 1588 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 1589 "vaarg.addr"); 1590 ResAddr->reserveOperandSpace(2); 1591 ResAddr->addIncoming(RegAddr, InRegBlock); 1592 ResAddr->addIncoming(MemAddr, InMemBlock); 1593 1594 return ResAddr; 1595} 1596 1597// PIC16 ABI Implementation 1598 1599namespace { 1600 1601class PIC16ABIInfo : public ABIInfo { 1602 ABIArgInfo classifyReturnType(QualType RetTy, 1603 ASTContext &Context, 1604 llvm::LLVMContext &VMContext) const; 1605 1606 ABIArgInfo classifyArgumentType(QualType RetTy, 1607 ASTContext &Context, 1608 llvm::LLVMContext &VMContext) const; 1609 1610 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1611 llvm::LLVMContext &VMContext) const { 1612 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 1613 VMContext); 1614 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1615 it != ie; ++it) 1616 it->info = classifyArgumentType(it->type, Context, VMContext); 1617 } 1618 1619 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1620 CodeGenFunction &CGF) const; 1621}; 1622 1623class PIC16TargetCodeGenInfo : public TargetCodeGenInfo { 1624public: 1625 PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {} 1626}; 1627 1628} 1629 1630ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, 1631 ASTContext &Context, 1632 llvm::LLVMContext &VMContext) const { 1633 if (RetTy->isVoidType()) { 1634 return ABIArgInfo::getIgnore(); 1635 } else { 1636 return ABIArgInfo::getDirect(); 1637 } 1638} 1639 1640ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, 1641 ASTContext &Context, 1642 llvm::LLVMContext &VMContext) const { 1643 return ABIArgInfo::getDirect(); 1644} 1645 1646llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1647 CodeGenFunction &CGF) const { 1648 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1649 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 1650 1651 CGBuilderTy &Builder = CGF.Builder; 1652 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 1653 "ap"); 1654 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 1655 llvm::Type *PTy = 1656 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 1657 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 1658 1659 uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8; 1660 1661 llvm::Value *NextAddr = 1662 Builder.CreateGEP(Addr, llvm::ConstantInt::get( 1663 llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset), 1664 "ap.next"); 1665 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 1666 1667 return AddrTyped; 1668} 1669 1670 1671// PowerPC-32 1672 1673namespace { 1674class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 1675public: 1676 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 1677 // This is recovered from gcc output. 1678 return 1; // r1 is the dedicated stack pointer 1679 } 1680 1681 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1682 llvm::Value *Address) const; 1683}; 1684 1685} 1686 1687bool 1688PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1689 llvm::Value *Address) const { 1690 // This is calculated from the LLVM and GCC tables and verified 1691 // against gcc output. AFAIK all ABIs use the same encoding. 1692 1693 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1694 llvm::LLVMContext &Context = CGF.getLLVMContext(); 1695 1696 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 1697 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 1698 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 1699 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 1700 1701 // 0-31: r0-31, the 4-byte general-purpose registers 1702 AssignToArrayRange(Builder, Address, Four8, 0, 31); 1703 1704 // 32-63: fp0-31, the 8-byte floating-point registers 1705 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 1706 1707 // 64-76 are various 4-byte special-purpose registers: 1708 // 64: mq 1709 // 65: lr 1710 // 66: ctr 1711 // 67: ap 1712 // 68-75 cr0-7 1713 // 76: xer 1714 AssignToArrayRange(Builder, Address, Four8, 64, 76); 1715 1716 // 77-108: v0-31, the 16-byte vector registers 1717 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 1718 1719 // 109: vrsave 1720 // 110: vscr 1721 // 111: spe_acc 1722 // 112: spefscr 1723 // 113: sfp 1724 AssignToArrayRange(Builder, Address, Four8, 109, 113); 1725 1726 return false; 1727} 1728 1729 1730// ARM ABI Implementation 1731 1732namespace { 1733 1734class ARMABIInfo : public ABIInfo { 1735public: 1736 enum ABIKind { 1737 APCS = 0, 1738 AAPCS = 1, 1739 AAPCS_VFP 