SemaOverload.cpp revision 3aa8140bde5b9bedf13e46ec0a668daa54814196
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation()) {
42  ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc));
43  E = S.DefaultFunctionArrayConversion(E.take());
44  if (E.isInvalid())
45    return ExprError();
46  return move(E);
47}
48
49static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
50                                 bool InOverloadResolution,
51                                 StandardConversionSequence &SCS,
52                                 bool CStyle);
53
54static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
55                                                 QualType &ToType,
56                                                 bool InOverloadResolution,
57                                                 StandardConversionSequence &SCS,
58                                                 bool CStyle);
59static OverloadingResult
60IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
61                        UserDefinedConversionSequence& User,
62                        OverloadCandidateSet& Conversions,
63                        bool AllowExplicit);
64
65
66static ImplicitConversionSequence::CompareKind
67CompareStandardConversionSequences(Sema &S,
68                                   const StandardConversionSequence& SCS1,
69                                   const StandardConversionSequence& SCS2);
70
71static ImplicitConversionSequence::CompareKind
72CompareQualificationConversions(Sema &S,
73                                const StandardConversionSequence& SCS1,
74                                const StandardConversionSequence& SCS2);
75
76static ImplicitConversionSequence::CompareKind
77CompareDerivedToBaseConversions(Sema &S,
78                                const StandardConversionSequence& SCS1,
79                                const StandardConversionSequence& SCS2);
80
81
82
83/// GetConversionCategory - Retrieve the implicit conversion
84/// category corresponding to the given implicit conversion kind.
85ImplicitConversionCategory
86GetConversionCategory(ImplicitConversionKind Kind) {
87  static const ImplicitConversionCategory
88    Category[(int)ICK_Num_Conversion_Kinds] = {
89    ICC_Identity,
90    ICC_Lvalue_Transformation,
91    ICC_Lvalue_Transformation,
92    ICC_Lvalue_Transformation,
93    ICC_Identity,
94    ICC_Qualification_Adjustment,
95    ICC_Promotion,
96    ICC_Promotion,
97    ICC_Promotion,
98    ICC_Conversion,
99    ICC_Conversion,
100    ICC_Conversion,
101    ICC_Conversion,
102    ICC_Conversion,
103    ICC_Conversion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion
110  };
111  return Category[(int)Kind];
112}
113
114/// GetConversionRank - Retrieve the implicit conversion rank
115/// corresponding to the given implicit conversion kind.
116ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
117  static const ImplicitConversionRank
118    Rank[(int)ICK_Num_Conversion_Kinds] = {
119    ICR_Exact_Match,
120    ICR_Exact_Match,
121    ICR_Exact_Match,
122    ICR_Exact_Match,
123    ICR_Exact_Match,
124    ICR_Exact_Match,
125    ICR_Promotion,
126    ICR_Promotion,
127    ICR_Promotion,
128    ICR_Conversion,
129    ICR_Conversion,
130    ICR_Conversion,
131    ICR_Conversion,
132    ICR_Conversion,
133    ICR_Conversion,
134    ICR_Conversion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Complex_Real_Conversion,
140    ICR_Conversion,
141    ICR_Conversion
142  };
143  return Rank[(int)Kind];
144}
145
146/// GetImplicitConversionName - Return the name of this kind of
147/// implicit conversion.
148const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
149  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
150    "No conversion",
151    "Lvalue-to-rvalue",
152    "Array-to-pointer",
153    "Function-to-pointer",
154    "Noreturn adjustment",
155    "Qualification",
156    "Integral promotion",
157    "Floating point promotion",
158    "Complex promotion",
159    "Integral conversion",
160    "Floating conversion",
161    "Complex conversion",
162    "Floating-integral conversion",
163    "Pointer conversion",
164    "Pointer-to-member conversion",
165    "Boolean conversion",
166    "Compatible-types conversion",
167    "Derived-to-base conversion",
168    "Vector conversion",
169    "Vector splat",
170    "Complex-real conversion",
171    "Block Pointer conversion",
172    "Transparent Union Conversion"
173  };
174  return Name[Kind];
175}
176
177/// StandardConversionSequence - Set the standard conversion
178/// sequence to the identity conversion.
179void StandardConversionSequence::setAsIdentityConversion() {
180  First = ICK_Identity;
181  Second = ICK_Identity;
182  Third = ICK_Identity;
183  DeprecatedStringLiteralToCharPtr = false;
184  ReferenceBinding = false;
185  DirectBinding = false;
186  IsLvalueReference = true;
187  BindsToFunctionLvalue = false;
188  BindsToRvalue = false;
189  BindsImplicitObjectArgumentWithoutRefQualifier = false;
190  CopyConstructor = 0;
191}
192
193/// getRank - Retrieve the rank of this standard conversion sequence
194/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
195/// implicit conversions.
196ImplicitConversionRank StandardConversionSequence::getRank() const {
197  ImplicitConversionRank Rank = ICR_Exact_Match;
198  if  (GetConversionRank(First) > Rank)
199    Rank = GetConversionRank(First);
200  if  (GetConversionRank(Second) > Rank)
201    Rank = GetConversionRank(Second);
202  if  (GetConversionRank(Third) > Rank)
203    Rank = GetConversionRank(Third);
204  return Rank;
205}
206
207/// isPointerConversionToBool - Determines whether this conversion is
208/// a conversion of a pointer or pointer-to-member to bool. This is
209/// used as part of the ranking of standard conversion sequences
210/// (C++ 13.3.3.2p4).
211bool StandardConversionSequence::isPointerConversionToBool() const {
212  // Note that FromType has not necessarily been transformed by the
213  // array-to-pointer or function-to-pointer implicit conversions, so
214  // check for their presence as well as checking whether FromType is
215  // a pointer.
216  if (getToType(1)->isBooleanType() &&
217      (getFromType()->isPointerType() ||
218       getFromType()->isObjCObjectPointerType() ||
219       getFromType()->isBlockPointerType() ||
220       getFromType()->isNullPtrType() ||
221       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
222    return true;
223
224  return false;
225}
226
227/// isPointerConversionToVoidPointer - Determines whether this
228/// conversion is a conversion of a pointer to a void pointer. This is
229/// used as part of the ranking of standard conversion sequences (C++
230/// 13.3.3.2p4).
231bool
232StandardConversionSequence::
233isPointerConversionToVoidPointer(ASTContext& Context) const {
234  QualType FromType = getFromType();
235  QualType ToType = getToType(1);
236
237  // Note that FromType has not necessarily been transformed by the
238  // array-to-pointer implicit conversion, so check for its presence
239  // and redo the conversion to get a pointer.
240  if (First == ICK_Array_To_Pointer)
241    FromType = Context.getArrayDecayedType(FromType);
242
243  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
244    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
245      return ToPtrType->getPointeeType()->isVoidType();
246
247  return false;
248}
249
250/// DebugPrint - Print this standard conversion sequence to standard
251/// error. Useful for debugging overloading issues.
252void StandardConversionSequence::DebugPrint() const {
253  llvm::raw_ostream &OS = llvm::errs();
254  bool PrintedSomething = false;
255  if (First != ICK_Identity) {
256    OS << GetImplicitConversionName(First);
257    PrintedSomething = true;
258  }
259
260  if (Second != ICK_Identity) {
261    if (PrintedSomething) {
262      OS << " -> ";
263    }
264    OS << GetImplicitConversionName(Second);
265
266    if (CopyConstructor) {
267      OS << " (by copy constructor)";
268    } else if (DirectBinding) {
269      OS << " (direct reference binding)";
270    } else if (ReferenceBinding) {
271      OS << " (reference binding)";
272    }
273    PrintedSomething = true;
274  }
275
276  if (Third != ICK_Identity) {
277    if (PrintedSomething) {
278      OS << " -> ";
279    }
280    OS << GetImplicitConversionName(Third);
281    PrintedSomething = true;
282  }
283
284  if (!PrintedSomething) {
285    OS << "No conversions required";
286  }
287}
288
289/// DebugPrint - Print this user-defined conversion sequence to standard
290/// error. Useful for debugging overloading issues.
291void UserDefinedConversionSequence::DebugPrint() const {
292  llvm::raw_ostream &OS = llvm::errs();
293  if (Before.First || Before.Second || Before.Third) {
294    Before.DebugPrint();
295    OS << " -> ";
296  }
297  OS << '\'' << ConversionFunction << '\'';
298  if (After.First || After.Second || After.Third) {
299    OS << " -> ";
300    After.DebugPrint();
301  }
302}
303
304/// DebugPrint - Print this implicit conversion sequence to standard
305/// error. Useful for debugging overloading issues.
306void ImplicitConversionSequence::DebugPrint() const {
307  llvm::raw_ostream &OS = llvm::errs();
308  switch (ConversionKind) {
309  case StandardConversion:
310    OS << "Standard conversion: ";
311    Standard.DebugPrint();
312    break;
313  case UserDefinedConversion:
314    OS << "User-defined conversion: ";
315    UserDefined.DebugPrint();
316    break;
317  case EllipsisConversion:
318    OS << "Ellipsis conversion";
319    break;
320  case AmbiguousConversion:
321    OS << "Ambiguous conversion";
322    break;
323  case BadConversion:
324    OS << "Bad conversion";
325    break;
326  }
327
328  OS << "\n";
329}
330
331void AmbiguousConversionSequence::construct() {
332  new (&conversions()) ConversionSet();
333}
334
335void AmbiguousConversionSequence::destruct() {
336  conversions().~ConversionSet();
337}
338
339void
340AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
341  FromTypePtr = O.FromTypePtr;
342  ToTypePtr = O.ToTypePtr;
343  new (&conversions()) ConversionSet(O.conversions());
344}
345
346namespace {
347  // Structure used by OverloadCandidate::DeductionFailureInfo to store
348  // template parameter and template argument information.
349  struct DFIParamWithArguments {
350    TemplateParameter Param;
351    TemplateArgument FirstArg;
352    TemplateArgument SecondArg;
353  };
354}
355
356/// \brief Convert from Sema's representation of template deduction information
357/// to the form used in overload-candidate information.
358OverloadCandidate::DeductionFailureInfo
359static MakeDeductionFailureInfo(ASTContext &Context,
360                                Sema::TemplateDeductionResult TDK,
361                                TemplateDeductionInfo &Info) {
362  OverloadCandidate::DeductionFailureInfo Result;
363  Result.Result = static_cast<unsigned>(TDK);
364  Result.Data = 0;
365  switch (TDK) {
366  case Sema::TDK_Success:
367  case Sema::TDK_InstantiationDepth:
368  case Sema::TDK_TooManyArguments:
369  case Sema::TDK_TooFewArguments:
370    break;
371
372  case Sema::TDK_Incomplete:
373  case Sema::TDK_InvalidExplicitArguments:
374    Result.Data = Info.Param.getOpaqueValue();
375    break;
376
377  case Sema::TDK_Inconsistent:
378  case Sema::TDK_Underqualified: {
379    // FIXME: Should allocate from normal heap so that we can free this later.
380    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
381    Saved->Param = Info.Param;
382    Saved->FirstArg = Info.FirstArg;
383    Saved->SecondArg = Info.SecondArg;
384    Result.Data = Saved;
385    break;
386  }
387
388  case Sema::TDK_SubstitutionFailure:
389    Result.Data = Info.take();
390    break;
391
392  case Sema::TDK_NonDeducedMismatch:
393  case Sema::TDK_FailedOverloadResolution:
394    break;
395  }
396
397  return Result;
398}
399
400void OverloadCandidate::DeductionFailureInfo::Destroy() {
401  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
402  case Sema::TDK_Success:
403  case Sema::TDK_InstantiationDepth:
404  case Sema::TDK_Incomplete:
405  case Sema::TDK_TooManyArguments:
406  case Sema::TDK_TooFewArguments:
407  case Sema::TDK_InvalidExplicitArguments:
408    break;
409
410  case Sema::TDK_Inconsistent:
411  case Sema::TDK_Underqualified:
412    // FIXME: Destroy the data?
413    Data = 0;
414    break;
415
416  case Sema::TDK_SubstitutionFailure:
417    // FIXME: Destroy the template arugment list?
418    Data = 0;
419    break;
420
421  // Unhandled
422  case Sema::TDK_NonDeducedMismatch:
423  case Sema::TDK_FailedOverloadResolution:
424    break;
425  }
426}
427
428TemplateParameter
429OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
430  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
431  case Sema::TDK_Success:
432  case Sema::TDK_InstantiationDepth:
433  case Sema::TDK_TooManyArguments:
434  case Sema::TDK_TooFewArguments:
435  case Sema::TDK_SubstitutionFailure:
436    return TemplateParameter();
437
438  case Sema::TDK_Incomplete:
439  case Sema::TDK_InvalidExplicitArguments:
440    return TemplateParameter::getFromOpaqueValue(Data);
441
442  case Sema::TDK_Inconsistent:
443  case Sema::TDK_Underqualified:
444    return static_cast<DFIParamWithArguments*>(Data)->Param;
445
446  // Unhandled
447  case Sema::TDK_NonDeducedMismatch:
448  case Sema::TDK_FailedOverloadResolution:
449    break;
450  }
451
452  return TemplateParameter();
453}
454
455TemplateArgumentList *
456OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
457  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
458    case Sema::TDK_Success:
459    case Sema::TDK_InstantiationDepth:
460    case Sema::TDK_TooManyArguments:
461    case Sema::TDK_TooFewArguments:
462    case Sema::TDK_Incomplete:
463    case Sema::TDK_InvalidExplicitArguments:
464    case Sema::TDK_Inconsistent:
465    case Sema::TDK_Underqualified:
466      return 0;
467
468    case Sema::TDK_SubstitutionFailure:
469      return static_cast<TemplateArgumentList*>(Data);
470
471    // Unhandled
472    case Sema::TDK_NonDeducedMismatch:
473    case Sema::TDK_FailedOverloadResolution:
474      break;
475  }
476
477  return 0;
478}
479
480const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
481  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
482  case Sema::TDK_Success:
483  case Sema::TDK_InstantiationDepth:
484  case Sema::TDK_Incomplete:
485  case Sema::TDK_TooManyArguments:
486  case Sema::TDK_TooFewArguments:
487  case Sema::TDK_InvalidExplicitArguments:
488  case Sema::TDK_SubstitutionFailure:
489    return 0;
490
491  case Sema::TDK_Inconsistent:
492  case Sema::TDK_Underqualified:
493    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
494
495  // Unhandled
496  case Sema::TDK_NonDeducedMismatch:
497  case Sema::TDK_FailedOverloadResolution:
498    break;
499  }
500
501  return 0;
502}
503
504const TemplateArgument *
505OverloadCandidate::DeductionFailureInfo::getSecondArg() {
506  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
507  case Sema::TDK_Success:
508  case Sema::TDK_InstantiationDepth:
509  case Sema::TDK_Incomplete:
510  case Sema::TDK_TooManyArguments:
511  case Sema::TDK_TooFewArguments:
512  case Sema::TDK_InvalidExplicitArguments:
513  case Sema::TDK_SubstitutionFailure:
514    return 0;
515
516  case Sema::TDK_Inconsistent:
517  case Sema::TDK_Underqualified:
518    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
519
520  // Unhandled
521  case Sema::TDK_NonDeducedMismatch:
522  case Sema::TDK_FailedOverloadResolution:
523    break;
524  }
525
526  return 0;
527}
528
529void OverloadCandidateSet::clear() {
530  inherited::clear();
531  Functions.clear();
532}
533
534// IsOverload - Determine whether the given New declaration is an
535// overload of the declarations in Old. This routine returns false if
536// New and Old cannot be overloaded, e.g., if New has the same
537// signature as some function in Old (C++ 1.3.10) or if the Old
538// declarations aren't functions (or function templates) at all. When
539// it does return false, MatchedDecl will point to the decl that New
540// cannot be overloaded with.  This decl may be a UsingShadowDecl on
541// top of the underlying declaration.
542//
543// Example: Given the following input:
544//
545//   void f(int, float); // #1
546//   void f(int, int); // #2
547//   int f(int, int); // #3
548//
549// When we process #1, there is no previous declaration of "f",
550// so IsOverload will not be used.
551//
552// When we process #2, Old contains only the FunctionDecl for #1.  By
553// comparing the parameter types, we see that #1 and #2 are overloaded
554// (since they have different signatures), so this routine returns
555// false; MatchedDecl is unchanged.
556//
557// When we process #3, Old is an overload set containing #1 and #2. We
558// compare the signatures of #3 to #1 (they're overloaded, so we do
559// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
560// identical (return types of functions are not part of the
561// signature), IsOverload returns false and MatchedDecl will be set to
562// point to the FunctionDecl for #2.
563//
564// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
565// into a class by a using declaration.  The rules for whether to hide
566// shadow declarations ignore some properties which otherwise figure
567// into a function template's signature.
568Sema::OverloadKind
569Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
570                    NamedDecl *&Match, bool NewIsUsingDecl) {
571  for (LookupResult::iterator I = Old.begin(), E = Old.end();
572         I != E; ++I) {
573    NamedDecl *OldD = *I;
574
575    bool OldIsUsingDecl = false;
576    if (isa<UsingShadowDecl>(OldD)) {
577      OldIsUsingDecl = true;
578
579      // We can always introduce two using declarations into the same
580      // context, even if they have identical signatures.
581      if (NewIsUsingDecl) continue;
582
583      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
584    }
585
586    // If either declaration was introduced by a using declaration,
587    // we'll need to use slightly different rules for matching.
588    // Essentially, these rules are the normal rules, except that
589    // function templates hide function templates with different
590    // return types or template parameter lists.
591    bool UseMemberUsingDeclRules =
592      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
593
594    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
595      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
596        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
597          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
598          continue;
599        }
600
601        Match = *I;
602        return Ovl_Match;
603      }
604    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
605      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
606        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
607          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
608          continue;
609        }
610
611        Match = *I;
612        return Ovl_Match;
613      }
614    } else if (isa<UsingDecl>(OldD)) {
615      // We can overload with these, which can show up when doing
616      // redeclaration checks for UsingDecls.
617      assert(Old.getLookupKind() == LookupUsingDeclName);
618    } else if (isa<TagDecl>(OldD)) {
619      // We can always overload with tags by hiding them.
620    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
621      // Optimistically assume that an unresolved using decl will
622      // overload; if it doesn't, we'll have to diagnose during
623      // template instantiation.
624    } else {
625      // (C++ 13p1):
626      //   Only function declarations can be overloaded; object and type
627      //   declarations cannot be overloaded.
628      Match = *I;
629      return Ovl_NonFunction;
630    }
631  }
632
633  return Ovl_Overload;
634}
635
636bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
637                      bool UseUsingDeclRules) {
638  // If both of the functions are extern "C", then they are not
639  // overloads.
640  if (Old->isExternC() && New->isExternC())
641    return false;
642
643  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
644  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
645
646  // C++ [temp.fct]p2:
647  //   A function template can be overloaded with other function templates
648  //   and with normal (non-template) functions.
649  if ((OldTemplate == 0) != (NewTemplate == 0))
650    return true;
651
652  // Is the function New an overload of the function Old?
653  QualType OldQType = Context.getCanonicalType(Old->getType());
654  QualType NewQType = Context.getCanonicalType(New->getType());
655
656  // Compare the signatures (C++ 1.3.10) of the two functions to
657  // determine whether they are overloads. If we find any mismatch
658  // in the signature, they are overloads.
659
660  // If either of these functions is a K&R-style function (no
661  // prototype), then we consider them to have matching signatures.
662  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
663      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
664    return false;
665
666  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
667  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
668
669  // The signature of a function includes the types of its
670  // parameters (C++ 1.3.10), which includes the presence or absence
671  // of the ellipsis; see C++ DR 357).
672  if (OldQType != NewQType &&
673      (OldType->getNumArgs() != NewType->getNumArgs() ||
674       OldType->isVariadic() != NewType->isVariadic() ||
675       !FunctionArgTypesAreEqual(OldType, NewType)))
676    return true;
677
678  // C++ [temp.over.link]p4:
679  //   The signature of a function template consists of its function
680  //   signature, its return type and its template parameter list. The names
681  //   of the template parameters are significant only for establishing the
682  //   relationship between the template parameters and the rest of the
683  //   signature.
684  //
685  // We check the return type and template parameter lists for function
686  // templates first; the remaining checks follow.
687  //
688  // However, we don't consider either of these when deciding whether
689  // a member introduced by a shadow declaration is hidden.
690  if (!UseUsingDeclRules && NewTemplate &&
691      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
692                                       OldTemplate->getTemplateParameters(),
693                                       false, TPL_TemplateMatch) ||
694       OldType->getResultType() != NewType->getResultType()))
695    return true;
696
697  // If the function is a class member, its signature includes the
698  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
699  //
700  // As part of this, also check whether one of the member functions
701  // is static, in which case they are not overloads (C++
702  // 13.1p2). While not part of the definition of the signature,
703  // this check is important to determine whether these functions
704  // can be overloaded.
705  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
706  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
707  if (OldMethod && NewMethod &&
708      !OldMethod->isStatic() && !NewMethod->isStatic() &&
709      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
710       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
711    if (!UseUsingDeclRules &&
712        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
713        (OldMethod->getRefQualifier() == RQ_None ||
714         NewMethod->getRefQualifier() == RQ_None)) {
715      // C++0x [over.load]p2:
716      //   - Member function declarations with the same name and the same
717      //     parameter-type-list as well as member function template
718      //     declarations with the same name, the same parameter-type-list, and
719      //     the same template parameter lists cannot be overloaded if any of
720      //     them, but not all, have a ref-qualifier (8.3.5).
721      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
722        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
723      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
724    }
725
726    return true;
727  }
728
729  // The signatures match; this is not an overload.
730  return false;
731}
732
733/// TryImplicitConversion - Attempt to perform an implicit conversion
734/// from the given expression (Expr) to the given type (ToType). This
735/// function returns an implicit conversion sequence that can be used
736/// to perform the initialization. Given
737///
738///   void f(float f);
739///   void g(int i) { f(i); }
740///
741/// this routine would produce an implicit conversion sequence to
742/// describe the initialization of f from i, which will be a standard
743/// conversion sequence containing an lvalue-to-rvalue conversion (C++
744/// 4.1) followed by a floating-integral conversion (C++ 4.9).
745//
746/// Note that this routine only determines how the conversion can be
747/// performed; it does not actually perform the conversion. As such,
748/// it will not produce any diagnostics if no conversion is available,
749/// but will instead return an implicit conversion sequence of kind
750/// "BadConversion".
751///
752/// If @p SuppressUserConversions, then user-defined conversions are
753/// not permitted.
754/// If @p AllowExplicit, then explicit user-defined conversions are
755/// permitted.
756static ImplicitConversionSequence
757TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
758                      bool SuppressUserConversions,
759                      bool AllowExplicit,
760                      bool InOverloadResolution,
761                      bool CStyle) {
762  ImplicitConversionSequence ICS;
763  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
764                           ICS.Standard, CStyle)) {
765    ICS.setStandard();
766    return ICS;
767  }
768
769  if (!S.getLangOptions().CPlusPlus) {
770    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
771    return ICS;
772  }
773
774  // C++ [over.ics.user]p4:
775  //   A conversion of an expression of class type to the same class
776  //   type is given Exact Match rank, and a conversion of an
777  //   expression of class type to a base class of that type is
778  //   given Conversion rank, in spite of the fact that a copy/move
779  //   constructor (i.e., a user-defined conversion function) is
780  //   called for those cases.
781  QualType FromType = From->getType();
782  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
783      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
784       S.IsDerivedFrom(FromType, ToType))) {
785    ICS.setStandard();
786    ICS.Standard.setAsIdentityConversion();
787    ICS.Standard.setFromType(FromType);
788    ICS.Standard.setAllToTypes(ToType);
789
790    // We don't actually check at this point whether there is a valid
791    // copy/move constructor, since overloading just assumes that it
792    // exists. When we actually perform initialization, we'll find the
793    // appropriate constructor to copy the returned object, if needed.
794    ICS.Standard.CopyConstructor = 0;
795
796    // Determine whether this is considered a derived-to-base conversion.
797    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
798      ICS.Standard.Second = ICK_Derived_To_Base;
799
800    return ICS;
801  }
802
803  if (SuppressUserConversions) {
804    // We're not in the case above, so there is no conversion that
805    // we can perform.
806    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
807    return ICS;
808  }
809
810  // Attempt user-defined conversion.
811  OverloadCandidateSet Conversions(From->getExprLoc());
812  OverloadingResult UserDefResult
813    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
814                              AllowExplicit);
815
816  if (UserDefResult == OR_Success) {
817    ICS.setUserDefined();
818    // C++ [over.ics.user]p4:
819    //   A conversion of an expression of class type to the same class
820    //   type is given Exact Match rank, and a conversion of an
821    //   expression of class type to a base class of that type is
822    //   given Conversion rank, in spite of the fact that a copy
823    //   constructor (i.e., a user-defined conversion function) is
824    //   called for those cases.
825    if (CXXConstructorDecl *Constructor
826          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
827      QualType FromCanon
828        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
829      QualType ToCanon
830        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
831      if (Constructor->isCopyConstructor() &&
832          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
833        // Turn this into a "standard" conversion sequence, so that it
834        // gets ranked with standard conversion sequences.
835        ICS.setStandard();
836        ICS.Standard.setAsIdentityConversion();
837        ICS.Standard.setFromType(From->getType());
838        ICS.Standard.setAllToTypes(ToType);
839        ICS.Standard.CopyConstructor = Constructor;
840        if (ToCanon != FromCanon)
841          ICS.Standard.Second = ICK_Derived_To_Base;
842      }
843    }
844
845    // C++ [over.best.ics]p4:
846    //   However, when considering the argument of a user-defined
847    //   conversion function that is a candidate by 13.3.1.3 when
848    //   invoked for the copying of the temporary in the second step
849    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
850    //   13.3.1.6 in all cases, only standard conversion sequences and
851    //   ellipsis conversion sequences are allowed.
852    if (SuppressUserConversions && ICS.isUserDefined()) {
853      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
854    }
855  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
856    ICS.setAmbiguous();
857    ICS.Ambiguous.setFromType(From->getType());
858    ICS.Ambiguous.setToType(ToType);
859    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
860         Cand != Conversions.end(); ++Cand)
861      if (Cand->Viable)
862        ICS.Ambiguous.addConversion(Cand->Function);
863  } else {
864    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
865  }
866
867  return ICS;
868}
869
870bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
871                                 const InitializedEntity &Entity,
872                                 Expr *Initializer,
873                                 bool SuppressUserConversions,
874                                 bool AllowExplicitConversions,
875                                 bool InOverloadResolution,
876                                 bool CStyle) {
877  ImplicitConversionSequence ICS
878    = clang::TryImplicitConversion(*this, Initializer, Entity.getType(),
879                                   SuppressUserConversions,
880                                   AllowExplicitConversions,
881                                   InOverloadResolution,
882                                   CStyle);
883  if (ICS.isBad()) return true;
884
885  // Perform the actual conversion.
886  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
887  return false;
888}
889
890/// PerformImplicitConversion - Perform an implicit conversion of the
891/// expression From to the type ToType. Returns the
892/// converted expression. Flavor is the kind of conversion we're
893/// performing, used in the error message. If @p AllowExplicit,
894/// explicit user-defined conversions are permitted.
895ExprResult
896Sema::PerformImplicitConversion(Expr *From, QualType ToType,
897                                AssignmentAction Action, bool AllowExplicit) {
898  ImplicitConversionSequence ICS;
899  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
900}
901
902ExprResult
903Sema::PerformImplicitConversion(Expr *From, QualType ToType,
904                                AssignmentAction Action, bool AllowExplicit,
905                                ImplicitConversionSequence& ICS) {
906  ICS = clang::TryImplicitConversion(*this, From, ToType,
907                                     /*SuppressUserConversions=*/false,
908                                     AllowExplicit,
909                                     /*InOverloadResolution=*/false,
910                                     /*CStyle=*/false);
911  return PerformImplicitConversion(From, ToType, ICS, Action);
912}
913
914/// \brief Determine whether the conversion from FromType to ToType is a valid
915/// conversion that strips "noreturn" off the nested function type.
916static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
917                                 QualType ToType, QualType &ResultTy) {
918  if (Context.hasSameUnqualifiedType(FromType, ToType))
919    return false;
920
921  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
922  // where F adds one of the following at most once:
923  //   - a pointer
924  //   - a member pointer
925  //   - a block pointer
926  CanQualType CanTo = Context.getCanonicalType(ToType);
927  CanQualType CanFrom = Context.getCanonicalType(FromType);
928  Type::TypeClass TyClass = CanTo->getTypeClass();
929  if (TyClass != CanFrom->getTypeClass()) return false;
930  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
931    if (TyClass == Type::Pointer) {
932      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
933      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
934    } else if (TyClass == Type::BlockPointer) {
935      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
936      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
937    } else if (TyClass == Type::MemberPointer) {
938      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
939      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
940    } else {
941      return false;
942    }
943
944    TyClass = CanTo->getTypeClass();
945    if (TyClass != CanFrom->getTypeClass()) return false;
946    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
947      return false;
948  }
949
950  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
951  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
952  if (!EInfo.getNoReturn()) return false;
953
954  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
955  assert(QualType(FromFn, 0).isCanonical());
956  if (QualType(FromFn, 0) != CanTo) return false;
957
958  ResultTy = ToType;
959  return true;
960}
961
962/// \brief Determine whether the conversion from FromType to ToType is a valid
963/// vector conversion.
964///
965/// \param ICK Will be set to the vector conversion kind, if this is a vector
966/// conversion.
967static bool IsVectorConversion(ASTContext &Context, QualType FromType,
968                               QualType ToType, ImplicitConversionKind &ICK) {
969  // We need at least one of these types to be a vector type to have a vector
970  // conversion.
971  if (!ToType->isVectorType() && !FromType->isVectorType())
972    return false;
973
974  // Identical types require no conversions.
975  if (Context.hasSameUnqualifiedType(FromType, ToType))
976    return false;
977
978  // There are no conversions between extended vector types, only identity.
979  if (ToType->isExtVectorType()) {
980    // There are no conversions between extended vector types other than the
981    // identity conversion.
982    if (FromType->isExtVectorType())
983      return false;
984
985    // Vector splat from any arithmetic type to a vector.
986    if (FromType->isArithmeticType()) {
987      ICK = ICK_Vector_Splat;
988      return true;
989    }
990  }
991
992  // We can perform the conversion between vector types in the following cases:
993  // 1)vector types are equivalent AltiVec and GCC vector types
994  // 2)lax vector conversions are permitted and the vector types are of the
995  //   same size
996  if (ToType->isVectorType() && FromType->isVectorType()) {
997    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
998        (Context.getLangOptions().LaxVectorConversions &&
999         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1000      ICK = ICK_Vector_Conversion;
1001      return true;
1002    }
1003  }
1004
1005  return false;
1006}
1007
1008/// IsStandardConversion - Determines whether there is a standard
1009/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1010/// expression From to the type ToType. Standard conversion sequences
1011/// only consider non-class types; for conversions that involve class
1012/// types, use TryImplicitConversion. If a conversion exists, SCS will
1013/// contain the standard conversion sequence required to perform this
1014/// conversion and this routine will return true. Otherwise, this
1015/// routine will return false and the value of SCS is unspecified.
1016static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1017                                 bool InOverloadResolution,
1018                                 StandardConversionSequence &SCS,
1019                                 bool CStyle) {
1020  QualType FromType = From->getType();
1021
1022  // Standard conversions (C++ [conv])
1023  SCS.setAsIdentityConversion();
1024  SCS.DeprecatedStringLiteralToCharPtr = false;
1025  SCS.IncompatibleObjC = false;
1026  SCS.setFromType(FromType);
1027  SCS.CopyConstructor = 0;
1028
1029  // There are no standard conversions for class types in C++, so
1030  // abort early. When overloading in C, however, we do permit
1031  if (FromType->isRecordType() || ToType->isRecordType()) {
1032    if (S.getLangOptions().CPlusPlus)
1033      return false;
1034
1035    // When we're overloading in C, we allow, as standard conversions,
1036  }
1037
1038  // The first conversion can be an lvalue-to-rvalue conversion,
1039  // array-to-pointer conversion, or function-to-pointer conversion
1040  // (C++ 4p1).
1041
1042  if (FromType == S.Context.OverloadTy) {
1043    DeclAccessPair AccessPair;
1044    if (FunctionDecl *Fn
1045          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1046                                                 AccessPair)) {
1047      // We were able to resolve the address of the overloaded function,
1048      // so we can convert to the type of that function.
1049      FromType = Fn->getType();
1050
1051      // we can sometimes resolve &foo<int> regardless of ToType, so check
1052      // if the type matches (identity) or we are converting to bool
1053      if (!S.Context.hasSameUnqualifiedType(
1054                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1055        QualType resultTy;
1056        // if the function type matches except for [[noreturn]], it's ok
1057        if (!IsNoReturnConversion(S.Context, FromType,
1058              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1059          // otherwise, only a boolean conversion is standard
1060          if (!ToType->isBooleanType())
1061            return false;
1062      }
1063
1064      // Check if the "from" expression is taking the address of an overloaded
1065      // function and recompute the FromType accordingly. Take advantage of the
1066      // fact that non-static member functions *must* have such an address-of
1067      // expression.
