SemaOverload.cpp revision 2b1e0039a1937e3df59b5c99bcf4746360db3441
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Conversion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion
49  };
50  return Category[(int)Kind];
51}
52
53/// GetConversionRank - Retrieve the implicit conversion rank
54/// corresponding to the given implicit conversion kind.
55ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
56  static const ImplicitConversionRank
57    Rank[(int)ICK_Num_Conversion_Kinds] = {
58    ICR_Exact_Match,
59    ICR_Exact_Match,
60    ICR_Exact_Match,
61    ICR_Exact_Match,
62    ICR_Exact_Match,
63    ICR_Promotion,
64    ICR_Promotion,
65    ICR_Conversion,
66    ICR_Conversion,
67    ICR_Conversion,
68    ICR_Conversion,
69    ICR_Conversion,
70    ICR_Conversion,
71    ICR_Conversion
72  };
73  return Rank[(int)Kind];
74}
75
76/// GetImplicitConversionName - Return the name of this kind of
77/// implicit conversion.
78const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
79  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
80    "No conversion",
81    "Lvalue-to-rvalue",
82    "Array-to-pointer",
83    "Function-to-pointer",
84    "Qualification",
85    "Integral promotion",
86    "Floating point promotion",
87    "Integral conversion",
88    "Floating conversion",
89    "Floating-integral conversion",
90    "Pointer conversion",
91    "Pointer-to-member conversion",
92    "Boolean conversion",
93    "Derived-to-base conversion"
94  };
95  return Name[Kind];
96}
97
98/// StandardConversionSequence - Set the standard conversion
99/// sequence to the identity conversion.
100void StandardConversionSequence::setAsIdentityConversion() {
101  First = ICK_Identity;
102  Second = ICK_Identity;
103  Third = ICK_Identity;
104  Deprecated = false;
105  ReferenceBinding = false;
106  DirectBinding = false;
107  CopyConstructor = 0;
108}
109
110/// getRank - Retrieve the rank of this standard conversion sequence
111/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
112/// implicit conversions.
113ImplicitConversionRank StandardConversionSequence::getRank() const {
114  ImplicitConversionRank Rank = ICR_Exact_Match;
115  if  (GetConversionRank(First) > Rank)
116    Rank = GetConversionRank(First);
117  if  (GetConversionRank(Second) > Rank)
118    Rank = GetConversionRank(Second);
119  if  (GetConversionRank(Third) > Rank)
120    Rank = GetConversionRank(Third);
121  return Rank;
122}
123
124/// isPointerConversionToBool - Determines whether this conversion is
125/// a conversion of a pointer or pointer-to-member to bool. This is
126/// used as part of the ranking of standard conversion sequences
127/// (C++ 13.3.3.2p4).
128bool StandardConversionSequence::isPointerConversionToBool() const
129{
130  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
131  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
132
133  // Note that FromType has not necessarily been transformed by the
134  // array-to-pointer or function-to-pointer implicit conversions, so
135  // check for their presence as well as checking whether FromType is
136  // a pointer.
137  if (ToType->isBooleanType() &&
138      (FromType->isPointerType() || FromType->isBlockPointerType() ||
139       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
140    return true;
141
142  return false;
143}
144
145/// isPointerConversionToVoidPointer - Determines whether this
146/// conversion is a conversion of a pointer to a void pointer. This is
147/// used as part of the ranking of standard conversion sequences (C++
148/// 13.3.3.2p4).
149bool
150StandardConversionSequence::
151isPointerConversionToVoidPointer(ASTContext& Context) const
152{
153  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
154  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
155
156  // Note that FromType has not necessarily been transformed by the
157  // array-to-pointer implicit conversion, so check for its presence
158  // and redo the conversion to get a pointer.
159  if (First == ICK_Array_To_Pointer)
160    FromType = Context.getArrayDecayedType(FromType);
161
162  if (Second == ICK_Pointer_Conversion)
163    if (const PointerType* ToPtrType = ToType->getAsPointerType())
164      return ToPtrType->getPointeeType()->isVoidType();
165
166  return false;
167}
168
169/// DebugPrint - Print this standard conversion sequence to standard
170/// error. Useful for debugging overloading issues.
171void StandardConversionSequence::DebugPrint() const {
172  bool PrintedSomething = false;
173  if (First != ICK_Identity) {
174    fprintf(stderr, "%s", GetImplicitConversionName(First));
175    PrintedSomething = true;
176  }
177
178  if (Second != ICK_Identity) {
179    if (PrintedSomething) {
180      fprintf(stderr, " -> ");
181    }
182    fprintf(stderr, "%s", GetImplicitConversionName(Second));
183
184    if (CopyConstructor) {
185      fprintf(stderr, " (by copy constructor)");
186    } else if (DirectBinding) {
187      fprintf(stderr, " (direct reference binding)");
188    } else if (ReferenceBinding) {
189      fprintf(stderr, " (reference binding)");
190    }
191    PrintedSomething = true;
192  }
193
194  if (Third != ICK_Identity) {
195    if (PrintedSomething) {
196      fprintf(stderr, " -> ");
197    }
198    fprintf(stderr, "%s", GetImplicitConversionName(Third));
199    PrintedSomething = true;
200  }
201
202  if (!PrintedSomething) {
203    fprintf(stderr, "No conversions required");
204  }
205}
206
207/// DebugPrint - Print this user-defined conversion sequence to standard
208/// error. Useful for debugging overloading issues.
209void UserDefinedConversionSequence::DebugPrint() const {
210  if (Before.First || Before.Second || Before.Third) {
211    Before.DebugPrint();
212    fprintf(stderr, " -> ");
213  }
214  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
215  if (After.First || After.Second || After.Third) {
216    fprintf(stderr, " -> ");
217    After.DebugPrint();
218  }
219}
220
221/// DebugPrint - Print this implicit conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void ImplicitConversionSequence::DebugPrint() const {
224  switch (ConversionKind) {
225  case StandardConversion:
226    fprintf(stderr, "Standard conversion: ");
227    Standard.DebugPrint();
228    break;
229  case UserDefinedConversion:
230    fprintf(stderr, "User-defined conversion: ");
231    UserDefined.DebugPrint();
232    break;
233  case EllipsisConversion:
234    fprintf(stderr, "Ellipsis conversion");
235    break;
236  case BadConversion:
237    fprintf(stderr, "Bad conversion");
238    break;
239  }
240
241  fprintf(stderr, "\n");
242}
243
244// IsOverload - Determine whether the given New declaration is an
245// overload of the Old declaration. This routine returns false if New
246// and Old cannot be overloaded, e.g., if they are functions with the
247// same signature (C++ 1.3.10) or if the Old declaration isn't a
248// function (or overload set). When it does return false and Old is an
249// OverloadedFunctionDecl, MatchedDecl will be set to point to the
250// FunctionDecl that New cannot be overloaded with.
251//
252// Example: Given the following input:
253//
254//   void f(int, float); // #1
255//   void f(int, int); // #2
256//   int f(int, int); // #3
257//
258// When we process #1, there is no previous declaration of "f",
259// so IsOverload will not be used.
260//
261// When we process #2, Old is a FunctionDecl for #1.  By comparing the
262// parameter types, we see that #1 and #2 are overloaded (since they
263// have different signatures), so this routine returns false;
264// MatchedDecl is unchanged.
265//
266// When we process #3, Old is an OverloadedFunctionDecl containing #1
267// and #2. We compare the signatures of #3 to #1 (they're overloaded,
268// so we do nothing) and then #3 to #2. Since the signatures of #3 and
269// #2 are identical (return types of functions are not part of the
270// signature), IsOverload returns false and MatchedDecl will be set to
271// point to the FunctionDecl for #2.
272bool
273Sema::IsOverload(FunctionDecl *New, Decl* OldD,
274                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
275{
276  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
277    // Is this new function an overload of every function in the
278    // overload set?
279    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
280                                           FuncEnd = Ovl->function_end();
281    for (; Func != FuncEnd; ++Func) {
282      if (!IsOverload(New, *Func, MatchedDecl)) {
283        MatchedDecl = Func;
284        return false;
285      }
286    }
287
288    // This function overloads every function in the overload set.
289    return true;
290  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
291    // Is the function New an overload of the function Old?
292    QualType OldQType = Context.getCanonicalType(Old->getType());
293    QualType NewQType = Context.getCanonicalType(New->getType());
294
295    // Compare the signatures (C++ 1.3.10) of the two functions to
296    // determine whether they are overloads. If we find any mismatch
297    // in the signature, they are overloads.
298
299    // If either of these functions is a K&R-style function (no
300    // prototype), then we consider them to have matching signatures.
301    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
302        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
303      return false;
304
305    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
306    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
307
308    // The signature of a function includes the types of its
309    // parameters (C++ 1.3.10), which includes the presence or absence
310    // of the ellipsis; see C++ DR 357).
311    if (OldQType != NewQType &&
312        (OldType->getNumArgs() != NewType->getNumArgs() ||
313         OldType->isVariadic() != NewType->isVariadic() ||
314         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
315                     NewType->arg_type_begin())))
316      return true;
317
318    // If the function is a class member, its signature includes the
319    // cv-qualifiers (if any) on the function itself.
320    //
321    // As part of this, also check whether one of the member functions
322    // is static, in which case they are not overloads (C++
323    // 13.1p2). While not part of the definition of the signature,
324    // this check is important to determine whether these functions
325    // can be overloaded.
326    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
327    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
328    if (OldMethod && NewMethod &&
329        !OldMethod->isStatic() && !NewMethod->isStatic() &&
330        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
331      return true;
332
333    // The signatures match; this is not an overload.
334    return false;
335  } else {
336    // (C++ 13p1):
337    //   Only function declarations can be overloaded; object and type
338    //   declarations cannot be overloaded.
339    return false;
340  }
341}
342
343/// TryImplicitConversion - Attempt to perform an implicit conversion
344/// from the given expression (Expr) to the given type (ToType). This
345/// function returns an implicit conversion sequence that can be used
346/// to perform the initialization. Given
347///
348///   void f(float f);
349///   void g(int i) { f(i); }
350///
351/// this routine would produce an implicit conversion sequence to
352/// describe the initialization of f from i, which will be a standard
353/// conversion sequence containing an lvalue-to-rvalue conversion (C++
354/// 4.1) followed by a floating-integral conversion (C++ 4.9).
355//
356/// Note that this routine only determines how the conversion can be
357/// performed; it does not actually perform the conversion. As such,
358/// it will not produce any diagnostics if no conversion is available,
359/// but will instead return an implicit conversion sequence of kind
360/// "BadConversion".
361///
362/// If @p SuppressUserConversions, then user-defined conversions are
363/// not permitted.
364/// If @p AllowExplicit, then explicit user-defined conversions are
365/// permitted.
366ImplicitConversionSequence
367Sema::TryImplicitConversion(Expr* From, QualType ToType,
368                            bool SuppressUserConversions,
369                            bool AllowExplicit)
370{
371  ImplicitConversionSequence ICS;
372  if (IsStandardConversion(From, ToType, ICS.Standard))
373    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
374  else if (IsUserDefinedConversion(From, ToType, ICS.UserDefined,
375                                   !SuppressUserConversions, AllowExplicit)) {
376    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
377    // C++ [over.ics.user]p4:
378    //   A conversion of an expression of class type to the same class
379    //   type is given Exact Match rank, and a conversion of an
380    //   expression of class type to a base class of that type is
381    //   given Conversion rank, in spite of the fact that a copy
382    //   constructor (i.e., a user-defined conversion function) is
383    //   called for those cases.
384    if (CXXConstructorDecl *Constructor
385          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
386      QualType FromCanon
387        = Context.getCanonicalType(From->getType().getUnqualifiedType());
388      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
389      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
390        // Turn this into a "standard" conversion sequence, so that it
391        // gets ranked with standard conversion sequences.
392        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
393        ICS.Standard.setAsIdentityConversion();
394        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
395        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
396        ICS.Standard.CopyConstructor = Constructor;
397        if (ToCanon != FromCanon)
398          ICS.Standard.Second = ICK_Derived_To_Base;
399      }
400    }
401
402    // C++ [over.best.ics]p4:
403    //   However, when considering the argument of a user-defined
404    //   conversion function that is a candidate by 13.3.1.3 when
405    //   invoked for the copying of the temporary in the second step
406    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
407    //   13.3.1.6 in all cases, only standard conversion sequences and
408    //   ellipsis conversion sequences are allowed.
409    if (SuppressUserConversions &&
410        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
411      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
412  } else
413    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
414
415  return ICS;
416}
417
418/// IsStandardConversion - Determines whether there is a standard
419/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
420/// expression From to the type ToType. Standard conversion sequences
421/// only consider non-class types; for conversions that involve class
422/// types, use TryImplicitConversion. If a conversion exists, SCS will
423/// contain the standard conversion sequence required to perform this
424/// conversion and this routine will return true. Otherwise, this
425/// routine will return false and the value of SCS is unspecified.
426bool
427Sema::IsStandardConversion(Expr* From, QualType ToType,
428                           StandardConversionSequence &SCS)
429{
430  QualType FromType = From->getType();
431
432  // There are no standard conversions for class types, so abort early.
433  if (FromType->isRecordType() || ToType->isRecordType())
434    return false;
435
436  // Standard conversions (C++ [conv])
437  SCS.setAsIdentityConversion();
438  SCS.Deprecated = false;
439  SCS.IncompatibleObjC = false;
440  SCS.FromTypePtr = FromType.getAsOpaquePtr();
441  SCS.CopyConstructor = 0;
442
443  // The first conversion can be an lvalue-to-rvalue conversion,
444  // array-to-pointer conversion, or function-to-pointer conversion
445  // (C++ 4p1).
446
447  // Lvalue-to-rvalue conversion (C++ 4.1):
448  //   An lvalue (3.10) of a non-function, non-array type T can be
449  //   converted to an rvalue.
450  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
451  if (argIsLvalue == Expr::LV_Valid &&
452      !FromType->isFunctionType() && !FromType->isArrayType() &&
453      !FromType->isOverloadType()) {
454    SCS.First = ICK_Lvalue_To_Rvalue;
455
456    // If T is a non-class type, the type of the rvalue is the
457    // cv-unqualified version of T. Otherwise, the type of the rvalue
458    // is T (C++ 4.1p1).
459    FromType = FromType.getUnqualifiedType();
460  }
461  // Array-to-pointer conversion (C++ 4.2)
462  else if (FromType->isArrayType()) {
463    SCS.First = ICK_Array_To_Pointer;
464
465    // An lvalue or rvalue of type "array of N T" or "array of unknown
466    // bound of T" can be converted to an rvalue of type "pointer to
467    // T" (C++ 4.2p1).
468    FromType = Context.getArrayDecayedType(FromType);
469
470    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
471      // This conversion is deprecated. (C++ D.4).
472      SCS.Deprecated = true;
473
474      // For the purpose of ranking in overload resolution
475      // (13.3.3.1.1), this conversion is considered an
476      // array-to-pointer conversion followed by a qualification
477      // conversion (4.4). (C++ 4.2p2)
478      SCS.Second = ICK_Identity;
479      SCS.Third = ICK_Qualification;
480      SCS.ToTypePtr = ToType.getAsOpaquePtr();
481      return true;
482    }
483  }
484  // Function-to-pointer conversion (C++ 4.3).
485  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
486    SCS.First = ICK_Function_To_Pointer;
487
488    // An lvalue of function type T can be converted to an rvalue of
489    // type "pointer to T." The result is a pointer to the
490    // function. (C++ 4.3p1).
491    FromType = Context.getPointerType(FromType);
492  }
493  // Address of overloaded function (C++ [over.over]).
494  else if (FunctionDecl *Fn
495             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
496    SCS.First = ICK_Function_To_Pointer;
497
498    // We were able to resolve the address of the overloaded function,
499    // so we can convert to the type of that function.
500    FromType = Fn->getType();
501    if (ToType->isReferenceType())
502      FromType = Context.getReferenceType(FromType);
503    else
504      FromType = Context.getPointerType(FromType);
505  }
506  // We don't require any conversions for the first step.
507  else {
508    SCS.First = ICK_Identity;
509  }
510
511  // The second conversion can be an integral promotion, floating
512  // point promotion, integral conversion, floating point conversion,
513  // floating-integral conversion, pointer conversion,
514  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
515  bool IncompatibleObjC = false;
516  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
517      Context.getCanonicalType(ToType).getUnqualifiedType()) {
518    // The unqualified versions of the types are the same: there's no
519    // conversion to do.