1740 }; 1741 1742private: 1743 ABIKind Kind; 1744 1745public: 1746 ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {} 1747 1748private: 1749 ABIKind getABIKind() const { return Kind; } 1750 1751 ABIArgInfo classifyReturnType(QualType RetTy, 1752 ASTContext &Context, 1753 llvm::LLVMContext &VMCOntext) const; 1754 1755 ABIArgInfo classifyArgumentType(QualType RetTy, 1756 ASTContext &Context, 1757 llvm::LLVMContext &VMContext) const; 1758 1759 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1760 llvm::LLVMContext &VMContext) const; 1761 1762 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 1763 CodeGenFunction &CGF) const; 1764}; 1765 1766class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 1767public: 1768 ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K) 1769 :TargetCodeGenInfo(new ARMABIInfo(K)) {} 1770 1771 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 1772 return 13; 1773 } 1774}; 1775 1776} 1777 1778void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context, 1779 llvm::LLVMContext &VMContext) const { 1780 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context, 1781 VMContext); 1782 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 1783 it != ie; ++it) { 1784 it->info = classifyArgumentType(it->type, Context, VMContext); 1785 } 1786 1787 const llvm::Triple &Triple(Context.Target.getTriple()); 1788 llvm::CallingConv::ID DefaultCC; 1789 if (Triple.getEnvironmentName() == "gnueabi" || 1790 Triple.getEnvironmentName() == "eabi") 1791 DefaultCC = llvm::CallingConv::ARM_AAPCS; 1792 else 1793 DefaultCC = llvm::CallingConv::ARM_APCS; 1794 1795 switch (getABIKind()) { 1796 case APCS: 1797 if (DefaultCC != llvm::CallingConv::ARM_APCS) 1798 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS); 1799 break; 1800 1801 case AAPCS: 1802 if (DefaultCC != llvm::CallingConv::ARM_AAPCS) 1803 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS); 1804 break; 1805 1806 case AAPCS_VFP: 1807 FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP); 1808 break; 1809 } 1810} 1811 1812ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, 1813 ASTContext &Context, 1814 llvm::LLVMContext &VMContext) const { 1815 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1816 // Treat an enum type as its underlying type. 1817 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1818 Ty = EnumTy->getDecl()->getIntegerType(); 1819 1820 return (Ty->isPromotableIntegerType() ? 1821 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1822 } 1823 1824 // Ignore empty records. 1825 if (isEmptyRecord(Context, Ty, true)) 1826 return ABIArgInfo::getIgnore(); 1827 1828 // Structures with either a non-trivial destructor or a non-trivial 1829 // copy constructor are always indirect. 1830 if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) 1831 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 1832 1833 // FIXME: This is kind of nasty... but there isn't much choice because the ARM 1834 // backend doesn't support byval. 1835 // FIXME: This doesn't handle alignment > 64 bits. 1836 const llvm::Type* ElemTy; 1837 unsigned SizeRegs; 1838 if (Context.getTypeAlign(Ty) > 32) { 1839 ElemTy = llvm::Type::getInt64Ty(VMContext); 1840 SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; 1841 } else { 1842 ElemTy = llvm::Type::getInt32Ty(VMContext); 1843 SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; 1844 } 1845 std::vector<const llvm::Type*> LLVMFields; 1846 LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); 1847 const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true); 1848 return ABIArgInfo::getCoerce(STy); 1849} 1850 1851static bool isIntegerLikeType(QualType Ty, 1852 ASTContext &Context, 1853 llvm::LLVMContext &VMContext) { 1854 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 1855 // is called integer-like if its size is less than or equal to one word, and 1856 // the offset of each of its addressable sub-fields is zero. 1857 1858 uint64_t Size = Context.getTypeSize(Ty); 1859 1860 // Check that the type fits in a word. 1861 if (Size > 32) 1862 return false; 1863 1864 // FIXME: Handle vector types! 1865 if (Ty->isVectorType()) 1866 return false; 1867 1868 // Float types are never treated as "integer like". 1869 if (Ty->isRealFloatingType()) 1870 return false; 1871 1872 // If this is a builtin or pointer type then it is ok. 1873 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 1874 return true; 1875 1876 // Small complex integer types are "integer like". 