1068      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1069      if (Method && !Method->isStatic()) {
1070        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1071               "Non-unary operator on non-static member address");
1072        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1073               == UO_AddrOf &&
1074               "Non-address-of operator on non-static member address");
1075        const Type *ClassType
1076          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1077        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1078      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1079        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1080               UO_AddrOf &&
1081               "Non-address-of operator for overloaded function expression");
1082        FromType = S.Context.getPointerType(FromType);
1083      }
1084
1085      // Check that we've computed the proper type after overload resolution.
1086      assert(S.Context.hasSameType(
1087        FromType,
1088        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1089    } else {
1090      return false;
1091    }
1092  }
1093  // Lvalue-to-rvalue conversion (C++ 4.1):
1094  //   An lvalue (3.10) of a non-function, non-array type T can be
1095  //   converted to an rvalue.
1096  bool argIsLValue = From->isLValue();
1097  if (argIsLValue &&
1098      !FromType->isFunctionType() && !FromType->isArrayType() &&
1099      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1100    SCS.First = ICK_Lvalue_To_Rvalue;
1101
1102    // If T is a non-class type, the type of the rvalue is the
1103    // cv-unqualified version of T. Otherwise, the type of the rvalue
1104    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1105    // just strip the qualifiers because they don't matter.
1106    FromType = FromType.getUnqualifiedType();
1107  } else if (FromType->isArrayType()) {
1108    // Array-to-pointer conversion (C++ 4.2)
1109    SCS.First = ICK_Array_To_Pointer;
1110
1111    // An lvalue or rvalue of type "array of N T" or "array of unknown
1112    // bound of T" can be converted to an rvalue of type "pointer to
1113    // T" (C++ 4.2p1).
1114    FromType = S.Context.getArrayDecayedType(FromType);
1115
1116    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1117      // This conversion is deprecated. (C++ D.4).
1118      SCS.DeprecatedStringLiteralToCharPtr = true;
1119
1120      // For the purpose of ranking in overload resolution
1121      // (13.3.3.1.1), this conversion is considered an
1122      // array-to-pointer conversion followed by a qualification
1123      // conversion (4.4). (C++ 4.2p2)
1124      SCS.Second = ICK_Identity;
1125      SCS.Third = ICK_Qualification;
1126      SCS.setAllToTypes(FromType);
1127      return true;
1128    }
1129  } else if (FromType->isFunctionType() && argIsLValue) {
1130    // Function-to-pointer conversion (C++ 4.3).
1131    SCS.First = ICK_Function_To_Pointer;
1132
1133    // An lvalue of function type T can be converted to an rvalue of
1134    // type "pointer to T." The result is a pointer to the
1135    // function. (C++ 4.3p1).
1136    FromType = S.Context.getPointerType(FromType);
1137  } else {
1138    // We don't require any conversions for the first step.
1139    SCS.First = ICK_Identity;
1140  }
1141  SCS.setToType(0, FromType);
1142
1143  // The second conversion can be an integral promotion, floating
1144  // point promotion, integral conversion, floating point conversion,
1145  // floating-integral conversion, pointer conversion,
1146  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1147  // For overloading in C, this can also be a "compatible-type"
1148  // conversion.
1149  bool IncompatibleObjC = false;
1150  ImplicitConversionKind SecondICK = ICK_Identity;
1151  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1152    // The unqualified versions of the types are the same: there's no
1153    // conversion to do.
1154    SCS.Second = ICK_Identity;
1155  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1156    // Integral promotion (C++ 4.5).
1157    SCS.Second = ICK_Integral_Promotion;
1158    FromType = ToType.getUnqualifiedType();
1159  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1160    // Floating point promotion (C++ 4.6).
1161    SCS.Second = ICK_Floating_Promotion;
1162    FromType = ToType.getUnqualifiedType();
1163  } else if (S.IsComplexPromotion(FromType, ToType)) {
1164    // Complex promotion (Clang extension)
1165    SCS.Second = ICK_Complex_Promotion;
1166    FromType = ToType.getUnqualifiedType();
1167  } else if (ToType->isBooleanType() &&
1168             (FromType->isArithmeticType() ||
1169              FromType->isAnyPointerType() ||
1170              FromType->isBlockPointerType() ||
1171              FromType->isMemberPointerType() ||
1172              FromType->isNullPtrType())) {
1173    // Boolean conversions (C++ 4.12).
1174    SCS.Second = ICK_Boolean_Conversion;
1175    FromType = S.Context.BoolTy;
1176  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1177             ToType->isIntegralType(S.Context)) {
1178    // Integral conversions (C++ 4.7).
1179    SCS.Second = ICK_Integral_Conversion;
1180    FromType = ToType.getUnqualifiedType();
1181  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1182    // Complex conversions (C99 6.3.1.6)
1183    SCS.Second = ICK_Complex_Conversion;
1184    FromType = ToType.getUnqualifiedType();
1185  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1186             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1187    // Complex-real conversions (C99 6.3.1.7)
1188    SCS.Second = ICK_Complex_Real;
1189    FromType = ToType.getUnqualifiedType();
1190  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1191    // Floating point conversions (C++ 4.8).
1192    SCS.Second = ICK_Floating_Conversion;
1193    FromType = ToType.getUnqualifiedType();
1194  } else if ((FromType->isRealFloatingType() &&
1195              ToType->isIntegralType(S.Context)) ||
1196             (FromType->isIntegralOrUnscopedEnumerationType() &&
1197              ToType->isRealFloatingType())) {
1198    // Floating-integral conversions (C++ 4.9).
1199    SCS.Second = ICK_Floating_Integral;
1200    FromType = ToType.getUnqualifiedType();
1201  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1202               SCS.Second = ICK_Block_Pointer_Conversion;
1203  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1204                                   FromType, IncompatibleObjC)) {
1205    // Pointer conversions (C++ 4.10).
1206    SCS.Second = ICK_Pointer_Conversion;
1207    SCS.IncompatibleObjC = IncompatibleObjC;
1208    FromType = FromType.getUnqualifiedType();
1209  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1210                                         InOverloadResolution, FromType)) {
1211    // Pointer to member conversions (4.11).
1212    SCS.Second = ICK_Pointer_Member;
1213  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1214    SCS.Second = SecondICK;
1215    FromType = ToType.getUnqualifiedType();
1216  } else if (!S.getLangOptions().CPlusPlus &&
1217             S.Context.typesAreCompatible(ToType, FromType)) {
1218    // Compatible conversions (Clang extension for C function overloading)
1219    SCS.Second = ICK_Compatible_Conversion;
1220    FromType = ToType.getUnqualifiedType();
1221  } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) {
1222    // Treat a conversion that strips "noreturn" as an identity conversion.
1223    SCS.Second = ICK_NoReturn_Adjustment;
1224  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1225                                             InOverloadResolution,
1226                                             SCS, CStyle)) {
1227    SCS.Second = ICK_TransparentUnionConversion;
1228    FromType = ToType;
1229  } else {
1230    // No second conversion required.
1231    SCS.Second = ICK_Identity;
1232  }
1233  SCS.setToType(1, FromType);
1234
1235  QualType CanonFrom;
1236  QualType CanonTo;
1237  // The third conversion can be a qualification conversion (C++ 4p1).
1238  if (S.IsQualificationConversion(FromType, ToType, CStyle)) {
1239    SCS.Third = ICK_Qualification;
1240    FromType = ToType;
1241    CanonFrom = S.Context.getCanonicalType(FromType);
1242    CanonTo = S.Context.getCanonicalType(ToType);
1243  } else {
1244    // No conversion required
1245    SCS.Third = ICK_Identity;
1246
1247    // C++ [over.best.ics]p6:
1248    //   [...] Any difference in top-level cv-qualification is
1249    //   subsumed by the initialization itself and does not constitute
1250    //   a conversion. [...]
1251    CanonFrom = S.Context.getCanonicalType(FromType);
1252    CanonTo = S.Context.getCanonicalType(ToType);
1253    if (CanonFrom.getLocalUnqualifiedType()
1254                                       == CanonTo.getLocalUnqualifiedType() &&
1255        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1256         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1257      FromType = ToType;
1258      CanonFrom = CanonTo;
1259    }
1260  }
1261  SCS.setToType(2, FromType);
1262
1263  // If we have not converted the argument type to the parameter type,
1264  // this is a bad conversion sequence.
1265  if (CanonFrom != CanonTo)
1266    return false;
1267
1268  return true;
1269}
1270
1271static bool
1272IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1273                                     QualType &ToType,
1274                                     bool InOverloadResolution,
1275                                     StandardConversionSequence &SCS,
1276                                     bool CStyle) {
1277
1278  const RecordType *UT = ToType->getAsUnionType();
1279  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1280    return false;
1281  // The field to initialize within the transparent union.
1282  RecordDecl *UD = UT->getDecl();
1283  // It's compatible if the expression matches any of the fields.
1284  for (RecordDecl::field_iterator it = UD->field_begin(),
1285       itend = UD->field_end();
1286       it != itend; ++it) {
1287    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, CStyle)) {
1288      ToType = it->getType();
1289      return true;
1290    }
1291  }
1292  return false;
1293}
1294
1295/// IsIntegralPromotion - Determines whether the conversion from the
1296/// expression From (whose potentially-adjusted type is FromType) to
1297/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1298/// sets PromotedType to the promoted type.
1299bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1300  const BuiltinType *To = ToType->getAs<BuiltinType>();
1301  // All integers are built-in.
1302  if (!To) {
1303    return false;
1304  }
1305
1306  // An rvalue of type char, signed char, unsigned char, short int, or
1307  // unsigned short int can be converted to an rvalue of type int if
1308  // int can represent all the values of the source type; otherwise,
1309  // the source rvalue can be converted to an rvalue of type unsigned
1310  // int (C++ 4.5p1).
1311  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1312      !FromType->isEnumeralType()) {
1313    if (// We can promote any signed, promotable integer type to an int
1314        (FromType->isSignedIntegerType() ||
1315         // We can promote any unsigned integer type whose size is
1316         // less than int to an int.
1317         (!FromType->isSignedIntegerType() &&
1318          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1319      return To->getKind() == BuiltinType::Int;
1320    }
1321
1322    return To->getKind() == BuiltinType::UInt;
1323  }
1324
1325  // C++0x [conv.prom]p3:
1326  //   A prvalue of an unscoped enumeration type whose underlying type is not
1327  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1328  //   following types that can represent all the values of the enumeration
1329  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1330  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1331  //   long long int. If none of the types in that list can represent all the
1332  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1333  //   type can be converted to an rvalue a prvalue of the extended integer type
1334  //   with lowest integer conversion rank (4.13) greater than the rank of long
1335  //   long in which all the values of the enumeration can be represented. If
1336  //   there are two such extended types, the signed one is chosen.
1337  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1338    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1339    // provided for a scoped enumeration.
1340    if (FromEnumType->getDecl()->isScoped())
1341      return false;
1342
1343    // We have already pre-calculated the promotion type, so this is trivial.
1344    if (ToType->isIntegerType() &&
1345        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1346      return Context.hasSameUnqualifiedType(ToType,
1347                                FromEnumType->getDecl()->getPromotionType());
1348  }
1349
1350  // C++0x [conv.prom]p2:
1351  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1352  //   to an rvalue a prvalue of the first of the following types that can
1353  //   represent all the values of its underlying type: int, unsigned int,
1354  //   long int, unsigned long int, long long int, or unsigned long long int.
1355  //   If none of the types in that list can represent all the values of its
1356  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1357  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1358  //   type.
1359  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1360      ToType->isIntegerType()) {
1361    // Determine whether the type we're converting from is signed or
1362    // unsigned.
1363    bool FromIsSigned;
1364    uint64_t FromSize = Context.getTypeSize(FromType);
1365
1366    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1367    FromIsSigned = true;
1368
1369    // The types we'll try to promote to, in the appropriate
1370    // order. Try each of these types.
1371    QualType PromoteTypes[6] = {
1372      Context.IntTy, Context.UnsignedIntTy,
1373      Context.LongTy, Context.UnsignedLongTy ,
1374      Context.LongLongTy, Context.UnsignedLongLongTy
1375    };
1376    for (int Idx = 0; Idx < 6; ++Idx) {
1377      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1378      if (FromSize < ToSize ||
1379          (FromSize == ToSize &&
1380           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1381        // We found the type that we can promote to. If this is the
1382        // type we wanted, we have a promotion. Otherwise, no
1383        // promotion.
1384        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1385      }
1386    }
1387  }
1388
1389  // An rvalue for an integral bit-field (9.6) can be converted to an
1390  // rvalue of type int if int can represent all the values of the
1391  // bit-field; otherwise, it can be converted to unsigned int if
1392  // unsigned int can represent all the values of the bit-field. If
1393  // the bit-field is larger yet, no integral promotion applies to
1394  // it. If the bit-field has an enumerated type, it is treated as any
1395  // other value of that type for promotion purposes (C++ 4.5p3).
1396  // FIXME: We should delay checking of bit-fields until we actually perform the
1397  // conversion.
1398  using llvm::APSInt;
1399  if (From)
1400    if (FieldDecl *MemberDecl = From->getBitField()) {
1401      APSInt BitWidth;
1402      if (FromType->isIntegralType(Context) &&
1403          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1404        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1405        ToSize = Context.getTypeSize(ToType);
1406
1407        // Are we promoting to an int from a bitfield that fits in an int?
1408        if (BitWidth < ToSize ||
1409            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1410          return To->getKind() == BuiltinType::Int;
1411        }
1412
1413        // Are we promoting to an unsigned int from an unsigned bitfield
1414        // that fits into an unsigned int?
1415        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1416          return To->getKind() == BuiltinType::UInt;
1417        }
1418
1419        return false;
1420      }
1421    }
1422
1423  // An rvalue of type bool can be converted to an rvalue of type int,
1424  // with false becoming zero and true becoming one (C++ 4.5p4).
1425  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1426    return true;
1427  }
1428
1429  return false;
1430}
1431
1432/// IsFloatingPointPromotion - Determines whether the conversion from
1433/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1434/// returns true and sets PromotedType to the promoted type.
1435bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1436  /// An rvalue of type float can be converted to an rvalue of type
1437  /// double. (C++ 4.6p1).
1438  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1439    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1440      if (FromBuiltin->getKind() == BuiltinType::Float &&
1441          ToBuiltin->getKind() == BuiltinType::Double)
1442        return true;
1443
1444      // C99 6.3.1.5p1:
1445      //   When a float is promoted to double or long double, or a
1446      //   double is promoted to long double [...].
1447      if (!getLangOptions().CPlusPlus &&
1448          (FromBuiltin->getKind() == BuiltinType::Float ||
1449           FromBuiltin->getKind() == BuiltinType::Double) &&
1450          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1451        return true;
1452    }
1453
1454  return false;
1455}
1456
1457/// \brief Determine if a conversion is a complex promotion.
1458///
1459/// A complex promotion is defined as a complex -> complex conversion
1460/// where the conversion between the underlying real types is a
1461/// floating-point or integral promotion.
1462bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1463  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1464  if (!FromComplex)
1465    return false;
1466
1467  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1468  if (!ToComplex)
1469    return false;
1470
1471  return IsFloatingPointPromotion(FromComplex->getElementType(),
1472                                  ToComplex->getElementType()) ||
1473    IsIntegralPromotion(0, FromComplex->getElementType(),
1474                        ToComplex->getElementType());
1475}
1476
1477/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1478/// the pointer type FromPtr to a pointer to type ToPointee, with the
1479/// same type qualifiers as FromPtr has on its pointee type. ToType,
1480/// if non-empty, will be a pointer to ToType that may or may not have
1481/// the right set of qualifiers on its pointee.
1482static QualType
1483BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1484                                   QualType ToPointee, QualType ToType,
1485                                   ASTContext &Context) {
1486  assert((FromPtr->getTypeClass() == Type::Pointer ||
1487          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1488         "Invalid similarly-qualified pointer type");
1489
1490  /// \brief Conversions to 'id' subsume cv-qualifier conversions.
1491  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1492    return ToType.getUnqualifiedType();
1493
1494  QualType CanonFromPointee
1495    = Context.getCanonicalType(FromPtr->getPointeeType());
1496  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1497  Qualifiers Quals = CanonFromPointee.getQualifiers();
1498
1499  // Exact qualifier match -> return the pointer type we're converting to.
1500  if (CanonToPointee.getLocalQualifiers() == Quals) {
1501    // ToType is exactly what we need. Return it.
1502    if (!ToType.isNull())
1503      return ToType.getUnqualifiedType();
1504
1505    // Build a pointer to ToPointee. It has the right qualifiers
1506    // already.
1507    if (isa<ObjCObjectPointerType>(ToType))
1508      return Context.getObjCObjectPointerType(ToPointee);
1509    return Context.getPointerType(ToPointee);
1510  }
1511
1512  // Just build a canonical type that has the right qualifiers.
1513  QualType QualifiedCanonToPointee
1514    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1515
1516  if (isa<ObjCObjectPointerType>(ToType))
1517    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1518  return Context.getPointerType(QualifiedCanonToPointee);
1519}
1520
1521static bool isNullPointerConstantForConversion(Expr *Expr,
1522                                               bool InOverloadResolution,
1523                                               ASTContext &Context) {
1524  // Handle value-dependent integral null pointer constants correctly.
1525  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1526  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1527      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1528    return !InOverloadResolution;
1529
1530  return Expr->isNullPointerConstant(Context,
1531                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1532                                        : Expr::NPC_ValueDependentIsNull);
1533}
1534
1535/// IsPointerConversion - Determines whether the conversion of the
1536/// expression From, which has the (possibly adjusted) type FromType,
1537/// can be converted to the type ToType via a pointer conversion (C++
1538/// 4.10). If so, returns true and places the converted type (that
1539/// might differ from ToType in its cv-qualifiers at some level) into
1540/// ConvertedType.
1541///
1542/// This routine also supports conversions to and from block pointers
1543/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1544/// pointers to interfaces. FIXME: Once we've determined the
1545/// appropriate overloading rules for Objective-C, we may want to
1546/// split the Objective-C checks into a different routine; however,
1547/// GCC seems to consider all of these conversions to be pointer
1548/// conversions, so for now they live here. IncompatibleObjC will be
1549/// set if the conversion is an allowed Objective-C conversion that
1550/// should result in a warning.
1551bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1552                               bool InOverloadResolution,
1553                               QualType& ConvertedType,
1554                               bool &IncompatibleObjC) {
1555  IncompatibleObjC = false;
1556  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1557                              IncompatibleObjC))
1558    return true;
1559
1560  // Conversion from a null pointer constant to any Objective-C pointer type.
1561  if (ToType->isObjCObjectPointerType() &&
1562      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1563    ConvertedType = ToType;
1564    return true;
1565  }
1566
1567  // Blocks: Block pointers can be converted to void*.
1568  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1569      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1570    ConvertedType = ToType;
1571    return true;
1572  }
1573  // Blocks: A null pointer constant can be converted to a block
1574  // pointer type.
1575  if (ToType->isBlockPointerType() &&
1576      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1577    ConvertedType = ToType;
1578    return true;
1579  }
1580
1581  // If the left-hand-side is nullptr_t, the right side can be a null
1582  // pointer constant.
1583  if (ToType->isNullPtrType() &&
1584      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1585    ConvertedType = ToType;
1586    return true;
1587  }
1588
1589  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1590  if (!ToTypePtr)
1591    return false;
1592
1593  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1594  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1595    ConvertedType = ToType;
1596    return true;
1597  }
1598
1599  // Beyond this point, both types need to be pointers
1600  // , including objective-c pointers.
1601  QualType ToPointeeType = ToTypePtr->getPointeeType();
1602  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1603    ConvertedType = BuildSimilarlyQualifiedPointerType(
1604                                      FromType->getAs<ObjCObjectPointerType>(),
1605                                                       ToPointeeType,
1606                                                       ToType, Context);
1607    return true;
1608  }
1609  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1610  if (!FromTypePtr)
1611    return false;
1612
1613  QualType FromPointeeType = FromTypePtr->getPointeeType();
1614
1615  // If the unqualified pointee types are the same, this can't be a
1616  // pointer conversion, so don't do all of the work below.
1617  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1618    return false;
1619
1620  // An rvalue of type "pointer to cv T," where T is an object type,
1621  // can be converted to an rvalue of type "pointer to cv void" (C++
1622  // 4.10p2).
1623  if (FromPointeeType->isIncompleteOrObjectType() &&
1624      ToPointeeType->isVoidType()) {
1625    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1626                                                       ToPointeeType,
1627                                                       ToType, Context);
1628    return true;
1629  }
1630
1631  // When we're overloading in C, we allow a special kind of pointer
1632  // conversion for compatible-but-not-identical pointee types.
1633  if (!getLangOptions().CPlusPlus &&
1634      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1635    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1636                                                       ToPointeeType,
1637                                                       ToType, Context);
1638    return true;
1639  }
1640
1641  // C++ [conv.ptr]p3:
1642  //
1643  //   An rvalue of type "pointer to cv D," where D is a class type,
1644  //   can be converted to an rvalue of type "pointer to cv B," where
1645  //   B is a base class (clause 10) of D. If B is an inaccessible
1646  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1647  //   necessitates this conversion is ill-formed. The result of the
1648  //   conversion is a pointer to the base class sub-object of the
1649  //   derived class object. The null pointer value is converted to
1650  //   the null pointer value of the destination type.
1651  //
1652  // Note that we do not check for ambiguity or inaccessibility
1653  // here. That is handled by CheckPointerConversion.
1654  if (getLangOptions().CPlusPlus &&
1655      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1656      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1657      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1658      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1659    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1660                                                       ToPointeeType,
1661                                                       ToType, Context);
1662    return true;
1663  }
1664
1665  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1666      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1667    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1668                                                       ToPointeeType,
1669                                                       ToType, Context);
1670    return true;
1671  }
1672
1673  return false;
1674}
1675
1676/// \brief Adopt the given qualifiers for the given type.
1677static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1678  Qualifiers TQs = T.getQualifiers();
1679
1680  // Check whether qualifiers already match.
1681  if (TQs == Qs)
1682    return T;
1683
1684  if (Qs.compatiblyIncludes(TQs))
1685    return Context.getQualifiedType(T, Qs);
1686
1687  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1688}
1689
1690/// isObjCPointerConversion - Determines whether this is an
1691/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1692/// with the same arguments and return values.
1693bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1694                                   QualType& ConvertedType,
1695                                   bool &IncompatibleObjC) {
1696  if (!getLangOptions().ObjC1)
1697    return false;
1698
1699  // The set of qualifiers on the type we're converting from.
1700  Qualifiers FromQualifiers = FromType.getQualifiers();
1701
1702  // First, we handle all conversions on ObjC object pointer types.
1703  const ObjCObjectPointerType* ToObjCPtr =
1704    ToType->getAs<ObjCObjectPointerType>();
1705  const ObjCObjectPointerType *FromObjCPtr =
1706    FromType->getAs<ObjCObjectPointerType>();
1707
1708  if (ToObjCPtr && FromObjCPtr) {
1709    // If the pointee types are the same (ignoring qualifications),
1710    // then this is not a pointer conversion.
1711    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1712                                       FromObjCPtr->getPointeeType()))
1713      return false;
1714
1715    // Check for compatible
1716    // Objective C++: We're able to convert between "id" or "Class" and a
1717    // pointer to any interface (in both directions).
1718    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1719      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1720      return true;
1721    }
1722    // Conversions with Objective-C's id<...>.
1723    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1724         ToObjCPtr->isObjCQualifiedIdType()) &&
1725        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1726                                                  /*compare=*/false)) {
1727      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1728      return true;
1729    }
1730    // Objective C++: We're able to convert from a pointer to an
1731    // interface to a pointer to a different interface.
1732    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1733      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1734      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1735      if (getLangOptions().CPlusPlus && LHS && RHS &&
1736          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1737                                                FromObjCPtr->getPointeeType()))
1738        return false;
1739      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1740                                                   ToObjCPtr->getPointeeType(),
1741                                                         ToType, Context);
1742      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1743      return true;
1744    }
1745
1746    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1747      // Okay: this is some kind of implicit downcast of Objective-C
1748      // interfaces, which is permitted. However, we're going to
1749      // complain about it.
1750      IncompatibleObjC = true;
1751      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1752                                                   ToObjCPtr->getPointeeType(),
1753                                                         ToType, Context);
1754      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1755      return true;
1756    }
1757  }
1758  // Beyond this point, both types need to be C pointers or block pointers.
1759  QualType ToPointeeType;
1760  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1761    ToPointeeType = ToCPtr->getPointeeType();
1762  else if (const BlockPointerType *ToBlockPtr =
1763            ToType->getAs<BlockPointerType>()) {
1764    // Objective C++: We're able to convert from a pointer to any object
1765    // to a block pointer type.
1766    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1767      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1768      return true;
1769    }
1770    ToPointeeType = ToBlockPtr->getPointeeType();
1771  }
1772  else if (FromType->getAs<BlockPointerType>() &&
1773           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1774    // Objective C++: We're able to convert from a block pointer type to a
1775    // pointer to any object.
1776    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1777    return true;
1778  }
1779  else
1780    return false;
1781
1782  QualType FromPointeeType;
1783  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1784    FromPointeeType = FromCPtr->getPointeeType();
1785  else if (const BlockPointerType *FromBlockPtr =
1786           FromType->getAs<BlockPointerType>())
1787    FromPointeeType = FromBlockPtr->getPointeeType();
1788  else
1789    return false;
1790
1791  // If we have pointers to pointers, recursively check whether this
1792  // is an Objective-C conversion.
1793  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1794      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1795                              IncompatibleObjC)) {
1796    // We always complain about this conversion.
1797    IncompatibleObjC = true;
1798    ConvertedType = Context.getPointerType(ConvertedType);
1799    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1800    return true;
1801  }
1802  // Allow conversion of pointee being objective-c pointer to another one;
1803  // as in I* to id.
1804  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1805      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1806      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1807                              IncompatibleObjC)) {
1808    ConvertedType = Context.getPointerType(ConvertedType);
1809    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1810    return true;
1811  }
1812
1813  // If we have pointers to functions or blocks, check whether the only
1814  // differences in the argument and result types are in Objective-C
1815  // pointer conversions. If so, we permit the conversion (but
1816  // complain about it).
1817  const FunctionProtoType *FromFunctionType
1818    = FromPointeeType->getAs<FunctionProtoType>();
1819  const FunctionProtoType *ToFunctionType
1820    = ToPointeeType->getAs<FunctionProtoType>();
1821  if (FromFunctionType && ToFunctionType) {
1822    // If the function types are exactly the same, this isn't an
1823    // Objective-C pointer conversion.
1824    if (Context.getCanonicalType(FromPointeeType)
1825          == Context.getCanonicalType(ToPointeeType))
1826      return false;
1827
1828    // Perform the quick checks that will tell us whether these
1829    // function types are obviously different.
1830    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1831        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1832        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1833      return false;
1834
1835    bool HasObjCConversion = false;
1836    if (Context.getCanonicalType(FromFunctionType->getResultType())
1837          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1838      // Okay, the types match exactly. Nothing to do.
1839    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1840                                       ToFunctionType->getResultType(),
1841                                       ConvertedType, IncompatibleObjC)) {
1842      // Okay, we have an Objective-C pointer conversion.
1843      HasObjCConversion = true;
1844    } else {
1845      // Function types are too different. Abort.
1846      return false;
1847    }
1848
1849    // Check argument types.
1850    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1851         ArgIdx != NumArgs; ++ArgIdx) {
1852      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1853      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1854      if (Context.getCanonicalType(FromArgType)
1855            == Context.getCanonicalType(ToArgType)) {
1856        // Okay, the types match exactly. Nothing to do.
1857      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1858                                         ConvertedType, IncompatibleObjC)) {
1859        // Okay, we have an Objective-C pointer conversion.
1860        HasObjCConversion = true;
1861      } else {
1862        // Argument types are too different. Abort.
1863        return false;
1864      }
1865    }
1866
1867    if (HasObjCConversion) {
1868      // We had an Objective-C conversion. Allow this pointer
1869      // conversion, but complain about it.
1870      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1871      IncompatibleObjC = true;
1872      return true;
1873    }
1874  }
1875
1876  return false;
1877}
1878
1879bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
1880                                    QualType& ConvertedType) {
1881  QualType ToPointeeType;
1882  if (const BlockPointerType *ToBlockPtr =
1883        ToType->getAs<BlockPointerType>())
1884    ToPointeeType = ToBlockPtr->getPointeeType();
1885  else
1886    return false;
1887
1888  QualType FromPointeeType;
1889  if (const BlockPointerType *FromBlockPtr =
1890      FromType->getAs<BlockPointerType>())
1891    FromPointeeType = FromBlockPtr->getPointeeType();
1892  else
1893    return false;
1894  // We have pointer to blocks, check whether the only
1895  // differences in the argument and result types are in Objective-C
1896  // pointer conversions. If so, we permit the conversion.
1897
1898  const FunctionProtoType *FromFunctionType
1899    = FromPointeeType->getAs<FunctionProtoType>();
1900  const FunctionProtoType *ToFunctionType
1901    = ToPointeeType->getAs<FunctionProtoType>();
1902
1903  if (!FromFunctionType || !ToFunctionType)
1904    return false;
1905
1906  if (Context.hasSameType(FromPointeeType, ToPointeeType))
1907    return true;
1908
1909  // Perform the quick checks that will tell us whether these
1910  // function types are obviously different.
1911  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1912      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
1913    return false;
1914
1915  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
1916  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
1917  if (FromEInfo != ToEInfo)
1918    return false;
1919
1920  bool IncompatibleObjC = false;
1921  if (Context.hasSameType(FromFunctionType->getResultType(),
1922                          ToFunctionType->getResultType())) {
1923    // Okay, the types match exactly. Nothing to do.
1924  } else {
1925    QualType RHS = FromFunctionType->getResultType();
1926    QualType LHS = ToFunctionType->getResultType();
1927    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
1928        !RHS.hasQualifiers() && LHS.hasQualifiers())
1929       LHS = LHS.getUnqualifiedType();
1930
1931     if (Context.hasSameType(RHS,LHS)) {
1932       // OK exact match.
1933     } else if (isObjCPointerConversion(RHS, LHS,
1934                                        ConvertedType, IncompatibleObjC)) {
1935     if (IncompatibleObjC)
1936       return false;
1937     // Okay, we have an Objective-C pointer conversion.
1938     }
1939     else
1940       return false;
1941   }
1942
1943   // Check argument types.
1944   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1945        ArgIdx != NumArgs; ++ArgIdx) {
1946     IncompatibleObjC = false;
1947     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1948     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1949     if (Context.hasSameType(FromArgType, ToArgType)) {
1950       // Okay, the types match exactly. Nothing to do.
1951     } else if (isObjCPointerConversion(ToArgType, FromArgType,
1952                                        ConvertedType, IncompatibleObjC)) {
1953       if (IncompatibleObjC)
1954         return false;
1955       // Okay, we have an Objective-C pointer conversion.
1956     } else
1957       // Argument types are too different. Abort.
1958       return false;
1959   }
1960   ConvertedType = ToType;
1961   return true;
1962}
1963
1964/// FunctionArgTypesAreEqual - This routine checks two function proto types
1965/// for equlity of their argument types. Caller has already checked that
1966/// they have same number of arguments. This routine assumes that Objective-C
1967/// pointer types which only differ in their protocol qualifiers are equal.
1968bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
1969                                    const FunctionProtoType *NewType) {
1970  if (!getLangOptions().ObjC1)
1971    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1972                      NewType->arg_type_begin());
1973
1974  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1975       N = NewType->arg_type_begin(),
1976       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1977    QualType ToType = (*O);
1978    QualType FromType = (*N);
1979    if (ToType != FromType) {
1980      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1981        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1982          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1983               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1984              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1985               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1986            continue;
1987      }
1988      else if (const ObjCObjectPointerType *PTTo =
1989                 ToType->getAs<ObjCObjectPointerType>()) {
1990        if (const ObjCObjectPointerType *PTFr =
1991              FromType->getAs<ObjCObjectPointerType>())
1992          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1993            continue;
1994      }
1995      return false;
1996    }
1997  }
1998  return true;
1999}
2000
2001/// CheckPointerConversion - Check the pointer conversion from the
2002/// expression From to the type ToType. This routine checks for
2003/// ambiguous or inaccessible derived-to-base pointer
2004/// conversions for which IsPointerConversion has already returned
2005/// true. It returns true and produces a diagnostic if there was an
2006/// error, or returns false otherwise.
2007bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2008                                  CastKind &Kind,
2009                                  CXXCastPath& BasePath,
2010                                  bool IgnoreBaseAccess) {
2011  QualType FromType = From->getType();
2012  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2013
2014  Kind = CK_BitCast;
2015
2016  if (!IsCStyleOrFunctionalCast &&
2017      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2018      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2019    DiagRuntimeBehavior(From->getExprLoc(), From,
2020                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2021                          << ToType << From->getSourceRange());
2022
2023  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
2024    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2025      QualType FromPointeeType = FromPtrType->getPointeeType(),
2026               ToPointeeType   = ToPtrType->getPointeeType();
2027
2028      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2029          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2030        // We must have a derived-to-base conversion. Check an
2031        // ambiguous or inaccessible conversion.
2032        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2033                                         From->getExprLoc(),
2034                                         From->getSourceRange(), &BasePath,
2035                                         IgnoreBaseAccess))
2036          return true;
2037
2038        // The conversion was successful.
2039        Kind = CK_DerivedToBase;
2040      }
2041    }
2042  if (const ObjCObjectPointerType *FromPtrType =
2043        FromType->getAs<ObjCObjectPointerType>()) {
2044    if (const ObjCObjectPointerType *ToPtrType =
2045          ToType->getAs<ObjCObjectPointerType>()) {
2046      // Objective-C++ conversions are always okay.