520    SCS.Second = ICK_Identity;
521  }
522  // Integral promotion (C++ 4.5).
523  else if (IsIntegralPromotion(From, FromType, ToType)) {
524    SCS.Second = ICK_Integral_Promotion;
525    FromType = ToType.getUnqualifiedType();
526  }
527  // Floating point promotion (C++ 4.6).
528  else if (IsFloatingPointPromotion(FromType, ToType)) {
529    SCS.Second = ICK_Floating_Promotion;
530    FromType = ToType.getUnqualifiedType();
531  }
532  // Integral conversions (C++ 4.7).
533  // FIXME: isIntegralType shouldn't be true for enums in C++.
534  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
535           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
536    SCS.Second = ICK_Integral_Conversion;
537    FromType = ToType.getUnqualifiedType();
538  }
539  // Floating point conversions (C++ 4.8).
540  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
541    SCS.Second = ICK_Floating_Conversion;
542    FromType = ToType.getUnqualifiedType();
543  }
544  // Floating-integral conversions (C++ 4.9).
545  // FIXME: isIntegralType shouldn't be true for enums in C++.
546  else if ((FromType->isFloatingType() &&
547            ToType->isIntegralType() && !ToType->isBooleanType() &&
548                                        !ToType->isEnumeralType()) ||
549           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
550            ToType->isFloatingType())) {
551    SCS.Second = ICK_Floating_Integral;
552    FromType = ToType.getUnqualifiedType();
553  }
554  // Pointer conversions (C++ 4.10).
555  else if (IsPointerConversion(From, FromType, ToType, FromType,
556                               IncompatibleObjC)) {
557    SCS.Second = ICK_Pointer_Conversion;
558    SCS.IncompatibleObjC = IncompatibleObjC;
559  }
560  // Pointer to member conversions (4.11).
561  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
562    SCS.Second = ICK_Pointer_Member;
563  }
564  // Boolean conversions (C++ 4.12).
565  else if (ToType->isBooleanType() &&
566           (FromType->isArithmeticType() ||
567            FromType->isEnumeralType() ||
568            FromType->isPointerType() ||
569            FromType->isBlockPointerType() ||
570            FromType->isMemberPointerType())) {
571    SCS.Second = ICK_Boolean_Conversion;
572    FromType = Context.BoolTy;
573  } else {
574    // No second conversion required.
575    SCS.Second = ICK_Identity;
576  }
577
578  QualType CanonFrom;
579  QualType CanonTo;
580  // The third conversion can be a qualification conversion (C++ 4p1).
581  if (IsQualificationConversion(FromType, ToType)) {
582    SCS.Third = ICK_Qualification;
583    FromType = ToType;
584    CanonFrom = Context.getCanonicalType(FromType);
585    CanonTo = Context.getCanonicalType(ToType);
586  } else {
587    // No conversion required
588    SCS.Third = ICK_Identity;
589
590    // C++ [over.best.ics]p6:
591    //   [...] Any difference in top-level cv-qualification is
592    //   subsumed by the initialization itself and does not constitute
593    //   a conversion. [...]
594    CanonFrom = Context.getCanonicalType(FromType);
595    CanonTo = Context.getCanonicalType(ToType);
596    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
597        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
598      FromType = ToType;
599      CanonFrom = CanonTo;
600    }
601  }
602
603  // If we have not converted the argument type to the parameter type,
604  // this is a bad conversion sequence.
605  if (CanonFrom != CanonTo)
606    return false;
607
608  SCS.ToTypePtr = FromType.getAsOpaquePtr();
609  return true;
610}
611
612/// IsIntegralPromotion - Determines whether the conversion from the
613/// expression From (whose potentially-adjusted type is FromType) to
614/// ToType is an integral promotion (C++ 4.5). If so, returns true and
615/// sets PromotedType to the promoted type.
616bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
617{
618  const BuiltinType *To = ToType->getAsBuiltinType();
619  // All integers are built-in.
620  if (!To) {
621    return false;
622  }
623
624  // An rvalue of type char, signed char, unsigned char, short int, or
625  // unsigned short int can be converted to an rvalue of type int if
626  // int can represent all the values of the source type; otherwise,
627  // the source rvalue can be converted to an rvalue of type unsigned
628  // int (C++ 4.5p1).
629  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
630    if (// We can promote any signed, promotable integer type to an int
631        (FromType->isSignedIntegerType() ||
632         // We can promote any unsigned integer type whose size is
633         // less than int to an int.
634         (!FromType->isSignedIntegerType() &&
635          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
636      return To->getKind() == BuiltinType::Int;
637    }
638
639    return To->getKind() == BuiltinType::UInt;
640  }
641
642  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
643  // can be converted to an rvalue of the first of the following types
644  // that can represent all the values of its underlying type: int,
645  // unsigned int, long, or unsigned long (C++ 4.5p2).
646  if ((FromType->isEnumeralType() || FromType->isWideCharType())
647      && ToType->isIntegerType()) {
648    // Determine whether the type we're converting from is signed or
649    // unsigned.
650    bool FromIsSigned;
651    uint64_t FromSize = Context.getTypeSize(FromType);
652    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
653      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
654      FromIsSigned = UnderlyingType->isSignedIntegerType();
655    } else {
656      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
657      FromIsSigned = true;
658    }
659
660    // The types we'll try to promote to, in the appropriate
661    // order. Try each of these types.
662    QualType PromoteTypes[6] = {
663      Context.IntTy, Context.UnsignedIntTy,
664      Context.LongTy, Context.UnsignedLongTy ,
665      Context.LongLongTy, Context.UnsignedLongLongTy
666    };
667    for (int Idx = 0; Idx < 6; ++Idx) {
668      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
669      if (FromSize < ToSize ||
670          (FromSize == ToSize &&
671           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
672        // We found the type that we can promote to. If this is the
673        // type we wanted, we have a promotion. Otherwise, no
674        // promotion.
675        return Context.getCanonicalType(ToType).getUnqualifiedType()
676          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
677      }
678    }
679  }
680
681  // An rvalue for an integral bit-field (9.6) can be converted to an
682  // rvalue of type int if int can represent all the values of the
683  // bit-field; otherwise, it can be converted to unsigned int if
684  // unsigned int can represent all the values of the bit-field. If
685  // the bit-field is larger yet, no integral promotion applies to
686  // it. If the bit-field has an enumerated type, it is treated as any
687  // other value of that type for promotion purposes (C++ 4.5p3).
688  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
689    using llvm::APSInt;
690    if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
691      APSInt BitWidth;
692      if (MemberDecl->isBitField() &&
693          FromType->isIntegralType() && !FromType->isEnumeralType() &&
694          From->isIntegerConstantExpr(BitWidth, Context)) {
695        APSInt ToSize(Context.getTypeSize(ToType));
696
697        // Are we promoting to an int from a bitfield that fits in an int?
698        if (BitWidth < ToSize ||
699            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
700          return To->getKind() == BuiltinType::Int;
701        }
702
703        // Are we promoting to an unsigned int from an unsigned bitfield
704        // that fits into an unsigned int?
705        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
706          return To->getKind() == BuiltinType::UInt;
707        }
708
709        return false;
710      }
711    }
712  }
713
714  // An rvalue of type bool can be converted to an rvalue of type int,
715  // with false becoming zero and true becoming one (C++ 4.5p4).
716  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
717    return true;
718  }
719
720  return false;
721}
722
723/// IsFloatingPointPromotion - Determines whether the conversion from
724/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
725/// returns true and sets PromotedType to the promoted type.
726bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
727{
728  /// An rvalue of type float can be converted to an rvalue of type
729  /// double. (C++ 4.6p1).
730  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
731    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
732      if (FromBuiltin->getKind() == BuiltinType::Float &&
733          ToBuiltin->getKind() == BuiltinType::Double)
734        return true;
735
736  return false;
737}
738
739/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
740/// the pointer type FromPtr to a pointer to type ToPointee, with the
741/// same type qualifiers as FromPtr has on its pointee type. ToType,
742/// if non-empty, will be a pointer to ToType that may or may not have
743/// the right set of qualifiers on its pointee.
744static QualType
745BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
746                                   QualType ToPointee, QualType ToType,
747                                   ASTContext &Context) {
748  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
749  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
750  unsigned Quals = CanonFromPointee.getCVRQualifiers();
751
752  // Exact qualifier match -> return the pointer type we're converting to.
753  if (CanonToPointee.getCVRQualifiers() == Quals) {
754    // ToType is exactly what we need. Return it.
755    if (ToType.getTypePtr())
756      return ToType;
757
758    // Build a pointer to ToPointee. It has the right qualifiers
759    // already.
760    return Context.getPointerType(ToPointee);
761  }
762
763  // Just build a canonical type that has the right qualifiers.
764  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
765}
766
767/// IsPointerConversion - Determines whether the conversion of the
768/// expression From, which has the (possibly adjusted) type FromType,
769/// can be converted to the type ToType via a pointer conversion (C++
770/// 4.10). If so, returns true and places the converted type (that
771/// might differ from ToType in its cv-qualifiers at some level) into
772/// ConvertedType.
773///
774/// This routine also supports conversions to and from block pointers
775/// and conversions with Objective-C's 'id', 'id<protocols...>', and
776/// pointers to interfaces. FIXME: Once we've determined the
777/// appropriate overloading rules for Objective-C, we may want to
778/// split the Objective-C checks into a different routine; however,
779/// GCC seems to consider all of these conversions to be pointer
780/// conversions, so for now they live here. IncompatibleObjC will be
781/// set if the conversion is an allowed Objective-C conversion that
782/// should result in a warning.
783bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
784                               QualType& ConvertedType,
785                               bool &IncompatibleObjC)
786{
787  IncompatibleObjC = false;
788  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
789    return true;
790
791  // Conversion from a null pointer constant to any Objective-C pointer type.
792  if (Context.isObjCObjectPointerType(ToType) &&
793      From->isNullPointerConstant(Context)) {
794    ConvertedType = ToType;
795    return true;
796  }
797
798  // Blocks: Block pointers can be converted to void*.
799  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
800      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
801    ConvertedType = ToType;
802    return true;
803  }
804  // Blocks: A null pointer constant can be converted to a block
805  // pointer type.
806  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
807    ConvertedType = ToType;
808    return true;
809  }
810
811  const PointerType* ToTypePtr = ToType->getAsPointerType();
812  if (!ToTypePtr)
813    return false;
814
815  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
816  if (From->isNullPointerConstant(Context)) {
817    ConvertedType = ToType;
818    return true;
819  }
820
821  // Beyond this point, both types need to be pointers.
822  const PointerType *FromTypePtr = FromType->getAsPointerType();
823  if (!FromTypePtr)
824    return false;
825
826  QualType FromPointeeType = FromTypePtr->getPointeeType();
827  QualType ToPointeeType = ToTypePtr->getPointeeType();
828
829  // An rvalue of type "pointer to cv T," where T is an object type,
830  // can be converted to an rvalue of type "pointer to cv void" (C++
831  // 4.10p2).
832  if (FromPointeeType->isIncompleteOrObjectType() &&
833      ToPointeeType->isVoidType()) {
834    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
835                                                       ToPointeeType,
836                                                       ToType, Context);
837    return true;
838  }
839
840  // C++ [conv.ptr]p3:
841  //
842  //   An rvalue of type "pointer to cv D," where D is a class type,
843  //   can be converted to an rvalue of type "pointer to cv B," where
844  //   B is a base class (clause 10) of D. If B is an inaccessible
845  //   (clause 11) or ambiguous (10.2) base class of D, a program that
846  //   necessitates this conversion is ill-formed. The result of the
847  //   conversion is a pointer to the base class sub-object of the
848  //   derived class object. The null pointer value is converted to
849  //   the null pointer value of the destination type.
850  //
851  // Note that we do not check for ambiguity or inaccessibility
852  // here. That is handled by CheckPointerConversion.
853  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
854      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
855    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
856                                                       ToPointeeType,
857                                                       ToType, Context);
858    return true;
859  }
860
861  return false;
862}
863
864/// isObjCPointerConversion - Determines whether this is an
865/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
866/// with the same arguments and return values.
867bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
868                                   QualType& ConvertedType,
869                                   bool &IncompatibleObjC) {
870  if (!getLangOptions().ObjC1)
871    return false;
872
873  // Conversions with Objective-C's id<...>.
874  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
875      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
876    ConvertedType = ToType;
877    return true;
878  }
879
880  // Beyond this point, both types need to be pointers or block pointers.
881  QualType ToPointeeType;
882  const PointerType* ToTypePtr = ToType->getAsPointerType();
883  if (ToTypePtr)
884    ToPointeeType = ToTypePtr->getPointeeType();
885  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
886    ToPointeeType = ToBlockPtr->getPointeeType();
887  else
888    return false;
889
890  QualType FromPointeeType;
891  const PointerType *FromTypePtr = FromType->getAsPointerType();
892  if (FromTypePtr)
893    FromPointeeType = FromTypePtr->getPointeeType();
894  else if (const BlockPointerType *FromBlockPtr
895             = FromType->getAsBlockPointerType())
896    FromPointeeType = FromBlockPtr->getPointeeType();
897  else
898    return false;
899
900  // Objective C++: We're able to convert from a pointer to an
901  // interface to a pointer to a different interface.
902  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
903  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
904  if (FromIface && ToIface &&
905      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
906    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
907                                                       ToPointeeType,
908                                                       ToType, Context);
909    return true;
910  }
911
912  if (FromIface && ToIface &&
913      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
914    // Okay: this is some kind of implicit downcast of Objective-C
915    // interfaces, which is permitted. However, we're going to
916    // complain about it.
917    IncompatibleObjC = true;
918    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
919                                                       ToPointeeType,
920                                                       ToType, Context);
921    return true;
922  }
923
924  // Objective C++: We're able to convert between "id" and a pointer
925  // to any interface (in both directions).
926  if ((FromIface && Context.isObjCIdType(ToPointeeType))
927      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
928    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
929                                                       ToPointeeType,
930                                                       ToType, Context);
931    return true;
932  }
933
934  // Objective C++: Allow conversions between the Objective-C "id" and
935  // "Class", in either direction.
936  if ((Context.isObjCIdType(FromPointeeType) &&
937       Context.isObjCClassType(ToPointeeType)) ||
938      (Context.isObjCClassType(FromPointeeType) &&
939       Context.isObjCIdType(ToPointeeType))) {
940    ConvertedType = ToType;
941    return true;
942  }
943
944  // If we have pointers to pointers, recursively check whether this
945  // is an Objective-C conversion.
946  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
947      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
948                              IncompatibleObjC)) {
949    // We always complain about this conversion.
950    IncompatibleObjC = true;
951    ConvertedType = ToType;
952    return true;
953  }
954
955  // If we have pointers to functions or blocks, check whether the only
956  // differences in the argument and result types are in Objective-C
957  // pointer conversions. If so, we permit the conversion (but
958  // complain about it).
959  const FunctionTypeProto *FromFunctionType
960    = FromPointeeType->getAsFunctionTypeProto();
961  const FunctionTypeProto *ToFunctionType
962    = ToPointeeType->getAsFunctionTypeProto();
963  if (FromFunctionType && ToFunctionType) {
964    // If the function types are exactly the same, this isn't an
965    // Objective-C pointer conversion.
966    if (Context.getCanonicalType(FromPointeeType)
967          == Context.getCanonicalType(ToPointeeType))
968      return false;
969
970    // Perform the quick checks that will tell us whether these
971    // function types are obviously different.
972    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
973        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
974        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
975      return false;
976
977    bool HasObjCConversion = false;
978    if (Context.getCanonicalType(FromFunctionType->getResultType())
979          == Context.getCanonicalType(ToFunctionType->getResultType())) {
980      // Okay, the types match exactly. Nothing to do.
981    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
982                                       ToFunctionType->getResultType(),
983                                       ConvertedType, IncompatibleObjC)) {
984      // Okay, we have an Objective-C pointer conversion.
985      HasObjCConversion = true;
986    } else {
987      // Function types are too different. Abort.
988      return false;
989    }
990
991    // Check argument types.
992    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
993         ArgIdx != NumArgs; ++ArgIdx) {
994      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
995      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
996      if (Context.getCanonicalType(FromArgType)
997            == Context.getCanonicalType(ToArgType)) {
998        // Okay, the types match exactly. Nothing to do.