1877 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 1878 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 1879 1880 // Single element and zero sized arrays should be allowed, by the definition 1881 // above, but they are not. 1882 1883 // Otherwise, it must be a record type. 1884 const RecordType *RT = Ty->getAs<RecordType>(); 1885 if (!RT) return false; 1886 1887 // Ignore records with flexible arrays. 1888 const RecordDecl *RD = RT->getDecl(); 1889 if (RD->hasFlexibleArrayMember()) 1890 return false; 1891 1892 // Check that all sub-fields are at offset 0, and are themselves "integer 1893 // like". 1894 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1895 1896 bool HadField = false; 1897 unsigned idx = 0; 1898 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1899 i != e; ++i, ++idx) { 1900 const FieldDecl *FD = *i; 1901 1902 // Bit-fields are not addressable, we only need to verify they are "integer 1903 // like". We still have to disallow a subsequent non-bitfield, for example: 1904 // struct { int : 0; int x } 1905 // is non-integer like according to gcc. 1906 if (FD->isBitField()) { 1907 if (!RD->isUnion()) 1908 HadField = true; 1909 1910 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 1911 return false; 1912 1913 continue; 1914 } 1915 1916 // Check if this field is at offset 0. 1917 if (Layout.getFieldOffset(idx) != 0) 1918 return false; 1919 1920 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 1921 return false; 1922 1923 // Only allow at most one field in a structure. This doesn't match the 1924 // wording above, but follows gcc in situations with a field following an 1925 // empty structure. 1926 if (!RD->isUnion()) { 1927 if (HadField) 1928 return false; 1929 1930 HadField = true; 1931 } 1932 } 1933 1934 return true; 1935} 1936 1937ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, 1938 ASTContext &Context, 1939 llvm::LLVMContext &VMContext) const { 1940 if (RetTy->isVoidType()) 1941 return ABIArgInfo::getIgnore(); 1942 1943 if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1944 // Treat an enum type as its underlying type. 1945 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1946 RetTy = EnumTy->getDecl()->getIntegerType(); 1947 1948 return (RetTy->isPromotableIntegerType() ? 1949 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 1950 } 1951 1952 // Structures with either a non-trivial destructor or a non-trivial 1953 // copy constructor are always indirect. 1954 if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy)) 1955 return ABIArgInfo::getIndirect(0, /*ByVal=*/false); 1956 1957 // Are we following APCS? 1958 if (getABIKind() == APCS) { 1959 if (isEmptyRecord(Context, RetTy, false)) 1960 return ABIArgInfo::getIgnore(); 1961 1962 // Complex types are all returned as packed integers. 1963 // 1964 // FIXME: Consider using 2 x vector types if the back end handles them 1965 // correctly. 1966 if (RetTy->isAnyComplexType()) 1967 return ABIArgInfo::getCoerce(llvm::IntegerType::get( 1968 VMContext, Context.getTypeSize(RetTy))); 1969 1970 // Integer like structures are returned in r0. 1971 if (isIntegerLikeType(RetTy, Context, VMContext)) { 1972 // Return in the smallest viable integer type. 1973 uint64_t Size = Context.getTypeSize(RetTy); 1974 if (Size <= 8) 1975 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext)); 1976 if (Size <= 16) 1977 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext)); 1978 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext)); 1979 } 1980 1981 // Otherwise return in memory. 1982 return ABIArgInfo::getIndirect(0); 1983 } 1984 1985 // Otherwise this is an AAPCS variant. 1986 1987 if (isEmptyRecord(Context, RetTy, true)) 1988 return ABIArgInfo::getIgnore(); 1989 1990 // Aggregates <= 4 bytes are returned in r0; other aggregates 1991 // are returned indirectly. 