2047      // FIXME: We should have a different class of conversions for the
2048      // Objective-C++ implicit conversions.
2049      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2050        return false;
2051    }
2052  }
2053
2054  // We shouldn't fall into this case unless it's valid for other
2055  // reasons.
2056  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2057    Kind = CK_NullToPointer;
2058
2059  return false;
2060}
2061
2062/// IsMemberPointerConversion - Determines whether the conversion of the
2063/// expression From, which has the (possibly adjusted) type FromType, can be
2064/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2065/// If so, returns true and places the converted type (that might differ from
2066/// ToType in its cv-qualifiers at some level) into ConvertedType.
2067bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2068                                     QualType ToType,
2069                                     bool InOverloadResolution,
2070                                     QualType &ConvertedType) {
2071  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2072  if (!ToTypePtr)
2073    return false;
2074
2075  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2076  if (From->isNullPointerConstant(Context,
2077                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2078                                        : Expr::NPC_ValueDependentIsNull)) {
2079    ConvertedType = ToType;
2080    return true;
2081  }
2082
2083  // Otherwise, both types have to be member pointers.
2084  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2085  if (!FromTypePtr)
2086    return false;
2087
2088  // A pointer to member of B can be converted to a pointer to member of D,
2089  // where D is derived from B (C++ 4.11p2).
2090  QualType FromClass(FromTypePtr->getClass(), 0);
2091  QualType ToClass(ToTypePtr->getClass(), 0);
2092
2093  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2094      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2095      IsDerivedFrom(ToClass, FromClass)) {
2096    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2097                                                 ToClass.getTypePtr());
2098    return true;
2099  }
2100
2101  return false;
2102}
2103
2104/// CheckMemberPointerConversion - Check the member pointer conversion from the
2105/// expression From to the type ToType. This routine checks for ambiguous or
2106/// virtual or inaccessible base-to-derived member pointer conversions
2107/// for which IsMemberPointerConversion has already returned true. It returns
2108/// true and produces a diagnostic if there was an error, or returns false
2109/// otherwise.
2110bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2111                                        CastKind &Kind,
2112                                        CXXCastPath &BasePath,
2113                                        bool IgnoreBaseAccess) {
2114  QualType FromType = From->getType();
2115  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2116  if (!FromPtrType) {
2117    // This must be a null pointer to member pointer conversion
2118    assert(From->isNullPointerConstant(Context,
2119                                       Expr::NPC_ValueDependentIsNull) &&
2120           "Expr must be null pointer constant!");
2121    Kind = CK_NullToMemberPointer;
2122    return false;
2123  }
2124
2125  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2126  assert(ToPtrType && "No member pointer cast has a target type "
2127                      "that is not a member pointer.");
2128
2129  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2130  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2131
2132  // FIXME: What about dependent types?
2133  assert(FromClass->isRecordType() && "Pointer into non-class.");
2134  assert(ToClass->isRecordType() && "Pointer into non-class.");
2135
2136  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2137                     /*DetectVirtual=*/true);
2138  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2139  assert(DerivationOkay &&
2140         "Should not have been called if derivation isn't OK.");
2141  (void)DerivationOkay;
2142
2143  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2144                                  getUnqualifiedType())) {
2145    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2146    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2147      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2148    return true;
2149  }
2150
2151  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2152    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2153      << FromClass << ToClass << QualType(VBase, 0)
2154      << From->getSourceRange();
2155    return true;
2156  }
2157
2158  if (!IgnoreBaseAccess)
2159    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2160                         Paths.front(),
2161                         diag::err_downcast_from_inaccessible_base);
2162
2163  // Must be a base to derived member conversion.
2164  BuildBasePathArray(Paths, BasePath);
2165  Kind = CK_BaseToDerivedMemberPointer;
2166  return false;
2167}
2168
2169/// IsQualificationConversion - Determines whether the conversion from
2170/// an rvalue of type FromType to ToType is a qualification conversion
2171/// (C++ 4.4).
2172bool
2173Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2174                                bool CStyle) {
2175  FromType = Context.getCanonicalType(FromType);
2176  ToType = Context.getCanonicalType(ToType);
2177
2178  // If FromType and ToType are the same type, this is not a
2179  // qualification conversion.
2180  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2181    return false;
2182
2183  // (C++ 4.4p4):
2184  //   A conversion can add cv-qualifiers at levels other than the first
2185  //   in multi-level pointers, subject to the following rules: [...]
2186  bool PreviousToQualsIncludeConst = true;
2187  bool UnwrappedAnyPointer = false;
2188  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2189    // Within each iteration of the loop, we check the qualifiers to
2190    // determine if this still looks like a qualification
2191    // conversion. Then, if all is well, we unwrap one more level of
2192    // pointers or pointers-to-members and do it all again
2193    // until there are no more pointers or pointers-to-members left to
2194    // unwrap.
2195    UnwrappedAnyPointer = true;
2196
2197    Qualifiers FromQuals = FromType.getQualifiers();
2198    Qualifiers ToQuals = ToType.getQualifiers();
2199
2200    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2201    //      2,j, and similarly for volatile.
2202    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2203      return false;
2204
2205    //   -- if the cv 1,j and cv 2,j are different, then const is in
2206    //      every cv for 0 < k < j.
2207    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2208        && !PreviousToQualsIncludeConst)
2209      return false;
2210
2211    // Keep track of whether all prior cv-qualifiers in the "to" type
2212    // include const.
2213    PreviousToQualsIncludeConst
2214      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2215  }
2216
2217  // We are left with FromType and ToType being the pointee types
2218  // after unwrapping the original FromType and ToType the same number
2219  // of types. If we unwrapped any pointers, and if FromType and
2220  // ToType have the same unqualified type (since we checked
2221  // qualifiers above), then this is a qualification conversion.
2222  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2223}
2224
2225/// Determines whether there is a user-defined conversion sequence
2226/// (C++ [over.ics.user]) that converts expression From to the type
2227/// ToType. If such a conversion exists, User will contain the
2228/// user-defined conversion sequence that performs such a conversion
2229/// and this routine will return true. Otherwise, this routine returns
2230/// false and User is unspecified.
2231///
2232/// \param AllowExplicit  true if the conversion should consider C++0x
2233/// "explicit" conversion functions as well as non-explicit conversion
2234/// functions (C++0x [class.conv.fct]p2).
2235static OverloadingResult
2236IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2237                        UserDefinedConversionSequence& User,
2238                        OverloadCandidateSet& CandidateSet,
2239                        bool AllowExplicit) {
2240  // Whether we will only visit constructors.
2241  bool ConstructorsOnly = false;
2242
2243  // If the type we are conversion to is a class type, enumerate its
2244  // constructors.
2245  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2246    // C++ [over.match.ctor]p1:
2247    //   When objects of class type are direct-initialized (8.5), or
2248    //   copy-initialized from an expression of the same or a
2249    //   derived class type (8.5), overload resolution selects the
2250    //   constructor. [...] For copy-initialization, the candidate
2251    //   functions are all the converting constructors (12.3.1) of
2252    //   that class. The argument list is the expression-list within
2253    //   the parentheses of the initializer.
2254    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2255        (From->getType()->getAs<RecordType>() &&
2256         S.IsDerivedFrom(From->getType(), ToType)))
2257      ConstructorsOnly = true;
2258
2259    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2260    // RequireCompleteType may have returned true due to some invalid decl
2261    // during template instantiation, but ToType may be complete enough now
2262    // to try to recover.
2263    if (ToType->isIncompleteType()) {
2264      // We're not going to find any constructors.
2265    } else if (CXXRecordDecl *ToRecordDecl
2266                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2267      DeclContext::lookup_iterator Con, ConEnd;
2268      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2269           Con != ConEnd; ++Con) {
2270        NamedDecl *D = *Con;
2271        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2272
2273        // Find the constructor (which may be a template).
2274        CXXConstructorDecl *Constructor = 0;
2275        FunctionTemplateDecl *ConstructorTmpl
2276          = dyn_cast<FunctionTemplateDecl>(D);
2277        if (ConstructorTmpl)
2278          Constructor
2279            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2280        else
2281          Constructor = cast<CXXConstructorDecl>(D);
2282
2283        if (!Constructor->isInvalidDecl() &&
2284            Constructor->isConvertingConstructor(AllowExplicit)) {
2285          if (ConstructorTmpl)
2286            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2287                                           /*ExplicitArgs*/ 0,
2288                                           &From, 1, CandidateSet,
2289                                           /*SuppressUserConversions=*/
2290                                             !ConstructorsOnly);
2291          else
2292            // Allow one user-defined conversion when user specifies a
2293            // From->ToType conversion via an static cast (c-style, etc).
2294            S.AddOverloadCandidate(Constructor, FoundDecl,
2295                                   &From, 1, CandidateSet,
2296                                   /*SuppressUserConversions=*/
2297                                     !ConstructorsOnly);
2298        }
2299      }
2300    }
2301  }
2302
2303  // Enumerate conversion functions, if we're allowed to.
2304  if (ConstructorsOnly) {
2305  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2306                                   S.PDiag(0) << From->getSourceRange())) {
2307    // No conversion functions from incomplete types.
2308  } else if (const RecordType *FromRecordType
2309                                   = From->getType()->getAs<RecordType>()) {
2310    if (CXXRecordDecl *FromRecordDecl
2311         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2312      // Add all of the conversion functions as candidates.
2313      const UnresolvedSetImpl *Conversions
2314        = FromRecordDecl->getVisibleConversionFunctions();
2315      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2316             E = Conversions->end(); I != E; ++I) {
2317        DeclAccessPair FoundDecl = I.getPair();
2318        NamedDecl *D = FoundDecl.getDecl();
2319        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2320        if (isa<UsingShadowDecl>(D))
2321          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2322
2323        CXXConversionDecl *Conv;
2324        FunctionTemplateDecl *ConvTemplate;
2325        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2326          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2327        else
2328          Conv = cast<CXXConversionDecl>(D);
2329
2330        if (AllowExplicit || !Conv->isExplicit()) {
2331          if (ConvTemplate)
2332            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2333                                             ActingContext, From, ToType,
2334                                             CandidateSet);
2335          else
2336            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2337                                     From, ToType, CandidateSet);
2338        }
2339      }
2340    }
2341  }
2342
2343  OverloadCandidateSet::iterator Best;
2344  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2345  case OR_Success:
2346    // Record the standard conversion we used and the conversion function.
2347    if (CXXConstructorDecl *Constructor
2348          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2349      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2350
2351      // C++ [over.ics.user]p1:
2352      //   If the user-defined conversion is specified by a
2353      //   constructor (12.3.1), the initial standard conversion
2354      //   sequence converts the source type to the type required by
2355      //   the argument of the constructor.
2356      //
2357      QualType ThisType = Constructor->getThisType(S.Context);
2358      if (Best->Conversions[0].isEllipsis())
2359        User.EllipsisConversion = true;
2360      else {
2361        User.Before = Best->Conversions[0].Standard;
2362        User.EllipsisConversion = false;
2363      }
2364      User.ConversionFunction = Constructor;
2365      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2366      User.After.setAsIdentityConversion();
2367      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2368      User.After.setAllToTypes(ToType);
2369      return OR_Success;
2370    } else if (CXXConversionDecl *Conversion
2371                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2372      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2373
2374      // C++ [over.ics.user]p1:
2375      //
2376      //   [...] If the user-defined conversion is specified by a
2377      //   conversion function (12.3.2), the initial standard
2378      //   conversion sequence converts the source type to the
2379      //   implicit object parameter of the conversion function.
2380      User.Before = Best->Conversions[0].Standard;
2381      User.ConversionFunction = Conversion;
2382      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2383      User.EllipsisConversion = false;
2384
2385      // C++ [over.ics.user]p2:
2386      //   The second standard conversion sequence converts the
2387      //   result of the user-defined conversion to the target type
2388      //   for the sequence. Since an implicit conversion sequence
2389      //   is an initialization, the special rules for
2390      //   initialization by user-defined conversion apply when
2391      //   selecting the best user-defined conversion for a
2392      //   user-defined conversion sequence (see 13.3.3 and
2393      //   13.3.3.1).
2394      User.After = Best->FinalConversion;
2395      return OR_Success;
2396    } else {
2397      llvm_unreachable("Not a constructor or conversion function?");
2398      return OR_No_Viable_Function;
2399    }
2400
2401  case OR_No_Viable_Function:
2402    return OR_No_Viable_Function;
2403  case OR_Deleted:
2404    // No conversion here! We're done.
2405    return OR_Deleted;
2406
2407  case OR_Ambiguous:
2408    return OR_Ambiguous;
2409  }
2410
2411  return OR_No_Viable_Function;
2412}
2413
2414bool
2415Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2416  ImplicitConversionSequence ICS;
2417  OverloadCandidateSet CandidateSet(From->getExprLoc());
2418  OverloadingResult OvResult =
2419    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2420                            CandidateSet, false);
2421  if (OvResult == OR_Ambiguous)
2422    Diag(From->getSourceRange().getBegin(),
2423         diag::err_typecheck_ambiguous_condition)
2424          << From->getType() << ToType << From->getSourceRange();
2425  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2426    Diag(From->getSourceRange().getBegin(),
2427         diag::err_typecheck_nonviable_condition)
2428    << From->getType() << ToType << From->getSourceRange();
2429  else
2430    return false;
2431  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2432  return true;
2433}
2434
2435/// CompareImplicitConversionSequences - Compare two implicit
2436/// conversion sequences to determine whether one is better than the
2437/// other or if they are indistinguishable (C++ 13.3.3.2).
2438static ImplicitConversionSequence::CompareKind
2439CompareImplicitConversionSequences(Sema &S,
2440                                   const ImplicitConversionSequence& ICS1,
2441                                   const ImplicitConversionSequence& ICS2)
2442{
2443  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2444  // conversion sequences (as defined in 13.3.3.1)
2445  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2446  //      conversion sequence than a user-defined conversion sequence or
2447  //      an ellipsis conversion sequence, and
2448  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2449  //      conversion sequence than an ellipsis conversion sequence
2450  //      (13.3.3.1.3).
2451  //
2452  // C++0x [over.best.ics]p10:
2453  //   For the purpose of ranking implicit conversion sequences as
2454  //   described in 13.3.3.2, the ambiguous conversion sequence is
2455  //   treated as a user-defined sequence that is indistinguishable
2456  //   from any other user-defined conversion sequence.
2457  if (ICS1.getKindRank() < ICS2.getKindRank())
2458    return ImplicitConversionSequence::Better;
2459  else if (ICS2.getKindRank() < ICS1.getKindRank())
2460    return ImplicitConversionSequence::Worse;
2461
2462  // The following checks require both conversion sequences to be of
2463  // the same kind.
2464  if (ICS1.getKind() != ICS2.getKind())
2465    return ImplicitConversionSequence::Indistinguishable;
2466
2467  // Two implicit conversion sequences of the same form are
2468  // indistinguishable conversion sequences unless one of the
2469  // following rules apply: (C++ 13.3.3.2p3):
2470  if (ICS1.isStandard())
2471    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2472  else if (ICS1.isUserDefined()) {
2473    // User-defined conversion sequence U1 is a better conversion
2474    // sequence than another user-defined conversion sequence U2 if
2475    // they contain the same user-defined conversion function or
2476    // constructor and if the second standard conversion sequence of
2477    // U1 is better than the second standard conversion sequence of
2478    // U2 (C++ 13.3.3.2p3).
2479    if (ICS1.UserDefined.ConversionFunction ==
2480          ICS2.UserDefined.ConversionFunction)
2481      return CompareStandardConversionSequences(S,
2482                                                ICS1.UserDefined.After,
2483                                                ICS2.UserDefined.After);
2484  }
2485
2486  return ImplicitConversionSequence::Indistinguishable;
2487}
2488
2489static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2490  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2491    Qualifiers Quals;
2492    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2493    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2494  }
2495
2496  return Context.hasSameUnqualifiedType(T1, T2);
2497}
2498
2499// Per 13.3.3.2p3, compare the given standard conversion sequences to
2500// determine if one is a proper subset of the other.
2501static ImplicitConversionSequence::CompareKind
2502compareStandardConversionSubsets(ASTContext &Context,
2503                                 const StandardConversionSequence& SCS1,
2504                                 const StandardConversionSequence& SCS2) {
2505  ImplicitConversionSequence::CompareKind Result
2506    = ImplicitConversionSequence::Indistinguishable;
2507
2508  // the identity conversion sequence is considered to be a subsequence of
2509  // any non-identity conversion sequence
2510  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2511    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2512      return ImplicitConversionSequence::Better;
2513    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2514      return ImplicitConversionSequence::Worse;
2515  }
2516
2517  if (SCS1.Second != SCS2.Second) {
2518    if (SCS1.Second == ICK_Identity)
2519      Result = ImplicitConversionSequence::Better;
2520    else if (SCS2.Second == ICK_Identity)
2521      Result = ImplicitConversionSequence::Worse;
2522    else
2523      return ImplicitConversionSequence::Indistinguishable;
2524  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2525    return ImplicitConversionSequence::Indistinguishable;
2526
2527  if (SCS1.Third == SCS2.Third) {
2528    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2529                             : ImplicitConversionSequence::Indistinguishable;
2530  }
2531
2532  if (SCS1.Third == ICK_Identity)
2533    return Result == ImplicitConversionSequence::Worse
2534             ? ImplicitConversionSequence::Indistinguishable
2535             : ImplicitConversionSequence::Better;
2536
2537  if (SCS2.Third == ICK_Identity)
2538    return Result == ImplicitConversionSequence::Better
2539             ? ImplicitConversionSequence::Indistinguishable
2540             : ImplicitConversionSequence::Worse;
2541
2542  return ImplicitConversionSequence::Indistinguishable;
2543}
2544
2545/// \brief Determine whether one of the given reference bindings is better
2546/// than the other based on what kind of bindings they are.
2547static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2548                                       const StandardConversionSequence &SCS2) {
2549  // C++0x [over.ics.rank]p3b4:
2550  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2551  //      implicit object parameter of a non-static member function declared
2552  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2553  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2554  //      lvalue reference to a function lvalue and S2 binds an rvalue
2555  //      reference*.
2556  //
2557  // FIXME: Rvalue references. We're going rogue with the above edits,
2558  // because the semantics in the current C++0x working paper (N3225 at the
2559  // time of this writing) break the standard definition of std::forward
2560  // and std::reference_wrapper when dealing with references to functions.
2561  // Proposed wording changes submitted to CWG for consideration.
2562  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2563      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2564    return false;
2565
2566  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2567          SCS2.IsLvalueReference) ||
2568         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2569          !SCS2.IsLvalueReference);
2570}
2571
2572/// CompareStandardConversionSequences - Compare two standard
2573/// conversion sequences to determine whether one is better than the
2574/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2575static ImplicitConversionSequence::CompareKind
2576CompareStandardConversionSequences(Sema &S,
2577                                   const StandardConversionSequence& SCS1,
2578                                   const StandardConversionSequence& SCS2)
2579{
2580  // Standard conversion sequence S1 is a better conversion sequence
2581  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2582
2583  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2584  //     sequences in the canonical form defined by 13.3.3.1.1,
2585  //     excluding any Lvalue Transformation; the identity conversion
2586  //     sequence is considered to be a subsequence of any
2587  //     non-identity conversion sequence) or, if not that,
2588  if (ImplicitConversionSequence::CompareKind CK
2589        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2590    return CK;
2591
2592  //  -- the rank of S1 is better than the rank of S2 (by the rules
2593  //     defined below), or, if not that,
2594  ImplicitConversionRank Rank1 = SCS1.getRank();
2595  ImplicitConversionRank Rank2 = SCS2.getRank();
2596  if (Rank1 < Rank2)
2597    return ImplicitConversionSequence::Better;
2598  else if (Rank2 < Rank1)
2599    return ImplicitConversionSequence::Worse;
2600
2601  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2602  // are indistinguishable unless one of the following rules
2603  // applies:
2604
2605  //   A conversion that is not a conversion of a pointer, or
2606  //   pointer to member, to bool is better than another conversion
2607  //   that is such a conversion.
2608  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2609    return SCS2.isPointerConversionToBool()
2610             ? ImplicitConversionSequence::Better
2611             : ImplicitConversionSequence::Worse;
2612
2613  // C++ [over.ics.rank]p4b2:
2614  //
2615  //   If class B is derived directly or indirectly from class A,
2616  //   conversion of B* to A* is better than conversion of B* to
2617  //   void*, and conversion of A* to void* is better than conversion
2618  //   of B* to void*.
2619  bool SCS1ConvertsToVoid
2620    = SCS1.isPointerConversionToVoidPointer(S.Context);
2621  bool SCS2ConvertsToVoid
2622    = SCS2.isPointerConversionToVoidPointer(S.Context);
2623  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2624    // Exactly one of the conversion sequences is a conversion to
2625    // a void pointer; it's the worse conversion.
2626    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2627                              : ImplicitConversionSequence::Worse;
2628  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2629    // Neither conversion sequence converts to a void pointer; compare
2630    // their derived-to-base conversions.
2631    if (ImplicitConversionSequence::CompareKind DerivedCK
2632          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2633      return DerivedCK;
2634  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
2635             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
2636    // Both conversion sequences are conversions to void
2637    // pointers. Compare the source types to determine if there's an
2638    // inheritance relationship in their sources.
2639    QualType FromType1 = SCS1.getFromType();
2640    QualType FromType2 = SCS2.getFromType();
2641
2642    // Adjust the types we're converting from via the array-to-pointer
2643    // conversion, if we need to.
2644    if (SCS1.First == ICK_Array_To_Pointer)
2645      FromType1 = S.Context.getArrayDecayedType(FromType1);
2646    if (SCS2.First == ICK_Array_To_Pointer)
2647      FromType2 = S.Context.getArrayDecayedType(FromType2);
2648
2649    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
2650    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
2651
2652    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2653      return ImplicitConversionSequence::Better;
2654    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2655      return ImplicitConversionSequence::Worse;
2656
2657    // Objective-C++: If one interface is more specific than the
2658    // other, it is the better one.
2659    const ObjCObjectPointerType* FromObjCPtr1
2660      = FromType1->getAs<ObjCObjectPointerType>();
2661    const ObjCObjectPointerType* FromObjCPtr2
2662      = FromType2->getAs<ObjCObjectPointerType>();
2663    if (FromObjCPtr1 && FromObjCPtr2) {
2664      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
2665                                                          FromObjCPtr2);
2666      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
2667                                                           FromObjCPtr1);
2668      if (AssignLeft != AssignRight) {
2669        return AssignLeft? ImplicitConversionSequence::Better
2670                         : ImplicitConversionSequence::Worse;
2671      }
2672    }
2673  }
2674
2675  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2676  // bullet 3).
2677  if (ImplicitConversionSequence::CompareKind QualCK
2678        = CompareQualificationConversions(S, SCS1, SCS2))
2679    return QualCK;
2680
2681  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2682    // Check for a better reference binding based on the kind of bindings.
2683    if (isBetterReferenceBindingKind(SCS1, SCS2))
2684      return ImplicitConversionSequence::Better;
2685    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2686      return ImplicitConversionSequence::Worse;
2687
2688    // C++ [over.ics.rank]p3b4:
2689    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2690    //      which the references refer are the same type except for
2691    //      top-level cv-qualifiers, and the type to which the reference
2692    //      initialized by S2 refers is more cv-qualified than the type
2693    //      to which the reference initialized by S1 refers.
2694    QualType T1 = SCS1.getToType(2);
2695    QualType T2 = SCS2.getToType(2);
2696    T1 = S.Context.getCanonicalType(T1);
2697    T2 = S.Context.getCanonicalType(T2);
2698    Qualifiers T1Quals, T2Quals;
2699    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2700    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2701    if (UnqualT1 == UnqualT2) {
2702      // If the type is an array type, promote the element qualifiers to the
2703      // type for comparison.
2704      if (isa<ArrayType>(T1) && T1Quals)
2705        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2706      if (isa<ArrayType>(T2) && T2Quals)
2707        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2708      if (T2.isMoreQualifiedThan(T1))
2709        return ImplicitConversionSequence::Better;
2710      else if (T1.isMoreQualifiedThan(T2))
2711        return ImplicitConversionSequence::Worse;
2712    }
2713  }
2714
2715  return ImplicitConversionSequence::Indistinguishable;
2716}
2717
2718/// CompareQualificationConversions - Compares two standard conversion
2719/// sequences to determine whether they can be ranked based on their
2720/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2721ImplicitConversionSequence::CompareKind
2722CompareQualificationConversions(Sema &S,
2723                                const StandardConversionSequence& SCS1,
2724                                const StandardConversionSequence& SCS2) {
2725  // C++ 13.3.3.2p3:
2726  //  -- S1 and S2 differ only in their qualification conversion and
2727  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2728  //     cv-qualification signature of type T1 is a proper subset of
2729  //     the cv-qualification signature of type T2, and S1 is not the
2730  //     deprecated string literal array-to-pointer conversion (4.2).
2731  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2732      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2733    return ImplicitConversionSequence::Indistinguishable;
2734
2735  // FIXME: the example in the standard doesn't use a qualification
2736  // conversion (!)
2737  QualType T1 = SCS1.getToType(2);
2738  QualType T2 = SCS2.getToType(2);
2739  T1 = S.Context.getCanonicalType(T1);
2740  T2 = S.Context.getCanonicalType(T2);
2741  Qualifiers T1Quals, T2Quals;
2742  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2743  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2744
2745  // If the types are the same, we won't learn anything by unwrapped
2746  // them.
2747  if (UnqualT1 == UnqualT2)
2748    return ImplicitConversionSequence::Indistinguishable;
2749
2750  // If the type is an array type, promote the element qualifiers to the type
2751  // for comparison.
2752  if (isa<ArrayType>(T1) && T1Quals)
2753    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2754  if (isa<ArrayType>(T2) && T2Quals)
2755    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2756
2757  ImplicitConversionSequence::CompareKind Result
2758    = ImplicitConversionSequence::Indistinguishable;
2759  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2760    // Within each iteration of the loop, we check the qualifiers to
2761    // determine if this still looks like a qualification
2762    // conversion. Then, if all is well, we unwrap one more level of
2763    // pointers or pointers-to-members and do it all again
2764    // until there are no more pointers or pointers-to-members left
2765    // to unwrap. This essentially mimics what
2766    // IsQualificationConversion does, but here we're checking for a
2767    // strict subset of qualifiers.
2768    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2769      // The qualifiers are the same, so this doesn't tell us anything
2770      // about how the sequences rank.
2771      ;
2772    else if (T2.isMoreQualifiedThan(T1)) {
2773      // T1 has fewer qualifiers, so it could be the better sequence.
2774      if (Result == ImplicitConversionSequence::Worse)
2775        // Neither has qualifiers that are a subset of the other's
2776        // qualifiers.
2777        return ImplicitConversionSequence::Indistinguishable;
2778
2779      Result = ImplicitConversionSequence::Better;
2780    } else if (T1.isMoreQualifiedThan(T2)) {
2781      // T2 has fewer qualifiers, so it could be the better sequence.
2782      if (Result == ImplicitConversionSequence::Better)
2783        // Neither has qualifiers that are a subset of the other's
2784        // qualifiers.
2785        return ImplicitConversionSequence::Indistinguishable;
2786
2787      Result = ImplicitConversionSequence::Worse;
2788    } else {
2789      // Qualifiers are disjoint.
2790      return ImplicitConversionSequence::Indistinguishable;
2791    }
2792
2793    // If the types after this point are equivalent, we're done.
2794    if (S.Context.hasSameUnqualifiedType(T1, T2))
2795      break;
2796  }
2797
2798  // Check that the winning standard conversion sequence isn't using
2799  // the deprecated string literal array to pointer conversion.
2800  switch (Result) {
2801  case ImplicitConversionSequence::Better:
2802    if (SCS1.DeprecatedStringLiteralToCharPtr)
2803      Result = ImplicitConversionSequence::Indistinguishable;
2804    break;
2805
2806  case ImplicitConversionSequence::Indistinguishable:
2807    break;
2808
2809  case ImplicitConversionSequence::Worse:
2810    if (SCS2.DeprecatedStringLiteralToCharPtr)
2811      Result = ImplicitConversionSequence::Indistinguishable;
2812    break;
2813  }
2814
2815  return Result;
2816}
2817
2818/// CompareDerivedToBaseConversions - Compares two standard conversion
2819/// sequences to determine whether they can be ranked based on their
2820/// various kinds of derived-to-base conversions (C++
2821/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2822/// conversions between Objective-C interface types.
2823ImplicitConversionSequence::CompareKind
2824CompareDerivedToBaseConversions(Sema &S,
2825                                const StandardConversionSequence& SCS1,
2826                                const StandardConversionSequence& SCS2) {
2827  QualType FromType1 = SCS1.getFromType();
2828  QualType ToType1 = SCS1.getToType(1);
2829  QualType FromType2 = SCS2.getFromType();
2830  QualType ToType2 = SCS2.getToType(1);
2831
2832  // Adjust the types we're converting from via the array-to-pointer
2833  // conversion, if we need to.
2834  if (SCS1.First == ICK_Array_To_Pointer)
2835    FromType1 = S.Context.getArrayDecayedType(FromType1);
2836  if (SCS2.First == ICK_Array_To_Pointer)
2837    FromType2 = S.Context.getArrayDecayedType(FromType2);
2838
2839  // Canonicalize all of the types.
2840  FromType1 = S.Context.getCanonicalType(FromType1);
2841  ToType1 = S.Context.getCanonicalType(ToType1);
2842  FromType2 = S.Context.getCanonicalType(FromType2);
2843  ToType2 = S.Context.getCanonicalType(ToType2);
2844
2845  // C++ [over.ics.rank]p4b3:
2846  //
2847  //   If class B is derived directly or indirectly from class A and
2848  //   class C is derived directly or indirectly from B,
2849  //
2850  // Compare based on pointer conversions.
2851  if (SCS1.Second == ICK_Pointer_Conversion &&
2852      SCS2.Second == ICK_Pointer_Conversion &&
2853      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2854      FromType1->isPointerType() && FromType2->isPointerType() &&
2855      ToType1->isPointerType() && ToType2->isPointerType()) {
2856    QualType FromPointee1
2857      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2858    QualType ToPointee1
2859      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2860    QualType FromPointee2
2861      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2862    QualType ToPointee2
2863      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2864
2865    //   -- conversion of C* to B* is better than conversion of C* to A*,
2866    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2867      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2868        return ImplicitConversionSequence::Better;
2869      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2870        return ImplicitConversionSequence::Worse;
2871    }
2872
2873    //   -- conversion of B* to A* is better than conversion of C* to A*,
2874    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2875      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2876        return ImplicitConversionSequence::Better;
2877      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2878        return ImplicitConversionSequence::Worse;
2879    }
2880  } else if (SCS1.Second == ICK_Pointer_Conversion &&
2881             SCS2.Second == ICK_Pointer_Conversion) {
2882    const ObjCObjectPointerType *FromPtr1
2883      = FromType1->getAs<ObjCObjectPointerType>();
2884    const ObjCObjectPointerType *FromPtr2
2885      = FromType2->getAs<ObjCObjectPointerType>();
2886    const ObjCObjectPointerType *ToPtr1
2887      = ToType1->getAs<ObjCObjectPointerType>();
2888    const ObjCObjectPointerType *ToPtr2
2889      = ToType2->getAs<ObjCObjectPointerType>();
2890
2891    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
2892      // Apply the same conversion ranking rules for Objective-C pointer types
2893      // that we do for C++ pointers to class types. However, we employ the
2894      // Objective-C pseudo-subtyping relationship used for assignment of
2895      // Objective-C pointer types.
2896      bool FromAssignLeft
2897        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
2898      bool FromAssignRight
2899        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
2900      bool ToAssignLeft
2901        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
2902      bool ToAssignRight
2903        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
2904
2905      // A conversion to an a non-id object pointer type or qualified 'id'
2906      // type is better than a conversion to 'id'.
2907      if (ToPtr1->isObjCIdType() &&
2908          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
2909        return ImplicitConversionSequence::Worse;
2910      if (ToPtr2->isObjCIdType() &&
2911          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
2912        return ImplicitConversionSequence::Better;
2913
2914      // A conversion to a non-id object pointer type is better than a
2915      // conversion to a qualified 'id' type
2916      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
2917        return ImplicitConversionSequence::Worse;
2918      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
2919        return ImplicitConversionSequence::Better;
2920
2921      // A conversion to an a non-Class object pointer type or qualified 'Class'
2922      // type is better than a conversion to 'Class'.
2923      if (ToPtr1->isObjCClassType() &&
2924          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
2925        return ImplicitConversionSequence::Worse;
2926      if (ToPtr2->isObjCClassType() &&
2927          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
2928        return ImplicitConversionSequence::Better;
2929
2930      // A conversion to a non-Class object pointer type is better than a
2931      // conversion to a qualified 'Class' type.
2932      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
2933        return ImplicitConversionSequence::Worse;
2934      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
2935        return ImplicitConversionSequence::Better;
2936
2937      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
2938      if (S.Context.hasSameType(FromType1, FromType2) &&
2939          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
2940          (ToAssignLeft != ToAssignRight))
2941        return ToAssignLeft? ImplicitConversionSequence::Worse
2942                           : ImplicitConversionSequence::Better;
2943
2944      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
2945      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
2946          (FromAssignLeft != FromAssignRight))
2947        return FromAssignLeft? ImplicitConversionSequence::Better
2948        : ImplicitConversionSequence::Worse;
2949    }
2950  }
2951
2952  // Ranking of member-pointer types.