999      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1000                                         ConvertedType, IncompatibleObjC)) {
1001        // Okay, we have an Objective-C pointer conversion.
1002        HasObjCConversion = true;
1003      } else {
1004        // Argument types are too different. Abort.
1005        return false;
1006      }
1007    }
1008
1009    if (HasObjCConversion) {
1010      // We had an Objective-C conversion. Allow this pointer
1011      // conversion, but complain about it.
1012      ConvertedType = ToType;
1013      IncompatibleObjC = true;
1014      return true;
1015    }
1016  }
1017
1018  return false;
1019}
1020
1021/// CheckPointerConversion - Check the pointer conversion from the
1022/// expression From to the type ToType. This routine checks for
1023/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1024/// conversions for which IsPointerConversion has already returned
1025/// true. It returns true and produces a diagnostic if there was an
1026/// error, or returns false otherwise.
1027bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1028  QualType FromType = From->getType();
1029
1030  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1031    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1032      QualType FromPointeeType = FromPtrType->getPointeeType(),
1033               ToPointeeType   = ToPtrType->getPointeeType();
1034
1035      // Objective-C++ conversions are always okay.
1036      // FIXME: We should have a different class of conversions for
1037      // the Objective-C++ implicit conversions.
1038      if (Context.isObjCIdType(FromPointeeType) ||
1039          Context.isObjCIdType(ToPointeeType) ||
1040          Context.isObjCClassType(FromPointeeType) ||
1041          Context.isObjCClassType(ToPointeeType))
1042        return false;
1043
1044      if (FromPointeeType->isRecordType() &&
1045          ToPointeeType->isRecordType()) {
1046        // We must have a derived-to-base conversion. Check an
1047        // ambiguous or inaccessible conversion.
1048        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1049                                            From->getExprLoc(),
1050                                            From->getSourceRange());
1051      }
1052    }
1053
1054  return false;
1055}
1056
1057/// IsMemberPointerConversion - Determines whether the conversion of the
1058/// expression From, which has the (possibly adjusted) type FromType, can be
1059/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1060/// If so, returns true and places the converted type (that might differ from
1061/// ToType in its cv-qualifiers at some level) into ConvertedType.
1062bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1063                                     QualType ToType, QualType &ConvertedType)
1064{
1065  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1066  if (!ToTypePtr)
1067    return false;
1068
1069  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1070  if (From->isNullPointerConstant(Context)) {
1071    ConvertedType = ToType;
1072    return true;
1073  }
1074
1075  // Otherwise, both types have to be member pointers.
1076  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1077  if (!FromTypePtr)
1078    return false;
1079
1080  // A pointer to member of B can be converted to a pointer to member of D,
1081  // where D is derived from B (C++ 4.11p2).
1082  QualType FromClass(FromTypePtr->getClass(), 0);
1083  QualType ToClass(ToTypePtr->getClass(), 0);
1084  // FIXME: What happens when these are dependent? Is this function even called?
1085
1086  if (IsDerivedFrom(ToClass, FromClass)) {
1087    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1088                                                 ToClass.getTypePtr());
1089    return true;
1090  }
1091
1092  return false;
1093}
1094
1095/// CheckMemberPointerConversion - Check the member pointer conversion from the
1096/// expression From to the type ToType. This routine checks for ambiguous or
1097/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1098/// for which IsMemberPointerConversion has already returned true. It returns
1099/// true and produces a diagnostic if there was an error, or returns false
1100/// otherwise.
1101bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1102  QualType FromType = From->getType();
1103  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1104  if (!FromPtrType)
1105    return false;
1106
1107  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1108  assert(ToPtrType && "No member pointer cast has a target type "
1109                      "that is not a member pointer.");
1110
1111  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1112  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1113
1114  // FIXME: What about dependent types?
1115  assert(FromClass->isRecordType() && "Pointer into non-class.");
1116  assert(ToClass->isRecordType() && "Pointer into non-class.");
1117
1118  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1119                  /*DetectVirtual=*/true);
1120  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1121  assert(DerivationOkay &&
1122         "Should not have been called if derivation isn't OK.");
1123  (void)DerivationOkay;
1124
1125  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1126                                  getUnqualifiedType())) {
1127    // Derivation is ambiguous. Redo the check to find the exact paths.
1128    Paths.clear();
1129    Paths.setRecordingPaths(true);
1130    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1131    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1132    (void)StillOkay;
1133
1134    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1135    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1136      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1137    return true;
1138  }
1139
1140  if (const CXXRecordType *VBase = Paths.getDetectedVirtual()) {
1141    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1142      << FromClass << ToClass << QualType(VBase, 0)
1143      << From->getSourceRange();
1144    return true;
1145  }
1146
1147  return false;
1148}
1149
1150/// IsQualificationConversion - Determines whether the conversion from
1151/// an rvalue of type FromType to ToType is a qualification conversion
1152/// (C++ 4.4).
1153bool
1154Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1155{
1156  FromType = Context.getCanonicalType(FromType);
1157  ToType = Context.getCanonicalType(ToType);
1158
1159  // If FromType and ToType are the same type, this is not a
1160  // qualification conversion.
1161  if (FromType == ToType)
1162    return false;
1163
1164  // (C++ 4.4p4):
1165  //   A conversion can add cv-qualifiers at levels other than the first
1166  //   in multi-level pointers, subject to the following rules: [...]
1167  bool PreviousToQualsIncludeConst = true;
1168  bool UnwrappedAnyPointer = false;
1169  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1170    // Within each iteration of the loop, we check the qualifiers to
1171    // determine if this still looks like a qualification
1172    // conversion. Then, if all is well, we unwrap one more level of
1173    // pointers or pointers-to-members and do it all again
1174    // until there are no more pointers or pointers-to-members left to
1175    // unwrap.
1176    UnwrappedAnyPointer = true;
1177
1178    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1179    //      2,j, and similarly for volatile.
1180    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1181      return false;
1182
1183    //   -- if the cv 1,j and cv 2,j are different, then const is in
1184    //      every cv for 0 < k < j.
1185    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1186        && !PreviousToQualsIncludeConst)
1187      return false;
1188
1189    // Keep track of whether all prior cv-qualifiers in the "to" type
1190    // include const.
1191    PreviousToQualsIncludeConst
1192      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1193  }
1194
1195  // We are left with FromType and ToType being the pointee types
1196  // after unwrapping the original FromType and ToType the same number
1197  // of types. If we unwrapped any pointers, and if FromType and
1198  // ToType have the same unqualified type (since we checked
1199  // qualifiers above), then this is a qualification conversion.
1200  return UnwrappedAnyPointer &&
1201    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1202}
1203
1204/// Determines whether there is a user-defined conversion sequence
1205/// (C++ [over.ics.user]) that converts expression From to the type
1206/// ToType. If such a conversion exists, User will contain the
1207/// user-defined conversion sequence that performs such a conversion
1208/// and this routine will return true. Otherwise, this routine returns
1209/// false and User is unspecified.
1210///
1211/// \param AllowConversionFunctions true if the conversion should
1212/// consider conversion functions at all. If false, only constructors
1213/// will be considered.
1214///
1215/// \param AllowExplicit  true if the conversion should consider C++0x
1216/// "explicit" conversion functions as well as non-explicit conversion
1217/// functions (C++0x [class.conv.fct]p2).
1218bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1219                                   UserDefinedConversionSequence& User,
1220                                   bool AllowConversionFunctions,
1221                                   bool AllowExplicit)
1222{
1223  OverloadCandidateSet CandidateSet;
1224  if (const CXXRecordType *ToRecordType
1225        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
1226    // C++ [over.match.ctor]p1:
1227    //   When objects of class type are direct-initialized (8.5), or
1228    //   copy-initialized from an expression of the same or a
1229    //   derived class type (8.5), overload resolution selects the
1230    //   constructor. [...] For copy-initialization, the candidate
1231    //   functions are all the converting constructors (12.3.1) of
1232    //   that class. The argument list is the expression-list within
1233    //   the parentheses of the initializer.
1234    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
1235    DeclarationName ConstructorName
1236      = Context.DeclarationNames.getCXXConstructorName(
1237                        Context.getCanonicalType(ToType).getUnqualifiedType());
1238    DeclContext::lookup_iterator Con, ConEnd;
1239    for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
1240         Con != ConEnd; ++Con) {
1241      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1242      if (Constructor->isConvertingConstructor())
1243        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1244                             /*SuppressUserConversions=*/true);
1245    }
1246  }
1247
1248  if (!AllowConversionFunctions) {
1249    // Don't allow any conversion functions to enter the overload set.
1250  } else if (const CXXRecordType *FromRecordType
1251               = dyn_cast_or_null<CXXRecordType>(
1252                                        From->getType()->getAsRecordType())) {
1253    // Add all of the conversion functions as candidates.
1254    // FIXME: Look for conversions in base classes!
1255    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1256    OverloadedFunctionDecl *Conversions
1257      = FromRecordDecl->getConversionFunctions();
1258    for (OverloadedFunctionDecl::function_iterator Func
1259           = Conversions->function_begin();
1260         Func != Conversions->function_end(); ++Func) {
1261      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1262      if (AllowExplicit || !Conv->isExplicit())
1263        AddConversionCandidate(Conv, From, ToType, CandidateSet);
1264    }
1265  }
1266
1267  OverloadCandidateSet::iterator Best;
1268  switch (BestViableFunction(CandidateSet, Best)) {
1269    case OR_Success:
1270      // Record the standard conversion we used and the conversion function.
1271      if (CXXConstructorDecl *Constructor
1272            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1273        // C++ [over.ics.user]p1:
1274        //   If the user-defined conversion is specified by a
1275        //   constructor (12.3.1), the initial standard conversion
1276        //   sequence converts the source type to the type required by
1277        //   the argument of the constructor.
1278        //
1279        // FIXME: What about ellipsis conversions?
1280        QualType ThisType = Constructor->getThisType(Context);
1281        User.Before = Best->Conversions[0].Standard;
1282        User.ConversionFunction = Constructor;
1283        User.After.setAsIdentityConversion();
1284        User.After.FromTypePtr
1285          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1286        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1287        return true;
1288      } else if (CXXConversionDecl *Conversion
1289                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1290        // C++ [over.ics.user]p1:
1291        //
1292        //   [...] If the user-defined conversion is specified by a
1293        //   conversion function (12.3.2), the initial standard
1294        //   conversion sequence converts the source type to the
1295        //   implicit object parameter of the conversion function.
1296        User.Before = Best->Conversions[0].Standard;
1297        User.ConversionFunction = Conversion;
1298
1299        // C++ [over.ics.user]p2:
1300        //   The second standard conversion sequence converts the
1301        //   result of the user-defined conversion to the target type
1302        //   for the sequence. Since an implicit conversion sequence
1303        //   is an initialization, the special rules for
1304        //   initialization by user-defined conversion apply when
1305        //   selecting the best user-defined conversion for a
1306        //   user-defined conversion sequence (see 13.3.3 and
1307        //   13.3.3.1).
1308        User.After = Best->FinalConversion;
1309        return true;
1310      } else {
1311        assert(false && "Not a constructor or conversion function?");
1312        return false;
1313      }
1314
1315    case OR_No_Viable_Function:
1316      // No conversion here! We're done.
1317      return false;
1318
1319    case OR_Ambiguous:
1320      // FIXME: See C++ [over.best.ics]p10 for the handling of
1321      // ambiguous conversion sequences.
1322      return false;
1323    }
1324
1325  return false;
1326}
1327
1328/// CompareImplicitConversionSequences - Compare two implicit
1329/// conversion sequences to determine whether one is better than the
1330/// other or if they are indistinguishable (C++ 13.3.3.2).
1331ImplicitConversionSequence::CompareKind
1332Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1333                                         const ImplicitConversionSequence& ICS2)
1334{
1335  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1336  // conversion sequences (as defined in 13.3.3.1)
1337  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1338  //      conversion sequence than a user-defined conversion sequence or
1339  //      an ellipsis conversion sequence, and
1340  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1341  //      conversion sequence than an ellipsis conversion sequence
1342  //      (13.3.3.1.3).
1343  //
1344  if (ICS1.ConversionKind < ICS2.ConversionKind)
1345    return ImplicitConversionSequence::Better;
1346  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1347    return ImplicitConversionSequence::Worse;
1348
1349  // Two implicit conversion sequences of the same form are
1350  // indistinguishable conversion sequences unless one of the
1351  // following rules apply: (C++ 13.3.3.2p3):
1352  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1353    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1354  else if (ICS1.ConversionKind ==
1355             ImplicitConversionSequence::UserDefinedConversion) {
1356    // User-defined conversion sequence U1 is a better conversion
1357    // sequence than another user-defined conversion sequence U2 if
1358    // they contain the same user-defined conversion function or
1359    // constructor and if the second standard conversion sequence of
1360    // U1 is better than the second standard conversion sequence of
1361    // U2 (C++ 13.3.3.2p3).
1362    if (ICS1.UserDefined.ConversionFunction ==
1363          ICS2.UserDefined.ConversionFunction)
1364      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1365                                                ICS2.UserDefined.After);
1366  }
1367
1368  return ImplicitConversionSequence::Indistinguishable;
1369}
1370
1371/// CompareStandardConversionSequences - Compare two standard
1372/// conversion sequences to determine whether one is better than the
1373/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1374ImplicitConversionSequence::CompareKind
1375Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1376                                         const StandardConversionSequence& SCS2)
1377{
1378  // Standard conversion sequence S1 is a better conversion sequence
1379  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1380
1381  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1382  //     sequences in the canonical form defined by 13.3.3.1.1,
1383  //     excluding any Lvalue Transformation; the identity conversion
1384  //     sequence is considered to be a subsequence of any
1385  //     non-identity conversion sequence) or, if not that,
1386  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1387    // Neither is a proper subsequence of the other. Do nothing.
1388    ;
1389  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1390           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1391           (SCS1.Second == ICK_Identity &&
1392            SCS1.Third == ICK_Identity))
1393    // SCS1 is a proper subsequence of SCS2.
1394    return ImplicitConversionSequence::Better;
1395  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1396           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1397           (SCS2.Second == ICK_Identity &&
1398            SCS2.Third == ICK_Identity))
1399    // SCS2 is a proper subsequence of SCS1.
1400    return ImplicitConversionSequence::Worse;
1401
1402  //  -- the rank of S1 is better than the rank of S2 (by the rules
1403  //     defined below), or, if not that,
1404  ImplicitConversionRank Rank1 = SCS1.getRank();
1405  ImplicitConversionRank Rank2 = SCS2.getRank();
1406  if (Rank1 < Rank2)
1407    return ImplicitConversionSequence::Better;
1408  else if (Rank2 < Rank1)
1409    return ImplicitConversionSequence::Worse;
1410
1411  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1412  // are indistinguishable unless one of the following rules
1413  // applies:
1414
1415  //   A conversion that is not a conversion of a pointer, or
1416  //   pointer to member, to bool is better than another conversion
1417  //   that is such a conversion.
1418  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1419    return SCS2.isPointerConversionToBool()
1420             ? ImplicitConversionSequence::Better
1421             : ImplicitConversionSequence::Worse;
1422
1423  // C++ [over.ics.rank]p4b2:
1424  //
1425  //   If class B is derived directly or indirectly from class A,
1426  //   conversion of B* to A* is better than conversion of B* to
1427  //   void*, and conversion of A* to void* is better than conversion
1428  //   of B* to void*.
1429  bool SCS1ConvertsToVoid
1430    = SCS1.isPointerConversionToVoidPointer(Context);
1431  bool SCS2ConvertsToVoid
1432    = SCS2.isPointerConversionToVoidPointer(Context);
1433  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1434    // Exactly one of the conversion sequences is a conversion to
1435    // a void pointer; it's the worse conversion.
1436    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1437                              : ImplicitConversionSequence::Worse;
1438  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1439    // Neither conversion sequence converts to a void pointer; compare
1440    // their derived-to-base conversions.
1441    if (ImplicitConversionSequence::CompareKind DerivedCK
1442          = CompareDerivedToBaseConversions(SCS1, SCS2))
1443      return DerivedCK;
1444  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1445    // Both conversion sequences are conversions to void
1446    // pointers. Compare the source types to determine if there's an
1447    // inheritance relationship in their sources.
1448    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1449    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1450
1451    // Adjust the types we're converting from via the array-to-pointer
1452    // conversion, if we need to.