1992 uint64_t Size = Context.getTypeSize(RetTy); 1993 if (Size <= 32) { 1994 // Return in the smallest viable integer type. 1995 if (Size <= 8) 1996 return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext)); 1997 if (Size <= 16) 1998 return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext)); 1999 return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext)); 2000 } 2001 2002 return ABIArgInfo::getIndirect(0); 2003} 2004 2005llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2006 CodeGenFunction &CGF) const { 2007 // FIXME: Need to handle alignment 2008 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 2009 const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); 2010 2011 CGBuilderTy &Builder = CGF.Builder; 2012 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, 2013 "ap"); 2014 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 2015 llvm::Type *PTy = 2016 llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 2017 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); 2018 2019 uint64_t Offset = 2020 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); 2021 llvm::Value *NextAddr = 2022 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 2023 "ap.next"); 2024 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 2025 2026 return AddrTyped; 2027} 2028 2029ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, 2030 ASTContext &Context, 2031 llvm::LLVMContext &VMContext) const { 2032 if (RetTy->isVoidType()) { 2033 return ABIArgInfo::getIgnore(); 2034 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2035 return ABIArgInfo::getIndirect(0); 2036 } else { 2037 // Treat an enum type as its underlying type. 2038 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2039 RetTy = EnumTy->getDecl()->getIntegerType(); 2040 2041 return (RetTy->isPromotableIntegerType() ? 2042 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2043 } 2044} 2045 2046// SystemZ ABI Implementation 2047 2048namespace { 2049 2050class SystemZABIInfo : public ABIInfo { 2051 bool isPromotableIntegerType(QualType Ty) const; 2052 2053 ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context, 2054 llvm::LLVMContext &VMContext) const; 2055 2056 ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context, 2057 llvm::LLVMContext &VMContext) const; 2058 2059 virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context, 2060 llvm::LLVMContext &VMContext) const { 2061 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), 2062 Context, VMContext); 2063 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2064 it != ie; ++it) 2065 it->info = classifyArgumentType(it->type, Context, VMContext); 2066 } 2067 2068 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2069 CodeGenFunction &CGF) const; 2070}; 2071 2072class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 2073public: 2074 SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {} 2075}; 2076 2077} 2078 2079bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 2080 // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended. 2081 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 2082 switch (BT->getKind()) { 2083 case BuiltinType::Bool: 2084 case BuiltinType::Char_S: 2085 case BuiltinType::Char_U: 2086 case BuiltinType::SChar: 2087 case BuiltinType::UChar: 2088 case BuiltinType::Short: 2089 case BuiltinType::UShort: 2090 case BuiltinType::Int: 2091 case BuiltinType::UInt: 2092 return true; 2093 default: 2094 return false; 2095 } 2096 return false; 2097} 2098 2099llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, 2100 CodeGenFunction &CGF) const { 2101 // FIXME: Implement 2102 return 0; 2103} 2104 2105 2106ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy, 2107 ASTContext &Context, 2108 llvm::LLVMContext &VMContext) const { 2109 if (RetTy->isVoidType()) { 2110 return ABIArgInfo::getIgnore(); 2111 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 2112 return ABIArgInfo::getIndirect(0); 2113 } else { 2114 return (isPromotableIntegerType(RetTy) ? 2115 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2116 } 2117} 2118 2119ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty, 2120 ASTContext &Context, 2121 llvm::LLVMContext &VMContext) const { 2122 if (CodeGenFunction::hasAggregateLLVMType(Ty)) { 2123 return ABIArgInfo::getIndirect(0); 2124 } else { 2125 return (isPromotableIntegerType(Ty) ? 2126 ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); 2127 } 2128} 2129 2130// MSP430 ABI Implementation 2131 2132namespace { 2133 2134class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 2135public: 2136 MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {} 2137 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2138 CodeGen::CodeGenModule &M) const; 2139}; 2140 2141} 2142 2143void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D, 2144 llvm::GlobalValue *GV, 2145 CodeGen::CodeGenModule &M) const { 2146 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2147 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { 2148 // Handle 'interrupt' attribute: 2149 llvm::Function *F = cast<llvm::Function>(GV); 2150 2151 // Step 1: Set ISR calling convention. 