2953  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2954      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2955      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2956    const MemberPointerType * FromMemPointer1 =
2957                                        FromType1->getAs<MemberPointerType>();
2958    const MemberPointerType * ToMemPointer1 =
2959                                          ToType1->getAs<MemberPointerType>();
2960    const MemberPointerType * FromMemPointer2 =
2961                                          FromType2->getAs<MemberPointerType>();
2962    const MemberPointerType * ToMemPointer2 =
2963                                          ToType2->getAs<MemberPointerType>();
2964    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2965    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2966    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2967    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2968    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2969    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2970    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2971    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2972    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2973    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2974      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2975        return ImplicitConversionSequence::Worse;
2976      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2977        return ImplicitConversionSequence::Better;
2978    }
2979    // conversion of B::* to C::* is better than conversion of A::* to C::*
2980    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2981      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2982        return ImplicitConversionSequence::Better;
2983      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2984        return ImplicitConversionSequence::Worse;
2985    }
2986  }
2987
2988  if (SCS1.Second == ICK_Derived_To_Base) {
2989    //   -- conversion of C to B is better than conversion of C to A,
2990    //   -- binding of an expression of type C to a reference of type
2991    //      B& is better than binding an expression of type C to a
2992    //      reference of type A&,
2993    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2994        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2995      if (S.IsDerivedFrom(ToType1, ToType2))
2996        return ImplicitConversionSequence::Better;
2997      else if (S.IsDerivedFrom(ToType2, ToType1))
2998        return ImplicitConversionSequence::Worse;
2999    }
3000
3001    //   -- conversion of B to A is better than conversion of C to A.
3002    //   -- binding of an expression of type B to a reference of type
3003    //      A& is better than binding an expression of type C to a
3004    //      reference of type A&,
3005    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3006        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3007      if (S.IsDerivedFrom(FromType2, FromType1))
3008        return ImplicitConversionSequence::Better;
3009      else if (S.IsDerivedFrom(FromType1, FromType2))
3010        return ImplicitConversionSequence::Worse;
3011    }
3012  }
3013
3014  return ImplicitConversionSequence::Indistinguishable;
3015}
3016
3017/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3018/// determine whether they are reference-related,
3019/// reference-compatible, reference-compatible with added
3020/// qualification, or incompatible, for use in C++ initialization by
3021/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3022/// type, and the first type (T1) is the pointee type of the reference
3023/// type being initialized.
3024Sema::ReferenceCompareResult
3025Sema::CompareReferenceRelationship(SourceLocation Loc,
3026                                   QualType OrigT1, QualType OrigT2,
3027                                   bool &DerivedToBase,
3028                                   bool &ObjCConversion) {
3029  assert(!OrigT1->isReferenceType() &&
3030    "T1 must be the pointee type of the reference type");
3031  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3032
3033  QualType T1 = Context.getCanonicalType(OrigT1);
3034  QualType T2 = Context.getCanonicalType(OrigT2);
3035  Qualifiers T1Quals, T2Quals;
3036  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3037  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3038
3039  // C++ [dcl.init.ref]p4:
3040  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3041  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3042  //   T1 is a base class of T2.
3043  DerivedToBase = false;
3044  ObjCConversion = false;
3045  if (UnqualT1 == UnqualT2) {
3046    // Nothing to do.
3047  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3048           IsDerivedFrom(UnqualT2, UnqualT1))
3049    DerivedToBase = true;
3050  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3051           UnqualT2->isObjCObjectOrInterfaceType() &&
3052           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3053    ObjCConversion = true;
3054  else
3055    return Ref_Incompatible;
3056
3057  // At this point, we know that T1 and T2 are reference-related (at
3058  // least).
3059
3060  // If the type is an array type, promote the element qualifiers to the type
3061  // for comparison.
3062  if (isa<ArrayType>(T1) && T1Quals)
3063    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3064  if (isa<ArrayType>(T2) && T2Quals)
3065    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3066
3067  // C++ [dcl.init.ref]p4:
3068  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3069  //   reference-related to T2 and cv1 is the same cv-qualification
3070  //   as, or greater cv-qualification than, cv2. For purposes of
3071  //   overload resolution, cases for which cv1 is greater
3072  //   cv-qualification than cv2 are identified as
3073  //   reference-compatible with added qualification (see 13.3.3.2).
3074  //
3075  // Note that we also require equivalence of Objective-C GC and address-space
3076  // qualifiers when performing these computations, so that e.g., an int in
3077  // address space 1 is not reference-compatible with an int in address
3078  // space 2.
3079  if (T1Quals == T2Quals)
3080    return Ref_Compatible;
3081  else if (T1.isMoreQualifiedThan(T2))
3082    return Ref_Compatible_With_Added_Qualification;
3083  else
3084    return Ref_Related;
3085}
3086
3087/// \brief Look for a user-defined conversion to an value reference-compatible
3088///        with DeclType. Return true if something definite is found.
3089static bool
3090FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3091                         QualType DeclType, SourceLocation DeclLoc,
3092                         Expr *Init, QualType T2, bool AllowRvalues,
3093                         bool AllowExplicit) {
3094  assert(T2->isRecordType() && "Can only find conversions of record types.");
3095  CXXRecordDecl *T2RecordDecl
3096    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3097
3098  OverloadCandidateSet CandidateSet(DeclLoc);
3099  const UnresolvedSetImpl *Conversions
3100    = T2RecordDecl->getVisibleConversionFunctions();
3101  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3102         E = Conversions->end(); I != E; ++I) {
3103    NamedDecl *D = *I;
3104    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3105    if (isa<UsingShadowDecl>(D))
3106      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3107
3108    FunctionTemplateDecl *ConvTemplate
3109      = dyn_cast<FunctionTemplateDecl>(D);
3110    CXXConversionDecl *Conv;
3111    if (ConvTemplate)
3112      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3113    else
3114      Conv = cast<CXXConversionDecl>(D);
3115
3116    // If this is an explicit conversion, and we're not allowed to consider
3117    // explicit conversions, skip it.
3118    if (!AllowExplicit && Conv->isExplicit())
3119      continue;
3120
3121    if (AllowRvalues) {
3122      bool DerivedToBase = false;
3123      bool ObjCConversion = false;
3124      if (!ConvTemplate &&
3125          S.CompareReferenceRelationship(
3126            DeclLoc,
3127            Conv->getConversionType().getNonReferenceType()
3128              .getUnqualifiedType(),
3129            DeclType.getNonReferenceType().getUnqualifiedType(),
3130            DerivedToBase, ObjCConversion) ==
3131          Sema::Ref_Incompatible)
3132        continue;
3133    } else {
3134      // If the conversion function doesn't return a reference type,
3135      // it can't be considered for this conversion. An rvalue reference
3136      // is only acceptable if its referencee is a function type.
3137
3138      const ReferenceType *RefType =
3139        Conv->getConversionType()->getAs<ReferenceType>();
3140      if (!RefType ||
3141          (!RefType->isLValueReferenceType() &&
3142           !RefType->getPointeeType()->isFunctionType()))
3143        continue;
3144    }
3145
3146    if (ConvTemplate)
3147      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3148                                       Init, DeclType, CandidateSet);
3149    else
3150      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3151                               DeclType, CandidateSet);
3152  }
3153
3154  OverloadCandidateSet::iterator Best;
3155  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3156  case OR_Success:
3157    // C++ [over.ics.ref]p1:
3158    //
3159    //   [...] If the parameter binds directly to the result of
3160    //   applying a conversion function to the argument
3161    //   expression, the implicit conversion sequence is a
3162    //   user-defined conversion sequence (13.3.3.1.2), with the
3163    //   second standard conversion sequence either an identity
3164    //   conversion or, if the conversion function returns an
3165    //   entity of a type that is a derived class of the parameter
3166    //   type, a derived-to-base Conversion.
3167    if (!Best->FinalConversion.DirectBinding)
3168      return false;
3169
3170    if (Best->Function)
3171      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3172    ICS.setUserDefined();
3173    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3174    ICS.UserDefined.After = Best->FinalConversion;
3175    ICS.UserDefined.ConversionFunction = Best->Function;
3176    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
3177    ICS.UserDefined.EllipsisConversion = false;
3178    assert(ICS.UserDefined.After.ReferenceBinding &&
3179           ICS.UserDefined.After.DirectBinding &&
3180           "Expected a direct reference binding!");
3181    return true;
3182
3183  case OR_Ambiguous:
3184    ICS.setAmbiguous();
3185    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3186         Cand != CandidateSet.end(); ++Cand)
3187      if (Cand->Viable)
3188        ICS.Ambiguous.addConversion(Cand->Function);
3189    return true;
3190
3191  case OR_No_Viable_Function:
3192  case OR_Deleted:
3193    // There was no suitable conversion, or we found a deleted
3194    // conversion; continue with other checks.
3195    return false;
3196  }
3197
3198  return false;
3199}
3200
3201/// \brief Compute an implicit conversion sequence for reference
3202/// initialization.
3203static ImplicitConversionSequence
3204TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3205                 SourceLocation DeclLoc,
3206                 bool SuppressUserConversions,
3207                 bool AllowExplicit) {
3208  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3209
3210  // Most paths end in a failed conversion.
3211  ImplicitConversionSequence ICS;
3212  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3213
3214  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3215  QualType T2 = Init->getType();
3216
3217  // If the initializer is the address of an overloaded function, try
3218  // to resolve the overloaded function. If all goes well, T2 is the
3219  // type of the resulting function.
3220  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3221    DeclAccessPair Found;
3222    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3223                                                                false, Found))
3224      T2 = Fn->getType();
3225  }
3226
3227  // Compute some basic properties of the types and the initializer.
3228  bool isRValRef = DeclType->isRValueReferenceType();
3229  bool DerivedToBase = false;
3230  bool ObjCConversion = false;
3231  Expr::Classification InitCategory = Init->Classify(S.Context);
3232  Sema::ReferenceCompareResult RefRelationship
3233    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3234                                     ObjCConversion);
3235
3236
3237  // C++0x [dcl.init.ref]p5:
3238  //   A reference to type "cv1 T1" is initialized by an expression
3239  //   of type "cv2 T2" as follows:
3240
3241  //     -- If reference is an lvalue reference and the initializer expression
3242  if (!isRValRef) {
3243    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3244    //        reference-compatible with "cv2 T2," or
3245    //
3246    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3247    if (InitCategory.isLValue() &&
3248        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3249      // C++ [over.ics.ref]p1:
3250      //   When a parameter of reference type binds directly (8.5.3)
3251      //   to an argument expression, the implicit conversion sequence
3252      //   is the identity conversion, unless the argument expression
3253      //   has a type that is a derived class of the parameter type,
3254      //   in which case the implicit conversion sequence is a
3255      //   derived-to-base Conversion (13.3.3.1).
3256      ICS.setStandard();
3257      ICS.Standard.First = ICK_Identity;
3258      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3259                         : ObjCConversion? ICK_Compatible_Conversion
3260                         : ICK_Identity;
3261      ICS.Standard.Third = ICK_Identity;
3262      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3263      ICS.Standard.setToType(0, T2);
3264      ICS.Standard.setToType(1, T1);
3265      ICS.Standard.setToType(2, T1);
3266      ICS.Standard.ReferenceBinding = true;
3267      ICS.Standard.DirectBinding = true;
3268      ICS.Standard.IsLvalueReference = !isRValRef;
3269      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3270      ICS.Standard.BindsToRvalue = false;
3271      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3272      ICS.Standard.CopyConstructor = 0;
3273
3274      // Nothing more to do: the inaccessibility/ambiguity check for
3275      // derived-to-base conversions is suppressed when we're
3276      // computing the implicit conversion sequence (C++
3277      // [over.best.ics]p2).
3278      return ICS;
3279    }
3280
3281    //       -- has a class type (i.e., T2 is a class type), where T1 is
3282    //          not reference-related to T2, and can be implicitly
3283    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3284    //          is reference-compatible with "cv3 T3" 92) (this
3285    //          conversion is selected by enumerating the applicable
3286    //          conversion functions (13.3.1.6) and choosing the best
3287    //          one through overload resolution (13.3)),
3288    if (!SuppressUserConversions && T2->isRecordType() &&
3289        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3290        RefRelationship == Sema::Ref_Incompatible) {
3291      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3292                                   Init, T2, /*AllowRvalues=*/false,
3293                                   AllowExplicit))
3294        return ICS;
3295    }
3296  }
3297
3298  //     -- Otherwise, the reference shall be an lvalue reference to a
3299  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3300  //        shall be an rvalue reference.
3301  //
3302  // We actually handle one oddity of C++ [over.ics.ref] at this
3303  // point, which is that, due to p2 (which short-circuits reference
3304  // binding by only attempting a simple conversion for non-direct
3305  // bindings) and p3's strange wording, we allow a const volatile
3306  // reference to bind to an rvalue. Hence the check for the presence
3307  // of "const" rather than checking for "const" being the only
3308  // qualifier.
3309  // This is also the point where rvalue references and lvalue inits no longer
3310  // go together.
3311  if (!isRValRef && !T1.isConstQualified())
3312    return ICS;
3313
3314  //       -- If the initializer expression
3315  //
3316  //            -- is an xvalue, class prvalue, array prvalue or function
3317  //               lvalue and "cv1T1" is reference-compatible with "cv2 T2", or
3318  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3319      (InitCategory.isXValue() ||
3320      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3321      (InitCategory.isLValue() && T2->isFunctionType()))) {
3322    ICS.setStandard();
3323    ICS.Standard.First = ICK_Identity;
3324    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3325                      : ObjCConversion? ICK_Compatible_Conversion
3326                      : ICK_Identity;
3327    ICS.Standard.Third = ICK_Identity;
3328    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3329    ICS.Standard.setToType(0, T2);
3330    ICS.Standard.setToType(1, T1);
3331    ICS.Standard.setToType(2, T1);
3332    ICS.Standard.ReferenceBinding = true;
3333    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3334    // binding unless we're binding to a class prvalue.
3335    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3336    // allow the use of rvalue references in C++98/03 for the benefit of
3337    // standard library implementors; therefore, we need the xvalue check here.
3338    ICS.Standard.DirectBinding =
3339      S.getLangOptions().CPlusPlus0x ||
3340      (InitCategory.isPRValue() && !T2->isRecordType());
3341    ICS.Standard.IsLvalueReference = !isRValRef;
3342    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3343    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3344    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3345    ICS.Standard.CopyConstructor = 0;
3346    return ICS;
3347  }
3348
3349  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3350  //               reference-related to T2, and can be implicitly converted to
3351  //               an xvalue, class prvalue, or function lvalue of type
3352  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3353  //               "cv3 T3",
3354  //
3355  //          then the reference is bound to the value of the initializer
3356  //          expression in the first case and to the result of the conversion
3357  //          in the second case (or, in either case, to an appropriate base
3358  //          class subobject).
3359  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3360      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3361      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3362                               Init, T2, /*AllowRvalues=*/true,
3363                               AllowExplicit)) {
3364    // In the second case, if the reference is an rvalue reference
3365    // and the second standard conversion sequence of the
3366    // user-defined conversion sequence includes an lvalue-to-rvalue
3367    // conversion, the program is ill-formed.
3368    if (ICS.isUserDefined() && isRValRef &&
3369        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3370      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3371
3372    return ICS;
3373  }
3374
3375  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3376  //          initialized from the initializer expression using the
3377  //          rules for a non-reference copy initialization (8.5). The
3378  //          reference is then bound to the temporary. If T1 is
3379  //          reference-related to T2, cv1 must be the same
3380  //          cv-qualification as, or greater cv-qualification than,
3381  //          cv2; otherwise, the program is ill-formed.
3382  if (RefRelationship == Sema::Ref_Related) {
3383    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3384    // we would be reference-compatible or reference-compatible with
3385    // added qualification. But that wasn't the case, so the reference
3386    // initialization fails.
3387    return ICS;
3388  }
3389
3390  // If at least one of the types is a class type, the types are not
3391  // related, and we aren't allowed any user conversions, the
3392  // reference binding fails. This case is important for breaking
3393  // recursion, since TryImplicitConversion below will attempt to
3394  // create a temporary through the use of a copy constructor.
3395  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3396      (T1->isRecordType() || T2->isRecordType()))
3397    return ICS;
3398
3399  // If T1 is reference-related to T2 and the reference is an rvalue
3400  // reference, the initializer expression shall not be an lvalue.
3401  if (RefRelationship >= Sema::Ref_Related &&
3402      isRValRef && Init->Classify(S.Context).isLValue())
3403    return ICS;
3404
3405  // C++ [over.ics.ref]p2:
3406  //   When a parameter of reference type is not bound directly to
3407  //   an argument expression, the conversion sequence is the one
3408  //   required to convert the argument expression to the
3409  //   underlying type of the reference according to
3410  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3411  //   to copy-initializing a temporary of the underlying type with
3412  //   the argument expression. Any difference in top-level
3413  //   cv-qualification is subsumed by the initialization itself
3414  //   and does not constitute a conversion.
3415  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3416                              /*AllowExplicit=*/false,
3417                              /*InOverloadResolution=*/false,
3418                              /*CStyle=*/false);
3419
3420  // Of course, that's still a reference binding.
3421  if (ICS.isStandard()) {
3422    ICS.Standard.ReferenceBinding = true;
3423    ICS.Standard.IsLvalueReference = !isRValRef;
3424    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3425    ICS.Standard.BindsToRvalue = true;
3426    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3427  } else if (ICS.isUserDefined()) {
3428    ICS.UserDefined.After.ReferenceBinding = true;
3429    ICS.Standard.IsLvalueReference = !isRValRef;
3430    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3431    ICS.Standard.BindsToRvalue = true;
3432    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3433  }
3434
3435  return ICS;
3436}
3437
3438/// TryCopyInitialization - Try to copy-initialize a value of type
3439/// ToType from the expression From. Return the implicit conversion
3440/// sequence required to pass this argument, which may be a bad
3441/// conversion sequence (meaning that the argument cannot be passed to
3442/// a parameter of this type). If @p SuppressUserConversions, then we
3443/// do not permit any user-defined conversion sequences.
3444static ImplicitConversionSequence
3445TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3446                      bool SuppressUserConversions,
3447                      bool InOverloadResolution) {
3448  if (ToType->isReferenceType())
3449    return TryReferenceInit(S, From, ToType,
3450                            /*FIXME:*/From->getLocStart(),
3451                            SuppressUserConversions,
3452                            /*AllowExplicit=*/false);
3453
3454  return TryImplicitConversion(S, From, ToType,
3455                               SuppressUserConversions,
3456                               /*AllowExplicit=*/false,
3457                               InOverloadResolution,
3458                               /*CStyle=*/false);
3459}
3460
3461/// TryObjectArgumentInitialization - Try to initialize the object
3462/// parameter of the given member function (@c Method) from the
3463/// expression @p From.
3464static ImplicitConversionSequence
3465TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3466                                Expr::Classification FromClassification,
3467                                CXXMethodDecl *Method,
3468                                CXXRecordDecl *ActingContext) {
3469  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3470  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3471  //                 const volatile object.
3472  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3473    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3474  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3475
3476  // Set up the conversion sequence as a "bad" conversion, to allow us
3477  // to exit early.
3478  ImplicitConversionSequence ICS;
3479
3480  // We need to have an object of class type.
3481  QualType FromType = OrigFromType;
3482  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3483    FromType = PT->getPointeeType();
3484
3485    // When we had a pointer, it's implicitly dereferenced, so we
3486    // better have an lvalue.
3487    assert(FromClassification.isLValue());
3488  }
3489
3490  assert(FromType->isRecordType());
3491
3492  // C++0x [over.match.funcs]p4:
3493  //   For non-static member functions, the type of the implicit object
3494  //   parameter is
3495  //
3496  //     - "lvalue reference to cv X" for functions declared without a
3497  //        ref-qualifier or with the & ref-qualifier
3498  //     - "rvalue reference to cv X" for functions declared with the &&
3499  //        ref-qualifier
3500  //
3501  // where X is the class of which the function is a member and cv is the
3502  // cv-qualification on the member function declaration.
3503  //
3504  // However, when finding an implicit conversion sequence for the argument, we
3505  // are not allowed to create temporaries or perform user-defined conversions
3506  // (C++ [over.match.funcs]p5). We perform a simplified version of
3507  // reference binding here, that allows class rvalues to bind to
3508  // non-constant references.
3509
3510  // First check the qualifiers.
3511  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3512  if (ImplicitParamType.getCVRQualifiers()
3513                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3514      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3515    ICS.setBad(BadConversionSequence::bad_qualifiers,
3516               OrigFromType, ImplicitParamType);
3517    return ICS;
3518  }
3519
3520  // Check that we have either the same type or a derived type. It
3521  // affects the conversion rank.
3522  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3523  ImplicitConversionKind SecondKind;
3524  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3525    SecondKind = ICK_Identity;
3526  } else if (S.IsDerivedFrom(FromType, ClassType))
3527    SecondKind = ICK_Derived_To_Base;
3528  else {
3529    ICS.setBad(BadConversionSequence::unrelated_class,
3530               FromType, ImplicitParamType);
3531    return ICS;
3532  }
3533
3534  // Check the ref-qualifier.
3535  switch (Method->getRefQualifier()) {
3536  case RQ_None:
3537    // Do nothing; we don't care about lvalueness or rvalueness.
3538    break;
3539
3540  case RQ_LValue:
3541    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3542      // non-const lvalue reference cannot bind to an rvalue
3543      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3544                 ImplicitParamType);
3545      return ICS;
3546    }
3547    break;
3548
3549  case RQ_RValue:
3550    if (!FromClassification.isRValue()) {
3551      // rvalue reference cannot bind to an lvalue
3552      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3553                 ImplicitParamType);
3554      return ICS;
3555    }
3556    break;
3557  }
3558
3559  // Success. Mark this as a reference binding.
3560  ICS.setStandard();
3561  ICS.Standard.setAsIdentityConversion();
3562  ICS.Standard.Second = SecondKind;
3563  ICS.Standard.setFromType(FromType);
3564  ICS.Standard.setAllToTypes(ImplicitParamType);
3565  ICS.Standard.ReferenceBinding = true;
3566  ICS.Standard.DirectBinding = true;
3567  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3568  ICS.Standard.BindsToFunctionLvalue = false;
3569  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
3570  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
3571    = (Method->getRefQualifier() == RQ_None);
3572  return ICS;
3573}
3574
3575/// PerformObjectArgumentInitialization - Perform initialization of
3576/// the implicit object parameter for the given Method with the given
3577/// expression.
3578ExprResult
3579Sema::PerformObjectArgumentInitialization(Expr *From,
3580                                          NestedNameSpecifier *Qualifier,
3581                                          NamedDecl *FoundDecl,
3582                                          CXXMethodDecl *Method) {
3583  QualType FromRecordType, DestType;
3584  QualType ImplicitParamRecordType  =
3585    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3586
3587  Expr::Classification FromClassification;
3588  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3589    FromRecordType = PT->getPointeeType();
3590    DestType = Method->getThisType(Context);
3591    FromClassification = Expr::Classification::makeSimpleLValue();
3592  } else {
3593    FromRecordType = From->getType();
3594    DestType = ImplicitParamRecordType;
3595    FromClassification = From->Classify(Context);
3596  }
3597
3598  // Note that we always use the true parent context when performing
3599  // the actual argument initialization.
3600  ImplicitConversionSequence ICS
3601    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3602                                      Method, Method->getParent());
3603  if (ICS.isBad()) {
3604    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3605      Qualifiers FromQs = FromRecordType.getQualifiers();
3606      Qualifiers ToQs = DestType.getQualifiers();
3607      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3608      if (CVR) {
3609        Diag(From->getSourceRange().getBegin(),
3610             diag::err_member_function_call_bad_cvr)
3611          << Method->getDeclName() << FromRecordType << (CVR - 1)
3612          << From->getSourceRange();
3613        Diag(Method->getLocation(), diag::note_previous_decl)
3614          << Method->getDeclName();
3615        return ExprError();
3616      }
3617    }
3618
3619    return Diag(From->getSourceRange().getBegin(),
3620                diag::err_implicit_object_parameter_init)
3621       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3622  }
3623
3624  if (ICS.Standard.Second == ICK_Derived_To_Base) {
3625    ExprResult FromRes =
3626      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3627    if (FromRes.isInvalid())
3628      return ExprError();
3629    From = FromRes.take();
3630  }
3631
3632  if (!Context.hasSameType(From->getType(), DestType))
3633    From = ImpCastExprToType(From, DestType, CK_NoOp,
3634                      From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
3635  return Owned(From);
3636}
3637
3638/// TryContextuallyConvertToBool - Attempt to contextually convert the
3639/// expression From to bool (C++0x [conv]p3).
3640static ImplicitConversionSequence
3641TryContextuallyConvertToBool(Sema &S, Expr *From) {
3642  // FIXME: This is pretty broken.
3643  return TryImplicitConversion(S, From, S.Context.BoolTy,
3644                               // FIXME: Are these flags correct?
3645                               /*SuppressUserConversions=*/false,
3646                               /*AllowExplicit=*/true,
3647                               /*InOverloadResolution=*/false,
3648                               /*CStyle=*/false);
3649}
3650
3651/// PerformContextuallyConvertToBool - Perform a contextual conversion
3652/// of the expression From to bool (C++0x [conv]p3).
3653ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
3654  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3655  if (!ICS.isBad())
3656    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3657
3658  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3659    return Diag(From->getSourceRange().getBegin(),
3660                diag::err_typecheck_bool_condition)
3661                  << From->getType() << From->getSourceRange();
3662  return ExprError();
3663}
3664
3665/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3666/// expression From to 'id'.
3667static ImplicitConversionSequence
3668TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3669  QualType Ty = S.Context.getObjCIdType();
3670  return TryImplicitConversion(S, From, Ty,
3671                               // FIXME: Are these flags correct?
3672                               /*SuppressUserConversions=*/false,
3673                               /*AllowExplicit=*/true,
3674                               /*InOverloadResolution=*/false,
3675                               /*CStyle=*/false);
3676}
3677
3678/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3679/// of the expression From to 'id'.
3680ExprResult Sema::PerformContextuallyConvertToObjCId(Expr *From) {
3681  QualType Ty = Context.getObjCIdType();
3682  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3683  if (!ICS.isBad())
3684    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3685  return ExprError();
3686}
3687
3688/// \brief Attempt to convert the given expression to an integral or
3689/// enumeration type.
3690///
3691/// This routine will attempt to convert an expression of class type to an
3692/// integral or enumeration type, if that class type only has a single
3693/// conversion to an integral or enumeration type.
3694///
3695/// \param Loc The source location of the construct that requires the
3696/// conversion.
3697///
3698/// \param FromE The expression we're converting from.
3699///
3700/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3701/// have integral or enumeration type.
3702///
3703/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3704/// incomplete class type.
3705///
3706/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3707/// explicit conversion function (because no implicit conversion functions
3708/// were available). This is a recovery mode.
3709///
3710/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3711/// showing which conversion was picked.
3712///
3713/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3714/// conversion function that could convert to integral or enumeration type.
3715///
3716/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3717/// usable conversion function.
3718///
3719/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3720/// function, which may be an extension in this case.
3721///
3722/// \returns The expression, converted to an integral or enumeration type if
3723/// successful.
3724ExprResult
3725Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3726                                         const PartialDiagnostic &NotIntDiag,
3727                                       const PartialDiagnostic &IncompleteDiag,
3728                                     const PartialDiagnostic &ExplicitConvDiag,
3729                                     const PartialDiagnostic &ExplicitConvNote,
3730                                         const PartialDiagnostic &AmbigDiag,
3731                                         const PartialDiagnostic &AmbigNote,
3732                                         const PartialDiagnostic &ConvDiag) {
3733  // We can't perform any more checking for type-dependent expressions.
3734  if (From->isTypeDependent())
3735    return Owned(From);
3736
3737  // If the expression already has integral or enumeration type, we're golden.
3738  QualType T = From->getType();
3739  if (T->isIntegralOrEnumerationType())
3740    return Owned(From);
3741
3742  // FIXME: Check for missing '()' if T is a function type?
3743
3744  // If we don't have a class type in C++, there's no way we can get an
3745  // expression of integral or enumeration type.
3746  const RecordType *RecordTy = T->getAs<RecordType>();
3747  if (!RecordTy || !getLangOptions().CPlusPlus) {
3748    Diag(Loc, NotIntDiag)
3749      << T << From->getSourceRange();
3750    return Owned(From);
3751  }
3752
3753  // We must have a complete class type.
3754  if (RequireCompleteType(Loc, T, IncompleteDiag))
3755    return Owned(From);
3756
3757  // Look for a conversion to an integral or enumeration type.
3758  UnresolvedSet<4> ViableConversions;
3759  UnresolvedSet<4> ExplicitConversions;
3760  const UnresolvedSetImpl *Conversions
3761    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3762
3763  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3764                                   E = Conversions->end();
3765       I != E;
3766       ++I) {
3767    if (CXXConversionDecl *Conversion
3768          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3769      if (Conversion->getConversionType().getNonReferenceType()
3770            ->isIntegralOrEnumerationType()) {
3771        if (Conversion->isExplicit())
3772          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3773        else
3774          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3775      }
3776  }
3777
3778  switch (ViableConversions.size()) {
3779  case 0:
3780    if (ExplicitConversions.size() == 1) {
3781      DeclAccessPair Found = ExplicitConversions[0];
3782      CXXConversionDecl *Conversion
3783        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3784
3785      // The user probably meant to invoke the given explicit
3786      // conversion; use it.
3787      QualType ConvTy
3788        = Conversion->getConversionType().getNonReferenceType();
3789      std::string TypeStr;
3790      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3791
3792      Diag(Loc, ExplicitConvDiag)
3793        << T << ConvTy
3794        << FixItHint::CreateInsertion(From->getLocStart(),
3795                                      "static_cast<" + TypeStr + ">(")
3796        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3797                                      ")");
3798      Diag(Conversion->getLocation(), ExplicitConvNote)
3799        << ConvTy->isEnumeralType() << ConvTy;
3800
3801      // If we aren't in a SFINAE context, build a call to the
3802      // explicit conversion function.
3803      if (isSFINAEContext())
3804        return ExprError();
3805
3806      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3807      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3808      if (Result.isInvalid())
3809        return ExprError();
3810
3811      From = Result.get();
3812    }
3813
3814    // We'll complain below about a non-integral condition type.
3815    break;
3816
3817  case 1: {
3818    // Apply this conversion.
3819    DeclAccessPair Found = ViableConversions[0];
3820    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3821
3822    CXXConversionDecl *Conversion
3823      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3824    QualType ConvTy
3825      = Conversion->getConversionType().getNonReferenceType();
3826    if (ConvDiag.getDiagID()) {
3827      if (isSFINAEContext())
3828        return ExprError();
3829
3830      Diag(Loc, ConvDiag)
3831        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3832    }
3833
3834    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
3835                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3836    if (Result.isInvalid())
3837      return ExprError();
3838
3839    From = Result.get();
3840    break;
3841  }
3842
3843  default:
3844    Diag(Loc, AmbigDiag)
3845      << T << From->getSourceRange();
3846    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3847      CXXConversionDecl *Conv
3848        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3849      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3850      Diag(Conv->getLocation(), AmbigNote)
3851        << ConvTy->isEnumeralType() << ConvTy;
3852    }
3853    return Owned(From);
3854  }
3855
3856  if (!From->getType()->isIntegralOrEnumerationType())
3857    Diag(Loc, NotIntDiag)
3858      << From->getType() << From->getSourceRange();
3859
3860  return Owned(From);
3861}
3862
3863/// AddOverloadCandidate - Adds the given function to the set of
3864/// candidate functions, using the given function call arguments.  If
3865/// @p SuppressUserConversions, then don't allow user-defined
3866/// conversions via constructors or conversion operators.
3867///
3868/// \para PartialOverloading true if we are performing "partial" overloading
3869/// based on an incomplete set of function arguments. This feature is used by
3870/// code completion.
3871void
3872Sema::AddOverloadCandidate(FunctionDecl *Function,
3873                           DeclAccessPair FoundDecl,
3874                           Expr **Args, unsigned NumArgs,
3875                           OverloadCandidateSet& CandidateSet,
3876                           bool SuppressUserConversions,
3877                           bool PartialOverloading) {
3878  const FunctionProtoType* Proto
3879    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3880  assert(Proto && "Functions without a prototype cannot be overloaded");
3881  assert(!Function->getDescribedFunctionTemplate() &&
3882         "Use AddTemplateOverloadCandidate for function templates");
3883
3884  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3885    if (!isa<CXXConstructorDecl>(Method)) {
3886      // If we get here, it's because we're calling a member function
3887      // that is named without a member access expression (e.g.,
3888      // "this->f") that was either written explicitly or created
3889      // implicitly. This can happen with a qualified call to a member
3890      // function, e.g., X::f(). We use an empty type for the implied
3891      // object argument (C++ [over.call.func]p3), and the acting context
3892      // is irrelevant.
3893      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3894                         QualType(), Expr::Classification::makeSimpleLValue(),
3895                         Args, NumArgs, CandidateSet,
3896                         SuppressUserConversions);
3897      return;
3898    }
3899    // We treat a constructor like a non-member function, since its object
3900    // argument doesn't participate in overload resolution.
3901  }
3902
3903  if (!CandidateSet.isNewCandidate(Function))
3904    return;
3905
3906  // Overload resolution is always an unevaluated context.