1453    if (SCS1.First == ICK_Array_To_Pointer)
1454      FromType1 = Context.getArrayDecayedType(FromType1);
1455    if (SCS2.First == ICK_Array_To_Pointer)
1456      FromType2 = Context.getArrayDecayedType(FromType2);
1457
1458    QualType FromPointee1
1459      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1460    QualType FromPointee2
1461      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1462
1463    if (IsDerivedFrom(FromPointee2, FromPointee1))
1464      return ImplicitConversionSequence::Better;
1465    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1466      return ImplicitConversionSequence::Worse;
1467
1468    // Objective-C++: If one interface is more specific than the
1469    // other, it is the better one.
1470    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1471    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1472    if (FromIface1 && FromIface1) {
1473      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1474        return ImplicitConversionSequence::Better;
1475      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1476        return ImplicitConversionSequence::Worse;
1477    }
1478  }
1479
1480  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1481  // bullet 3).
1482  if (ImplicitConversionSequence::CompareKind QualCK
1483        = CompareQualificationConversions(SCS1, SCS2))
1484    return QualCK;
1485
1486  // C++ [over.ics.rank]p3b4:
1487  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1488  //      which the references refer are the same type except for
1489  //      top-level cv-qualifiers, and the type to which the reference
1490  //      initialized by S2 refers is more cv-qualified than the type
1491  //      to which the reference initialized by S1 refers.
1492  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1493    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1494    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1495    T1 = Context.getCanonicalType(T1);
1496    T2 = Context.getCanonicalType(T2);
1497    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1498      if (T2.isMoreQualifiedThan(T1))
1499        return ImplicitConversionSequence::Better;
1500      else if (T1.isMoreQualifiedThan(T2))
1501        return ImplicitConversionSequence::Worse;
1502    }
1503  }
1504
1505  return ImplicitConversionSequence::Indistinguishable;
1506}
1507
1508/// CompareQualificationConversions - Compares two standard conversion
1509/// sequences to determine whether they can be ranked based on their
1510/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1511ImplicitConversionSequence::CompareKind
1512Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1513                                      const StandardConversionSequence& SCS2)
1514{
1515  // C++ 13.3.3.2p3:
1516  //  -- S1 and S2 differ only in their qualification conversion and
1517  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1518  //     cv-qualification signature of type T1 is a proper subset of
1519  //     the cv-qualification signature of type T2, and S1 is not the
1520  //     deprecated string literal array-to-pointer conversion (4.2).
1521  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1522      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1523    return ImplicitConversionSequence::Indistinguishable;
1524
1525  // FIXME: the example in the standard doesn't use a qualification
1526  // conversion (!)
1527  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1528  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1529  T1 = Context.getCanonicalType(T1);
1530  T2 = Context.getCanonicalType(T2);
1531
1532  // If the types are the same, we won't learn anything by unwrapped
1533  // them.
1534  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1535    return ImplicitConversionSequence::Indistinguishable;
1536
1537  ImplicitConversionSequence::CompareKind Result
1538    = ImplicitConversionSequence::Indistinguishable;
1539  while (UnwrapSimilarPointerTypes(T1, T2)) {
1540    // Within each iteration of the loop, we check the qualifiers to
1541    // determine if this still looks like a qualification
1542    // conversion. Then, if all is well, we unwrap one more level of
1543    // pointers or pointers-to-members and do it all again
1544    // until there are no more pointers or pointers-to-members left
1545    // to unwrap. This essentially mimics what
1546    // IsQualificationConversion does, but here we're checking for a
1547    // strict subset of qualifiers.
1548    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1549      // The qualifiers are the same, so this doesn't tell us anything
1550      // about how the sequences rank.
1551      ;
1552    else if (T2.isMoreQualifiedThan(T1)) {
1553      // T1 has fewer qualifiers, so it could be the better sequence.
1554      if (Result == ImplicitConversionSequence::Worse)
1555        // Neither has qualifiers that are a subset of the other's
1556        // qualifiers.
1557        return ImplicitConversionSequence::Indistinguishable;
1558
1559      Result = ImplicitConversionSequence::Better;
1560    } else if (T1.isMoreQualifiedThan(T2)) {
1561      // T2 has fewer qualifiers, so it could be the better sequence.
1562      if (Result == ImplicitConversionSequence::Better)
1563        // Neither has qualifiers that are a subset of the other's
1564        // qualifiers.
1565        return ImplicitConversionSequence::Indistinguishable;
1566
1567      Result = ImplicitConversionSequence::Worse;
1568    } else {
1569      // Qualifiers are disjoint.
1570      return ImplicitConversionSequence::Indistinguishable;
1571    }
1572
1573    // If the types after this point are equivalent, we're done.
1574    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1575      break;
1576  }
1577
1578  // Check that the winning standard conversion sequence isn't using
1579  // the deprecated string literal array to pointer conversion.
1580  switch (Result) {
1581  case ImplicitConversionSequence::Better:
1582    if (SCS1.Deprecated)
1583      Result = ImplicitConversionSequence::Indistinguishable;
1584    break;
1585
1586  case ImplicitConversionSequence::Indistinguishable:
1587    break;
1588
1589  case ImplicitConversionSequence::Worse:
1590    if (SCS2.Deprecated)
1591      Result = ImplicitConversionSequence::Indistinguishable;
1592    break;
1593  }
1594
1595  return Result;
1596}
1597
1598/// CompareDerivedToBaseConversions - Compares two standard conversion
1599/// sequences to determine whether they can be ranked based on their
1600/// various kinds of derived-to-base conversions (C++
1601/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1602/// conversions between Objective-C interface types.
1603ImplicitConversionSequence::CompareKind
1604Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1605                                      const StandardConversionSequence& SCS2) {
1606  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1607  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1608  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1609  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1610
1611  // Adjust the types we're converting from via the array-to-pointer
1612  // conversion, if we need to.
1613  if (SCS1.First == ICK_Array_To_Pointer)
1614    FromType1 = Context.getArrayDecayedType(FromType1);
1615  if (SCS2.First == ICK_Array_To_Pointer)
1616    FromType2 = Context.getArrayDecayedType(FromType2);
1617
1618  // Canonicalize all of the types.
1619  FromType1 = Context.getCanonicalType(FromType1);
1620  ToType1 = Context.getCanonicalType(ToType1);
1621  FromType2 = Context.getCanonicalType(FromType2);
1622  ToType2 = Context.getCanonicalType(ToType2);
1623
1624  // C++ [over.ics.rank]p4b3:
1625  //
1626  //   If class B is derived directly or indirectly from class A and
1627  //   class C is derived directly or indirectly from B,
1628  //
1629  // For Objective-C, we let A, B, and C also be Objective-C
1630  // interfaces.
1631
1632  // Compare based on pointer conversions.
1633  if (SCS1.Second == ICK_Pointer_Conversion &&
1634      SCS2.Second == ICK_Pointer_Conversion &&
1635      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1636      FromType1->isPointerType() && FromType2->isPointerType() &&
1637      ToType1->isPointerType() && ToType2->isPointerType()) {
1638    QualType FromPointee1
1639      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1640    QualType ToPointee1
1641      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1642    QualType FromPointee2
1643      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1644    QualType ToPointee2
1645      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1646
1647    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1648    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1649    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1650    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1651
1652    //   -- conversion of C* to B* is better than conversion of C* to A*,
1653    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1654      if (IsDerivedFrom(ToPointee1, ToPointee2))
1655        return ImplicitConversionSequence::Better;
1656      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1657        return ImplicitConversionSequence::Worse;
1658
1659      if (ToIface1 && ToIface2) {
1660        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1661          return ImplicitConversionSequence::Better;
1662        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1663          return ImplicitConversionSequence::Worse;
1664      }
1665    }
1666
1667    //   -- conversion of B* to A* is better than conversion of C* to A*,
1668    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1669      if (IsDerivedFrom(FromPointee2, FromPointee1))
1670        return ImplicitConversionSequence::Better;
1671      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1672        return ImplicitConversionSequence::Worse;
1673
1674      if (FromIface1 && FromIface2) {
1675        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1676          return ImplicitConversionSequence::Better;
1677        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1678          return ImplicitConversionSequence::Worse;
1679      }
1680    }
1681  }
1682
1683  // Compare based on reference bindings.
1684  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1685      SCS1.Second == ICK_Derived_To_Base) {
1686    //   -- binding of an expression of type C to a reference of type
1687    //      B& is better than binding an expression of type C to a
1688    //      reference of type A&,
1689    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1690        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1691      if (IsDerivedFrom(ToType1, ToType2))
1692        return ImplicitConversionSequence::Better;
1693      else if (IsDerivedFrom(ToType2, ToType1))
1694        return ImplicitConversionSequence::Worse;
1695    }
1696
1697    //   -- binding of an expression of type B to a reference of type
1698    //      A& is better than binding an expression of type C to a
1699    //      reference of type A&,
1700    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1701        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1702      if (IsDerivedFrom(FromType2, FromType1))
1703        return ImplicitConversionSequence::Better;
1704      else if (IsDerivedFrom(FromType1, FromType2))
1705        return ImplicitConversionSequence::Worse;
1706    }
1707  }
1708
1709
1710  // FIXME: conversion of A::* to B::* is better than conversion of
1711  // A::* to C::*,
1712
1713  // FIXME: conversion of B::* to C::* is better than conversion of
1714  // A::* to C::*, and
1715
1716  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1717      SCS1.Second == ICK_Derived_To_Base) {
1718    //   -- conversion of C to B is better than conversion of C to A,
1719    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1720        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1721      if (IsDerivedFrom(ToType1, ToType2))
1722        return ImplicitConversionSequence::Better;
1723      else if (IsDerivedFrom(ToType2, ToType1))
1724        return ImplicitConversionSequence::Worse;
1725    }
1726
1727    //   -- conversion of B to A is better than conversion of C to A.
1728    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1729        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1730      if (IsDerivedFrom(FromType2, FromType1))
1731        return ImplicitConversionSequence::Better;
1732      else if (IsDerivedFrom(FromType1, FromType2))
1733        return ImplicitConversionSequence::Worse;
1734    }
1735  }
1736
1737  return ImplicitConversionSequence::Indistinguishable;
1738}
1739
1740/// TryCopyInitialization - Try to copy-initialize a value of type
1741/// ToType from the expression From. Return the implicit conversion
1742/// sequence required to pass this argument, which may be a bad
1743/// conversion sequence (meaning that the argument cannot be passed to
1744/// a parameter of this type). If @p SuppressUserConversions, then we
1745/// do not permit any user-defined conversion sequences.
1746ImplicitConversionSequence
1747Sema::TryCopyInitialization(Expr *From, QualType ToType,
1748                            bool SuppressUserConversions) {
1749  if (!getLangOptions().CPlusPlus) {
1750    // In C, copy initialization is the same as performing an assignment.
1751    AssignConvertType ConvTy =
1752      CheckSingleAssignmentConstraints(ToType, From);
1753    ImplicitConversionSequence ICS;
1754    if (getLangOptions().NoExtensions? ConvTy != Compatible
1755                                     : ConvTy == Incompatible)
1756      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1757    else
1758      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1759    return ICS;
1760  } else if (ToType->isReferenceType()) {
1761    ImplicitConversionSequence ICS;
1762    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1763    return ICS;
1764  } else {
1765    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1766  }
1767}
1768
1769/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1770/// type ToType. Returns true (and emits a diagnostic) if there was
1771/// an error, returns false if the initialization succeeded.
1772bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1773                                     const char* Flavor) {
1774  if (!getLangOptions().CPlusPlus) {
1775    // In C, argument passing is the same as performing an assignment.
1776    QualType FromType = From->getType();
1777    AssignConvertType ConvTy =
1778      CheckSingleAssignmentConstraints(ToType, From);
1779
1780    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1781                                    FromType, From, Flavor);
1782  }
1783
1784  if (ToType->isReferenceType())
1785    return CheckReferenceInit(From, ToType);
1786
1787  if (!PerformImplicitConversion(From, ToType, Flavor))
1788    return false;
1789
1790  return Diag(From->getSourceRange().getBegin(),
1791              diag::err_typecheck_convert_incompatible)
1792    << ToType << From->getType() << Flavor << From->getSourceRange();
1793}
1794
1795/// TryObjectArgumentInitialization - Try to initialize the object
1796/// parameter of the given member function (@c Method) from the
1797/// expression @p From.
1798ImplicitConversionSequence
1799Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1800  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1801  unsigned MethodQuals = Method->getTypeQualifiers();
1802  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1803
1804  // Set up the conversion sequence as a "bad" conversion, to allow us
1805  // to exit early.
1806  ImplicitConversionSequence ICS;
1807  ICS.Standard.setAsIdentityConversion();
1808  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1809
1810  // We need to have an object of class type.
1811  QualType FromType = From->getType();
1812  if (!FromType->isRecordType())
1813    return ICS;
1814
1815  // The implicit object parmeter is has the type "reference to cv X",
1816  // where X is the class of which the function is a member
1817  // (C++ [over.match.funcs]p4). However, when finding an implicit
1818  // conversion sequence for the argument, we are not allowed to
1819  // create temporaries or perform user-defined conversions
1820  // (C++ [over.match.funcs]p5). We perform a simplified version of
1821  // reference binding here, that allows class rvalues to bind to
1822  // non-constant references.
1823
1824  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1825  // with the implicit object parameter (C++ [over.match.funcs]p5).
1826  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1827  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1828      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1829    return ICS;
1830
1831  // Check that we have either the same type or a derived type. It
1832  // affects the conversion rank.
1833  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1834  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1835    ICS.Standard.Second = ICK_Identity;
1836  else if (IsDerivedFrom(FromType, ClassType))
1837    ICS.Standard.Second = ICK_Derived_To_Base;
1838  else
1839    return ICS;
1840
1841  // Success. Mark this as a reference binding.
1842  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1843  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1844  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1845  ICS.Standard.ReferenceBinding = true;
1846  ICS.Standard.DirectBinding = true;
1847  return ICS;
1848}
1849
1850/// PerformObjectArgumentInitialization - Perform initialization of
1851/// the implicit object parameter for the given Method with the given
1852/// expression.
1853bool
1854Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1855  QualType ImplicitParamType
1856    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1857  ImplicitConversionSequence ICS
1858    = TryObjectArgumentInitialization(From, Method);
1859  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1860    return Diag(From->getSourceRange().getBegin(),
1861                diag::err_implicit_object_parameter_init)
1862       << ImplicitParamType << From->getType() << From->getSourceRange();
1863
1864  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1865      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1866                                   From->getSourceRange().getBegin(),
1867                                   From->getSourceRange()))
1868    return true;
1869
1870  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1871  return false;
1872}
1873
1874/// TryContextuallyConvertToBool - Attempt to contextually convert the
1875/// expression From to bool (C++0x [conv]p3).
1876ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1877  return TryImplicitConversion(From, Context.BoolTy, false, true);
1878}
1879
1880/// PerformContextuallyConvertToBool - Perform a contextual conversion
1881/// of the expression From to bool (C++0x [conv]p3).
1882bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1883  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1884  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1885    return false;
1886
1887  return Diag(From->getSourceRange().getBegin(),
1888              diag::err_typecheck_bool_condition)
1889    << From->getType() << From->getSourceRange();
1890}
1891
1892/// AddOverloadCandidate - Adds the given function to the set of
1893/// candidate functions, using the given function call arguments.  If
1894/// @p SuppressUserConversions, then don't allow user-defined
1895/// conversions via constructors or conversion operators.
1896void
1897Sema::AddOverloadCandidate(FunctionDecl *Function,
1898                           Expr **Args, unsigned NumArgs,
1899                           OverloadCandidateSet& CandidateSet,
1900                           bool SuppressUserConversions)
1901{
1902  const FunctionTypeProto* Proto
1903    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1904  assert(Proto && "Functions without a prototype cannot be overloaded");
1905  assert(!isa<CXXConversionDecl>(Function) &&
1906         "Use AddConversionCandidate for conversion functions");
1907
1908  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1909    // If we get here, it's because we're calling a member function
1910    // that is named without a member access expression (e.g.,
1911    // "this->f") that was either written explicitly or created
1912    // implicitly. This can happen with a qualified call to a member
1913    // function, e.g., X::f(). We use a NULL object as the implied
1914    // object argument (C++ [over.call.func]p3).