2152 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 2153 2154 // Step 2: Add attributes goodness. 2155 F->addFnAttr(llvm::Attribute::NoInline); 2156 2157 // Step 3: Emit ISR vector alias. 2158 unsigned Num = attr->getNumber() + 0xffe0; 2159 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage, 2160 "vector_" + 2161 llvm::LowercaseString(llvm::utohexstr(Num)), 2162 GV, &M.getModule()); 2163 } 2164 } 2165} 2166 2167// MIPS ABI Implementation. This works for both little-endian and 2168// big-endian variants. 2169namespace { 2170class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 2171public: 2172 MIPSTargetCodeGenInfo(): TargetCodeGenInfo(new DefaultABIInfo()) {} 2173 2174 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const { 2175 return 29; 2176 } 2177 2178 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2179 llvm::Value *Address) const; 2180}; 2181} 2182 2183bool 2184MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2185 llvm::Value *Address) const { 2186 // This information comes from gcc's implementation, which seems to 2187 // as canonical as it gets. 2188 2189 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2190 llvm::LLVMContext &Context = CGF.getLLVMContext(); 2191 2192 // Everything on MIPS is 4 bytes. Double-precision FP registers 2193 // are aliased to pairs of single-precision FP registers. 2194 const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context); 2195 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 2196 2197 // 0-31 are the general purpose registers, $0 - $31. 2198 // 32-63 are the floating-point registers, $f0 - $f31. 2199 // 64 and 65 are the multiply/divide registers, $hi and $lo. 2200 // 66 is the (notional, I think) register for signal-handler return. 2201 AssignToArrayRange(Builder, Address, Four8, 0, 65); 2202 2203 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 2204 // They are one bit wide and ignored here. 2205 2206 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 2207 // (coprocessor 1 is the FP unit) 2208 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 2209 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 2210 // 176-181 are the DSP accumulator registers. 2211 AssignToArrayRange(Builder, Address, Four8, 80, 181); 2212 2213 return false; 2214} 2215 2216 2217const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const { 2218 if (TheTargetCodeGenInfo) 2219 return *TheTargetCodeGenInfo; 2220 2221 // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't 2222 // free it. 2223 2224 const llvm::Triple &Triple(getContext().Target.getTriple()); 2225 switch (Triple.getArch()) { 2226 default: 2227 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo); 2228 2229 case llvm::Triple::mips: 2230 case llvm::Triple::mipsel: 2231 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo()); 2232 2233 case llvm::Triple::arm: 2234 case llvm::Triple::thumb: 2235 // FIXME: We want to know the float calling convention as well. 2236 if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0) 2237 return *(TheTargetCodeGenInfo = 2238 new ARMTargetCodeGenInfo(ARMABIInfo::APCS)); 2239 2240 return *(TheTargetCodeGenInfo = 2241 new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS)); 2242 2243 case llvm::Triple::pic16: 2244 return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo()); 2245 2246 case llvm::Triple::ppc: 2247 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo()); 2248 2249 case llvm::Triple::systemz: 2250 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo()); 2251 2252 case llvm::Triple::msp430: 2253 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo()); 2254 2255 case llvm::Triple::x86: 2256 switch (Triple.getOS()) { 2257 case llvm::Triple::Darwin: 2258 return *(TheTargetCodeGenInfo = 2259 new X86_32TargetCodeGenInfo(Context, true, true)); 2260 case llvm::Triple::Cygwin: 2261 case llvm::Triple::MinGW32: 2262 case llvm::Triple::MinGW64: 2263 case llvm::Triple::AuroraUX: 2264 case llvm::Triple::DragonFly: 2265 case llvm::Triple::FreeBSD: 2266 case llvm::Triple::OpenBSD: 2267 return *(TheTargetCodeGenInfo = 2268 new X86_32TargetCodeGenInfo(Context, false, true)); 2269 2270 default: 2271 return *(TheTargetCodeGenInfo = 2272 new X86_32TargetCodeGenInfo(Context, false, false)); 2273 } 2274 2275 case llvm::Triple::x86_64: 2276 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo()); 2277 } 2278} 2279