3907  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3908
3909  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3910    // C++ [class.copy]p3:
3911    //   A member function template is never instantiated to perform the copy
3912    //   of a class object to an object of its class type.
3913    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3914    if (NumArgs == 1 &&
3915        Constructor->isSpecializationCopyingObject() &&
3916        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3917         IsDerivedFrom(Args[0]->getType(), ClassType)))
3918      return;
3919  }
3920
3921  // Add this candidate
3922  CandidateSet.push_back(OverloadCandidate());
3923  OverloadCandidate& Candidate = CandidateSet.back();
3924  Candidate.FoundDecl = FoundDecl;
3925  Candidate.Function = Function;
3926  Candidate.Viable = true;
3927  Candidate.IsSurrogate = false;
3928  Candidate.IgnoreObjectArgument = false;
3929  Candidate.ExplicitCallArguments = NumArgs;
3930
3931  unsigned NumArgsInProto = Proto->getNumArgs();
3932
3933  // (C++ 13.3.2p2): A candidate function having fewer than m
3934  // parameters is viable only if it has an ellipsis in its parameter
3935  // list (8.3.5).
3936  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3937      !Proto->isVariadic()) {
3938    Candidate.Viable = false;
3939    Candidate.FailureKind = ovl_fail_too_many_arguments;
3940    return;
3941  }
3942
3943  // (C++ 13.3.2p2): A candidate function having more than m parameters
3944  // is viable only if the (m+1)st parameter has a default argument
3945  // (8.3.6). For the purposes of overload resolution, the
3946  // parameter list is truncated on the right, so that there are
3947  // exactly m parameters.
3948  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3949  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3950    // Not enough arguments.
3951    Candidate.Viable = false;
3952    Candidate.FailureKind = ovl_fail_too_few_arguments;
3953    return;
3954  }
3955
3956  // Determine the implicit conversion sequences for each of the
3957  // arguments.
3958  Candidate.Conversions.resize(NumArgs);
3959  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3960    if (ArgIdx < NumArgsInProto) {
3961      // (C++ 13.3.2p3): for F to be a viable function, there shall
3962      // exist for each argument an implicit conversion sequence
3963      // (13.3.3.1) that converts that argument to the corresponding
3964      // parameter of F.
3965      QualType ParamType = Proto->getArgType(ArgIdx);
3966      Candidate.Conversions[ArgIdx]
3967        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3968                                SuppressUserConversions,
3969                                /*InOverloadResolution=*/true);
3970      if (Candidate.Conversions[ArgIdx].isBad()) {
3971        Candidate.Viable = false;
3972        Candidate.FailureKind = ovl_fail_bad_conversion;
3973        break;
3974      }
3975    } else {
3976      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3977      // argument for which there is no corresponding parameter is
3978      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3979      Candidate.Conversions[ArgIdx].setEllipsis();
3980    }
3981  }
3982}
3983
3984/// \brief Add all of the function declarations in the given function set to
3985/// the overload canddiate set.
3986void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3987                                 Expr **Args, unsigned NumArgs,
3988                                 OverloadCandidateSet& CandidateSet,
3989                                 bool SuppressUserConversions) {
3990  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3991    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3992    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3993      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3994        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3995                           cast<CXXMethodDecl>(FD)->getParent(),
3996                           Args[0]->getType(), Args[0]->Classify(Context),
3997                           Args + 1, NumArgs - 1,
3998                           CandidateSet, SuppressUserConversions);
3999      else
4000        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
4001                             SuppressUserConversions);
4002    } else {
4003      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
4004      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
4005          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
4006        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
4007                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
4008                                   /*FIXME: explicit args */ 0,
4009                                   Args[0]->getType(),
4010                                   Args[0]->Classify(Context),
4011                                   Args + 1, NumArgs - 1,
4012                                   CandidateSet,
4013                                   SuppressUserConversions);
4014      else
4015        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
4016                                     /*FIXME: explicit args */ 0,
4017                                     Args, NumArgs, CandidateSet,
4018                                     SuppressUserConversions);
4019    }
4020  }
4021}
4022
4023/// AddMethodCandidate - Adds a named decl (which is some kind of
4024/// method) as a method candidate to the given overload set.
4025void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
4026                              QualType ObjectType,
4027                              Expr::Classification ObjectClassification,
4028                              Expr **Args, unsigned NumArgs,
4029                              OverloadCandidateSet& CandidateSet,
4030                              bool SuppressUserConversions) {
4031  NamedDecl *Decl = FoundDecl.getDecl();
4032  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4033
4034  if (isa<UsingShadowDecl>(Decl))
4035    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4036
4037  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4038    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4039           "Expected a member function template");
4040    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4041                               /*ExplicitArgs*/ 0,
4042                               ObjectType, ObjectClassification, Args, NumArgs,
4043                               CandidateSet,
4044                               SuppressUserConversions);
4045  } else {
4046    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4047                       ObjectType, ObjectClassification, Args, NumArgs,
4048                       CandidateSet, SuppressUserConversions);
4049  }
4050}
4051
4052/// AddMethodCandidate - Adds the given C++ member function to the set
4053/// of candidate functions, using the given function call arguments
4054/// and the object argument (@c Object). For example, in a call
4055/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4056/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4057/// allow user-defined conversions via constructors or conversion
4058/// operators.
4059void
4060Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4061                         CXXRecordDecl *ActingContext, QualType ObjectType,
4062                         Expr::Classification ObjectClassification,
4063                         Expr **Args, unsigned NumArgs,
4064                         OverloadCandidateSet& CandidateSet,
4065                         bool SuppressUserConversions) {
4066  const FunctionProtoType* Proto
4067    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4068  assert(Proto && "Methods without a prototype cannot be overloaded");
4069  assert(!isa<CXXConstructorDecl>(Method) &&
4070         "Use AddOverloadCandidate for constructors");
4071
4072  if (!CandidateSet.isNewCandidate(Method))
4073    return;
4074
4075  // Overload resolution is always an unevaluated context.
4076  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4077
4078  // Add this candidate
4079  CandidateSet.push_back(OverloadCandidate());
4080  OverloadCandidate& Candidate = CandidateSet.back();
4081  Candidate.FoundDecl = FoundDecl;
4082  Candidate.Function = Method;
4083  Candidate.IsSurrogate = false;
4084  Candidate.IgnoreObjectArgument = false;
4085  Candidate.ExplicitCallArguments = NumArgs;
4086
4087  unsigned NumArgsInProto = Proto->getNumArgs();
4088
4089  // (C++ 13.3.2p2): A candidate function having fewer than m
4090  // parameters is viable only if it has an ellipsis in its parameter
4091  // list (8.3.5).
4092  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4093    Candidate.Viable = false;
4094    Candidate.FailureKind = ovl_fail_too_many_arguments;
4095    return;
4096  }
4097
4098  // (C++ 13.3.2p2): A candidate function having more than m parameters
4099  // is viable only if the (m+1)st parameter has a default argument
4100  // (8.3.6). For the purposes of overload resolution, the
4101  // parameter list is truncated on the right, so that there are
4102  // exactly m parameters.
4103  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4104  if (NumArgs < MinRequiredArgs) {
4105    // Not enough arguments.
4106    Candidate.Viable = false;
4107    Candidate.FailureKind = ovl_fail_too_few_arguments;
4108    return;
4109  }
4110
4111  Candidate.Viable = true;
4112  Candidate.Conversions.resize(NumArgs + 1);
4113
4114  if (Method->isStatic() || ObjectType.isNull())
4115    // The implicit object argument is ignored.
4116    Candidate.IgnoreObjectArgument = true;
4117  else {
4118    // Determine the implicit conversion sequence for the object
4119    // parameter.
4120    Candidate.Conversions[0]
4121      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4122                                        Method, ActingContext);
4123    if (Candidate.Conversions[0].isBad()) {
4124      Candidate.Viable = false;
4125      Candidate.FailureKind = ovl_fail_bad_conversion;
4126      return;
4127    }
4128  }
4129
4130  // Determine the implicit conversion sequences for each of the
4131  // arguments.
4132  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4133    if (ArgIdx < NumArgsInProto) {
4134      // (C++ 13.3.2p3): for F to be a viable function, there shall
4135      // exist for each argument an implicit conversion sequence
4136      // (13.3.3.1) that converts that argument to the corresponding
4137      // parameter of F.
4138      QualType ParamType = Proto->getArgType(ArgIdx);
4139      Candidate.Conversions[ArgIdx + 1]
4140        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4141                                SuppressUserConversions,
4142                                /*InOverloadResolution=*/true);
4143      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4144        Candidate.Viable = false;
4145        Candidate.FailureKind = ovl_fail_bad_conversion;
4146        break;
4147      }
4148    } else {
4149      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4150      // argument for which there is no corresponding parameter is
4151      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4152      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4153    }
4154  }
4155}
4156
4157/// \brief Add a C++ member function template as a candidate to the candidate
4158/// set, using template argument deduction to produce an appropriate member
4159/// function template specialization.
4160void
4161Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4162                                 DeclAccessPair FoundDecl,
4163                                 CXXRecordDecl *ActingContext,
4164                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4165                                 QualType ObjectType,
4166                                 Expr::Classification ObjectClassification,
4167                                 Expr **Args, unsigned NumArgs,
4168                                 OverloadCandidateSet& CandidateSet,
4169                                 bool SuppressUserConversions) {
4170  if (!CandidateSet.isNewCandidate(MethodTmpl))
4171    return;
4172
4173  // C++ [over.match.funcs]p7:
4174  //   In each case where a candidate is a function template, candidate
4175  //   function template specializations are generated using template argument
4176  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4177  //   candidate functions in the usual way.113) A given name can refer to one
4178  //   or more function templates and also to a set of overloaded non-template
4179  //   functions. In such a case, the candidate functions generated from each
4180  //   function template are combined with the set of non-template candidate
4181  //   functions.
4182  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4183  FunctionDecl *Specialization = 0;
4184  if (TemplateDeductionResult Result
4185      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4186                                Args, NumArgs, Specialization, Info)) {
4187    CandidateSet.push_back(OverloadCandidate());
4188    OverloadCandidate &Candidate = CandidateSet.back();
4189    Candidate.FoundDecl = FoundDecl;
4190    Candidate.Function = MethodTmpl->getTemplatedDecl();
4191    Candidate.Viable = false;
4192    Candidate.FailureKind = ovl_fail_bad_deduction;
4193    Candidate.IsSurrogate = false;
4194    Candidate.IgnoreObjectArgument = false;
4195    Candidate.ExplicitCallArguments = NumArgs;
4196    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4197                                                          Info);
4198    return;
4199  }
4200
4201  // Add the function template specialization produced by template argument
4202  // deduction as a candidate.
4203  assert(Specialization && "Missing member function template specialization?");
4204  assert(isa<CXXMethodDecl>(Specialization) &&
4205         "Specialization is not a member function?");
4206  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4207                     ActingContext, ObjectType, ObjectClassification,
4208                     Args, NumArgs, CandidateSet, SuppressUserConversions);
4209}
4210
4211/// \brief Add a C++ function template specialization as a candidate
4212/// in the candidate set, using template argument deduction to produce
4213/// an appropriate function template specialization.
4214void
4215Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4216                                   DeclAccessPair FoundDecl,
4217                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4218                                   Expr **Args, unsigned NumArgs,
4219                                   OverloadCandidateSet& CandidateSet,
4220                                   bool SuppressUserConversions) {
4221  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4222    return;
4223
4224  // C++ [over.match.funcs]p7:
4225  //   In each case where a candidate is a function template, candidate
4226  //   function template specializations are generated using template argument
4227  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4228  //   candidate functions in the usual way.113) A given name can refer to one
4229  //   or more function templates and also to a set of overloaded non-template
4230  //   functions. In such a case, the candidate functions generated from each
4231  //   function template are combined with the set of non-template candidate
4232  //   functions.
4233  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4234  FunctionDecl *Specialization = 0;
4235  if (TemplateDeductionResult Result
4236        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4237                                  Args, NumArgs, Specialization, Info)) {
4238    CandidateSet.push_back(OverloadCandidate());
4239    OverloadCandidate &Candidate = CandidateSet.back();
4240    Candidate.FoundDecl = FoundDecl;
4241    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4242    Candidate.Viable = false;
4243    Candidate.FailureKind = ovl_fail_bad_deduction;
4244    Candidate.IsSurrogate = false;
4245    Candidate.IgnoreObjectArgument = false;
4246    Candidate.ExplicitCallArguments = NumArgs;
4247    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4248                                                          Info);
4249    return;
4250  }
4251
4252  // Add the function template specialization produced by template argument
4253  // deduction as a candidate.
4254  assert(Specialization && "Missing function template specialization?");
4255  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4256                       SuppressUserConversions);
4257}
4258
4259/// AddConversionCandidate - Add a C++ conversion function as a
4260/// candidate in the candidate set (C++ [over.match.conv],
4261/// C++ [over.match.copy]). From is the expression we're converting from,
4262/// and ToType is the type that we're eventually trying to convert to
4263/// (which may or may not be the same type as the type that the
4264/// conversion function produces).
4265void
4266Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4267                             DeclAccessPair FoundDecl,
4268                             CXXRecordDecl *ActingContext,
4269                             Expr *From, QualType ToType,
4270                             OverloadCandidateSet& CandidateSet) {
4271  assert(!Conversion->getDescribedFunctionTemplate() &&
4272         "Conversion function templates use AddTemplateConversionCandidate");
4273  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4274  if (!CandidateSet.isNewCandidate(Conversion))
4275    return;
4276
4277  // Overload resolution is always an unevaluated context.
4278  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4279
4280  // Add this candidate
4281  CandidateSet.push_back(OverloadCandidate());
4282  OverloadCandidate& Candidate = CandidateSet.back();
4283  Candidate.FoundDecl = FoundDecl;
4284  Candidate.Function = Conversion;
4285  Candidate.IsSurrogate = false;
4286  Candidate.IgnoreObjectArgument = false;
4287  Candidate.FinalConversion.setAsIdentityConversion();
4288  Candidate.FinalConversion.setFromType(ConvType);
4289  Candidate.FinalConversion.setAllToTypes(ToType);
4290  Candidate.Viable = true;
4291  Candidate.Conversions.resize(1);
4292  Candidate.ExplicitCallArguments = 1;
4293
4294  // C++ [over.match.funcs]p4:
4295  //   For conversion functions, the function is considered to be a member of
4296  //   the class of the implicit implied object argument for the purpose of
4297  //   defining the type of the implicit object parameter.
4298  //
4299  // Determine the implicit conversion sequence for the implicit
4300  // object parameter.
4301  QualType ImplicitParamType = From->getType();
4302  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4303    ImplicitParamType = FromPtrType->getPointeeType();
4304  CXXRecordDecl *ConversionContext
4305    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4306
4307  Candidate.Conversions[0]
4308    = TryObjectArgumentInitialization(*this, From->getType(),
4309                                      From->Classify(Context),
4310                                      Conversion, ConversionContext);
4311
4312  if (Candidate.Conversions[0].isBad()) {
4313    Candidate.Viable = false;
4314    Candidate.FailureKind = ovl_fail_bad_conversion;
4315    return;
4316  }
4317
4318  // We won't go through a user-define type conversion function to convert a
4319  // derived to base as such conversions are given Conversion Rank. They only
4320  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4321  QualType FromCanon
4322    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4323  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4324  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4325    Candidate.Viable = false;
4326    Candidate.FailureKind = ovl_fail_trivial_conversion;
4327    return;
4328  }
4329
4330  // To determine what the conversion from the result of calling the
4331  // conversion function to the type we're eventually trying to
4332  // convert to (ToType), we need to synthesize a call to the
4333  // conversion function and attempt copy initialization from it. This
4334  // makes sure that we get the right semantics with respect to
4335  // lvalues/rvalues and the type. Fortunately, we can allocate this
4336  // call on the stack and we don't need its arguments to be
4337  // well-formed.
4338  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4339                            VK_LValue, From->getLocStart());
4340  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4341                                Context.getPointerType(Conversion->getType()),
4342                                CK_FunctionToPointerDecay,
4343                                &ConversionRef, VK_RValue);
4344
4345  QualType CallResultType
4346    = Conversion->getConversionType().getNonLValueExprType(Context);
4347  if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) {
4348    Candidate.Viable = false;
4349    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4350    return;
4351  }
4352
4353  ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType());
4354
4355  // Note that it is safe to allocate CallExpr on the stack here because
4356  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4357  // allocator).
4358  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4359                From->getLocStart());
4360  ImplicitConversionSequence ICS =
4361    TryCopyInitialization(*this, &Call, ToType,
4362                          /*SuppressUserConversions=*/true,
4363                          /*InOverloadResolution=*/false);
4364
4365  switch (ICS.getKind()) {
4366  case ImplicitConversionSequence::StandardConversion:
4367    Candidate.FinalConversion = ICS.Standard;
4368
4369    // C++ [over.ics.user]p3:
4370    //   If the user-defined conversion is specified by a specialization of a
4371    //   conversion function template, the second standard conversion sequence
4372    //   shall have exact match rank.
4373    if (Conversion->getPrimaryTemplate() &&
4374        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4375      Candidate.Viable = false;
4376      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4377    }
4378
4379    // C++0x [dcl.init.ref]p5:
4380    //    In the second case, if the reference is an rvalue reference and
4381    //    the second standard conversion sequence of the user-defined
4382    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4383    //    program is ill-formed.
4384    if (ToType->isRValueReferenceType() &&
4385        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4386      Candidate.Viable = false;
4387      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4388    }
4389    break;
4390
4391  case ImplicitConversionSequence::BadConversion:
4392    Candidate.Viable = false;
4393    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4394    break;
4395
4396  default:
4397    assert(false &&
4398           "Can only end up with a standard conversion sequence or failure");
4399  }
4400}
4401
4402/// \brief Adds a conversion function template specialization
4403/// candidate to the overload set, using template argument deduction
4404/// to deduce the template arguments of the conversion function
4405/// template from the type that we are converting to (C++
4406/// [temp.deduct.conv]).
4407void
4408Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4409                                     DeclAccessPair FoundDecl,
4410                                     CXXRecordDecl *ActingDC,
4411                                     Expr *From, QualType ToType,
4412                                     OverloadCandidateSet &CandidateSet) {
4413  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4414         "Only conversion function templates permitted here");
4415
4416  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4417    return;
4418
4419  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4420  CXXConversionDecl *Specialization = 0;
4421  if (TemplateDeductionResult Result
4422        = DeduceTemplateArguments(FunctionTemplate, ToType,
4423                                  Specialization, Info)) {
4424    CandidateSet.push_back(OverloadCandidate());
4425    OverloadCandidate &Candidate = CandidateSet.back();
4426    Candidate.FoundDecl = FoundDecl;
4427    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4428    Candidate.Viable = false;
4429    Candidate.FailureKind = ovl_fail_bad_deduction;
4430    Candidate.IsSurrogate = false;
4431    Candidate.IgnoreObjectArgument = false;
4432    Candidate.ExplicitCallArguments = 1;
4433    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4434                                                          Info);
4435    return;
4436  }
4437
4438  // Add the conversion function template specialization produced by
4439  // template argument deduction as a candidate.
4440  assert(Specialization && "Missing function template specialization?");
4441  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4442                         CandidateSet);
4443}
4444
4445/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4446/// converts the given @c Object to a function pointer via the
4447/// conversion function @c Conversion, and then attempts to call it
4448/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4449/// the type of function that we'll eventually be calling.
4450void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4451                                 DeclAccessPair FoundDecl,
4452                                 CXXRecordDecl *ActingContext,
4453                                 const FunctionProtoType *Proto,
4454                                 Expr *Object,
4455                                 Expr **Args, unsigned NumArgs,
4456                                 OverloadCandidateSet& CandidateSet) {
4457  if (!CandidateSet.isNewCandidate(Conversion))
4458    return;
4459
4460  // Overload resolution is always an unevaluated context.
4461  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4462
4463  CandidateSet.push_back(OverloadCandidate());
4464  OverloadCandidate& Candidate = CandidateSet.back();
4465  Candidate.FoundDecl = FoundDecl;
4466  Candidate.Function = 0;
4467  Candidate.Surrogate = Conversion;
4468  Candidate.Viable = true;
4469  Candidate.IsSurrogate = true;
4470  Candidate.IgnoreObjectArgument = false;
4471  Candidate.Conversions.resize(NumArgs + 1);
4472  Candidate.ExplicitCallArguments = NumArgs;
4473
4474  // Determine the implicit conversion sequence for the implicit
4475  // object parameter.
4476  ImplicitConversionSequence ObjectInit
4477    = TryObjectArgumentInitialization(*this, Object->getType(),
4478                                      Object->Classify(Context),
4479                                      Conversion, ActingContext);
4480  if (ObjectInit.isBad()) {
4481    Candidate.Viable = false;
4482    Candidate.FailureKind = ovl_fail_bad_conversion;
4483    Candidate.Conversions[0] = ObjectInit;
4484    return;
4485  }
4486
4487  // The first conversion is actually a user-defined conversion whose
4488  // first conversion is ObjectInit's standard conversion (which is
4489  // effectively a reference binding). Record it as such.
4490  Candidate.Conversions[0].setUserDefined();
4491  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4492  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4493  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4494  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4495    = FoundDecl.getDecl();
4496  Candidate.Conversions[0].UserDefined.After
4497    = Candidate.Conversions[0].UserDefined.Before;
4498  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4499
4500  // Find the
4501  unsigned NumArgsInProto = Proto->getNumArgs();
4502
4503  // (C++ 13.3.2p2): A candidate function having fewer than m
4504  // parameters is viable only if it has an ellipsis in its parameter
4505  // list (8.3.5).
4506  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4507    Candidate.Viable = false;
4508    Candidate.FailureKind = ovl_fail_too_many_arguments;
4509    return;
4510  }
4511
4512  // Function types don't have any default arguments, so just check if
4513  // we have enough arguments.
4514  if (NumArgs < NumArgsInProto) {
4515    // Not enough arguments.
4516    Candidate.Viable = false;
4517    Candidate.FailureKind = ovl_fail_too_few_arguments;
4518    return;
4519  }
4520
4521  // Determine the implicit conversion sequences for each of the
4522  // arguments.
4523  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4524    if (ArgIdx < NumArgsInProto) {
4525      // (C++ 13.3.2p3): for F to be a viable function, there shall
4526      // exist for each argument an implicit conversion sequence
4527      // (13.3.3.1) that converts that argument to the corresponding
4528      // parameter of F.
4529      QualType ParamType = Proto->getArgType(ArgIdx);
4530      Candidate.Conversions[ArgIdx + 1]
4531        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4532                                /*SuppressUserConversions=*/false,
4533                                /*InOverloadResolution=*/false);
4534      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4535        Candidate.Viable = false;
4536        Candidate.FailureKind = ovl_fail_bad_conversion;
4537        break;
4538      }
4539    } else {
4540      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4541      // argument for which there is no corresponding parameter is
4542      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4543      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4544    }
4545  }
4546}
4547
4548/// \brief Add overload candidates for overloaded operators that are
4549/// member functions.
4550///
4551/// Add the overloaded operator candidates that are member functions
4552/// for the operator Op that was used in an operator expression such
4553/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4554/// CandidateSet will store the added overload candidates. (C++
4555/// [over.match.oper]).
4556void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4557                                       SourceLocation OpLoc,
4558                                       Expr **Args, unsigned NumArgs,
4559                                       OverloadCandidateSet& CandidateSet,
4560                                       SourceRange OpRange) {
4561  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4562
4563  // C++ [over.match.oper]p3:
4564  //   For a unary operator @ with an operand of a type whose
4565  //   cv-unqualified version is T1, and for a binary operator @ with
4566  //   a left operand of a type whose cv-unqualified version is T1 and
4567  //   a right operand of a type whose cv-unqualified version is T2,
4568  //   three sets of candidate functions, designated member
4569  //   candidates, non-member candidates and built-in candidates, are
4570  //   constructed as follows:
4571  QualType T1 = Args[0]->getType();
4572
4573  //     -- If T1 is a class type, the set of member candidates is the
4574  //        result of the qualified lookup of T1::operator@
4575  //        (13.3.1.1.1); otherwise, the set of member candidates is
4576  //        empty.
4577  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4578    // Complete the type if it can be completed. Otherwise, we're done.
4579    if (RequireCompleteType(OpLoc, T1, PDiag()))
4580      return;
4581
4582    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4583    LookupQualifiedName(Operators, T1Rec->getDecl());
4584    Operators.suppressDiagnostics();
4585
4586    for (LookupResult::iterator Oper = Operators.begin(),
4587                             OperEnd = Operators.end();
4588         Oper != OperEnd;
4589         ++Oper)
4590      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4591                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4592                         CandidateSet,
4593                         /* SuppressUserConversions = */ false);
4594  }
4595}
4596
4597/// AddBuiltinCandidate - Add a candidate for a built-in
4598/// operator. ResultTy and ParamTys are the result and parameter types
4599/// of the built-in candidate, respectively. Args and NumArgs are the
4600/// arguments being passed to the candidate. IsAssignmentOperator
4601/// should be true when this built-in candidate is an assignment
4602/// operator. NumContextualBoolArguments is the number of arguments
4603/// (at the beginning of the argument list) that will be contextually
4604/// converted to bool.
4605void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4606                               Expr **Args, unsigned NumArgs,
4607                               OverloadCandidateSet& CandidateSet,
4608                               bool IsAssignmentOperator,
4609                               unsigned NumContextualBoolArguments) {
4610  // Overload resolution is always an unevaluated context.
4611  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4612
4613  // Add this candidate
4614  CandidateSet.push_back(OverloadCandidate());
4615  OverloadCandidate& Candidate = CandidateSet.back();
4616  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4617  Candidate.Function = 0;
4618  Candidate.IsSurrogate = false;
4619  Candidate.IgnoreObjectArgument = false;
4620  Candidate.BuiltinTypes.ResultTy = ResultTy;
4621  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4622    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4623
4624  // Determine the implicit conversion sequences for each of the
4625  // arguments.
4626  Candidate.Viable = true;
4627  Candidate.Conversions.resize(NumArgs);
4628  Candidate.ExplicitCallArguments = NumArgs;
4629  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4630    // C++ [over.match.oper]p4:
4631    //   For the built-in assignment operators, conversions of the
4632    //   left operand are restricted as follows:
4633    //     -- no temporaries are introduced to hold the left operand, and
4634    //     -- no user-defined conversions are applied to the left
4635    //        operand to achieve a type match with the left-most
4636    //        parameter of a built-in candidate.
4637    //
4638    // We block these conversions by turning off user-defined
4639    // conversions, since that is the only way that initialization of
4640    // a reference to a non-class type can occur from something that
4641    // is not of the same type.
4642    if (ArgIdx < NumContextualBoolArguments) {
4643      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4644             "Contextual conversion to bool requires bool type");
4645      Candidate.Conversions[ArgIdx]
4646        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4647    } else {
4648      Candidate.Conversions[ArgIdx]
4649        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4650                                ArgIdx == 0 && IsAssignmentOperator,
4651                                /*InOverloadResolution=*/false);
4652    }
4653    if (Candidate.Conversions[ArgIdx].isBad()) {
4654      Candidate.Viable = false;
4655      Candidate.FailureKind = ovl_fail_bad_conversion;
4656      break;
4657    }
4658  }
4659}
4660
4661/// BuiltinCandidateTypeSet - A set of types that will be used for the
4662/// candidate operator functions for built-in operators (C++
4663/// [over.built]). The types are separated into pointer types and
4664/// enumeration types.
4665class BuiltinCandidateTypeSet  {
4666  /// TypeSet - A set of types.
4667  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4668
4669  /// PointerTypes - The set of pointer types that will be used in the
4670  /// built-in candidates.
4671  TypeSet PointerTypes;
4672
4673  /// MemberPointerTypes - The set of member pointer types that will be
4674  /// used in the built-in candidates.
4675  TypeSet MemberPointerTypes;
4676
4677  /// EnumerationTypes - The set of enumeration types that will be
4678  /// used in the built-in candidates.
4679  TypeSet EnumerationTypes;
4680
4681  /// \brief The set of vector types that will be used in the built-in
4682  /// candidates.
4683  TypeSet VectorTypes;
4684
4685  /// \brief A flag indicating non-record types are viable candidates
4686  bool HasNonRecordTypes;
4687
4688  /// \brief A flag indicating whether either arithmetic or enumeration types
4689  /// were present in the candidate set.
4690  bool HasArithmeticOrEnumeralTypes;
4691
4692  /// Sema - The semantic analysis instance where we are building the
4693  /// candidate type set.
4694  Sema &SemaRef;
4695
4696  /// Context - The AST context in which we will build the type sets.
4697  ASTContext &Context;
4698
4699  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4700                                               const Qualifiers &VisibleQuals);
4701  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4702
4703public:
4704  /// iterator - Iterates through the types that are part of the set.
4705  typedef TypeSet::iterator iterator;
4706
4707  BuiltinCandidateTypeSet(Sema &SemaRef)
4708    : HasNonRecordTypes(false),
4709      HasArithmeticOrEnumeralTypes(false),
4710      SemaRef(SemaRef),
4711      Context(SemaRef.Context) { }
4712
4713  void AddTypesConvertedFrom(QualType Ty,
4714                             SourceLocation Loc,
4715                             bool AllowUserConversions,
4716                             bool AllowExplicitConversions,
4717                             const Qualifiers &VisibleTypeConversionsQuals);
4718
4719  /// pointer_begin - First pointer type found;
4720  iterator pointer_begin() { return PointerTypes.begin(); }
4721
4722  /// pointer_end - Past the last pointer type found;
4723  iterator pointer_end() { return PointerTypes.end(); }
4724
4725  /// member_pointer_begin - First member pointer type found;
4726  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4727
4728  /// member_pointer_end - Past the last member pointer type found;
4729  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4730
4731  /// enumeration_begin - First enumeration type found;
4732  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4733
4734  /// enumeration_end - Past the last enumeration type found;
4735  iterator enumeration_end() { return EnumerationTypes.end(); }
4736
4737  iterator vector_begin() { return VectorTypes.begin(); }
4738  iterator vector_end() { return VectorTypes.end(); }
4739
4740  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4741  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4742};
4743
4744/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4745/// the set of pointer types along with any more-qualified variants of
4746/// that type. For example, if @p Ty is "int const *", this routine
4747/// will add "int const *", "int const volatile *", "int const
4748/// restrict *", and "int const volatile restrict *" to the set of
4749/// pointer types. Returns true if the add of @p Ty itself succeeded,
4750/// false otherwise.
4751///
4752/// FIXME: what to do about extended qualifiers?
4753bool
4754BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4755                                             const Qualifiers &VisibleQuals) {
4756
4757  // Insert this type.
4758  if (!PointerTypes.insert(Ty))
4759    return false;
4760
4761  QualType PointeeTy;
4762  const PointerType *PointerTy = Ty->getAs<PointerType>();
4763  bool buildObjCPtr = false;
4764  if (!PointerTy) {
4765    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4766      PointeeTy = PTy->getPointeeType();
4767      buildObjCPtr = true;
4768    }
4769    else
4770      assert(false && "type was not a pointer type!");
4771  }
4772  else
4773    PointeeTy = PointerTy->getPointeeType();
4774
4775  // Don't add qualified variants of arrays. For one, they're not allowed
4776  // (the qualifier would sink to the element type), and for another, the
4777  // only overload situation where it matters is subscript or pointer +- int,
4778  // and those shouldn't have qualifier variants anyway.
4779  if (PointeeTy->isArrayType())
4780    return true;
4781  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4782  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4783    BaseCVR = Array->getElementType().getCVRQualifiers();
4784  bool hasVolatile = VisibleQuals.hasVolatile();
4785  bool hasRestrict = VisibleQuals.hasRestrict();
4786
4787  // Iterate through all strict supersets of BaseCVR.
4788  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4789    if ((CVR | BaseCVR) != CVR) continue;
4790    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4791    // in the types.
4792    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4793    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4794    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4795    if (!buildObjCPtr)
4796      PointerTypes.insert(Context.getPointerType(QPointeeTy));
4797    else
4798      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
4799  }
4800
4801  return true;
4802}
4803
4804/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4805/// to the set of pointer types along with any more-qualified variants of
4806/// that type. For example, if @p Ty is "int const *", this routine
4807/// will add "int const *", "int const volatile *", "int const
4808/// restrict *", and "int const volatile restrict *" to the set of
4809/// pointer types. Returns true if the add of @p Ty itself succeeded,
4810/// false otherwise.
4811///
4812/// FIXME: what to do about extended qualifiers?
4813bool
4814BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4815    QualType Ty) {
4816  // Insert this type.
4817  if (!MemberPointerTypes.insert(Ty))
4818    return false;
4819
4820  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4821  assert(PointerTy && "type was not a member pointer type!");
4822
4823  QualType PointeeTy = PointerTy->getPointeeType();
4824  // Don't add qualified variants of arrays. For one, they're not allowed
4825  // (the qualifier would sink to the element type), and for another, the
4826  // only overload situation where it matters is subscript or pointer +- int,
4827  // and those shouldn't have qualifier variants anyway.
4828  if (PointeeTy->isArrayType())
4829    return true;
4830  const Type *ClassTy = PointerTy->getClass();
4831
4832  // Iterate through all strict supersets of the pointee type's CVR
4833  // qualifiers.