1915    AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
1916                       SuppressUserConversions);
1917    return;
1918  }
1919
1920
1921  // Add this candidate
1922  CandidateSet.push_back(OverloadCandidate());
1923  OverloadCandidate& Candidate = CandidateSet.back();
1924  Candidate.Function = Function;
1925  Candidate.Viable = true;
1926  Candidate.IsSurrogate = false;
1927  Candidate.IgnoreObjectArgument = false;
1928
1929  unsigned NumArgsInProto = Proto->getNumArgs();
1930
1931  // (C++ 13.3.2p2): A candidate function having fewer than m
1932  // parameters is viable only if it has an ellipsis in its parameter
1933  // list (8.3.5).
1934  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1935    Candidate.Viable = false;
1936    return;
1937  }
1938
1939  // (C++ 13.3.2p2): A candidate function having more than m parameters
1940  // is viable only if the (m+1)st parameter has a default argument
1941  // (8.3.6). For the purposes of overload resolution, the
1942  // parameter list is truncated on the right, so that there are
1943  // exactly m parameters.
1944  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1945  if (NumArgs < MinRequiredArgs) {
1946    // Not enough arguments.
1947    Candidate.Viable = false;
1948    return;
1949  }
1950
1951  // Determine the implicit conversion sequences for each of the
1952  // arguments.
1953  Candidate.Conversions.resize(NumArgs);
1954  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1955    if (ArgIdx < NumArgsInProto) {
1956      // (C++ 13.3.2p3): for F to be a viable function, there shall
1957      // exist for each argument an implicit conversion sequence
1958      // (13.3.3.1) that converts that argument to the corresponding
1959      // parameter of F.
1960      QualType ParamType = Proto->getArgType(ArgIdx);
1961      Candidate.Conversions[ArgIdx]
1962        = TryCopyInitialization(Args[ArgIdx], ParamType,
1963                                SuppressUserConversions);
1964      if (Candidate.Conversions[ArgIdx].ConversionKind
1965            == ImplicitConversionSequence::BadConversion) {
1966        Candidate.Viable = false;
1967        break;
1968      }
1969    } else {
1970      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1971      // argument for which there is no corresponding parameter is
1972      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1973      Candidate.Conversions[ArgIdx].ConversionKind
1974        = ImplicitConversionSequence::EllipsisConversion;
1975    }
1976  }
1977}
1978
1979/// AddMethodCandidate - Adds the given C++ member function to the set
1980/// of candidate functions, using the given function call arguments
1981/// and the object argument (@c Object). For example, in a call
1982/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1983/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1984/// allow user-defined conversions via constructors or conversion
1985/// operators.
1986void
1987Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1988                         Expr **Args, unsigned NumArgs,
1989                         OverloadCandidateSet& CandidateSet,
1990                         bool SuppressUserConversions)
1991{
1992  const FunctionTypeProto* Proto
1993    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1994  assert(Proto && "Methods without a prototype cannot be overloaded");
1995  assert(!isa<CXXConversionDecl>(Method) &&
1996         "Use AddConversionCandidate for conversion functions");
1997
1998  // Add this candidate
1999  CandidateSet.push_back(OverloadCandidate());
2000  OverloadCandidate& Candidate = CandidateSet.back();
2001  Candidate.Function = Method;
2002  Candidate.IsSurrogate = false;
2003  Candidate.IgnoreObjectArgument = false;
2004
2005  unsigned NumArgsInProto = Proto->getNumArgs();
2006
2007  // (C++ 13.3.2p2): A candidate function having fewer than m
2008  // parameters is viable only if it has an ellipsis in its parameter
2009  // list (8.3.5).
2010  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2011    Candidate.Viable = false;
2012    return;
2013  }
2014
2015  // (C++ 13.3.2p2): A candidate function having more than m parameters
2016  // is viable only if the (m+1)st parameter has a default argument
2017  // (8.3.6). For the purposes of overload resolution, the
2018  // parameter list is truncated on the right, so that there are
2019  // exactly m parameters.
2020  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2021  if (NumArgs < MinRequiredArgs) {
2022    // Not enough arguments.
2023    Candidate.Viable = false;
2024    return;
2025  }
2026
2027  Candidate.Viable = true;
2028  Candidate.Conversions.resize(NumArgs + 1);
2029
2030  if (Method->isStatic() || !Object)
2031    // The implicit object argument is ignored.
2032    Candidate.IgnoreObjectArgument = true;
2033  else {
2034    // Determine the implicit conversion sequence for the object
2035    // parameter.
2036    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2037    if (Candidate.Conversions[0].ConversionKind
2038          == ImplicitConversionSequence::BadConversion) {
2039      Candidate.Viable = false;
2040      return;
2041    }
2042  }
2043
2044  // Determine the implicit conversion sequences for each of the
2045  // arguments.
2046  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2047    if (ArgIdx < NumArgsInProto) {
2048      // (C++ 13.3.2p3): for F to be a viable function, there shall
2049      // exist for each argument an implicit conversion sequence
2050      // (13.3.3.1) that converts that argument to the corresponding
2051      // parameter of F.
2052      QualType ParamType = Proto->getArgType(ArgIdx);
2053      Candidate.Conversions[ArgIdx + 1]
2054        = TryCopyInitialization(Args[ArgIdx], ParamType,
2055                                SuppressUserConversions);
2056      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2057            == ImplicitConversionSequence::BadConversion) {
2058        Candidate.Viable = false;
2059        break;
2060      }
2061    } else {
2062      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2063      // argument for which there is no corresponding parameter is
2064      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2065      Candidate.Conversions[ArgIdx + 1].ConversionKind
2066        = ImplicitConversionSequence::EllipsisConversion;
2067    }
2068  }
2069}
2070
2071/// AddConversionCandidate - Add a C++ conversion function as a
2072/// candidate in the candidate set (C++ [over.match.conv],
2073/// C++ [over.match.copy]). From is the expression we're converting from,
2074/// and ToType is the type that we're eventually trying to convert to
2075/// (which may or may not be the same type as the type that the
2076/// conversion function produces).
2077void
2078Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2079                             Expr *From, QualType ToType,
2080                             OverloadCandidateSet& CandidateSet) {
2081  // Add this candidate
2082  CandidateSet.push_back(OverloadCandidate());
2083  OverloadCandidate& Candidate = CandidateSet.back();
2084  Candidate.Function = Conversion;
2085  Candidate.IsSurrogate = false;
2086  Candidate.IgnoreObjectArgument = false;
2087  Candidate.FinalConversion.setAsIdentityConversion();
2088  Candidate.FinalConversion.FromTypePtr
2089    = Conversion->getConversionType().getAsOpaquePtr();
2090  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2091
2092  // Determine the implicit conversion sequence for the implicit
2093  // object parameter.
2094  Candidate.Viable = true;
2095  Candidate.Conversions.resize(1);
2096  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2097
2098  if (Candidate.Conversions[0].ConversionKind
2099      == ImplicitConversionSequence::BadConversion) {
2100    Candidate.Viable = false;
2101    return;
2102  }
2103
2104  // To determine what the conversion from the result of calling the
2105  // conversion function to the type we're eventually trying to
2106  // convert to (ToType), we need to synthesize a call to the
2107  // conversion function and attempt copy initialization from it. This
2108  // makes sure that we get the right semantics with respect to
2109  // lvalues/rvalues and the type. Fortunately, we can allocate this
2110  // call on the stack and we don't need its arguments to be
2111  // well-formed.
2112  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2113                            SourceLocation());
2114  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2115                                &ConversionRef, false);
2116  CallExpr Call(&ConversionFn, 0, 0,
2117                Conversion->getConversionType().getNonReferenceType(),
2118                SourceLocation());
2119  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2120  switch (ICS.ConversionKind) {
2121  case ImplicitConversionSequence::StandardConversion:
2122    Candidate.FinalConversion = ICS.Standard;
2123    break;
2124
2125  case ImplicitConversionSequence::BadConversion:
2126    Candidate.Viable = false;
2127    break;
2128
2129  default:
2130    assert(false &&
2131           "Can only end up with a standard conversion sequence or failure");
2132  }
2133}
2134
2135/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2136/// converts the given @c Object to a function pointer via the
2137/// conversion function @c Conversion, and then attempts to call it
2138/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2139/// the type of function that we'll eventually be calling.
2140void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2141                                 const FunctionTypeProto *Proto,
2142                                 Expr *Object, Expr **Args, unsigned NumArgs,
2143                                 OverloadCandidateSet& CandidateSet) {
2144  CandidateSet.push_back(OverloadCandidate());
2145  OverloadCandidate& Candidate = CandidateSet.back();
2146  Candidate.Function = 0;
2147  Candidate.Surrogate = Conversion;
2148  Candidate.Viable = true;
2149  Candidate.IsSurrogate = true;
2150  Candidate.IgnoreObjectArgument = false;
2151  Candidate.Conversions.resize(NumArgs + 1);
2152
2153  // Determine the implicit conversion sequence for the implicit
2154  // object parameter.
2155  ImplicitConversionSequence ObjectInit
2156    = TryObjectArgumentInitialization(Object, Conversion);
2157  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2158    Candidate.Viable = false;
2159    return;
2160  }
2161
2162  // The first conversion is actually a user-defined conversion whose
2163  // first conversion is ObjectInit's standard conversion (which is
2164  // effectively a reference binding). Record it as such.
2165  Candidate.Conversions[0].ConversionKind
2166    = ImplicitConversionSequence::UserDefinedConversion;
2167  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2168  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2169  Candidate.Conversions[0].UserDefined.After
2170    = Candidate.Conversions[0].UserDefined.Before;
2171  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2172
2173  // Find the
2174  unsigned NumArgsInProto = Proto->getNumArgs();
2175
2176  // (C++ 13.3.2p2): A candidate function having fewer than m
2177  // parameters is viable only if it has an ellipsis in its parameter
2178  // list (8.3.5).
2179  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2180    Candidate.Viable = false;
2181    return;
2182  }
2183
2184  // Function types don't have any default arguments, so just check if
2185  // we have enough arguments.
2186  if (NumArgs < NumArgsInProto) {
2187    // Not enough arguments.
2188    Candidate.Viable = false;
2189    return;
2190  }
2191
2192  // Determine the implicit conversion sequences for each of the
2193  // arguments.
2194  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2195    if (ArgIdx < NumArgsInProto) {
2196      // (C++ 13.3.2p3): for F to be a viable function, there shall
2197      // exist for each argument an implicit conversion sequence
2198      // (13.3.3.1) that converts that argument to the corresponding
2199      // parameter of F.
2200      QualType ParamType = Proto->getArgType(ArgIdx);
2201      Candidate.Conversions[ArgIdx + 1]
2202        = TryCopyInitialization(Args[ArgIdx], ParamType,
2203                                /*SuppressUserConversions=*/false);
2204      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2205            == ImplicitConversionSequence::BadConversion) {
2206        Candidate.Viable = false;
2207        break;
2208      }
2209    } else {
2210      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2211      // argument for which there is no corresponding parameter is
2212      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2213      Candidate.Conversions[ArgIdx + 1].ConversionKind
2214        = ImplicitConversionSequence::EllipsisConversion;
2215    }
2216  }
2217}
2218
2219/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2220/// an acceptable non-member overloaded operator for a call whose
2221/// arguments have types T1 (and, if non-empty, T2). This routine
2222/// implements the check in C++ [over.match.oper]p3b2 concerning
2223/// enumeration types.
2224static bool
2225IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2226                                       QualType T1, QualType T2,
2227                                       ASTContext &Context) {
2228  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2229    return true;
2230
2231  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
2232  if (Proto->getNumArgs() < 1)
2233    return false;
2234
2235  if (T1->isEnumeralType()) {
2236    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2237    if (Context.getCanonicalType(T1).getUnqualifiedType()
2238          == Context.getCanonicalType(ArgType).getUnqualifiedType())
2239      return true;
2240  }
2241
2242  if (Proto->getNumArgs() < 2)
2243    return false;
2244
2245  if (!T2.isNull() && T2->isEnumeralType()) {
2246    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2247    if (Context.getCanonicalType(T2).getUnqualifiedType()
2248          == Context.getCanonicalType(ArgType).getUnqualifiedType())
2249      return true;
2250  }
2251
2252  return false;
2253}
2254
2255/// AddOperatorCandidates - Add the overloaded operator candidates for
2256/// the operator Op that was used in an operator expression such as "x
2257/// Op y". S is the scope in which the expression occurred (used for
2258/// name lookup of the operator), Args/NumArgs provides the operator
2259/// arguments, and CandidateSet will store the added overload
2260/// candidates. (C++ [over.match.oper]).
2261void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2262                                 Expr **Args, unsigned NumArgs,
2263                                 OverloadCandidateSet& CandidateSet) {
2264  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2265
2266  // C++ [over.match.oper]p3:
2267  //   For a unary operator @ with an operand of a type whose
2268  //   cv-unqualified version is T1, and for a binary operator @ with
2269  //   a left operand of a type whose cv-unqualified version is T1 and
2270  //   a right operand of a type whose cv-unqualified version is T2,
2271  //   three sets of candidate functions, designated member
2272  //   candidates, non-member candidates and built-in candidates, are
2273  //   constructed as follows:
2274  QualType T1 = Args[0]->getType();
2275  QualType T2;
2276  if (NumArgs > 1)
2277    T2 = Args[1]->getType();
2278
2279  //     -- If T1 is a class type, the set of member candidates is the
2280  //        result of the qualified lookup of T1::operator@
2281  //        (13.3.1.1.1); otherwise, the set of member candidates is
2282  //        empty.
2283  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2284    DeclContext::lookup_const_iterator Oper, OperEnd;
2285    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2286         Oper != OperEnd; ++Oper)
2287      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2288                         Args+1, NumArgs - 1, CandidateSet,
2289                         /*SuppressUserConversions=*/false);
2290  }
2291
2292  //     -- The set of non-member candidates is the result of the
2293  //        unqualified lookup of operator@ in the context of the
2294  //        expression according to the usual rules for name lookup in
2295  //        unqualified function calls (3.4.2) except that all member
2296  //        functions are ignored. However, if no operand has a class
2297  //        type, only those non-member functions in the lookup set
2298  //        that have a first parameter of type T1 or “reference to
2299  //        (possibly cv-qualified) T1”, when T1 is an enumeration
2300  //        type, or (if there is a right operand) a second parameter
2301  //        of type T2 or “reference to (possibly cv-qualified) T2”,
2302  //        when T2 is an enumeration type, are candidate functions.
2303  {
2304    IdentifierResolver::iterator I = IdResolver.begin(OpName),
2305                              IEnd = IdResolver.end();
2306    for (; I != IEnd; ++I) {
2307      // We don't need to check the identifier namespace, because
2308      // operator names can only be ordinary identifiers.
2309
2310      // Ignore member functions.
2311      if ((*I)->getDeclContext()->isRecord())
2312        continue;
2313
2314      // We found something with this name. We're done.
2315      break;
2316    }
2317
2318    if (I != IEnd) {
2319      Decl *FirstDecl = *I;
2320      for (; I != IEnd; ++I) {
2321        if (FirstDecl->getDeclContext() != (*I)->getDeclContext())
2322          break;
2323
2324        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
2325          if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2326            AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2327                                 /*SuppressUserConversions=*/false);
2328      }
2329    }
2330  }
2331
2332  // Add builtin overload candidates (C++ [over.built]).
2333  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2334}
2335
2336/// AddBuiltinCandidate - Add a candidate for a built-in
2337/// operator. ResultTy and ParamTys are the result and parameter types
2338/// of the built-in candidate, respectively. Args and NumArgs are the
2339/// arguments being passed to the candidate. IsAssignmentOperator
2340/// should be true when this built-in candidate is an assignment
2341/// operator. NumContextualBoolArguments is the number of arguments
2342/// (at the beginning of the argument list) that will be contextually
2343/// converted to bool.
2344void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2345                               Expr **Args, unsigned NumArgs,
2346                               OverloadCandidateSet& CandidateSet,
2347                               bool IsAssignmentOperator,
2348                               unsigned NumContextualBoolArguments) {
2349  // Add this candidate
2350  CandidateSet.push_back(OverloadCandidate());
2351  OverloadCandidate& Candidate = CandidateSet.back();
2352  Candidate.Function = 0;
2353  Candidate.IsSurrogate = false;
2354  Candidate.IgnoreObjectArgument = false;
2355  Candidate.BuiltinTypes.ResultTy = ResultTy;
2356  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2357    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2358
2359  // Determine the implicit conversion sequences for each of the
2360  // arguments.
2361  Candidate.Viable = true;
2362  Candidate.Conversions.resize(NumArgs);
2363  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2364    // C++ [over.match.oper]p4:
2365    //   For the built-in assignment operators, conversions of the
2366    //   left operand are restricted as follows:
2367    //     -- no temporaries are introduced to hold the left operand, and
2368    //     -- no user-defined conversions are applied to the left
2369    //        operand to achieve a type match with the left-most
2370    //        parameter of a built-in candidate.
2371    //
2372    // We block these conversions by turning off user-defined
2373    // conversions, since that is the only way that initialization of
2374    // a reference to a non-class type can occur from something that
2375    // is not of the same type.
2376    if (ArgIdx < NumContextualBoolArguments) {
2377      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2378             "Contextual conversion to bool requires bool type");
2379      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2380    } else {
2381      Candidate.Conversions[ArgIdx]
2382        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2383                                ArgIdx == 0 && IsAssignmentOperator);
2384    }
2385    if (Candidate.Conversions[ArgIdx].ConversionKind
2386        == ImplicitConversionSequence::BadConversion) {
2387      Candidate.Viable = false;
2388      break;
2389    }
2390  }
2391}
2392
2393/// BuiltinCandidateTypeSet - A set of types that will be used for the
2394/// candidate operator functions for built-in operators (C++
2395/// [over.built]). The types are separated into pointer types and
2396/// enumeration types.
2397class BuiltinCandidateTypeSet  {
2398  /// TypeSet - A set of types.
2399  typedef llvm::SmallPtrSet<void*, 8> TypeSet;
2400
2401  /// PointerTypes - The set of pointer types that will be used in the
2402  /// built-in candidates.
2403  TypeSet PointerTypes;
2404
2405  /// EnumerationTypes - The set of enumeration types that will be
2406  /// used in the built-in candidates.
2407  TypeSet EnumerationTypes;
2408
2409  /// Context - The AST context in which we will build the type sets.
2410  ASTContext &Context;
2411
2412  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2413
2414public:
2415  /// iterator - Iterates through the types that are part of the set.
2416  class iterator {
2417    TypeSet::iterator Base;
2418
2419  public:
2420    typedef QualType                 value_type;
2421    typedef QualType                 reference;
2422    typedef QualType                 pointer;
2423    typedef std::ptrdiff_t           difference_type;
2424    typedef std::input_iterator_tag  iterator_category;
2425
2426    iterator(TypeSet::iterator B) : Base(B) { }
2427
2428    iterator& operator++() {
2429      ++Base;
2430      return *this;
2431    }
2432
2433    iterator operator++(int) {
2434      iterator tmp(*this);
2435      ++(*this);
2436      return tmp;
2437    }
2438
2439    reference operator*() const {
2440      return QualType::getFromOpaquePtr(*Base);
2441    }
2442
2443    pointer operator->() const {
2444      return **this;
2445    }
2446
2447    friend bool operator==(iterator LHS, iterator RHS) {
2448      return LHS.Base == RHS.Base;
2449    }
2450
2451    friend bool operator!=(iterator LHS, iterator RHS) {
2452      return LHS.Base != RHS.Base;
2453    }
2454  };
2455
2456  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2457
2458  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2459                             bool AllowExplicitConversions);
2460
2461  /// pointer_begin - First pointer type found;
2462  iterator pointer_begin() { return PointerTypes.begin(); }
2463
2464  /// pointer_end - Last pointer type found;
2465  iterator pointer_end() { return PointerTypes.end(); }
2466
2467  /// enumeration_begin - First enumeration type found;
2468  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2469
2470  /// enumeration_end - Last enumeration type found;
2471  iterator enumeration_end() { return EnumerationTypes.end(); }
2472};
2473
2474/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2475/// the set of pointer types along with any more-qualified variants of
2476/// that type. For example, if @p Ty is "int const *", this routine
2477/// will add "int const *", "int const volatile *", "int const
2478/// restrict *", and "int const volatile restrict *" to the set of
2479/// pointer types. Returns true if the add of @p Ty itself succeeded,
2480/// false otherwise.
2481bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2482  // Insert this type.
2483  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
2484    return false;
2485
2486  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2487    QualType PointeeTy = PointerTy->getPointeeType();
2488    // FIXME: Optimize this so that we don't keep trying to add the same types.
2489
2490    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2491    // with all pointer conversions that don't cast away constness?
2492    if (!PointeeTy.isConstQualified())
2493      AddWithMoreQualifiedTypeVariants
2494        (Context.getPointerType(PointeeTy.withConst()));
2495    if (!PointeeTy.isVolatileQualified())
2496      AddWithMoreQualifiedTypeVariants
2497        (Context.getPointerType(PointeeTy.withVolatile()));
2498    if (!PointeeTy.isRestrictQualified())
2499      AddWithMoreQualifiedTypeVariants
2500        (Context.getPointerType(PointeeTy.withRestrict()));
2501  }
2502
2503  return true;
2504}
2505
2506/// AddTypesConvertedFrom - Add each of the types to which the type @p
2507/// Ty can be implicit converted to the given set of @p Types. We're
2508/// primarily interested in pointer types and enumeration types.
2509/// AllowUserConversions is true if we should look at the conversion
2510/// functions of a class type, and AllowExplicitConversions if we
2511/// should also include the explicit conversion functions of a class
2512/// type.
2513void
2514BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2515                                               bool AllowUserConversions,
2516                                               bool AllowExplicitConversions) {
2517  // Only deal with canonical types.
2518  Ty = Context.getCanonicalType(Ty);
2519
2520  // Look through reference types; they aren't part of the type of an
2521  // expression for the purposes of conversions.
2522  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2523    Ty = RefTy->getPointeeType();
2524
2525  // We don't care about qualifiers on the type.
2526  Ty = Ty.getUnqualifiedType();
2527
2528  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2529    QualType PointeeTy = PointerTy->getPointeeType();
2530
2531    // Insert our type, and its more-qualified variants, into the set
2532    // of types.
2533    if (!AddWithMoreQualifiedTypeVariants(Ty))
2534      return;
2535
2536    // Add 'cv void*' to our set of types.
2537    if (!Ty->isVoidType()) {
2538      QualType QualVoid
2539        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2540      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2541    }
2542
2543    // If this is a pointer to a class type, add pointers to its bases
2544    // (with the same level of cv-qualification as the original
2545    // derived class, of course).
2546    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2547      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2548      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2549           Base != ClassDecl->bases_end(); ++Base) {
2550        QualType BaseTy = Context.getCanonicalType(Base->getType());
2551        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2552
2553        // Add the pointer type, recursively, so that we get all of
2554        // the indirect base classes, too.
2555        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2556      }
2557    }
2558  } else if (Ty->isEnumeralType()) {
2559    EnumerationTypes.insert(Ty.getAsOpaquePtr());
2560  } else if (AllowUserConversions) {
2561    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2562      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2563      // FIXME: Visit conversion functions in the base classes, too.
2564      OverloadedFunctionDecl *Conversions
2565        = ClassDecl->getConversionFunctions();
2566      for (OverloadedFunctionDecl::function_iterator Func
2567             = Conversions->function_begin();
2568           Func != Conversions->function_end(); ++Func) {
2569        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2570        if (AllowExplicitConversions || !Conv->isExplicit())
2571          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2572      }
2573    }
2574  }
2575}
2576
2577/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2578/// operator overloads to the candidate set (C++ [over.built]), based
2579/// on the operator @p Op and the arguments given. For example, if the
2580/// operator is a binary '+', this routine might add "int
2581/// operator+(int, int)" to cover integer addition.
2582void
2583Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2584                                   Expr **Args, unsigned NumArgs,
2585                                   OverloadCandidateSet& CandidateSet) {
2586  // The set of "promoted arithmetic types", which are the arithmetic
2587  // types are that preserved by promotion (C++ [over.built]p2). Note
2588  // that the first few of these types are the promoted integral
2589  // types; these types need to be first.
2590  // FIXME: What about complex?
2591  const unsigned FirstIntegralType = 0;
2592  const unsigned LastIntegralType = 13;
2593  const unsigned FirstPromotedIntegralType = 7,
2594                 LastPromotedIntegralType = 13;
2595  const unsigned FirstPromotedArithmeticType = 7,
2596                 LastPromotedArithmeticType = 16;
2597  const unsigned NumArithmeticTypes = 16;
2598  QualType ArithmeticTypes[NumArithmeticTypes] = {
2599    Context.BoolTy, Context.CharTy, Context.WCharTy,
2600    Context.SignedCharTy, Context.ShortTy,
2601    Context.UnsignedCharTy, Context.UnsignedShortTy,
2602    Context.IntTy, Context.LongTy, Context.LongLongTy,
2603    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2604    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2605  };
2606
2607  // Find all of the types that the arguments can convert to, but only
2608  // if the operator we're looking at has built-in operator candidates
2609  // that make use of these types.
2610  BuiltinCandidateTypeSet CandidateTypes(Context);
2611  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2612      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2613      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2614      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2615      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2616      (Op == OO_Star && NumArgs == 1)) {
2617    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2618      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2619                                           true,
2620                                           (Op == OO_Exclaim ||
2621                                            Op == OO_AmpAmp ||
2622                                            Op == OO_PipePipe));
2623  }
2624
2625  bool isComparison = false;
2626  switch (Op) {
2627  case OO_None:
2628  case NUM_OVERLOADED_OPERATORS:
2629    assert(false && "Expected an overloaded operator");
2630    break;
2631
2632  case OO_Star: // '*' is either unary or binary
2633    if (NumArgs == 1)
2634      goto UnaryStar;
2635    else
2636      goto BinaryStar;
2637    break;
2638
2639  case OO_Plus: // '+' is either unary or binary
2640    if (NumArgs == 1)
2641      goto UnaryPlus;
2642    else
2643      goto BinaryPlus;
2644    break;
2645
2646  case OO_Minus: // '-' is either unary or binary
2647    if (NumArgs == 1)
2648      goto UnaryMinus;
2649    else
2650      goto BinaryMinus;
2651    break;
2652
2653  case OO_Amp: // '&' is either unary or binary
2654    if (NumArgs == 1)
2655      goto UnaryAmp;
2656    else
2657      goto BinaryAmp;
2658
2659  case OO_PlusPlus:
2660  case OO_MinusMinus:
2661    // C++ [over.built]p3:
2662    //
2663    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2664    //   is either volatile or empty, there exist candidate operator
2665    //   functions of the form
2666    //
2667    //       VQ T&      operator++(VQ T&);
2668    //       T          operator++(VQ T&, int);
2669    //
2670    // C++ [over.built]p4:
2671    //
2672    //   For every pair (T, VQ), where T is an arithmetic type other
2673    //   than bool, and VQ is either volatile or empty, there exist
2674    //   candidate operator functions of the form
2675    //
2676    //       VQ T&      operator--(VQ T&);
2677    //       T          operator--(VQ T&, int);
2678    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2679         Arith < NumArithmeticTypes; ++Arith) {
2680      QualType ArithTy = ArithmeticTypes[Arith];
2681      QualType ParamTypes[2]
2682        = { Context.getReferenceType(ArithTy), Context.IntTy };
2683
2684      // Non-volatile version.
2685      if (NumArgs == 1)
2686        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2687      else
2688        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2689
2690      // Volatile version
2691      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2692      if (NumArgs == 1)
2693        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2694      else
2695        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2696    }
2697
2698    // C++ [over.built]p5:
2699    //
2700    //   For every pair (T, VQ), where T is a cv-qualified or
2701    //   cv-unqualified object type, and VQ is either volatile or
2702    //   empty, there exist candidate operator functions of the form
2703    //
2704    //       T*VQ&      operator++(T*VQ&);
2705    //       T*VQ&      operator--(T*VQ&);
2706    //       T*         operator++(T*VQ&, int);
2707    //       T*         operator--(T*VQ&, int);
2708    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2709         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2710      // Skip pointer types that aren't pointers to object types.
2711      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
2712        continue;
2713
2714      QualType ParamTypes[2] = {
2715        Context.getReferenceType(*Ptr), Context.IntTy
2716      };
2717
2718      // Without volatile
2719      if (NumArgs == 1)
2720        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2721      else
2722        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2723
2724      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2725        // With volatile
2726        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2727        if (NumArgs == 1)
2728          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2729        else
2730          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2731      }
2732    }
2733    break;
2734
2735  UnaryStar:
2736    // C++ [over.built]p6:
2737    //   For every cv-qualified or cv-unqualified object type T, there
2738    //   exist candidate operator functions of the form
2739    //
2740    //       T&         operator*(T*);
2741    //
2742    // C++ [over.built]p7:
2743    //   For every function type T, there exist candidate operator
2744    //   functions of the form
2745    //       T&         operator*(T*);
2746    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2747         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2748      QualType ParamTy = *Ptr;
2749      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2750      AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2751                          &ParamTy, Args, 1, CandidateSet);
2752    }
2753    break;
2754
2755  UnaryPlus:
2756    // C++ [over.built]p8:
2757    //   For every type T, there exist candidate operator functions of
2758    //   the form
2759    //
2760    //       T*         operator+(T*);
2761    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2762         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2763      QualType ParamTy = *Ptr;
2764      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2765    }
2766
2767    // Fall through
2768
2769  UnaryMinus:
2770    // C++ [over.built]p9:
2771    //  For every promoted arithmetic type T, there exist candidate
2772    //  operator functions of the form
2773    //
2774    //       T         operator+(T);
2775    //       T         operator-(T);
2776    for (unsigned Arith = FirstPromotedArithmeticType;
2777         Arith < LastPromotedArithmeticType; ++Arith) {
2778      QualType ArithTy = ArithmeticTypes[Arith];
2779      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2780    }
2781    break;
2782
2783  case OO_Tilde:
2784    // C++ [over.built]p10:
2785    //   For every promoted integral type T, there exist candidate
2786    //   operator functions of the form
2787    //
2788    //        T         operator~(T);
2789    for (unsigned Int = FirstPromotedIntegralType;
2790         Int < LastPromotedIntegralType; ++Int) {
2791      QualType IntTy = ArithmeticTypes[Int];
2792      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2793    }
2794    break;
2795
2796  case OO_New:
2797  case OO_Delete:
2798  case OO_Array_New:
2799  case OO_Array_Delete:
2800  case OO_Call:
2801    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2802    break;
2803
2804  case OO_Comma:
2805  UnaryAmp:
2806  case OO_Arrow:
2807    // C++ [over.match.oper]p3:
2808    //   -- For the operator ',', the unary operator '&', or the
2809    //      operator '->', the built-in candidates set is empty.
2810    break;
2811
2812  case OO_Less:
2813  case OO_Greater:
2814  case OO_LessEqual:
2815  case OO_GreaterEqual:
2816  case OO_EqualEqual:
2817  case OO_ExclaimEqual:
2818    // C++ [over.built]p15:
2819    //
2820    //   For every pointer or enumeration type T, there exist
2821    //   candidate operator functions of the form
2822    //
2823    //        bool       operator<(T, T);
2824    //        bool       operator>(T, T);
2825    //        bool       operator<=(T, T);
2826    //        bool       operator>=(T, T);
2827    //        bool       operator==(T, T);
2828    //        bool       operator!=(T, T);
2829    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2830         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2831      QualType ParamTypes[2] = { *Ptr, *Ptr };
2832      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2833    }
2834    for (BuiltinCandidateTypeSet::iterator Enum
2835           = CandidateTypes.enumeration_begin();
2836         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2837      QualType ParamTypes[2] = { *Enum, *Enum };
2838      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2839    }
2840
2841    // Fall through.