4834  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4835  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4836    if ((CVR | BaseCVR) != CVR) continue;
4837
4838    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4839    MemberPointerTypes.insert(
4840      Context.getMemberPointerType(QPointeeTy, ClassTy));
4841  }
4842
4843  return true;
4844}
4845
4846/// AddTypesConvertedFrom - Add each of the types to which the type @p
4847/// Ty can be implicit converted to the given set of @p Types. We're
4848/// primarily interested in pointer types and enumeration types. We also
4849/// take member pointer types, for the conditional operator.
4850/// AllowUserConversions is true if we should look at the conversion
4851/// functions of a class type, and AllowExplicitConversions if we
4852/// should also include the explicit conversion functions of a class
4853/// type.
4854void
4855BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4856                                               SourceLocation Loc,
4857                                               bool AllowUserConversions,
4858                                               bool AllowExplicitConversions,
4859                                               const Qualifiers &VisibleQuals) {
4860  // Only deal with canonical types.
4861  Ty = Context.getCanonicalType(Ty);
4862
4863  // Look through reference types; they aren't part of the type of an
4864  // expression for the purposes of conversions.
4865  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4866    Ty = RefTy->getPointeeType();
4867
4868  // If we're dealing with an array type, decay to the pointer.
4869  if (Ty->isArrayType())
4870    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4871
4872  // Otherwise, we don't care about qualifiers on the type.
4873  Ty = Ty.getLocalUnqualifiedType();
4874
4875  // Flag if we ever add a non-record type.
4876  const RecordType *TyRec = Ty->getAs<RecordType>();
4877  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
4878
4879  // Flag if we encounter an arithmetic type.
4880  HasArithmeticOrEnumeralTypes =
4881    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
4882
4883  if (Ty->isObjCIdType() || Ty->isObjCClassType())
4884    PointerTypes.insert(Ty);
4885  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
4886    // Insert our type, and its more-qualified variants, into the set
4887    // of types.
4888    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4889      return;
4890  } else if (Ty->isMemberPointerType()) {
4891    // Member pointers are far easier, since the pointee can't be converted.
4892    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4893      return;
4894  } else if (Ty->isEnumeralType()) {
4895    HasArithmeticOrEnumeralTypes = true;
4896    EnumerationTypes.insert(Ty);
4897  } else if (Ty->isVectorType()) {
4898    // We treat vector types as arithmetic types in many contexts as an
4899    // extension.
4900    HasArithmeticOrEnumeralTypes = true;
4901    VectorTypes.insert(Ty);
4902  } else if (AllowUserConversions && TyRec) {
4903    // No conversion functions in incomplete types.
4904    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
4905      return;
4906
4907    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4908    const UnresolvedSetImpl *Conversions
4909      = ClassDecl->getVisibleConversionFunctions();
4910    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4911           E = Conversions->end(); I != E; ++I) {
4912      NamedDecl *D = I.getDecl();
4913      if (isa<UsingShadowDecl>(D))
4914        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4915
4916      // Skip conversion function templates; they don't tell us anything
4917      // about which builtin types we can convert to.
4918      if (isa<FunctionTemplateDecl>(D))
4919        continue;
4920
4921      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4922      if (AllowExplicitConversions || !Conv->isExplicit()) {
4923        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4924                              VisibleQuals);
4925      }
4926    }
4927  }
4928}
4929
4930/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4931/// the volatile- and non-volatile-qualified assignment operators for the
4932/// given type to the candidate set.
4933static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4934                                                   QualType T,
4935                                                   Expr **Args,
4936                                                   unsigned NumArgs,
4937                                    OverloadCandidateSet &CandidateSet) {
4938  QualType ParamTypes[2];
4939
4940  // T& operator=(T&, T)
4941  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4942  ParamTypes[1] = T;
4943  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4944                        /*IsAssignmentOperator=*/true);
4945
4946  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4947    // volatile T& operator=(volatile T&, T)
4948    ParamTypes[0]
4949      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4950    ParamTypes[1] = T;
4951    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4952                          /*IsAssignmentOperator=*/true);
4953  }
4954}
4955
4956/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4957/// if any, found in visible type conversion functions found in ArgExpr's type.
4958static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4959    Qualifiers VRQuals;
4960    const RecordType *TyRec;
4961    if (const MemberPointerType *RHSMPType =
4962        ArgExpr->getType()->getAs<MemberPointerType>())
4963      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4964    else
4965      TyRec = ArgExpr->getType()->getAs<RecordType>();
4966    if (!TyRec) {
4967      // Just to be safe, assume the worst case.
4968      VRQuals.addVolatile();
4969      VRQuals.addRestrict();
4970      return VRQuals;
4971    }
4972
4973    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4974    if (!ClassDecl->hasDefinition())
4975      return VRQuals;
4976
4977    const UnresolvedSetImpl *Conversions =
4978      ClassDecl->getVisibleConversionFunctions();
4979
4980    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4981           E = Conversions->end(); I != E; ++I) {
4982      NamedDecl *D = I.getDecl();
4983      if (isa<UsingShadowDecl>(D))
4984        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4985      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4986        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4987        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4988          CanTy = ResTypeRef->getPointeeType();
4989        // Need to go down the pointer/mempointer chain and add qualifiers
4990        // as see them.
4991        bool done = false;
4992        while (!done) {
4993          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4994            CanTy = ResTypePtr->getPointeeType();
4995          else if (const MemberPointerType *ResTypeMPtr =
4996                CanTy->getAs<MemberPointerType>())
4997            CanTy = ResTypeMPtr->getPointeeType();
4998          else
4999            done = true;
5000          if (CanTy.isVolatileQualified())
5001            VRQuals.addVolatile();
5002          if (CanTy.isRestrictQualified())
5003            VRQuals.addRestrict();
5004          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
5005            return VRQuals;
5006        }
5007      }
5008    }
5009    return VRQuals;
5010}
5011
5012namespace {
5013
5014/// \brief Helper class to manage the addition of builtin operator overload
5015/// candidates. It provides shared state and utility methods used throughout
5016/// the process, as well as a helper method to add each group of builtin
5017/// operator overloads from the standard to a candidate set.
5018class BuiltinOperatorOverloadBuilder {
5019  // Common instance state available to all overload candidate addition methods.
5020  Sema &S;
5021  Expr **Args;
5022  unsigned NumArgs;
5023  Qualifiers VisibleTypeConversionsQuals;
5024  bool HasArithmeticOrEnumeralCandidateType;
5025  llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
5026  OverloadCandidateSet &CandidateSet;
5027
5028  // Define some constants used to index and iterate over the arithemetic types
5029  // provided via the getArithmeticType() method below.
5030  // The "promoted arithmetic types" are the arithmetic
5031  // types are that preserved by promotion (C++ [over.built]p2).
5032  static const unsigned FirstIntegralType = 3;
5033  static const unsigned LastIntegralType = 18;
5034  static const unsigned FirstPromotedIntegralType = 3,
5035                        LastPromotedIntegralType = 9;
5036  static const unsigned FirstPromotedArithmeticType = 0,
5037                        LastPromotedArithmeticType = 9;
5038  static const unsigned NumArithmeticTypes = 18;
5039
5040  /// \brief Get the canonical type for a given arithmetic type index.
5041  CanQualType getArithmeticType(unsigned index) {
5042    assert(index < NumArithmeticTypes);
5043    static CanQualType ASTContext::* const
5044      ArithmeticTypes[NumArithmeticTypes] = {
5045      // Start of promoted types.
5046      &ASTContext::FloatTy,
5047      &ASTContext::DoubleTy,
5048      &ASTContext::LongDoubleTy,
5049
5050      // Start of integral types.
5051      &ASTContext::IntTy,
5052      &ASTContext::LongTy,
5053      &ASTContext::LongLongTy,
5054      &ASTContext::UnsignedIntTy,
5055      &ASTContext::UnsignedLongTy,
5056      &ASTContext::UnsignedLongLongTy,
5057      // End of promoted types.
5058
5059      &ASTContext::BoolTy,
5060      &ASTContext::CharTy,
5061      &ASTContext::WCharTy,
5062      &ASTContext::Char16Ty,
5063      &ASTContext::Char32Ty,
5064      &ASTContext::SignedCharTy,
5065      &ASTContext::ShortTy,
5066      &ASTContext::UnsignedCharTy,
5067      &ASTContext::UnsignedShortTy,
5068      // End of integral types.
5069      // FIXME: What about complex?
5070    };
5071    return S.Context.*ArithmeticTypes[index];
5072  }
5073
5074  /// \brief Gets the canonical type resulting from the usual arithemetic
5075  /// converions for the given arithmetic types.
5076  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5077    // Accelerator table for performing the usual arithmetic conversions.
5078    // The rules are basically:
5079    //   - if either is floating-point, use the wider floating-point
5080    //   - if same signedness, use the higher rank
5081    //   - if same size, use unsigned of the higher rank
5082    //   - use the larger type
5083    // These rules, together with the axiom that higher ranks are
5084    // never smaller, are sufficient to precompute all of these results
5085    // *except* when dealing with signed types of higher rank.
5086    // (we could precompute SLL x UI for all known platforms, but it's
5087    // better not to make any assumptions).
5088    enum PromotedType {
5089                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
5090    };
5091    static PromotedType ConversionsTable[LastPromotedArithmeticType]
5092                                        [LastPromotedArithmeticType] = {
5093      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
5094      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
5095      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5096      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
5097      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
5098      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
5099      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
5100      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
5101      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
5102    };
5103
5104    assert(L < LastPromotedArithmeticType);
5105    assert(R < LastPromotedArithmeticType);
5106    int Idx = ConversionsTable[L][R];
5107
5108    // Fast path: the table gives us a concrete answer.
5109    if (Idx != Dep) return getArithmeticType(Idx);
5110
5111    // Slow path: we need to compare widths.
5112    // An invariant is that the signed type has higher rank.
5113    CanQualType LT = getArithmeticType(L),
5114                RT = getArithmeticType(R);
5115    unsigned LW = S.Context.getIntWidth(LT),
5116             RW = S.Context.getIntWidth(RT);
5117
5118    // If they're different widths, use the signed type.
5119    if (LW > RW) return LT;
5120    else if (LW < RW) return RT;
5121
5122    // Otherwise, use the unsigned type of the signed type's rank.
5123    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5124    assert(L == SLL || R == SLL);
5125    return S.Context.UnsignedLongLongTy;
5126  }
5127
5128  /// \brief Helper method to factor out the common pattern of adding overloads
5129  /// for '++' and '--' builtin operators.
5130  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5131                                           bool HasVolatile) {
5132    QualType ParamTypes[2] = {
5133      S.Context.getLValueReferenceType(CandidateTy),
5134      S.Context.IntTy
5135    };
5136
5137    // Non-volatile version.
5138    if (NumArgs == 1)
5139      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5140    else
5141      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5142
5143    // Use a heuristic to reduce number of builtin candidates in the set:
5144    // add volatile version only if there are conversions to a volatile type.
5145    if (HasVolatile) {
5146      ParamTypes[0] =
5147        S.Context.getLValueReferenceType(
5148          S.Context.getVolatileType(CandidateTy));
5149      if (NumArgs == 1)
5150        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5151      else
5152        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5153    }
5154  }
5155
5156public:
5157  BuiltinOperatorOverloadBuilder(
5158    Sema &S, Expr **Args, unsigned NumArgs,
5159    Qualifiers VisibleTypeConversionsQuals,
5160    bool HasArithmeticOrEnumeralCandidateType,
5161    llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5162    OverloadCandidateSet &CandidateSet)
5163    : S(S), Args(Args), NumArgs(NumArgs),
5164      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5165      HasArithmeticOrEnumeralCandidateType(
5166        HasArithmeticOrEnumeralCandidateType),
5167      CandidateTypes(CandidateTypes),
5168      CandidateSet(CandidateSet) {
5169    // Validate some of our static helper constants in debug builds.
5170    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5171           "Invalid first promoted integral type");
5172    assert(getArithmeticType(LastPromotedIntegralType - 1)
5173             == S.Context.UnsignedLongLongTy &&
5174           "Invalid last promoted integral type");
5175    assert(getArithmeticType(FirstPromotedArithmeticType)
5176             == S.Context.FloatTy &&
5177           "Invalid first promoted arithmetic type");
5178    assert(getArithmeticType(LastPromotedArithmeticType - 1)
5179             == S.Context.UnsignedLongLongTy &&
5180           "Invalid last promoted arithmetic type");
5181  }
5182
5183  // C++ [over.built]p3:
5184  //
5185  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
5186  //   is either volatile or empty, there exist candidate operator
5187  //   functions of the form
5188  //
5189  //       VQ T&      operator++(VQ T&);
5190  //       T          operator++(VQ T&, int);
5191  //
5192  // C++ [over.built]p4:
5193  //
5194  //   For every pair (T, VQ), where T is an arithmetic type other
5195  //   than bool, and VQ is either volatile or empty, there exist
5196  //   candidate operator functions of the form
5197  //
5198  //       VQ T&      operator--(VQ T&);
5199  //       T          operator--(VQ T&, int);
5200  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5201    if (!HasArithmeticOrEnumeralCandidateType)
5202      return;
5203
5204    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5205         Arith < NumArithmeticTypes; ++Arith) {
5206      addPlusPlusMinusMinusStyleOverloads(
5207        getArithmeticType(Arith),
5208        VisibleTypeConversionsQuals.hasVolatile());
5209    }
5210  }
5211
5212  // C++ [over.built]p5:
5213  //
5214  //   For every pair (T, VQ), where T is a cv-qualified or
5215  //   cv-unqualified object type, and VQ is either volatile or
5216  //   empty, there exist candidate operator functions of the form
5217  //
5218  //       T*VQ&      operator++(T*VQ&);
5219  //       T*VQ&      operator--(T*VQ&);
5220  //       T*         operator++(T*VQ&, int);
5221  //       T*         operator--(T*VQ&, int);
5222  void addPlusPlusMinusMinusPointerOverloads() {
5223    for (BuiltinCandidateTypeSet::iterator
5224              Ptr = CandidateTypes[0].pointer_begin(),
5225           PtrEnd = CandidateTypes[0].pointer_end();
5226         Ptr != PtrEnd; ++Ptr) {
5227      // Skip pointer types that aren't pointers to object types.
5228      if (!(*Ptr)->getPointeeType()->isObjectType())
5229        continue;
5230
5231      addPlusPlusMinusMinusStyleOverloads(*Ptr,
5232        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5233         VisibleTypeConversionsQuals.hasVolatile()));
5234    }
5235  }
5236
5237  // C++ [over.built]p6:
5238  //   For every cv-qualified or cv-unqualified object type T, there
5239  //   exist candidate operator functions of the form
5240  //
5241  //       T&         operator*(T*);
5242  //
5243  // C++ [over.built]p7:
5244  //   For every function type T that does not have cv-qualifiers or a
5245  //   ref-qualifier, there exist candidate operator functions of the form
5246  //       T&         operator*(T*);
5247  void addUnaryStarPointerOverloads() {
5248    for (BuiltinCandidateTypeSet::iterator
5249              Ptr = CandidateTypes[0].pointer_begin(),
5250           PtrEnd = CandidateTypes[0].pointer_end();
5251         Ptr != PtrEnd; ++Ptr) {
5252      QualType ParamTy = *Ptr;
5253      QualType PointeeTy = ParamTy->getPointeeType();
5254      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5255        continue;
5256
5257      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5258        if (Proto->getTypeQuals() || Proto->getRefQualifier())
5259          continue;
5260
5261      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5262                            &ParamTy, Args, 1, CandidateSet);
5263    }
5264  }
5265
5266  // C++ [over.built]p9:
5267  //  For every promoted arithmetic type T, there exist candidate
5268  //  operator functions of the form
5269  //
5270  //       T         operator+(T);
5271  //       T         operator-(T);
5272  void addUnaryPlusOrMinusArithmeticOverloads() {
5273    if (!HasArithmeticOrEnumeralCandidateType)
5274      return;
5275
5276    for (unsigned Arith = FirstPromotedArithmeticType;
5277         Arith < LastPromotedArithmeticType; ++Arith) {
5278      QualType ArithTy = getArithmeticType(Arith);
5279      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5280    }
5281
5282    // Extension: We also add these operators for vector types.
5283    for (BuiltinCandidateTypeSet::iterator
5284              Vec = CandidateTypes[0].vector_begin(),
5285           VecEnd = CandidateTypes[0].vector_end();
5286         Vec != VecEnd; ++Vec) {
5287      QualType VecTy = *Vec;
5288      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5289    }
5290  }
5291
5292  // C++ [over.built]p8:
5293  //   For every type T, there exist candidate operator functions of
5294  //   the form
5295  //
5296  //       T*         operator+(T*);
5297  void addUnaryPlusPointerOverloads() {
5298    for (BuiltinCandidateTypeSet::iterator
5299              Ptr = CandidateTypes[0].pointer_begin(),
5300           PtrEnd = CandidateTypes[0].pointer_end();
5301         Ptr != PtrEnd; ++Ptr) {
5302      QualType ParamTy = *Ptr;
5303      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5304    }
5305  }
5306
5307  // C++ [over.built]p10:
5308  //   For every promoted integral type T, there exist candidate
5309  //   operator functions of the form
5310  //
5311  //        T         operator~(T);
5312  void addUnaryTildePromotedIntegralOverloads() {
5313    if (!HasArithmeticOrEnumeralCandidateType)
5314      return;
5315
5316    for (unsigned Int = FirstPromotedIntegralType;
5317         Int < LastPromotedIntegralType; ++Int) {
5318      QualType IntTy = getArithmeticType(Int);
5319      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5320    }
5321
5322    // Extension: We also add this operator for vector types.
5323    for (BuiltinCandidateTypeSet::iterator
5324              Vec = CandidateTypes[0].vector_begin(),
5325           VecEnd = CandidateTypes[0].vector_end();
5326         Vec != VecEnd; ++Vec) {
5327      QualType VecTy = *Vec;
5328      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5329    }
5330  }
5331
5332  // C++ [over.match.oper]p16:
5333  //   For every pointer to member type T, there exist candidate operator
5334  //   functions of the form
5335  //
5336  //        bool operator==(T,T);
5337  //        bool operator!=(T,T);
5338  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5339    /// Set of (canonical) types that we've already handled.
5340    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5341
5342    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5343      for (BuiltinCandidateTypeSet::iterator
5344                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5345             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5346           MemPtr != MemPtrEnd;
5347           ++MemPtr) {
5348        // Don't add the same builtin candidate twice.
5349        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5350          continue;
5351
5352        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5353        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5354                              CandidateSet);
5355      }
5356    }
5357  }
5358
5359  // C++ [over.built]p15:
5360  //
5361  //   For every pointer or enumeration type T, there exist
5362  //   candidate operator functions of the form
5363  //
5364  //        bool       operator<(T, T);
5365  //        bool       operator>(T, T);
5366  //        bool       operator<=(T, T);
5367  //        bool       operator>=(T, T);
5368  //        bool       operator==(T, T);
5369  //        bool       operator!=(T, T);
5370  void addRelationalPointerOrEnumeralOverloads() {
5371    // C++ [over.built]p1:
5372    //   If there is a user-written candidate with the same name and parameter
5373    //   types as a built-in candidate operator function, the built-in operator
5374    //   function is hidden and is not included in the set of candidate
5375    //   functions.
5376    //
5377    // The text is actually in a note, but if we don't implement it then we end
5378    // up with ambiguities when the user provides an overloaded operator for
5379    // an enumeration type. Note that only enumeration types have this problem,
5380    // so we track which enumeration types we've seen operators for. Also, the
5381    // only other overloaded operator with enumeration argumenst, operator=,
5382    // cannot be overloaded for enumeration types, so this is the only place
5383    // where we must suppress candidates like this.
5384    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5385      UserDefinedBinaryOperators;
5386
5387    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5388      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5389          CandidateTypes[ArgIdx].enumeration_end()) {
5390        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5391                                         CEnd = CandidateSet.end();
5392             C != CEnd; ++C) {
5393          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5394            continue;
5395
5396          QualType FirstParamType =
5397            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5398          QualType SecondParamType =
5399            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5400
5401          // Skip if either parameter isn't of enumeral type.
5402          if (!FirstParamType->isEnumeralType() ||
5403              !SecondParamType->isEnumeralType())
5404            continue;
5405
5406          // Add this operator to the set of known user-defined operators.
5407          UserDefinedBinaryOperators.insert(
5408            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5409                           S.Context.getCanonicalType(SecondParamType)));
5410        }
5411      }
5412    }
5413
5414    /// Set of (canonical) types that we've already handled.
5415    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5416
5417    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5418      for (BuiltinCandidateTypeSet::iterator
5419                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5420             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5421           Ptr != PtrEnd; ++Ptr) {
5422        // Don't add the same builtin candidate twice.
5423        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5424          continue;
5425
5426        QualType ParamTypes[2] = { *Ptr, *Ptr };
5427        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5428                              CandidateSet);
5429      }
5430      for (BuiltinCandidateTypeSet::iterator
5431                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5432             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5433           Enum != EnumEnd; ++Enum) {
5434        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5435
5436        // Don't add the same builtin candidate twice, or if a user defined
5437        // candidate exists.
5438        if (!AddedTypes.insert(CanonType) ||
5439            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5440                                                            CanonType)))
5441          continue;
5442
5443        QualType ParamTypes[2] = { *Enum, *Enum };
5444        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5445                              CandidateSet);
5446      }
5447    }
5448  }
5449
5450  // C++ [over.built]p13:
5451  //
5452  //   For every cv-qualified or cv-unqualified object type T
5453  //   there exist candidate operator functions of the form
5454  //
5455  //      T*         operator+(T*, ptrdiff_t);
5456  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5457  //      T*         operator-(T*, ptrdiff_t);
5458  //      T*         operator+(ptrdiff_t, T*);
5459  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5460  //
5461  // C++ [over.built]p14:
5462  //
5463  //   For every T, where T is a pointer to object type, there
5464  //   exist candidate operator functions of the form
5465  //
5466  //      ptrdiff_t  operator-(T, T);
5467  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5468    /// Set of (canonical) types that we've already handled.
5469    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5470
5471    for (int Arg = 0; Arg < 2; ++Arg) {
5472      QualType AsymetricParamTypes[2] = {
5473        S.Context.getPointerDiffType(),
5474        S.Context.getPointerDiffType(),
5475      };
5476      for (BuiltinCandidateTypeSet::iterator
5477                Ptr = CandidateTypes[Arg].pointer_begin(),
5478             PtrEnd = CandidateTypes[Arg].pointer_end();
5479           Ptr != PtrEnd; ++Ptr) {
5480        QualType PointeeTy = (*Ptr)->getPointeeType();
5481        if (!PointeeTy->isObjectType())
5482          continue;
5483
5484        AsymetricParamTypes[Arg] = *Ptr;
5485        if (Arg == 0 || Op == OO_Plus) {
5486          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5487          // T* operator+(ptrdiff_t, T*);
5488          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5489                                CandidateSet);
5490        }
5491        if (Op == OO_Minus) {
5492          // ptrdiff_t operator-(T, T);
5493          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5494            continue;
5495
5496          QualType ParamTypes[2] = { *Ptr, *Ptr };
5497          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5498                                Args, 2, CandidateSet);
5499        }
5500      }
5501    }
5502  }
5503
5504  // C++ [over.built]p12:
5505  //
5506  //   For every pair of promoted arithmetic types L and R, there
5507  //   exist candidate operator functions of the form
5508  //
5509  //        LR         operator*(L, R);
5510  //        LR         operator/(L, R);
5511  //        LR         operator+(L, R);
5512  //        LR         operator-(L, R);
5513  //        bool       operator<(L, R);
5514  //        bool       operator>(L, R);
5515  //        bool       operator<=(L, R);
5516  //        bool       operator>=(L, R);
5517  //        bool       operator==(L, R);
5518  //        bool       operator!=(L, R);
5519  //
5520  //   where LR is the result of the usual arithmetic conversions
5521  //   between types L and R.
5522  //
5523  // C++ [over.built]p24:
5524  //
5525  //   For every pair of promoted arithmetic types L and R, there exist
5526  //   candidate operator functions of the form
5527  //
5528  //        LR       operator?(bool, L, R);
5529  //
5530  //   where LR is the result of the usual arithmetic conversions
5531  //   between types L and R.
5532  // Our candidates ignore the first parameter.
5533  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5534    if (!HasArithmeticOrEnumeralCandidateType)
5535      return;
5536
5537    for (unsigned Left = FirstPromotedArithmeticType;
5538         Left < LastPromotedArithmeticType; ++Left) {
5539      for (unsigned Right = FirstPromotedArithmeticType;
5540           Right < LastPromotedArithmeticType; ++Right) {
5541        QualType LandR[2] = { getArithmeticType(Left),
5542                              getArithmeticType(Right) };
5543        QualType Result =
5544          isComparison ? S.Context.BoolTy
5545                       : getUsualArithmeticConversions(Left, Right);
5546        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5547      }
5548    }
5549
5550    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5551    // conditional operator for vector types.
5552    for (BuiltinCandidateTypeSet::iterator
5553              Vec1 = CandidateTypes[0].vector_begin(),
5554           Vec1End = CandidateTypes[0].vector_end();
5555         Vec1 != Vec1End; ++Vec1) {
5556      for (BuiltinCandidateTypeSet::iterator
5557                Vec2 = CandidateTypes[1].vector_begin(),
5558             Vec2End = CandidateTypes[1].vector_end();
5559           Vec2 != Vec2End; ++Vec2) {
5560        QualType LandR[2] = { *Vec1, *Vec2 };
5561        QualType Result = S.Context.BoolTy;
5562        if (!isComparison) {
5563          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5564            Result = *Vec1;
5565          else
5566            Result = *Vec2;
5567        }
5568
5569        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5570      }
5571    }
5572  }
5573
5574  // C++ [over.built]p17:
5575  //
5576  //   For every pair of promoted integral types L and R, there
5577  //   exist candidate operator functions of the form
5578  //
5579  //      LR         operator%(L, R);
5580  //      LR         operator&(L, R);
5581  //      LR         operator^(L, R);
5582  //      LR         operator|(L, R);
5583  //      L          operator<<(L, R);
5584  //      L          operator>>(L, R);
5585  //
5586  //   where LR is the result of the usual arithmetic conversions
5587  //   between types L and R.
5588  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5589    if (!HasArithmeticOrEnumeralCandidateType)
5590      return;
5591
5592    for (unsigned Left = FirstPromotedIntegralType;
5593         Left < LastPromotedIntegralType; ++Left) {
5594      for (unsigned Right = FirstPromotedIntegralType;
5595           Right < LastPromotedIntegralType; ++Right) {
5596        QualType LandR[2] = { getArithmeticType(Left),
5597                              getArithmeticType(Right) };
5598        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5599            ? LandR[0]
5600            : getUsualArithmeticConversions(Left, Right);
5601        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5602      }
5603    }
5604  }
5605
5606  // C++ [over.built]p20:
5607  //
5608  //   For every pair (T, VQ), where T is an enumeration or
5609  //   pointer to member type and VQ is either volatile or
5610  //   empty, there exist candidate operator functions of the form
5611  //
5612  //        VQ T&      operator=(VQ T&, T);
5613  void addAssignmentMemberPointerOrEnumeralOverloads() {
5614    /// Set of (canonical) types that we've already handled.
5615    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5616
5617    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5618      for (BuiltinCandidateTypeSet::iterator
5619                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5620             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5621           Enum != EnumEnd; ++Enum) {
5622        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5623          continue;
5624
5625        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5626                                               CandidateSet);
5627      }
5628
5629      for (BuiltinCandidateTypeSet::iterator
5630                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5631             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5632           MemPtr != MemPtrEnd; ++MemPtr) {
5633        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5634          continue;
5635
5636        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5637                                               CandidateSet);
5638      }
5639    }
5640  }
5641
5642  // C++ [over.built]p19:
5643  //
5644  //   For every pair (T, VQ), where T is any type and VQ is either
5645  //   volatile or empty, there exist candidate operator functions
5646  //   of the form
5647  //
5648  //        T*VQ&      operator=(T*VQ&, T*);
5649  //
5650  // C++ [over.built]p21:
5651  //
5652  //   For every pair (T, VQ), where T is a cv-qualified or
5653  //   cv-unqualified object type and VQ is either volatile or
5654  //   empty, there exist candidate operator functions of the form
5655  //
5656  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5657  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5658  void addAssignmentPointerOverloads(bool isEqualOp) {
5659    /// Set of (canonical) types that we've already handled.
5660    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5661
5662    for (BuiltinCandidateTypeSet::iterator
5663              Ptr = CandidateTypes[0].pointer_begin(),
5664           PtrEnd = CandidateTypes[0].pointer_end();
5665         Ptr != PtrEnd; ++Ptr) {
5666      // If this is operator=, keep track of the builtin candidates we added.
5667      if (isEqualOp)
5668        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5669      else if (!(*Ptr)->getPointeeType()->isObjectType())
5670        continue;
5671
5672      // non-volatile version
5673      QualType ParamTypes[2] = {
5674        S.Context.getLValueReferenceType(*Ptr),
5675        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5676      };
5677      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5678                            /*IsAssigmentOperator=*/ isEqualOp);
5679
5680      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5681          VisibleTypeConversionsQuals.hasVolatile()) {
5682        // volatile version
5683        ParamTypes[0] =
5684          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5685        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5686                              /*IsAssigmentOperator=*/isEqualOp);
5687      }
5688    }
5689
5690    if (isEqualOp) {
5691      for (BuiltinCandidateTypeSet::iterator
5692                Ptr = CandidateTypes[1].pointer_begin(),
5693             PtrEnd = CandidateTypes[1].pointer_end();
5694           Ptr != PtrEnd; ++Ptr) {
5695        // Make sure we don't add the same candidate twice.
5696        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5697          continue;
5698
5699        QualType ParamTypes[2] = {
5700          S.Context.getLValueReferenceType(*Ptr),
5701          *Ptr,
5702        };
5703
5704        // non-volatile version
5705        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5706                              /*IsAssigmentOperator=*/true);
5707
5708        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5709            VisibleTypeConversionsQuals.hasVolatile()) {
5710          // volatile version
5711          ParamTypes[0] =
5712            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5713          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5714                                CandidateSet, /*IsAssigmentOperator=*/true);
5715        }
5716      }
5717    }
5718  }
5719
5720  // C++ [over.built]p18:
5721  //
5722  //   For every triple (L, VQ, R), where L is an arithmetic type,
5723  //   VQ is either volatile or empty, and R is a promoted
5724  //   arithmetic type, there exist candidate operator functions of
5725  //   the form
5726  //
5727  //        VQ L&      operator=(VQ L&, R);
5728  //        VQ L&      operator*=(VQ L&, R);
5729  //        VQ L&      operator/=(VQ L&, R);
5730  //        VQ L&      operator+=(VQ L&, R);
5731  //        VQ L&      operator-=(VQ L&, R);
5732  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5733    if (!HasArithmeticOrEnumeralCandidateType)
5734      return;
5735
5736    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5737      for (unsigned Right = FirstPromotedArithmeticType;
5738           Right < LastPromotedArithmeticType; ++Right) {
5739        QualType ParamTypes[2];
5740        ParamTypes[1] = getArithmeticType(Right);
5741
5742        // Add this built-in operator as a candidate (VQ is empty).
5743        ParamTypes[0] =
5744          S.Context.getLValueReferenceType(getArithmeticType(Left));
5745        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5746                              /*IsAssigmentOperator=*/isEqualOp);
5747
5748        // Add this built-in operator as a candidate (VQ is 'volatile').
5749        if (VisibleTypeConversionsQuals.hasVolatile()) {
5750          ParamTypes[0] =
5751            S.Context.getVolatileType(getArithmeticType(Left));
5752          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5753          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5754                                CandidateSet,
5755                                /*IsAssigmentOperator=*/isEqualOp);
5756        }
5757      }
5758    }
5759
5760    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5761    for (BuiltinCandidateTypeSet::iterator
5762              Vec1 = CandidateTypes[0].vector_begin(),
5763           Vec1End = CandidateTypes[0].vector_end();
5764         Vec1 != Vec1End; ++Vec1) {
5765      for (BuiltinCandidateTypeSet::iterator
5766                Vec2 = CandidateTypes[1].vector_begin(),
5767             Vec2End = CandidateTypes[1].vector_end();
5768           Vec2 != Vec2End; ++Vec2) {
5769        QualType ParamTypes[2];
5770        ParamTypes[1] = *Vec2;
5771        // Add this built-in operator as a candidate (VQ is empty).
5772        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5773        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5774                              /*IsAssigmentOperator=*/isEqualOp);
5775
5776        // Add this built-in operator as a candidate (VQ is 'volatile').
5777        if (VisibleTypeConversionsQuals.hasVolatile()) {
5778          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5779          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5780          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5781                                CandidateSet,
5782                                /*IsAssigmentOperator=*/isEqualOp);
5783        }
5784      }
5785    }
5786  }
5787
5788  // C++ [over.built]p22:
5789  //
5790  //   For every triple (L, VQ, R), where L is an integral type, VQ
5791  //   is either volatile or empty, and R is a promoted integral
5792  //   type, there exist candidate operator functions of the form
5793  //
5794  //        VQ L&       operator%=(VQ L&, R);
5795  //        VQ L&       operator<<=(VQ L&, R);
5796  //        VQ L&       operator>>=(VQ L&, R);
5797  //        VQ L&       operator&=(VQ L&, R);
5798  //        VQ L&       operator^=(VQ L&, R);
5799  //        VQ L&       operator|=(VQ L&, R);
5800  void addAssignmentIntegralOverloads() {
5801    if (!HasArithmeticOrEnumeralCandidateType)
5802      return;
5803
5804    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
5805      for (unsigned Right = FirstPromotedIntegralType;
5806           Right < LastPromotedIntegralType; ++Right) {
5807        QualType ParamTypes[2];
5808        ParamTypes[1] = getArithmeticType(Right);
5809
5810        // Add this built-in operator as a candidate (VQ is empty).
5811        ParamTypes[0] =
5812          S.Context.getLValueReferenceType(getArithmeticType(Left));
5813        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5814        if (VisibleTypeConversionsQuals.hasVolatile()) {
5815          // Add this built-in operator as a candidate (VQ is 'volatile').
5816          ParamTypes[0] = getArithmeticType(Left);
5817          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
5818          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5819          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5820                                CandidateSet);
5821        }
5822      }
5823    }
5824  }
5825
5826  // C++ [over.operator]p23:
5827  //
5828  //   There also exist candidate operator functions of the form
5829  //
5830  //        bool        operator!(bool);
5831  //        bool        operator&&(bool, bool);
5832  //        bool        operator||(bool, bool);
5833  void addExclaimOverload() {
5834    QualType ParamTy = S.Context.BoolTy;
5835    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
5836                          /*IsAssignmentOperator=*/false,
5837                          /*NumContextualBoolArguments=*/1);
5838  }
5839  void addAmpAmpOrPipePipeOverload() {
5840    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
5841    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
5842                          /*IsAssignmentOperator=*/false,
5843                          /*NumContextualBoolArguments=*/2);
5844  }
5845
5846  // C++ [over.built]p13:
5847  //
5848  //   For every cv-qualified or cv-unqualified object type T there
5849  //   exist candidate operator functions of the form
5850  //
5851  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
5852  //        T&         operator[](T*, ptrdiff_t);
5853  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
5854  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
5855  //        T&         operator[](ptrdiff_t, T*);
5856  void addSubscriptOverloads() {
5857    for (BuiltinCandidateTypeSet::iterator
5858              Ptr = CandidateTypes[0].pointer_begin(),
5859           PtrEnd = CandidateTypes[0].pointer_end();
5860         Ptr != PtrEnd; ++Ptr) {
5861      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
5862      QualType PointeeType = (*Ptr)->getPointeeType();
5863      if (!PointeeType->isObjectType())
5864        continue;
5865
5866      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5867
5868      // T& operator[](T*, ptrdiff_t)
5869      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5870    }
5871
5872    for (BuiltinCandidateTypeSet::iterator
5873              Ptr = CandidateTypes[1].pointer_begin(),
5874           PtrEnd = CandidateTypes[1].pointer_end();
5875         Ptr != PtrEnd; ++Ptr) {
5876      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
5877      QualType PointeeType = (*Ptr)->getPointeeType();
5878      if (!PointeeType->isObjectType())
5879        continue;
5880
5881      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5882
5883      // T& operator[](ptrdiff_t, T*)
5884      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5885    }
5886  }
5887
5888  // C++ [over.built]p11:
5889  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5890  //    C1 is the same type as C2 or is a derived class of C2, T is an object
5891  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5892  //    there exist candidate operator functions of the form
5893  //
5894  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5895  //
5896  //    where CV12 is the union of CV1 and CV2.
5897  void addArrowStarOverloads() {
5898    for (BuiltinCandidateTypeSet::iterator
5899             Ptr = CandidateTypes[0].pointer_begin(),
5900           PtrEnd = CandidateTypes[0].pointer_end();
5901         Ptr != PtrEnd; ++Ptr) {
5902      QualType C1Ty = (*Ptr);
5903      QualType C1;
5904      QualifierCollector Q1;
5905      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
5906      if (!isa<RecordType>(C1))
5907        continue;
5908      // heuristic to reduce number of builtin candidates in the set.
5909      // Add volatile/restrict version only if there are conversions to a
5910      // volatile/restrict type.
5911      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5912        continue;
5913      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5914        continue;
5915      for (BuiltinCandidateTypeSet::iterator
5916                MemPtr = CandidateTypes[1].member_pointer_begin(),
5917             MemPtrEnd = CandidateTypes[1].member_pointer_end();
5918           MemPtr != MemPtrEnd; ++MemPtr) {
5919        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5920        QualType C2 = QualType(mptr->getClass(), 0);
5921        C2 = C2.getUnqualifiedType();
5922        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
5923          break;
5924        QualType ParamTypes[2] = { *Ptr, *MemPtr };
5925        // build CV12 T&
5926        QualType T = mptr->getPointeeType();
5927        if (!VisibleTypeConversionsQuals.hasVolatile() &&
5928            T.isVolatileQualified())
5929          continue;
5930        if (!VisibleTypeConversionsQuals.hasRestrict() &&
5931            T.isRestrictQualified())
5932          continue;
5933        T = Q1.apply(S.Context, T);
5934        QualType ResultTy = S.Context.getLValueReferenceType(T);
5935        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5936      }
5937    }
5938  }
5939
5940  // Note that we don't consider the first argument, since it has been
5941  // contextually converted to bool long ago. The candidates below are
5942  // therefore added as binary.
5943  //
5944  // C++ [over.built]p25:
5945  //   For every type T, where T is a pointer, pointer-to-member, or scoped
5946  //   enumeration type, there exist candidate operator functions of the form
5947  //
5948  //        T        operator?(bool, T, T);
5949  //
5950  void addConditionalOperatorOverloads() {
5951    /// Set of (canonical) types that we've already handled.
5952    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5953
5954    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5955      for (BuiltinCandidateTypeSet::iterator
5956                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5957             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5958           Ptr != PtrEnd; ++Ptr) {
5959        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5960          continue;
5961
5962        QualType ParamTypes[2] = { *Ptr, *Ptr };
5963        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5964      }
5965
5966      for (BuiltinCandidateTypeSet::iterator
5967                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5968             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5969           MemPtr != MemPtrEnd; ++MemPtr) {
5970        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5971          continue;
5972
5973        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5974        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
5975      }
5976
5977      if (S.getLangOptions().CPlusPlus0x) {
5978        for (BuiltinCandidateTypeSet::iterator
5979                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5980               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5981             Enum != EnumEnd; ++Enum) {
5982          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
5983            continue;
5984
5985          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5986            continue;
5987
5988          QualType ParamTypes[2] = { *Enum, *Enum };
5989          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
5990        }
5991      }
5992    }
5993  }
5994};
5995
5996} // end anonymous namespace
5997
5998/// AddBuiltinOperatorCandidates - Add the appropriate built-in
5999/// operator overloads to the candidate set (C++ [over.built]), based
6000/// on the operator @p Op and the arguments given. For example, if the
6001/// operator is a binary '+', this routine might add "int
6002/// operator+(int, int)" to cover integer addition.
6003void
6004Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
6005                                   SourceLocation OpLoc,
6006                                   Expr **Args, unsigned NumArgs,
6007                                   OverloadCandidateSet& CandidateSet) {
6008  // Find all of the types that the arguments can convert to, but only
6009  // if the operator we're looking at has built-in operator candidates
6010  // that make use of these types. Also record whether we encounter non-record
6011  // candidate types or either arithmetic or enumeral candidate types.
6012  Qualifiers VisibleTypeConversionsQuals;
6013  VisibleTypeConversionsQuals.addConst();
6014  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6015    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
6016
6017  bool HasNonRecordCandidateType = false;
6018  bool HasArithmeticOrEnumeralCandidateType = false;
6019  llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
6020  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6021    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
6022    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
6023                                                 OpLoc,
6024                                                 true,
6025                                                 (Op == OO_Exclaim ||
6026                                                  Op == OO_AmpAmp ||
6027                                                  Op == OO_PipePipe),
6028                                                 VisibleTypeConversionsQuals);
6029    HasNonRecordCandidateType = HasNonRecordCandidateType ||
6030        CandidateTypes[ArgIdx].hasNonRecordTypes();
6031    HasArithmeticOrEnumeralCandidateType =
6032        HasArithmeticOrEnumeralCandidateType ||
6033        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6034  }
6035
6036  // Exit early when no non-record types have been added to the candidate set
6037  // for any of the arguments to the operator.
6038  if (!HasNonRecordCandidateType)
6039    return;
6040
6041  // Setup an object to manage the common state for building overloads.
6042  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6043                                           VisibleTypeConversionsQuals,
6044                                           HasArithmeticOrEnumeralCandidateType,
6045                                           CandidateTypes, CandidateSet);
6046
6047  // Dispatch over the operation to add in only those overloads which apply.
6048  switch (Op) {
6049  case OO_None:
6050  case NUM_OVERLOADED_OPERATORS:
6051    assert(false && "Expected an overloaded operator");
6052    break;
6053
6054  case OO_New:
6055  case OO_Delete:
6056  case OO_Array_New:
6057  case OO_Array_Delete:
6058  case OO_Call:
6059    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
6060    break;
6061
6062  case OO_Comma:
6063  case OO_Arrow:
6064    // C++ [over.match.oper]p3:
6065    //   -- For the operator ',', the unary operator '&', or the
6066    //      operator '->', the built-in candidates set is empty.
6067    break;
6068
6069  case OO_Plus: // '+' is either unary or binary
6070    if (NumArgs == 1)
6071      OpBuilder.addUnaryPlusPointerOverloads();
6072    // Fall through.
6073
6074  case OO_Minus: // '-' is either unary or binary
6075    if (NumArgs == 1) {
6076      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6077    } else {
6078      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6079      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6080    }
6081    break;
6082
6083  case OO_Star: // '*' is either unary or binary
6084    if (NumArgs == 1)
6085      OpBuilder.addUnaryStarPointerOverloads();
6086    else
6087      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6088    break;
6089
6090  case OO_Slash:
6091    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6092    break;
6093
6094  case OO_PlusPlus:
6095  case OO_MinusMinus:
6096    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6097    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6098    break;
6099
6100  case OO_EqualEqual:
6101  case OO_ExclaimEqual:
6102    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6103    // Fall through.
6104
6105  case OO_Less:
6106  case OO_Greater:
6107  case OO_LessEqual:
6108  case OO_GreaterEqual:
6109    OpBuilder.addRelationalPointerOrEnumeralOverloads();
6110    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6111    break;
6112
6113  case OO_Percent:
6114  case OO_Caret:
6115  case OO_Pipe:
6116  case OO_LessLess:
6117  case OO_GreaterGreater:
6118    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6119    break;
6120
6121  case OO_Amp: // '&' is either unary or binary
6122    if (NumArgs == 1)
6123      // C++ [over.match.oper]p3:
6124      //   -- For the operator ',', the unary operator '&', or the
6125      //      operator '->', the built-in candidates set is empty.
6126      break;
6127
6128    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6129    break;
6130
6131  case OO_Tilde:
6132    OpBuilder.addUnaryTildePromotedIntegralOverloads();
6133    break;
6134
6135  case OO_Equal:
6136    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6137    // Fall through.
6138
6139  case OO_PlusEqual:
6140  case OO_MinusEqual:
6141    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6142    // Fall through.
6143
6144  case OO_StarEqual:
6145  case OO_SlashEqual:
6146    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6147    break;
6148
6149  case OO_PercentEqual:
6150  case OO_LessLessEqual:
6151  case OO_GreaterGreaterEqual:
6152  case OO_AmpEqual:
6153  case OO_CaretEqual:
6154  case OO_PipeEqual:
6155    OpBuilder.addAssignmentIntegralOverloads();
6156    break;
6157
6158  case OO_Exclaim:
6159    OpBuilder.addExclaimOverload();
6160    break;
6161
6162  case OO_AmpAmp:
6163  case OO_PipePipe:
6164    OpBuilder.addAmpAmpOrPipePipeOverload();
6165    break;
6166
6167  case OO_Subscript:
6168    OpBuilder.addSubscriptOverloads();
6169    break;
6170
6171  case OO_ArrowStar:
6172    OpBuilder.addArrowStarOverloads();
6173    break;
6174
6175  case OO_Conditional:
6176    OpBuilder.addConditionalOperatorOverloads();
6177    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6178    break;
6179  }
6180}
6181
6182/// \brief Add function candidates found via argument-dependent lookup
6183/// to the set of overloading candidates.
6184///
6185/// This routine performs argument-dependent name lookup based on the
6186/// given function name (which may also be an operator name) and adds
6187/// all of the overload candidates found by ADL to the overload
6188/// candidate set (C++ [basic.lookup.argdep]).
6189void
6190Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6191                                           bool Operator,
6192                                           Expr **Args, unsigned NumArgs,
6193                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
6194                                           OverloadCandidateSet& CandidateSet,
6195                                           bool PartialOverloading,
6196                                           bool StdNamespaceIsAssociated) {
6197  ADLResult Fns;
6198
6199  // FIXME: This approach for uniquing ADL results (and removing
6200  // redundant candidates from the set) relies on pointer-equality,
6201  // which means we need to key off the canonical decl.  However,
6202  // always going back to the canonical decl might not get us the
6203  // right set of default arguments.  What default arguments are
6204  // we supposed to consider on ADL candidates, anyway?
6205
6206  // FIXME: Pass in the explicit template arguments?
6207  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6208                          StdNamespaceIsAssociated);
6209
6210  // Erase all of the candidates we already knew about.
6211  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6212                                   CandEnd = CandidateSet.end();
6213       Cand != CandEnd; ++Cand)
6214    if (Cand->Function) {
6215      Fns.erase(Cand->Function);
6216      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6217        Fns.erase(FunTmpl);
6218    }
6219
6220  // For each of the ADL candidates we found, add it to the overload
6221  // set.
6222  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6223    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6224    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6225      if (ExplicitTemplateArgs)
6226        continue;
6227
6228      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6229                           false, PartialOverloading);
6230    } else
6231      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6232                                   FoundDecl, ExplicitTemplateArgs,
6233                                   Args, NumArgs, CandidateSet);
6234  }
6235}
6236
6237/// isBetterOverloadCandidate - Determines whether the first overload
6238/// candidate is a better candidate than the second (C++ 13.3.3p1).
6239bool
6240isBetterOverloadCandidate(Sema &S,
6241                          const OverloadCandidate &Cand1,
6242                          const OverloadCandidate &Cand2,
6243                          SourceLocation Loc,
6244                          bool UserDefinedConversion) {
6245  // Define viable functions to be better candidates than non-viable
6246  // functions.
6247  if (!Cand2.Viable)
6248    return Cand1.Viable;
6249  else if (!Cand1.Viable)
6250    return false;
6251
6252  // C++ [over.match.best]p1:
6253  //
6254  //   -- if F is a static member function, ICS1(F) is defined such
6255  //      that ICS1(F) is neither better nor worse than ICS1(G) for
6256  //      any function G, and, symmetrically, ICS1(G) is neither
6257  //      better nor worse than ICS1(F).
6258  unsigned StartArg = 0;
6259  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6260    StartArg = 1;
6261
6262  // C++ [over.match.best]p1:
6263  //   A viable function F1 is defined to be a better function than another
6264  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
6265  //   conversion sequence than ICSi(F2), and then...
6266  unsigned NumArgs = Cand1.Conversions.size();
6267  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6268  bool HasBetterConversion = false;
6269  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6270    switch (CompareImplicitConversionSequences(S,
6271                                               Cand1.Conversions[ArgIdx],
6272                                               Cand2.Conversions[ArgIdx])) {
6273    case ImplicitConversionSequence::Better:
6274      // Cand1 has a better conversion sequence.
6275      HasBetterConversion = true;
6276      break;
6277
6278    case ImplicitConversionSequence::Worse:
6279      // Cand1 can't be better than Cand2.
6280      return false;
6281
6282    case ImplicitConversionSequence::Indistinguishable:
6283      // Do nothing.
6284      break;
6285    }
6286  }
6287
6288  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6289  //       ICSj(F2), or, if not that,
6290  if (HasBetterConversion)
6291    return true;
6292
6293  //     - F1 is a non-template function and F2 is a function template
6294  //       specialization, or, if not that,
6295  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6296      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6297    return true;
6298
6299  //   -- F1 and F2 are function template specializations, and the function
6300  //      template for F1 is more specialized than the template for F2
6301  //      according to the partial ordering rules described in 14.5.5.2, or,
6302  //      if not that,
6303  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6304      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6305    if (FunctionTemplateDecl *BetterTemplate
6306          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6307                                         Cand2.Function->getPrimaryTemplate(),
6308                                         Loc,
6309                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6310                                                             : TPOC_Call,
6311                                         Cand1.ExplicitCallArguments))
6312      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6313  }
6314
6315  //   -- the context is an initialization by user-defined conversion
6316  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6317  //      from the return type of F1 to the destination type (i.e.,
6318  //      the type of the entity being initialized) is a better
6319  //      conversion sequence than the standard conversion sequence
6320  //      from the return type of F2 to the destination type.
6321  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6322      isa<CXXConversionDecl>(Cand1.Function) &&
6323      isa<CXXConversionDecl>(Cand2.Function)) {
6324    switch (CompareStandardConversionSequences(S,
6325                                               Cand1.FinalConversion,
6326                                               Cand2.FinalConversion)) {
6327    case ImplicitConversionSequence::Better:
6328      // Cand1 has a better conversion sequence.
6329      return true;
6330
6331    case ImplicitConversionSequence::Worse:
6332      // Cand1 can't be better than Cand2.
6333      return false;
6334
6335    case ImplicitConversionSequence::Indistinguishable:
6336      // Do nothing
6337      break;
6338    }
6339  }
6340
6341  return false;
6342}
6343
6344/// \brief Computes the best viable function (C++ 13.3.3)
6345/// within an overload candidate set.
6346///
6347/// \param CandidateSet the set of candidate functions.
6348///
6349/// \param Loc the location of the function name (or operator symbol) for
6350/// which overload resolution occurs.
6351///
6352/// \param Best f overload resolution was successful or found a deleted
6353/// function, Best points to the candidate function found.
6354///
6355/// \returns The result of overload resolution.
6356OverloadingResult
6357OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6358                                         iterator &Best,
6359                                         bool UserDefinedConversion) {
6360  // Find the best viable function.
6361  Best = end();
6362  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6363    if (Cand->Viable)
6364      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6365                                                     UserDefinedConversion))
6366        Best = Cand;
6367  }
6368
6369  // If we didn't find any viable functions, abort.
6370  if (Best == end())
6371    return OR_No_Viable_Function;
6372
6373  // Make sure that this function is better than every other viable
6374  // function. If not, we have an ambiguity.
6375  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6376    if (Cand->Viable &&
6377        Cand != Best &&
6378        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6379                                   UserDefinedConversion)) {
6380      Best = end();
6381      return OR_Ambiguous;
6382    }
6383  }
6384
6385  // Best is the best viable function.
6386  if (Best->Function &&
6387      (Best->Function->isDeleted() || Best->Function->isUnavailable()))
6388    return OR_Deleted;
6389
6390  return OR_Success;
6391}
6392
6393namespace {
6394
6395enum OverloadCandidateKind {
6396  oc_function,
6397  oc_method,
6398  oc_constructor,
6399  oc_function_template,
6400  oc_method_template,
6401  oc_constructor_template,
6402  oc_implicit_default_constructor,
6403  oc_implicit_copy_constructor,
6404  oc_implicit_copy_assignment,
6405  oc_implicit_inherited_constructor
6406};
6407
6408OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6409                                                FunctionDecl *Fn,
6410                                                std::string &Description) {
6411  bool isTemplate = false;
6412
6413  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6414    isTemplate = true;
6415    Description = S.getTemplateArgumentBindingsText(
6416      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6417  }
6418
6419  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6420    if (!Ctor->isImplicit())
6421      return isTemplate ? oc_constructor_template : oc_constructor;
6422
6423    if (Ctor->getInheritedConstructor())
6424      return oc_implicit_inherited_constructor;
6425
6426    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
6427                                     : oc_implicit_default_constructor;
6428  }
6429
6430  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6431    // This actually gets spelled 'candidate function' for now, but
6432    // it doesn't hurt to split it out.
6433    if (!Meth->isImplicit())
6434      return isTemplate ? oc_method_template : oc_method;
6435
6436    assert(Meth->isCopyAssignmentOperator()
6437           && "implicit method is not copy assignment operator?");
6438    return oc_implicit_copy_assignment;
6439  }
6440
6441  return isTemplate ? oc_function_template : oc_function;
6442}
6443
6444void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
6445  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
6446  if (!Ctor) return;
6447
6448  Ctor = Ctor->getInheritedConstructor();
6449  if (!Ctor) return;
6450
6451  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
6452}
6453
6454} // end anonymous namespace
6455
6456// Notes the location of an overload candidate.
6457void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6458  std::string FnDesc;
6459  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6460  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6461    << (unsigned) K << FnDesc;
6462  MaybeEmitInheritedConstructorNote(*this, Fn);
6463}
6464
6465//Notes the location of all overload candidates designated through
6466// OverloadedExpr
6467void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
6468  assert(OverloadedExpr->getType() == Context.OverloadTy);
6469
6470  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
6471  OverloadExpr *OvlExpr = Ovl.Expression;
6472
6473  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6474                            IEnd = OvlExpr->decls_end();
6475       I != IEnd; ++I) {
6476    if (FunctionTemplateDecl *FunTmpl =
6477                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6478      NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
6479    } else if (FunctionDecl *Fun
6480                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
6481      NoteOverloadCandidate(Fun);
6482    }
6483  }
6484}
6485
6486/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6487/// "lead" diagnostic; it will be given two arguments, the source and
6488/// target types of the conversion.
6489void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6490                                 Sema &S,
6491                                 SourceLocation CaretLoc,
6492                                 const PartialDiagnostic &PDiag) const {
6493  S.Diag(CaretLoc, PDiag)
6494    << Ambiguous.getFromType() << Ambiguous.getToType();
6495  for (AmbiguousConversionSequence::const_iterator
6496         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6497    S.NoteOverloadCandidate(*I);
6498  }
6499}
6500
6501namespace {
6502
6503void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6504  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6505  assert(Conv.isBad());
6506  assert(Cand->Function && "for now, candidate must be a function");
6507  FunctionDecl *Fn = Cand->Function;
6508
6509  // There's a conversion slot for the object argument if this is a
6510  // non-constructor method.  Note that 'I' corresponds the
6511  // conversion-slot index.
6512  bool isObjectArgument = false;
6513  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6514    if (I == 0)
6515      isObjectArgument = true;
6516    else
6517      I--;
6518  }
6519
6520  std::string FnDesc;
6521  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6522
6523  Expr *FromExpr = Conv.Bad.FromExpr;
6524  QualType FromTy = Conv.Bad.getFromType();
6525  QualType ToTy = Conv.Bad.getToType();
6526
6527  if (FromTy == S.Context.OverloadTy) {
6528    assert(FromExpr && "overload set argument came from implicit argument?");
6529    Expr *E = FromExpr->IgnoreParens();
6530    if (isa<UnaryOperator>(E))
6531      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6532    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6533
6534    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6535      << (unsigned) FnKind << FnDesc
6536      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6537      << ToTy << Name << I+1;
6538    MaybeEmitInheritedConstructorNote(S, Fn);
6539    return;
6540  }
6541
6542  // Do some hand-waving analysis to see if the non-viability is due
6543  // to a qualifier mismatch.
6544  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6545  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6546  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6547    CToTy = RT->getPointeeType();
6548  else {
6549    // TODO: detect and diagnose the full richness of const mismatches.
6550    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6551      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6552        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6553  }
6554
6555  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6556      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6557    // It is dumb that we have to do this here.
6558    while (isa<ArrayType>(CFromTy))
6559      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6560    while (isa<ArrayType>(CToTy))
6561      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6562
6563    Qualifiers FromQs = CFromTy.getQualifiers();
6564    Qualifiers ToQs = CToTy.getQualifiers();
6565
6566    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6567      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6568        << (unsigned) FnKind << FnDesc
6569        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6570        << FromTy
6571        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6572        << (unsigned) isObjectArgument << I+1;
6573      MaybeEmitInheritedConstructorNote(S, Fn);
6574      return;
6575    }
6576
6577    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
6578      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
6579      << (unsigned) FnKind << FnDesc
6580      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6581      << FromTy
6582      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
6583      << (unsigned) isObjectArgument << I+1;
6584      MaybeEmitInheritedConstructorNote(S, Fn);
6585      return;
6586    }
6587
6588    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6589    assert(CVR && "unexpected qualifiers mismatch");
6590
6591    if (isObjectArgument) {
6592      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6593        << (unsigned) FnKind << FnDesc
6594        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6595        << FromTy << (CVR - 1);
6596    } else {
6597      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6598        << (unsigned) FnKind << FnDesc
6599        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6600        << FromTy << (CVR - 1) << I+1;
6601    }
6602    MaybeEmitInheritedConstructorNote(S, Fn);
6603    return;
6604  }
6605
6606  // Diagnose references or pointers to incomplete types differently,
6607  // since it's far from impossible that the incompleteness triggered
6608  // the failure.
6609  QualType TempFromTy = FromTy.getNonReferenceType();
6610  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6611    TempFromTy = PTy->getPointeeType();
6612  if (TempFromTy->isIncompleteType()) {
6613    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6614      << (unsigned) FnKind << FnDesc
6615      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6616      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6617    MaybeEmitInheritedConstructorNote(S, Fn);
6618    return;
6619  }
6620
6621  // Diagnose base -> derived pointer conversions.
6622  unsigned BaseToDerivedConversion = 0;
6623  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6624    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6625      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6626                                               FromPtrTy->getPointeeType()) &&
6627          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6628          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6629          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6630                          FromPtrTy->getPointeeType()))
6631        BaseToDerivedConversion = 1;
6632    }
6633  } else if (const ObjCObjectPointerType *FromPtrTy
6634                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6635    if (const ObjCObjectPointerType *ToPtrTy
6636                                        = ToTy->getAs<ObjCObjectPointerType>())
6637      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6638        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6639          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6640                                                FromPtrTy->getPointeeType()) &&
6641              FromIface->isSuperClassOf(ToIface))
6642            BaseToDerivedConversion = 2;
6643  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6644      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6645          !FromTy->isIncompleteType() &&
6646          !ToRefTy->getPointeeType()->isIncompleteType() &&
6647          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6648        BaseToDerivedConversion = 3;
6649    }
6650
6651  if (BaseToDerivedConversion) {
6652    S.Diag(Fn->getLocation(),
6653           diag::note_ovl_candidate_bad_base_to_derived_conv)
6654      << (unsigned) FnKind << FnDesc
6655      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6656      << (BaseToDerivedConversion - 1)
6657      << FromTy << ToTy << I+1;
6658    MaybeEmitInheritedConstructorNote(S, Fn);
6659    return;
6660  }
6661
6662  // TODO: specialize more based on the kind of mismatch
6663  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
6664    << (unsigned) FnKind << FnDesc
6665    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6666    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6667  MaybeEmitInheritedConstructorNote(S, Fn);
6668}
6669
6670void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
6671                           unsigned NumFormalArgs) {
6672  // TODO: treat calls to a missing default constructor as a special case
6673
6674  FunctionDecl *Fn = Cand->Function;
6675  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
6676
6677  unsigned MinParams = Fn->getMinRequiredArguments();
6678
6679  // at least / at most / exactly
6680  unsigned mode, modeCount;
6681  if (NumFormalArgs < MinParams) {
6682    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
6683           (Cand->FailureKind == ovl_fail_bad_deduction &&
6684            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
6685    if (MinParams != FnTy->getNumArgs() ||
6686        FnTy->isVariadic() || FnTy->isTemplateVariadic())
6687      mode = 0; // "at least"
6688    else
6689      mode = 2; // "exactly"
6690    modeCount = MinParams;
6691  } else {
6692    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
6693           (Cand->FailureKind == ovl_fail_bad_deduction &&
6694            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
6695    if (MinParams != FnTy->getNumArgs())
6696      mode = 1; // "at most"
6697    else
6698      mode = 2; // "exactly"
6699    modeCount = FnTy->getNumArgs();
6700  }
6701
6702  std::string Description;
6703  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
6704
6705  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
6706    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
6707    << modeCount << NumFormalArgs;
6708  MaybeEmitInheritedConstructorNote(S, Fn);
6709}
6710
6711/// Diagnose a failed template-argument deduction.
6712void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
6713                          Expr **Args, unsigned NumArgs) {
6714  FunctionDecl *Fn = Cand->Function; // pattern
6715
6716  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
6717  NamedDecl *ParamD;
6718  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
6719  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
6720  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
6721  switch (Cand->DeductionFailure.Result) {
6722  case Sema::TDK_Success:
6723    llvm_unreachable("TDK_success while diagnosing bad deduction");
6724
6725  case Sema::TDK_Incomplete: {
6726    assert(ParamD && "no parameter found for incomplete deduction result");
6727    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
6728      << ParamD->getDeclName();
6729    MaybeEmitInheritedConstructorNote(S, Fn);
6730    return;
6731  }
6732
6733  case Sema::TDK_Underqualified: {
6734    assert(ParamD && "no parameter found for bad qualifiers deduction result");
6735    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
6736
6737    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
6738
6739    // Param will have been canonicalized, but it should just be a
6740    // qualified version of ParamD, so move the qualifiers to that.
6741    QualifierCollector Qs;
6742    Qs.strip(Param);
6743    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
6744    assert(S.Context.hasSameType(Param, NonCanonParam));
6745
6746    // Arg has also been canonicalized, but there's nothing we can do
6747    // about that.  It also doesn't matter as much, because it won't
6748    // have any template parameters in it (because deduction isn't
6749    // done on dependent types).
6750    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
6751
6752    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
6753      << ParamD->getDeclName() << Arg << NonCanonParam;
6754    MaybeEmitInheritedConstructorNote(S, Fn);
6755    return;
6756  }
6757
6758  case Sema::TDK_Inconsistent: {
6759    assert(ParamD && "no parameter found for inconsistent deduction result");
6760    int which = 0;
6761    if (isa<TemplateTypeParmDecl>(ParamD))
6762      which = 0;
6763    else if (isa<NonTypeTemplateParmDecl>(ParamD))
6764      which = 1;
6765    else {
6766      which = 2;
6767    }
6768
6769    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
6770      << which << ParamD->getDeclName()
6771      << *Cand->DeductionFailure.getFirstArg()
6772      << *Cand->DeductionFailure.getSecondArg();
6773    MaybeEmitInheritedConstructorNote(S, Fn);
6774    return;
6775  }
6776
6777  case Sema::TDK_InvalidExplicitArguments:
6778    assert(ParamD && "no parameter found for invalid explicit arguments");
6779    if (ParamD->getDeclName())
6780      S.Diag(Fn->getLocation(),
6781             diag::note_ovl_candidate_explicit_arg_mismatch_named)
6782        << ParamD->getDeclName();
6783    else {
6784      int index = 0;
6785      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
6786        index = TTP->getIndex();
6787      else if (NonTypeTemplateParmDecl *NTTP
6788                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
6789        index = NTTP->getIndex();
6790      else
6791        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
6792      S.Diag(Fn->getLocation(),
6793             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
6794        << (index + 1);
6795    }
6796    MaybeEmitInheritedConstructorNote(S, Fn);
6797    return;
6798
6799  case Sema::TDK_TooManyArguments:
6800  case Sema::TDK_TooFewArguments:
6801    DiagnoseArityMismatch(S, Cand, NumArgs);
6802    return;
6803
6804  case Sema::TDK_InstantiationDepth:
6805    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
6806    MaybeEmitInheritedConstructorNote(S, Fn);
6807    return;
6808
6809  case Sema::TDK_SubstitutionFailure: {
6810    std::string ArgString;
6811    if (TemplateArgumentList *Args
6812                            = Cand->DeductionFailure.getTemplateArgumentList())
6813      ArgString = S.getTemplateArgumentBindingsText(
6814                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
6815                                                    *Args);
6816    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
6817      << ArgString;
6818    MaybeEmitInheritedConstructorNote(S, Fn);
6819    return;
6820  }
6821
6822  // TODO: diagnose these individually, then kill off
6823  // note_ovl_candidate_bad_deduction, which is uselessly vague.
6824  case Sema::TDK_NonDeducedMismatch:
6825  case Sema::TDK_FailedOverloadResolution:
6826    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
6827    MaybeEmitInheritedConstructorNote(S, Fn);
6828    return;
6829  }
6830}
6831
6832/// Generates a 'note' diagnostic for an overload candidate.  We've
6833/// already generated a primary error at the call site.
6834///
6835/// It really does need to be a single diagnostic with its caret
6836/// pointed at the candidate declaration.  Yes, this creates some
6837/// major challenges of technical writing.  Yes, this makes pointing
6838/// out problems with specific arguments quite awkward.  It's still
6839/// better than generating twenty screens of text for every failed
6840/// overload.
6841///
6842/// It would be great to be able to express per-candidate problems
6843/// more richly for those diagnostic clients that cared, but we'd
6844/// still have to be just as careful with the default diagnostics.
6845void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
6846                           Expr **Args, unsigned NumArgs) {
6847  FunctionDecl *Fn = Cand->Function;
6848
6849  // Note deleted candidates, but only if they're viable.
6850  if (Cand->Viable && (Fn->isDeleted() || Fn->isUnavailable())) {
6851    std::string FnDesc;
6852    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6853
6854    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
6855      << FnKind << FnDesc << Fn->isDeleted();
6856    MaybeEmitInheritedConstructorNote(S, Fn);
6857    return;
6858  }
6859
6860  // We don't really have anything else to say about viable candidates.