2842    isComparison = true;
2843
2844  BinaryPlus:
2845  BinaryMinus:
2846    if (!isComparison) {
2847      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2848
2849      // C++ [over.built]p13:
2850      //
2851      //   For every cv-qualified or cv-unqualified object type T
2852      //   there exist candidate operator functions of the form
2853      //
2854      //      T*         operator+(T*, ptrdiff_t);
2855      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2856      //      T*         operator-(T*, ptrdiff_t);
2857      //      T*         operator+(ptrdiff_t, T*);
2858      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2859      //
2860      // C++ [over.built]p14:
2861      //
2862      //   For every T, where T is a pointer to object type, there
2863      //   exist candidate operator functions of the form
2864      //
2865      //      ptrdiff_t  operator-(T, T);
2866      for (BuiltinCandidateTypeSet::iterator Ptr
2867             = CandidateTypes.pointer_begin();
2868           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2869        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2870
2871        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2872        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2873
2874        if (Op == OO_Plus) {
2875          // T* operator+(ptrdiff_t, T*);
2876          ParamTypes[0] = ParamTypes[1];
2877          ParamTypes[1] = *Ptr;
2878          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2879        } else {
2880          // ptrdiff_t operator-(T, T);
2881          ParamTypes[1] = *Ptr;
2882          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2883                              Args, 2, CandidateSet);
2884        }
2885      }
2886    }
2887    // Fall through
2888
2889  case OO_Slash:
2890  BinaryStar:
2891    // C++ [over.built]p12:
2892    //
2893    //   For every pair of promoted arithmetic types L and R, there
2894    //   exist candidate operator functions of the form
2895    //
2896    //        LR         operator*(L, R);
2897    //        LR         operator/(L, R);
2898    //        LR         operator+(L, R);
2899    //        LR         operator-(L, R);
2900    //        bool       operator<(L, R);
2901    //        bool       operator>(L, R);
2902    //        bool       operator<=(L, R);
2903    //        bool       operator>=(L, R);
2904    //        bool       operator==(L, R);
2905    //        bool       operator!=(L, R);
2906    //
2907    //   where LR is the result of the usual arithmetic conversions
2908    //   between types L and R.
2909    for (unsigned Left = FirstPromotedArithmeticType;
2910         Left < LastPromotedArithmeticType; ++Left) {
2911      for (unsigned Right = FirstPromotedArithmeticType;
2912           Right < LastPromotedArithmeticType; ++Right) {
2913        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2914        QualType Result
2915          = isComparison? Context.BoolTy
2916                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2917        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2918      }
2919    }
2920    break;
2921
2922  case OO_Percent:
2923  BinaryAmp:
2924  case OO_Caret:
2925  case OO_Pipe:
2926  case OO_LessLess:
2927  case OO_GreaterGreater:
2928    // C++ [over.built]p17:
2929    //
2930    //   For every pair of promoted integral types L and R, there
2931    //   exist candidate operator functions of the form
2932    //
2933    //      LR         operator%(L, R);
2934    //      LR         operator&(L, R);
2935    //      LR         operator^(L, R);
2936    //      LR         operator|(L, R);
2937    //      L          operator<<(L, R);
2938    //      L          operator>>(L, R);
2939    //
2940    //   where LR is the result of the usual arithmetic conversions
2941    //   between types L and R.
2942    for (unsigned Left = FirstPromotedIntegralType;
2943         Left < LastPromotedIntegralType; ++Left) {
2944      for (unsigned Right = FirstPromotedIntegralType;
2945           Right < LastPromotedIntegralType; ++Right) {
2946        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2947        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2948            ? LandR[0]
2949            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2950        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2951      }
2952    }
2953    break;
2954
2955  case OO_Equal:
2956    // C++ [over.built]p20:
2957    //
2958    //   For every pair (T, VQ), where T is an enumeration or
2959    //   (FIXME:) pointer to member type and VQ is either volatile or
2960    //   empty, there exist candidate operator functions of the form
2961    //
2962    //        VQ T&      operator=(VQ T&, T);
2963    for (BuiltinCandidateTypeSet::iterator Enum
2964           = CandidateTypes.enumeration_begin();
2965         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2966      QualType ParamTypes[2];
2967
2968      // T& operator=(T&, T)
2969      ParamTypes[0] = Context.getReferenceType(*Enum);
2970      ParamTypes[1] = *Enum;
2971      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2972                          /*IsAssignmentOperator=*/false);
2973
2974      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2975        // volatile T& operator=(volatile T&, T)
2976        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2977        ParamTypes[1] = *Enum;
2978        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2979                            /*IsAssignmentOperator=*/false);
2980      }
2981    }
2982    // Fall through.
2983
2984  case OO_PlusEqual:
2985  case OO_MinusEqual:
2986    // C++ [over.built]p19:
2987    //
2988    //   For every pair (T, VQ), where T is any type and VQ is either
2989    //   volatile or empty, there exist candidate operator functions
2990    //   of the form
2991    //
2992    //        T*VQ&      operator=(T*VQ&, T*);
2993    //
2994    // C++ [over.built]p21:
2995    //
2996    //   For every pair (T, VQ), where T is a cv-qualified or
2997    //   cv-unqualified object type and VQ is either volatile or
2998    //   empty, there exist candidate operator functions of the form
2999    //
3000    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3001    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3002    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3003         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3004      QualType ParamTypes[2];
3005      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3006
3007      // non-volatile version
3008      ParamTypes[0] = Context.getReferenceType(*Ptr);
3009      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3010                          /*IsAssigmentOperator=*/Op == OO_Equal);
3011
3012      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3013        // volatile version
3014        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
3015        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3016                            /*IsAssigmentOperator=*/Op == OO_Equal);
3017      }
3018    }
3019    // Fall through.
3020
3021  case OO_StarEqual:
3022  case OO_SlashEqual:
3023    // C++ [over.built]p18:
3024    //
3025    //   For every triple (L, VQ, R), where L is an arithmetic type,
3026    //   VQ is either volatile or empty, and R is a promoted
3027    //   arithmetic type, there exist candidate operator functions of
3028    //   the form
3029    //
3030    //        VQ L&      operator=(VQ L&, R);
3031    //        VQ L&      operator*=(VQ L&, R);
3032    //        VQ L&      operator/=(VQ L&, R);
3033    //        VQ L&      operator+=(VQ L&, R);
3034    //        VQ L&      operator-=(VQ L&, R);
3035    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3036      for (unsigned Right = FirstPromotedArithmeticType;
3037           Right < LastPromotedArithmeticType; ++Right) {
3038        QualType ParamTypes[2];
3039        ParamTypes[1] = ArithmeticTypes[Right];
3040
3041        // Add this built-in operator as a candidate (VQ is empty).
3042        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3043        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3044                            /*IsAssigmentOperator=*/Op == OO_Equal);
3045
3046        // Add this built-in operator as a candidate (VQ is 'volatile').
3047        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3048        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3049        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3050                            /*IsAssigmentOperator=*/Op == OO_Equal);
3051      }
3052    }
3053    break;
3054
3055  case OO_PercentEqual:
3056  case OO_LessLessEqual:
3057  case OO_GreaterGreaterEqual:
3058  case OO_AmpEqual:
3059  case OO_CaretEqual:
3060  case OO_PipeEqual:
3061    // C++ [over.built]p22:
3062    //
3063    //   For every triple (L, VQ, R), where L is an integral type, VQ
3064    //   is either volatile or empty, and R is a promoted integral
3065    //   type, there exist candidate operator functions of the form
3066    //
3067    //        VQ L&       operator%=(VQ L&, R);
3068    //        VQ L&       operator<<=(VQ L&, R);
3069    //        VQ L&       operator>>=(VQ L&, R);
3070    //        VQ L&       operator&=(VQ L&, R);
3071    //        VQ L&       operator^=(VQ L&, R);
3072    //        VQ L&       operator|=(VQ L&, R);
3073    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3074      for (unsigned Right = FirstPromotedIntegralType;
3075           Right < LastPromotedIntegralType; ++Right) {
3076        QualType ParamTypes[2];
3077        ParamTypes[1] = ArithmeticTypes[Right];
3078
3079        // Add this built-in operator as a candidate (VQ is empty).
3080        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3081        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3082
3083        // Add this built-in operator as a candidate (VQ is 'volatile').
3084        ParamTypes[0] = ArithmeticTypes[Left];
3085        ParamTypes[0].addVolatile();
3086        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3087        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3088      }
3089    }
3090    break;
3091
3092  case OO_Exclaim: {
3093    // C++ [over.operator]p23:
3094    //
3095    //   There also exist candidate operator functions of the form
3096    //
3097    //        bool        operator!(bool);
3098    //        bool        operator&&(bool, bool);     [BELOW]
3099    //        bool        operator||(bool, bool);     [BELOW]
3100    QualType ParamTy = Context.BoolTy;
3101    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3102                        /*IsAssignmentOperator=*/false,
3103                        /*NumContextualBoolArguments=*/1);
3104    break;
3105  }
3106
3107  case OO_AmpAmp:
3108  case OO_PipePipe: {
3109    // C++ [over.operator]p23:
3110    //
3111    //   There also exist candidate operator functions of the form
3112    //
3113    //        bool        operator!(bool);            [ABOVE]
3114    //        bool        operator&&(bool, bool);
3115    //        bool        operator||(bool, bool);
3116    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3117    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3118                        /*IsAssignmentOperator=*/false,
3119                        /*NumContextualBoolArguments=*/2);
3120    break;
3121  }
3122
3123  case OO_Subscript:
3124    // C++ [over.built]p13:
3125    //
3126    //   For every cv-qualified or cv-unqualified object type T there
3127    //   exist candidate operator functions of the form
3128    //
3129    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3130    //        T&         operator[](T*, ptrdiff_t);
3131    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3132    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3133    //        T&         operator[](ptrdiff_t, T*);
3134    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3135         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3136      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3137      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3138      QualType ResultTy = Context.getReferenceType(PointeeType);
3139
3140      // T& operator[](T*, ptrdiff_t)
3141      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3142
3143      // T& operator[](ptrdiff_t, T*);
3144      ParamTypes[0] = ParamTypes[1];
3145      ParamTypes[1] = *Ptr;
3146      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3147    }
3148    break;
3149
3150  case OO_ArrowStar:
3151    // FIXME: No support for pointer-to-members yet.
3152    break;
3153  }
3154}
3155
3156/// AddOverloadCandidates - Add all of the function overloads in Ovl
3157/// to the candidate set.
3158void
3159Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
3160                            Expr **Args, unsigned NumArgs,
3161                            OverloadCandidateSet& CandidateSet,
3162                            bool SuppressUserConversions)
3163{
3164  for (OverloadedFunctionDecl::function_const_iterator Func
3165         = Ovl->function_begin();
3166       Func != Ovl->function_end(); ++Func)
3167    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
3168                         SuppressUserConversions);
3169}
3170
3171/// isBetterOverloadCandidate - Determines whether the first overload
3172/// candidate is a better candidate than the second (C++ 13.3.3p1).
3173bool
3174Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3175                                const OverloadCandidate& Cand2)
3176{
3177  // Define viable functions to be better candidates than non-viable
3178  // functions.
3179  if (!Cand2.Viable)
3180    return Cand1.Viable;
3181  else if (!Cand1.Viable)
3182    return false;
3183
3184  // C++ [over.match.best]p1:
3185  //
3186  //   -- if F is a static member function, ICS1(F) is defined such
3187  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3188  //      any function G, and, symmetrically, ICS1(G) is neither
3189  //      better nor worse than ICS1(F).
3190  unsigned StartArg = 0;
3191  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3192    StartArg = 1;
3193
3194  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3195  // function than another viable function F2 if for all arguments i,
3196  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3197  // then...
3198  unsigned NumArgs = Cand1.Conversions.size();
3199  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3200  bool HasBetterConversion = false;
3201  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3202    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3203                                               Cand2.Conversions[ArgIdx])) {
3204    case ImplicitConversionSequence::Better:
3205      // Cand1 has a better conversion sequence.
3206      HasBetterConversion = true;
3207      break;
3208
3209    case ImplicitConversionSequence::Worse:
3210      // Cand1 can't be better than Cand2.
3211      return false;
3212
3213    case ImplicitConversionSequence::Indistinguishable:
3214      // Do nothing.
3215      break;
3216    }
3217  }
3218
3219  if (HasBetterConversion)
3220    return true;
3221
3222  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3223  // implemented, but they require template support.
3224
3225  // C++ [over.match.best]p1b4:
3226  //
3227  //   -- the context is an initialization by user-defined conversion
3228  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3229  //      from the return type of F1 to the destination type (i.e.,
3230  //      the type of the entity being initialized) is a better
3231  //      conversion sequence than the standard conversion sequence
3232  //      from the return type of F2 to the destination type.
3233  if (Cand1.Function && Cand2.Function &&
3234      isa<CXXConversionDecl>(Cand1.Function) &&
3235      isa<CXXConversionDecl>(Cand2.Function)) {
3236    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3237                                               Cand2.FinalConversion)) {
3238    case ImplicitConversionSequence::Better:
3239      // Cand1 has a better conversion sequence.
3240      return true;
3241
3242    case ImplicitConversionSequence::Worse:
3243      // Cand1 can't be better than Cand2.
3244      return false;
3245
3246    case ImplicitConversionSequence::Indistinguishable:
3247      // Do nothing
3248      break;
3249    }
3250  }
3251
3252  return false;
3253}
3254
3255/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3256/// within an overload candidate set. If overloading is successful,
3257/// the result will be OR_Success and Best will be set to point to the
3258/// best viable function within the candidate set. Otherwise, one of
3259/// several kinds of errors will be returned; see
3260/// Sema::OverloadingResult.
3261Sema::OverloadingResult
3262Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3263                         OverloadCandidateSet::iterator& Best)
3264{
3265  // Find the best viable function.
3266  Best = CandidateSet.end();
3267  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3268       Cand != CandidateSet.end(); ++Cand) {
3269    if (Cand->Viable) {
3270      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3271        Best = Cand;
3272    }
3273  }
3274
3275  // If we didn't find any viable functions, abort.
3276  if (Best == CandidateSet.end())
3277    return OR_No_Viable_Function;
3278
3279  // Make sure that this function is better than every other viable
3280  // function. If not, we have an ambiguity.
3281  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3282       Cand != CandidateSet.end(); ++Cand) {
3283    if (Cand->Viable &&
3284        Cand != Best &&
3285        !isBetterOverloadCandidate(*Best, *Cand)) {
3286      Best = CandidateSet.end();
3287      return OR_Ambiguous;
3288    }
3289  }
3290
3291  // Best is the best viable function.
3292  return OR_Success;
3293}
3294
3295/// PrintOverloadCandidates - When overload resolution fails, prints
3296/// diagnostic messages containing the candidates in the candidate
3297/// set. If OnlyViable is true, only viable candidates will be printed.
3298void
3299Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3300                              bool OnlyViable)
3301{
3302  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3303                             LastCand = CandidateSet.end();
3304  for (; Cand != LastCand; ++Cand) {
3305    if (Cand->Viable || !OnlyViable) {
3306      if (Cand->Function) {
3307        // Normal function
3308        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3309      } else if (Cand->IsSurrogate) {
3310        // Desugar the type of the surrogate down to a function type,
3311        // retaining as many typedefs as possible while still showing
3312        // the function type (and, therefore, its parameter types).
3313        QualType FnType = Cand->Surrogate->getConversionType();
3314        bool isReference = false;
3315        bool isPointer = false;
3316        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3317          FnType = FnTypeRef->getPointeeType();
3318          isReference = true;
3319        }
3320        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3321          FnType = FnTypePtr->getPointeeType();
3322          isPointer = true;
3323        }
3324        // Desugar down to a function type.
3325        FnType = QualType(FnType->getAsFunctionType(), 0);
3326        // Reconstruct the pointer/reference as appropriate.
3327        if (isPointer) FnType = Context.getPointerType(FnType);
3328        if (isReference) FnType = Context.getReferenceType(FnType);
3329
3330        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3331          << FnType;
3332      } else {
3333        // FIXME: We need to get the identifier in here
3334        // FIXME: Do we want the error message to point at the
3335        // operator? (built-ins won't have a location)
3336        QualType FnType
3337          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3338                                    Cand->BuiltinTypes.ParamTypes,
3339                                    Cand->Conversions.size(),
3340                                    false, 0);
3341
3342        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3343      }
3344    }
3345  }
3346}
3347
3348/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3349/// an overloaded function (C++ [over.over]), where @p From is an
3350/// expression with overloaded function type and @p ToType is the type
3351/// we're trying to resolve to. For example:
3352///
3353/// @code
3354/// int f(double);
3355/// int f(int);
3356///
3357/// int (*pfd)(double) = f; // selects f(double)
3358/// @endcode
3359///
3360/// This routine returns the resulting FunctionDecl if it could be
3361/// resolved, and NULL otherwise. When @p Complain is true, this
3362/// routine will emit diagnostics if there is an error.
3363FunctionDecl *
3364Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3365                                         bool Complain) {
3366  QualType FunctionType = ToType;
3367  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3368    FunctionType = ToTypePtr->getPointeeType();
3369
3370  // We only look at pointers or references to functions.
3371  if (!FunctionType->isFunctionType())
3372    return 0;
3373
3374  // Find the actual overloaded function declaration.
3375  OverloadedFunctionDecl *Ovl = 0;
3376
3377  // C++ [over.over]p1:
3378  //   [...] [Note: any redundant set of parentheses surrounding the
3379  //   overloaded function name is ignored (5.1). ]
3380  Expr *OvlExpr = From->IgnoreParens();
3381
3382  // C++ [over.over]p1:
3383  //   [...] The overloaded function name can be preceded by the &
3384  //   operator.
3385  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3386    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3387      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3388  }
3389
3390  // Try to dig out the overloaded function.
3391  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3392    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3393
3394  // If there's no overloaded function declaration, we're done.
3395  if (!Ovl)
3396    return 0;
3397
3398  // Look through all of the overloaded functions, searching for one
3399  // whose type matches exactly.
3400  // FIXME: When templates or using declarations come along, we'll actually
3401  // have to deal with duplicates, partial ordering, etc. For now, we
3402  // can just do a simple search.
3403  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3404  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3405       Fun != Ovl->function_end(); ++Fun) {
3406    // C++ [over.over]p3:
3407    //   Non-member functions and static member functions match
3408    //   targets of type “pointer-to-function”or
3409    //   “reference-to-function.”
3410    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3411      if (!Method->isStatic())
3412        continue;
3413
3414    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3415      return *Fun;
3416  }
3417
3418  return 0;
3419}
3420
3421/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3422/// (which eventually refers to the set of overloaded functions in
3423/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3424/// function call down to a specific function. If overload resolution
3425/// succeeds, returns the function declaration produced by overload
3426/// resolution. Otherwise, emits diagnostics, deletes all of the
3427/// arguments and Fn, and returns NULL.
3428FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3429                                            SourceLocation LParenLoc,
3430                                            Expr **Args, unsigned NumArgs,
3431                                            SourceLocation *CommaLocs,
3432                                            SourceLocation RParenLoc) {
3433  OverloadCandidateSet CandidateSet;
3434  AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3435  OverloadCandidateSet::iterator Best;
3436  switch (BestViableFunction(CandidateSet, Best)) {
3437  case OR_Success:
3438    return Best->Function;
3439
3440  case OR_No_Viable_Function:
3441    Diag(Fn->getSourceRange().getBegin(),
3442         diag::err_ovl_no_viable_function_in_call)
3443      << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3444      << Fn->getSourceRange();
3445    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3446    break;
3447
3448  case OR_Ambiguous:
3449    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3450      << Ovl->getDeclName() << Fn->getSourceRange();
3451    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3452    break;
3453  }
3454
3455  // Overload resolution failed. Destroy all of the subexpressions and
3456  // return NULL.
3457  Fn->Destroy(Context);
3458  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3459    Args[Arg]->Destroy(Context);
3460  return 0;
3461}
3462
3463/// BuildCallToMemberFunction - Build a call to a member
3464/// function. MemExpr is the expression that refers to the member
3465/// function (and includes the object parameter), Args/NumArgs are the
3466/// arguments to the function call (not including the object
3467/// parameter). The caller needs to validate that the member
3468/// expression refers to a member function or an overloaded member
3469/// function.
3470Sema::ExprResult
3471Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3472                                SourceLocation LParenLoc, Expr **Args,
3473                                unsigned NumArgs, SourceLocation *CommaLocs,
3474                                SourceLocation RParenLoc) {
3475  // Dig out the member expression. This holds both the object
3476  // argument and the member function we're referring to.
3477  MemberExpr *MemExpr = 0;
3478  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3479    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3480  else
3481    MemExpr = dyn_cast<MemberExpr>(MemExprE);
3482  assert(MemExpr && "Building member call without member expression");
3483
3484  // Extract the object argument.
3485  Expr *ObjectArg = MemExpr->getBase();
3486  if (MemExpr->isArrow())
3487    ObjectArg = new UnaryOperator(ObjectArg, UnaryOperator::Deref,
3488                      ObjectArg->getType()->getAsPointerType()->getPointeeType(),
3489                      SourceLocation());
3490  CXXMethodDecl *Method = 0;
3491  if (OverloadedFunctionDecl *Ovl
3492        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3493    // Add overload candidates
3494    OverloadCandidateSet CandidateSet;
3495    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3496                                                FuncEnd = Ovl->function_end();
3497         Func != FuncEnd; ++Func) {
3498      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3499      Method = cast<CXXMethodDecl>(*Func);
3500      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3501                         /*SuppressUserConversions=*/false);
3502    }
3503
3504    OverloadCandidateSet::iterator Best;
3505    switch (BestViableFunction(CandidateSet, Best)) {
3506    case OR_Success:
3507      Method = cast<CXXMethodDecl>(Best->Function);
3508      break;
3509
3510    case OR_No_Viable_Function:
3511      Diag(MemExpr->getSourceRange().getBegin(),
3512           diag::err_ovl_no_viable_member_function_in_call)
3513        << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3514        << MemExprE->getSourceRange();
3515      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3516      // FIXME: Leaking incoming expressions!
3517      return true;
3518
3519    case OR_Ambiguous:
3520      Diag(MemExpr->getSourceRange().getBegin(),
3521           diag::err_ovl_ambiguous_member_call)
3522        << Ovl->getDeclName() << MemExprE->getSourceRange();
3523      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3524      // FIXME: Leaking incoming expressions!
3525      return true;
3526    }
3527
3528    FixOverloadedFunctionReference(MemExpr, Method);
3529  } else {
3530    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3531  }
3532
3533  assert(Method && "Member call to something that isn't a method?");
3534  llvm::OwningPtr<CXXMemberCallExpr>
3535    TheCall(new CXXMemberCallExpr(MemExpr, Args, NumArgs,
3536                                  Method->getResultType().getNonReferenceType(),
3537                                  RParenLoc));
3538
3539  // Convert the object argument (for a non-static member function call).
3540  if (!Method->isStatic() &&
3541      PerformObjectArgumentInitialization(ObjectArg, Method))
3542    return true;
3543  MemExpr->setBase(ObjectArg);
3544
3545  // Convert the rest of the arguments
3546  const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType());
3547  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3548                              RParenLoc))
3549    return true;
3550
3551  return CheckFunctionCall(Method, TheCall.take()).release();
3552}
3553
3554/// BuildCallToObjectOfClassType - Build a call to an object of class
3555/// type (C++ [over.call.object]), which can end up invoking an
3556/// overloaded function call operator (@c operator()) or performing a
3557/// user-defined conversion on the object argument.
3558Sema::ExprResult
3559Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3560                                   SourceLocation LParenLoc,
3561                                   Expr **Args, unsigned NumArgs,
3562                                   SourceLocation *CommaLocs,
3563                                   SourceLocation RParenLoc) {
3564  assert(Object->getType()->isRecordType() && "Requires object type argument");
3565  const RecordType *Record = Object->getType()->getAsRecordType();
3566
3567  // C++ [over.call.object]p1:
3568  //  If the primary-expression E in the function call syntax
3569  //  evaluates to a class object of type “cv T”, then the set of
3570  //  candidate functions includes at least the function call
3571  //  operators of T. The function call operators of T are obtained by
3572  //  ordinary lookup of the name operator() in the context of
3573  //  (E).operator().
3574  OverloadCandidateSet CandidateSet;
3575  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3576  DeclContext::lookup_const_iterator Oper, OperEnd;
3577  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
3578       Oper != OperEnd; ++Oper)
3579    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3580                       CandidateSet, /*SuppressUserConversions=*/false);
3581
3582  // C++ [over.call.object]p2:
3583  //   In addition, for each conversion function declared in T of the
3584  //   form
3585  //
3586  //        operator conversion-type-id () cv-qualifier;
3587  //
3588  //   where cv-qualifier is the same cv-qualification as, or a
3589  //   greater cv-qualification than, cv, and where conversion-type-id
3590  //   denotes the type "pointer to function of (P1,...,Pn) returning
3591  //   R", or the type "reference to pointer to function of
3592  //   (P1,...,Pn) returning R", or the type "reference to function
3593  //   of (P1,...,Pn) returning R", a surrogate call function [...]
3594  //   is also considered as a candidate function. Similarly,
3595  //   surrogate call functions are added to the set of candidate
3596  //   functions for each conversion function declared in an
3597  //   accessible base class provided the function is not hidden
3598  //   within T by another intervening declaration.
3599  //
3600  // FIXME: Look in base classes for more conversion operators!
3601  OverloadedFunctionDecl *Conversions
3602    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
3603  for (OverloadedFunctionDecl::function_iterator
3604         Func = Conversions->function_begin(),
3605         FuncEnd = Conversions->function_end();
3606       Func != FuncEnd; ++Func) {
3607    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3608
3609    // Strip the reference type (if any) and then the pointer type (if
3610    // any) to get down to what might be a function type.
3611    QualType ConvType = Conv->getConversionType().getNonReferenceType();
3612    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3613      ConvType = ConvPtrType->getPointeeType();
3614
3615    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3616      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3617  }
3618
3619  // Perform overload resolution.
3620  OverloadCandidateSet::iterator Best;
3621  switch (BestViableFunction(CandidateSet, Best)) {
3622  case OR_Success:
3623    // Overload resolution succeeded; we'll build the appropriate call
3624    // below.
3625    break;
3626
3627  case OR_No_Viable_Function:
3628    Diag(Object->getSourceRange().getBegin(),
3629         diag::err_ovl_no_viable_object_call)
3630      << Object->getType() << (unsigned)CandidateSet.size()
3631      << Object->getSourceRange();
3632    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3633    break;
3634
3635  case OR_Ambiguous:
3636    Diag(Object->getSourceRange().getBegin(),
3637         diag::err_ovl_ambiguous_object_call)
3638      << Object->getType() << Object->getSourceRange();
3639    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3640    break;
3641  }
3642
3643  if (Best == CandidateSet.end()) {
3644    // We had an error; delete all of the subexpressions and return
3645    // the error.
3646    delete Object;
3647    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3648      delete Args[ArgIdx];
3649    return true;
3650  }
3651
3652  if (Best->Function == 0) {
3653    // Since there is no function declaration, this is one of the
3654    // surrogate candidates. Dig out the conversion function.
3655    CXXConversionDecl *Conv
3656      = cast<CXXConversionDecl>(
3657                         Best->Conversions[0].UserDefined.ConversionFunction);
3658
3659    // We selected one of the surrogate functions that converts the
3660    // object parameter to a function pointer. Perform the conversion
3661    // on the object argument, then let ActOnCallExpr finish the job.
3662    // FIXME: Represent the user-defined conversion in the AST!
3663    ImpCastExprToType(Object,
3664                      Conv->getConversionType().getNonReferenceType(),
3665                      Conv->getConversionType()->isReferenceType());
3666    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3667                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3668                         CommaLocs, RParenLoc).release();
3669  }
3670
3671  // We found an overloaded operator(). Build a CXXOperatorCallExpr
3672  // that calls this method, using Object for the implicit object
3673  // parameter and passing along the remaining arguments.
3674  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3675  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3676
3677  unsigned NumArgsInProto = Proto->getNumArgs();
3678  unsigned NumArgsToCheck = NumArgs;
3679
3680  // Build the full argument list for the method call (the
3681  // implicit object parameter is placed at the beginning of the
3682  // list).
3683  Expr **MethodArgs;
3684  if (NumArgs < NumArgsInProto) {
3685    NumArgsToCheck = NumArgsInProto;
3686    MethodArgs = new Expr*[NumArgsInProto + 1];
3687  } else {
3688    MethodArgs = new Expr*[NumArgs + 1];
3689  }
3690  MethodArgs[0] = Object;
3691  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3692    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3693
3694  Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3695                                SourceLocation());
3696  UsualUnaryConversions(NewFn);
3697
3698  // Once we've built TheCall, all of the expressions are properly
3699  // owned.
3700  QualType ResultTy = Method->getResultType().getNonReferenceType();
3701  llvm::OwningPtr<CXXOperatorCallExpr>
3702    TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3703                                    ResultTy, RParenLoc));
3704  delete [] MethodArgs;
3705
3706  // We may have default arguments. If so, we need to allocate more
3707  // slots in the call for them.
3708  if (NumArgs < NumArgsInProto)
3709    TheCall->setNumArgs(NumArgsInProto + 1);
3710  else if (NumArgs > NumArgsInProto)
3711    NumArgsToCheck = NumArgsInProto;
3712
3713  // Initialize the implicit object parameter.
3714  if (PerformObjectArgumentInitialization(Object, Method))
3715    return true;
3716  TheCall->setArg(0, Object);
3717
3718  // Check the argument types.
3719  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3720    Expr *Arg;
3721    if (i < NumArgs) {
3722      Arg = Args[i];
3723
3724      // Pass the argument.
3725      QualType ProtoArgType = Proto->getArgType(i);
3726      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3727        return true;
3728    } else {
3729      Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3730    }
3731
3732    TheCall->setArg(i + 1, Arg);
3733  }
3734
3735  // If this is a variadic call, handle args passed through "...".
3736  if (Proto->isVariadic()) {
3737    // Promote the arguments (C99 6.5.2.2p7).
3738    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3739      Expr *Arg = Args[i];
3740
3741      DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
3742      TheCall->setArg(i + 1, Arg);
3743    }
3744  }
3745
3746  return CheckFunctionCall(Method, TheCall.take()).release();
3747}
3748
3749/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3750///  (if one exists), where @c Base is an expression of class type and
3751/// @c Member is the name of the member we're trying to find.
3752Action::ExprResult
3753Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
3754                               SourceLocation MemberLoc,
3755                               IdentifierInfo &Member) {
3756  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3757
3758  // C++ [over.ref]p1:
3759  //
3760  //   [...] An expression x->m is interpreted as (x.operator->())->m
3761  //   for a class object x of type T if T::operator->() exists and if
3762  //   the operator is selected as the best match function by the
3763  //   overload resolution mechanism (13.3).
3764  // FIXME: look in base classes.
3765  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3766  OverloadCandidateSet CandidateSet;
3767  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3768
3769  DeclContext::lookup_const_iterator Oper, OperEnd;
3770  for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
3771       Oper != OperEnd; ++Oper)
3772    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
3773                       /*SuppressUserConversions=*/false);
3774
3775  llvm::OwningPtr<Expr> BasePtr(Base);
3776
3777  // Perform overload resolution.
3778  OverloadCandidateSet::iterator Best;
3779  switch (BestViableFunction(CandidateSet, Best)) {
3780  case OR_Success:
3781    // Overload resolution succeeded; we'll build the call below.
3782    break;
3783
3784  case OR_No_Viable_Function:
3785    if (CandidateSet.empty())
3786      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
3787        << BasePtr->getType() << BasePtr->getSourceRange();
3788    else
3789      Diag(OpLoc, diag::err_ovl_no_viable_oper)
3790        << "operator->" << (unsigned)CandidateSet.size()
3791        << BasePtr->getSourceRange();
3792    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3793    return true;
3794
3795  case OR_Ambiguous:
3796    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3797      << "operator->" << BasePtr->getSourceRange();
3798    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3799    return true;
3800  }
3801
3802  // Convert the object parameter.
3803  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3804  if (PerformObjectArgumentInitialization(Base, Method))
3805    return true;
3806
3807  // No concerns about early exits now.
3808  BasePtr.take();
3809
3810  // Build the operator call.
3811  Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3812  UsualUnaryConversions(FnExpr);
3813  Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3814                                 Method->getResultType().getNonReferenceType(),
3815                                 OpLoc);
3816  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
3817                                  MemberLoc, Member).release();
3818}
3819
3820/// FixOverloadedFunctionReference - E is an expression that refers to
3821/// a C++ overloaded function (possibly with some parentheses and
3822/// perhaps a '&' around it). We have resolved the overloaded function
3823/// to the function declaration Fn, so patch up the expression E to
3824/// refer (possibly indirectly) to Fn.
3825void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3826  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3827    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3828    E->setType(PE->getSubExpr()->getType());
3829  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3830    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3831           "Can only take the address of an overloaded function");
3832    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3833    E->setType(Context.getPointerType(E->getType()));
3834  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3835    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3836           "Expected overloaded function");
3837    DR->setDecl(Fn);
3838    E->setType(Fn->getType());
3839  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
3840    MemExpr->setMemberDecl(Fn);
3841    E->setType(Fn->getType());
3842  } else {
3843    assert(false && "Invalid reference to overloaded function");
3844  }
3845}
3846
3847} // end namespace clang
3848