6861  if (Cand->Viable) {
6862    S.NoteOverloadCandidate(Fn);
6863    return;
6864  }
6865
6866  switch (Cand->FailureKind) {
6867  case ovl_fail_too_many_arguments:
6868  case ovl_fail_too_few_arguments:
6869    return DiagnoseArityMismatch(S, Cand, NumArgs);
6870
6871  case ovl_fail_bad_deduction:
6872    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
6873
6874  case ovl_fail_trivial_conversion:
6875  case ovl_fail_bad_final_conversion:
6876  case ovl_fail_final_conversion_not_exact:
6877    return S.NoteOverloadCandidate(Fn);
6878
6879  case ovl_fail_bad_conversion: {
6880    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
6881    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
6882      if (Cand->Conversions[I].isBad())
6883        return DiagnoseBadConversion(S, Cand, I);
6884
6885    // FIXME: this currently happens when we're called from SemaInit
6886    // when user-conversion overload fails.  Figure out how to handle
6887    // those conditions and diagnose them well.
6888    return S.NoteOverloadCandidate(Fn);
6889  }
6890  }
6891}
6892
6893void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
6894  // Desugar the type of the surrogate down to a function type,
6895  // retaining as many typedefs as possible while still showing
6896  // the function type (and, therefore, its parameter types).
6897  QualType FnType = Cand->Surrogate->getConversionType();
6898  bool isLValueReference = false;
6899  bool isRValueReference = false;
6900  bool isPointer = false;
6901  if (const LValueReferenceType *FnTypeRef =
6902        FnType->getAs<LValueReferenceType>()) {
6903    FnType = FnTypeRef->getPointeeType();
6904    isLValueReference = true;
6905  } else if (const RValueReferenceType *FnTypeRef =
6906               FnType->getAs<RValueReferenceType>()) {
6907    FnType = FnTypeRef->getPointeeType();
6908    isRValueReference = true;
6909  }
6910  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
6911    FnType = FnTypePtr->getPointeeType();
6912    isPointer = true;
6913  }
6914  // Desugar down to a function type.
6915  FnType = QualType(FnType->getAs<FunctionType>(), 0);
6916  // Reconstruct the pointer/reference as appropriate.
6917  if (isPointer) FnType = S.Context.getPointerType(FnType);
6918  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
6919  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
6920
6921  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
6922    << FnType;
6923  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
6924}
6925
6926void NoteBuiltinOperatorCandidate(Sema &S,
6927                                  const char *Opc,
6928                                  SourceLocation OpLoc,
6929                                  OverloadCandidate *Cand) {
6930  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
6931  std::string TypeStr("operator");
6932  TypeStr += Opc;
6933  TypeStr += "(";
6934  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
6935  if (Cand->Conversions.size() == 1) {
6936    TypeStr += ")";
6937    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
6938  } else {
6939    TypeStr += ", ";
6940    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
6941    TypeStr += ")";
6942    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
6943  }
6944}
6945
6946void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
6947                                  OverloadCandidate *Cand) {
6948  unsigned NoOperands = Cand->Conversions.size();
6949  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
6950    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
6951    if (ICS.isBad()) break; // all meaningless after first invalid
6952    if (!ICS.isAmbiguous()) continue;
6953
6954    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
6955                              S.PDiag(diag::note_ambiguous_type_conversion));
6956  }
6957}
6958
6959SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
6960  if (Cand->Function)
6961    return Cand->Function->getLocation();
6962  if (Cand->IsSurrogate)
6963    return Cand->Surrogate->getLocation();
6964  return SourceLocation();
6965}
6966
6967struct CompareOverloadCandidatesForDisplay {
6968  Sema &S;
6969  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
6970
6971  bool operator()(const OverloadCandidate *L,
6972                  const OverloadCandidate *R) {
6973    // Fast-path this check.
6974    if (L == R) return false;
6975
6976    // Order first by viability.
6977    if (L->Viable) {
6978      if (!R->Viable) return true;
6979
6980      // TODO: introduce a tri-valued comparison for overload
6981      // candidates.  Would be more worthwhile if we had a sort
6982      // that could exploit it.
6983      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
6984      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
6985    } else if (R->Viable)
6986      return false;
6987
6988    assert(L->Viable == R->Viable);
6989
6990    // Criteria by which we can sort non-viable candidates:
6991    if (!L->Viable) {
6992      // 1. Arity mismatches come after other candidates.
6993      if (L->FailureKind == ovl_fail_too_many_arguments ||
6994          L->FailureKind == ovl_fail_too_few_arguments)
6995        return false;
6996      if (R->FailureKind == ovl_fail_too_many_arguments ||
6997          R->FailureKind == ovl_fail_too_few_arguments)
6998        return true;
6999
7000      // 2. Bad conversions come first and are ordered by the number
7001      // of bad conversions and quality of good conversions.
7002      if (L->FailureKind == ovl_fail_bad_conversion) {
7003        if (R->FailureKind != ovl_fail_bad_conversion)
7004          return true;
7005
7006        // If there's any ordering between the defined conversions...
7007        // FIXME: this might not be transitive.
7008        assert(L->Conversions.size() == R->Conversions.size());
7009
7010        int leftBetter = 0;
7011        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
7012        for (unsigned E = L->Conversions.size(); I != E; ++I) {
7013          switch (CompareImplicitConversionSequences(S,
7014                                                     L->Conversions[I],
7015                                                     R->Conversions[I])) {
7016          case ImplicitConversionSequence::Better:
7017            leftBetter++;
7018            break;
7019
7020          case ImplicitConversionSequence::Worse:
7021            leftBetter--;
7022            break;
7023
7024          case ImplicitConversionSequence::Indistinguishable:
7025            break;
7026          }
7027        }
7028        if (leftBetter > 0) return true;
7029        if (leftBetter < 0) return false;
7030
7031      } else if (R->FailureKind == ovl_fail_bad_conversion)
7032        return false;
7033
7034      // TODO: others?
7035    }
7036
7037    // Sort everything else by location.
7038    SourceLocation LLoc = GetLocationForCandidate(L);
7039    SourceLocation RLoc = GetLocationForCandidate(R);
7040
7041    // Put candidates without locations (e.g. builtins) at the end.
7042    if (LLoc.isInvalid()) return false;
7043    if (RLoc.isInvalid()) return true;
7044
7045    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7046  }
7047};
7048
7049/// CompleteNonViableCandidate - Normally, overload resolution only
7050/// computes up to the first
7051void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7052                                Expr **Args, unsigned NumArgs) {
7053  assert(!Cand->Viable);
7054
7055  // Don't do anything on failures other than bad conversion.
7056  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7057
7058  // Skip forward to the first bad conversion.
7059  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7060  unsigned ConvCount = Cand->Conversions.size();
7061  while (true) {
7062    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7063    ConvIdx++;
7064    if (Cand->Conversions[ConvIdx - 1].isBad())
7065      break;
7066  }
7067
7068  if (ConvIdx == ConvCount)
7069    return;
7070
7071  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7072         "remaining conversion is initialized?");
7073
7074  // FIXME: this should probably be preserved from the overload
7075  // operation somehow.
7076  bool SuppressUserConversions = false;
7077
7078  const FunctionProtoType* Proto;
7079  unsigned ArgIdx = ConvIdx;
7080
7081  if (Cand->IsSurrogate) {
7082    QualType ConvType
7083      = Cand->Surrogate->getConversionType().getNonReferenceType();
7084    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7085      ConvType = ConvPtrType->getPointeeType();
7086    Proto = ConvType->getAs<FunctionProtoType>();
7087    ArgIdx--;
7088  } else if (Cand->Function) {
7089    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7090    if (isa<CXXMethodDecl>(Cand->Function) &&
7091        !isa<CXXConstructorDecl>(Cand->Function))
7092      ArgIdx--;
7093  } else {
7094    // Builtin binary operator with a bad first conversion.
7095    assert(ConvCount <= 3);
7096    for (; ConvIdx != ConvCount; ++ConvIdx)
7097      Cand->Conversions[ConvIdx]
7098        = TryCopyInitialization(S, Args[ConvIdx],
7099                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
7100                                SuppressUserConversions,
7101                                /*InOverloadResolution*/ true);
7102    return;
7103  }
7104
7105  // Fill in the rest of the conversions.
7106  unsigned NumArgsInProto = Proto->getNumArgs();
7107  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7108    if (ArgIdx < NumArgsInProto)
7109      Cand->Conversions[ConvIdx]
7110        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7111                                SuppressUserConversions,
7112                                /*InOverloadResolution=*/true);
7113    else
7114      Cand->Conversions[ConvIdx].setEllipsis();
7115  }
7116}
7117
7118} // end anonymous namespace
7119
7120/// PrintOverloadCandidates - When overload resolution fails, prints
7121/// diagnostic messages containing the candidates in the candidate
7122/// set.
7123void OverloadCandidateSet::NoteCandidates(Sema &S,
7124                                          OverloadCandidateDisplayKind OCD,
7125                                          Expr **Args, unsigned NumArgs,
7126                                          const char *Opc,
7127                                          SourceLocation OpLoc) {
7128  // Sort the candidates by viability and position.  Sorting directly would
7129  // be prohibitive, so we make a set of pointers and sort those.
7130  llvm::SmallVector<OverloadCandidate*, 32> Cands;
7131  if (OCD == OCD_AllCandidates) Cands.reserve(size());
7132  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7133    if (Cand->Viable)
7134      Cands.push_back(Cand);
7135    else if (OCD == OCD_AllCandidates) {
7136      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7137      if (Cand->Function || Cand->IsSurrogate)
7138        Cands.push_back(Cand);
7139      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
7140      // want to list every possible builtin candidate.
7141    }
7142  }
7143
7144  std::sort(Cands.begin(), Cands.end(),
7145            CompareOverloadCandidatesForDisplay(S));
7146
7147  bool ReportedAmbiguousConversions = false;
7148
7149  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7150  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
7151  unsigned CandsShown = 0;
7152  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7153    OverloadCandidate *Cand = *I;
7154
7155    // Set an arbitrary limit on the number of candidate functions we'll spam
7156    // the user with.  FIXME: This limit should depend on details of the
7157    // candidate list.
7158    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
7159      break;
7160    }
7161    ++CandsShown;
7162
7163    if (Cand->Function)
7164      NoteFunctionCandidate(S, Cand, Args, NumArgs);
7165    else if (Cand->IsSurrogate)
7166      NoteSurrogateCandidate(S, Cand);
7167    else {
7168      assert(Cand->Viable &&
7169             "Non-viable built-in candidates are not added to Cands.");
7170      // Generally we only see ambiguities including viable builtin
7171      // operators if overload resolution got screwed up by an
7172      // ambiguous user-defined conversion.
7173      //
7174      // FIXME: It's quite possible for different conversions to see
7175      // different ambiguities, though.
7176      if (!ReportedAmbiguousConversions) {
7177        NoteAmbiguousUserConversions(S, OpLoc, Cand);
7178        ReportedAmbiguousConversions = true;
7179      }
7180
7181      // If this is a viable builtin, print it.
7182      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7183    }
7184  }
7185
7186  if (I != E)
7187    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7188}
7189
7190// [PossiblyAFunctionType]  -->   [Return]
7191// NonFunctionType --> NonFunctionType
7192// R (A) --> R(A)
7193// R (*)(A) --> R (A)
7194// R (&)(A) --> R (A)
7195// R (S::*)(A) --> R (A)
7196QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7197  QualType Ret = PossiblyAFunctionType;
7198  if (const PointerType *ToTypePtr =
7199    PossiblyAFunctionType->getAs<PointerType>())
7200    Ret = ToTypePtr->getPointeeType();
7201  else if (const ReferenceType *ToTypeRef =
7202    PossiblyAFunctionType->getAs<ReferenceType>())
7203    Ret = ToTypeRef->getPointeeType();
7204  else if (const MemberPointerType *MemTypePtr =
7205    PossiblyAFunctionType->getAs<MemberPointerType>())
7206    Ret = MemTypePtr->getPointeeType();
7207  Ret =
7208    Context.getCanonicalType(Ret).getUnqualifiedType();
7209  return Ret;
7210}
7211
7212// A helper class to help with address of function resolution
7213// - allows us to avoid passing around all those ugly parameters
7214class AddressOfFunctionResolver
7215{
7216  Sema& S;
7217  Expr* SourceExpr;
7218  const QualType& TargetType;
7219  QualType TargetFunctionType; // Extracted function type from target type
7220
7221  bool Complain;
7222  //DeclAccessPair& ResultFunctionAccessPair;
7223  ASTContext& Context;
7224
7225  bool TargetTypeIsNonStaticMemberFunction;
7226  bool FoundNonTemplateFunction;
7227
7228  OverloadExpr::FindResult OvlExprInfo;
7229  OverloadExpr *OvlExpr;
7230  TemplateArgumentListInfo OvlExplicitTemplateArgs;
7231  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7232
7233public:
7234  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7235                            const QualType& TargetType, bool Complain)
7236    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7237      Complain(Complain), Context(S.getASTContext()),
7238      TargetTypeIsNonStaticMemberFunction(
7239                                    !!TargetType->getAs<MemberPointerType>()),
7240      FoundNonTemplateFunction(false),
7241      OvlExprInfo(OverloadExpr::find(SourceExpr)),
7242      OvlExpr(OvlExprInfo.Expression)
7243  {
7244    ExtractUnqualifiedFunctionTypeFromTargetType();
7245
7246    if (!TargetFunctionType->isFunctionType()) {
7247      if (OvlExpr->hasExplicitTemplateArgs()) {
7248        DeclAccessPair dap;
7249        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7250                                            OvlExpr, false, &dap) ) {
7251
7252          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7253            if (!Method->isStatic()) {
7254              // If the target type is a non-function type and the function
7255              // found is a non-static member function, pretend as if that was
7256              // the target, it's the only possible type to end up with.
7257              TargetTypeIsNonStaticMemberFunction = true;
7258
7259              // And skip adding the function if its not in the proper form.
7260              // We'll diagnose this due to an empty set of functions.
7261              if (!OvlExprInfo.HasFormOfMemberPointer)
7262                return;
7263            }
7264          }
7265
7266          Matches.push_back(std::make_pair(dap,Fn));
7267        }
7268      }
7269      return;
7270    }
7271
7272    if (OvlExpr->hasExplicitTemplateArgs())
7273      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7274
7275    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7276      // C++ [over.over]p4:
7277      //   If more than one function is selected, [...]
7278      if (Matches.size() > 1) {
7279        if (FoundNonTemplateFunction)
7280          EliminateAllTemplateMatches();
7281        else
7282          EliminateAllExceptMostSpecializedTemplate();
7283      }
7284    }
7285  }
7286
7287private:
7288  bool isTargetTypeAFunction() const {
7289    return TargetFunctionType->isFunctionType();
7290  }
7291
7292  // [ToType]     [Return]
7293
7294  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7295  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7296  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
7297  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7298    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7299  }
7300
7301  // return true if any matching specializations were found
7302  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
7303                                   const DeclAccessPair& CurAccessFunPair) {
7304    if (CXXMethodDecl *Method
7305              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
7306      // Skip non-static function templates when converting to pointer, and
7307      // static when converting to member pointer.
7308      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7309        return false;
7310    }
7311    else if (TargetTypeIsNonStaticMemberFunction)
7312      return false;
7313
7314    // C++ [over.over]p2:
7315    //   If the name is a function template, template argument deduction is
7316    //   done (14.8.2.2), and if the argument deduction succeeds, the
7317    //   resulting template argument list is used to generate a single
7318    //   function template specialization, which is added to the set of
7319    //   overloaded functions considered.
7320    FunctionDecl *Specialization = 0;
7321    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7322    if (Sema::TemplateDeductionResult Result
7323          = S.DeduceTemplateArguments(FunctionTemplate,
7324                                      &OvlExplicitTemplateArgs,
7325                                      TargetFunctionType, Specialization,
7326                                      Info)) {
7327      // FIXME: make a note of the failed deduction for diagnostics.
7328      (void)Result;
7329      return false;
7330    }
7331
7332    // Template argument deduction ensures that we have an exact match.
7333    // This function template specicalization works.
7334    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
7335    assert(TargetFunctionType
7336                      == Context.getCanonicalType(Specialization->getType()));
7337    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
7338    return true;
7339  }
7340
7341  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
7342                                      const DeclAccessPair& CurAccessFunPair) {
7343    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7344      // Skip non-static functions when converting to pointer, and static
7345      // when converting to member pointer.
7346      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7347        return false;
7348    }
7349    else if (TargetTypeIsNonStaticMemberFunction)
7350      return false;
7351
7352    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
7353      QualType ResultTy;
7354      if (Context.hasSameUnqualifiedType(TargetFunctionType,
7355                                         FunDecl->getType()) ||
7356          IsNoReturnConversion(Context, FunDecl->getType(), TargetFunctionType,
7357                               ResultTy)) {
7358        Matches.push_back(std::make_pair(CurAccessFunPair,
7359          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7360        FoundNonTemplateFunction = true;
7361        return true;
7362      }
7363    }
7364
7365    return false;
7366  }
7367
7368  bool FindAllFunctionsThatMatchTargetTypeExactly() {
7369    bool Ret = false;
7370
7371    // If the overload expression doesn't have the form of a pointer to
7372    // member, don't try to convert it to a pointer-to-member type.
7373    if (IsInvalidFormOfPointerToMemberFunction())
7374      return false;
7375
7376    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7377                               E = OvlExpr->decls_end();
7378         I != E; ++I) {
7379      // Look through any using declarations to find the underlying function.
7380      NamedDecl *Fn = (*I)->getUnderlyingDecl();
7381
7382      // C++ [over.over]p3:
7383      //   Non-member functions and static member functions match
7384      //   targets of type "pointer-to-function" or "reference-to-function."
7385      //   Nonstatic member functions match targets of
7386      //   type "pointer-to-member-function."
7387      // Note that according to DR 247, the containing class does not matter.
7388      if (FunctionTemplateDecl *FunctionTemplate
7389                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
7390        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
7391          Ret = true;
7392      }
7393      // If we have explicit template arguments supplied, skip non-templates.
7394      else if (!OvlExpr->hasExplicitTemplateArgs() &&
7395               AddMatchingNonTemplateFunction(Fn, I.getPair()))
7396        Ret = true;
7397    }
7398    assert(Ret || Matches.empty());
7399    return Ret;
7400  }
7401
7402  void EliminateAllExceptMostSpecializedTemplate() {
7403    //   [...] and any given function template specialization F1 is
7404    //   eliminated if the set contains a second function template
7405    //   specialization whose function template is more specialized
7406    //   than the function template of F1 according to the partial
7407    //   ordering rules of 14.5.5.2.
7408
7409    // The algorithm specified above is quadratic. We instead use a
7410    // two-pass algorithm (similar to the one used to identify the
7411    // best viable function in an overload set) that identifies the
7412    // best function template (if it exists).
7413
7414    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7415    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7416      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7417
7418    UnresolvedSetIterator Result =
7419      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7420                           TPOC_Other, 0, SourceExpr->getLocStart(),
7421                           S.PDiag(),
7422                           S.PDiag(diag::err_addr_ovl_ambiguous)
7423                             << Matches[0].second->getDeclName(),
7424                           S.PDiag(diag::note_ovl_candidate)
7425                             << (unsigned) oc_function_template,
7426                           Complain);
7427
7428    if (Result != MatchesCopy.end()) {
7429      // Make it the first and only element
7430      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
7431      Matches[0].second = cast<FunctionDecl>(*Result);
7432      Matches.resize(1);
7433    }
7434  }
7435
7436  void EliminateAllTemplateMatches() {
7437    //   [...] any function template specializations in the set are
7438    //   eliminated if the set also contains a non-template function, [...]
7439    for (unsigned I = 0, N = Matches.size(); I != N; ) {
7440      if (Matches[I].second->getPrimaryTemplate() == 0)
7441        ++I;
7442      else {
7443        Matches[I] = Matches[--N];
7444        Matches.set_size(N);
7445      }
7446    }
7447  }
7448
7449public:
7450  void ComplainNoMatchesFound() const {
7451    assert(Matches.empty());
7452    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
7453        << OvlExpr->getName() << TargetFunctionType
7454        << OvlExpr->getSourceRange();
7455    S.NoteAllOverloadCandidates(OvlExpr);
7456  }
7457
7458  bool IsInvalidFormOfPointerToMemberFunction() const {
7459    return TargetTypeIsNonStaticMemberFunction &&
7460      !OvlExprInfo.HasFormOfMemberPointer;
7461  }
7462
7463  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
7464      // TODO: Should we condition this on whether any functions might
7465      // have matched, or is it more appropriate to do that in callers?
7466      // TODO: a fixit wouldn't hurt.
7467      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
7468        << TargetType << OvlExpr->getSourceRange();
7469  }
7470
7471  void ComplainOfInvalidConversion() const {
7472    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
7473      << OvlExpr->getName() << TargetType;
7474  }
7475
7476  void ComplainMultipleMatchesFound() const {
7477    assert(Matches.size() > 1);
7478    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
7479      << OvlExpr->getName()
7480      << OvlExpr->getSourceRange();
7481    S.NoteAllOverloadCandidates(OvlExpr);
7482  }
7483
7484  int getNumMatches() const { return Matches.size(); }
7485
7486  FunctionDecl* getMatchingFunctionDecl() const {
7487    if (Matches.size() != 1) return 0;
7488    return Matches[0].second;
7489  }
7490
7491  const DeclAccessPair* getMatchingFunctionAccessPair() const {
7492    if (Matches.size() != 1) return 0;
7493    return &Matches[0].first;
7494  }
7495};
7496
7497/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
7498/// an overloaded function (C++ [over.over]), where @p From is an
7499/// expression with overloaded function type and @p ToType is the type
7500/// we're trying to resolve to. For example:
7501///
7502/// @code
7503/// int f(double);
7504/// int f(int);
7505///
7506/// int (*pfd)(double) = f; // selects f(double)
7507/// @endcode
7508///
7509/// This routine returns the resulting FunctionDecl if it could be
7510/// resolved, and NULL otherwise. When @p Complain is true, this
7511/// routine will emit diagnostics if there is an error.
7512FunctionDecl *
7513Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
7514                                    bool Complain,
7515                                    DeclAccessPair &FoundResult) {
7516
7517  assert(AddressOfExpr->getType() == Context.OverloadTy);
7518
7519  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
7520  int NumMatches = Resolver.getNumMatches();
7521  FunctionDecl* Fn = 0;
7522  if ( NumMatches == 0 && Complain) {
7523    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
7524      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
7525    else
7526      Resolver.ComplainNoMatchesFound();
7527  }
7528  else if (NumMatches > 1 && Complain)
7529    Resolver.ComplainMultipleMatchesFound();
7530  else if (NumMatches == 1) {
7531    Fn = Resolver.getMatchingFunctionDecl();
7532    assert(Fn);
7533    FoundResult = *Resolver.getMatchingFunctionAccessPair();
7534    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
7535    if (Complain)
7536      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
7537  }
7538
7539  return Fn;
7540}
7541
7542/// \brief Given an expression that refers to an overloaded function, try to
7543/// resolve that overloaded function expression down to a single function.
7544///
7545/// This routine can only resolve template-ids that refer to a single function
7546/// template, where that template-id refers to a single template whose template
7547/// arguments are either provided by the template-id or have defaults,
7548/// as described in C++0x [temp.arg.explicit]p3.
7549FunctionDecl *
7550Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
7551                                                  bool Complain,
7552                                                  DeclAccessPair *FoundResult) {
7553  // C++ [over.over]p1:
7554  //   [...] [Note: any redundant set of parentheses surrounding the
7555  //   overloaded function name is ignored (5.1). ]
7556  // C++ [over.over]p1:
7557  //   [...] The overloaded function name can be preceded by the &
7558  //   operator.
7559
7560  // If we didn't actually find any template-ids, we're done.
7561  if (!ovl->hasExplicitTemplateArgs())
7562    return 0;
7563
7564  TemplateArgumentListInfo ExplicitTemplateArgs;
7565  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7566
7567  // Look through all of the overloaded functions, searching for one
7568  // whose type matches exactly.
7569  FunctionDecl *Matched = 0;
7570  for (UnresolvedSetIterator I = ovl->decls_begin(),
7571         E = ovl->decls_end(); I != E; ++I) {
7572    // C++0x [temp.arg.explicit]p3:
7573    //   [...] In contexts where deduction is done and fails, or in contexts
7574    //   where deduction is not done, if a template argument list is
7575    //   specified and it, along with any default template arguments,
7576    //   identifies a single function template specialization, then the
7577    //   template-id is an lvalue for the function template specialization.
7578    FunctionTemplateDecl *FunctionTemplate
7579      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7580
7581    // C++ [over.over]p2:
7582    //   If the name is a function template, template argument deduction is
7583    //   done (14.8.2.2), and if the argument deduction succeeds, the
7584    //   resulting template argument list is used to generate a single
7585    //   function template specialization, which is added to the set of
7586    //   overloaded functions considered.
7587    FunctionDecl *Specialization = 0;
7588    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
7589    if (TemplateDeductionResult Result
7590          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7591                                    Specialization, Info)) {
7592      // FIXME: make a note of the failed deduction for diagnostics.
7593      (void)Result;
7594      continue;
7595    }
7596
7597    assert(Specialization && "no specialization and no error?");
7598
7599    // Multiple matches; we can't resolve to a single declaration.
7600    if (Matched) {
7601      if (Complain) {
7602        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
7603          << ovl->getName();
7604        NoteAllOverloadCandidates(ovl);
7605      }
7606      return 0;
7607    }
7608
7609    Matched = Specialization;
7610    if (FoundResult) *FoundResult = I.getPair();
7611  }
7612
7613  return Matched;
7614}
7615
7616
7617
7618
7619// Resolve and fix an overloaded expression that
7620// can be resolved because it identifies a single function
7621// template specialization
7622// Last three arguments should only be supplied if Complain = true
7623ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
7624             Expr *SrcExpr, bool doFunctionPointerConverion, bool complain,
7625                                  const SourceRange& OpRangeForComplaining,
7626                                           QualType DestTypeForComplaining,
7627                                            unsigned DiagIDForComplaining) {
7628  assert(SrcExpr->getType() == Context.OverloadTy);
7629
7630  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr);
7631
7632  DeclAccessPair found;
7633  ExprResult SingleFunctionExpression;
7634  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
7635                           ovl.Expression, /*complain*/ false, &found)) {
7636    if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin()))
7637      return ExprError();
7638
7639    // It is only correct to resolve to an instance method if we're
7640    // resolving a form that's permitted to be a pointer to member.
7641    // Otherwise we'll end up making a bound member expression, which
7642    // is illegal in all the contexts we resolve like this.
7643    if (!ovl.HasFormOfMemberPointer &&
7644        isa<CXXMethodDecl>(fn) &&
7645        cast<CXXMethodDecl>(fn)->isInstance()) {
7646      if (complain) {
7647        Diag(ovl.Expression->getExprLoc(),
7648             diag::err_invalid_use_of_bound_member_func)
7649          << ovl.Expression->getSourceRange();
7650        // TODO: I believe we only end up here if there's a mix of
7651        // static and non-static candidates (otherwise the expression
7652        // would have 'bound member' type, not 'overload' type).
7653        // Ideally we would note which candidate was chosen and why
7654        // the static candidates were rejected.
7655      }
7656
7657      return ExprError();
7658    }
7659
7660    // Fix the expresion to refer to 'fn'.
7661    SingleFunctionExpression =
7662      Owned(FixOverloadedFunctionReference(SrcExpr, found, fn));
7663
7664    // If desired, do function-to-pointer decay.
7665    if (doFunctionPointerConverion)
7666      SingleFunctionExpression =
7667        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
7668  }
7669
7670  if (!SingleFunctionExpression.isUsable()) {
7671    if (complain) {
7672      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
7673        << ovl.Expression->getName()
7674        << DestTypeForComplaining
7675        << OpRangeForComplaining
7676        << ovl.Expression->getQualifierLoc().getSourceRange();
7677      NoteAllOverloadCandidates(SrcExpr);
7678    }
7679    return ExprError();
7680  }
7681
7682  return SingleFunctionExpression;
7683}
7684
7685/// \brief Add a single candidate to the overload set.
7686static void AddOverloadedCallCandidate(Sema &S,
7687                                       DeclAccessPair FoundDecl,
7688                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7689                                       Expr **Args, unsigned NumArgs,
7690                                       OverloadCandidateSet &CandidateSet,
7691                                       bool PartialOverloading) {
7692  NamedDecl *Callee = FoundDecl.getDecl();
7693  if (isa<UsingShadowDecl>(Callee))
7694    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
7695
7696  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
7697    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
7698    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
7699                           false, PartialOverloading);
7700    return;
7701  }
7702
7703  if (FunctionTemplateDecl *FuncTemplate
7704      = dyn_cast<FunctionTemplateDecl>(Callee)) {
7705    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
7706                                   ExplicitTemplateArgs,
7707                                   Args, NumArgs, CandidateSet);
7708    return;
7709  }
7710
7711  assert(false && "unhandled case in overloaded call candidate");
7712
7713  // do nothing?
7714}
7715
7716/// \brief Add the overload candidates named by callee and/or found by argument
7717/// dependent lookup to the given overload set.
7718void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
7719                                       Expr **Args, unsigned NumArgs,
7720                                       OverloadCandidateSet &CandidateSet,
7721                                       bool PartialOverloading) {
7722
7723#ifndef NDEBUG
7724  // Verify that ArgumentDependentLookup is consistent with the rules
7725  // in C++0x [basic.lookup.argdep]p3:
7726  //
7727  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
7728  //   and let Y be the lookup set produced by argument dependent
7729  //   lookup (defined as follows). If X contains
7730  //
7731  //     -- a declaration of a class member, or
7732  //
7733  //     -- a block-scope function declaration that is not a
7734  //        using-declaration, or
7735  //
7736  //     -- a declaration that is neither a function or a function
7737  //        template
7738  //
7739  //   then Y is empty.
7740
7741  if (ULE->requiresADL()) {
7742    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7743           E = ULE->decls_end(); I != E; ++I) {
7744      assert(!(*I)->getDeclContext()->isRecord());
7745      assert(isa<UsingShadowDecl>(*I) ||
7746             !(*I)->getDeclContext()->isFunctionOrMethod());
7747      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
7748    }
7749  }
7750#endif
7751
7752  // It would be nice to avoid this copy.
7753  TemplateArgumentListInfo TABuffer;
7754  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7755  if (ULE->hasExplicitTemplateArgs()) {
7756    ULE->copyTemplateArgumentsInto(TABuffer);
7757    ExplicitTemplateArgs = &TABuffer;
7758  }
7759
7760  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7761         E = ULE->decls_end(); I != E; ++I)
7762    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
7763                               Args, NumArgs, CandidateSet,
7764                               PartialOverloading);
7765
7766  if (ULE->requiresADL())
7767    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
7768                                         Args, NumArgs,
7769                                         ExplicitTemplateArgs,
7770                                         CandidateSet,
7771                                         PartialOverloading,
7772                                         ULE->isStdAssociatedNamespace());
7773}
7774
7775/// Attempts to recover from a call where no functions were found.
7776///
7777/// Returns true if new candidates were found.
7778static ExprResult
7779BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
7780                      UnresolvedLookupExpr *ULE,
7781                      SourceLocation LParenLoc,
7782                      Expr **Args, unsigned NumArgs,
7783                      SourceLocation RParenLoc) {
7784
7785  CXXScopeSpec SS;
7786  SS.Adopt(ULE->getQualifierLoc());
7787
7788  TemplateArgumentListInfo TABuffer;
7789  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7790  if (ULE->hasExplicitTemplateArgs()) {
7791    ULE->copyTemplateArgumentsInto(TABuffer);
7792    ExplicitTemplateArgs = &TABuffer;
7793  }
7794
7795  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
7796                 Sema::LookupOrdinaryName);
7797  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
7798    return ExprError();
7799
7800  assert(!R.empty() && "lookup results empty despite recovery");
7801
7802  // Build an implicit member call if appropriate.  Just drop the
7803  // casts and such from the call, we don't really care.
7804  ExprResult NewFn = ExprError();
7805  if ((*R.begin())->isCXXClassMember())
7806    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
7807                                                    ExplicitTemplateArgs);
7808  else if (ExplicitTemplateArgs)
7809    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
7810  else
7811    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
7812
7813  if (NewFn.isInvalid())
7814    return ExprError();
7815
7816  // This shouldn't cause an infinite loop because we're giving it
7817  // an expression with non-empty lookup results, which should never
7818  // end up here.
7819  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
7820                               MultiExprArg(Args, NumArgs), RParenLoc);
7821}
7822
7823/// ResolveOverloadedCallFn - Given the call expression that calls Fn
7824/// (which eventually refers to the declaration Func) and the call
7825/// arguments Args/NumArgs, attempt to resolve the function call down
7826/// to a specific function. If overload resolution succeeds, returns
7827/// the function declaration produced by overload
7828/// resolution. Otherwise, emits diagnostics, deletes all of the
7829/// arguments and Fn, and returns NULL.
7830ExprResult
7831Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
7832                              SourceLocation LParenLoc,
7833                              Expr **Args, unsigned NumArgs,
7834                              SourceLocation RParenLoc,
7835                              Expr *ExecConfig) {
7836#ifndef NDEBUG
7837  if (ULE->requiresADL()) {
7838    // To do ADL, we must have found an unqualified name.
7839    assert(!ULE->getQualifier() && "qualified name with ADL");
7840
7841    // We don't perform ADL for implicit declarations of builtins.
7842    // Verify that this was correctly set up.
7843    FunctionDecl *F;
7844    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
7845        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
7846        F->getBuiltinID() && F->isImplicit())
7847      assert(0 && "performing ADL for builtin");
7848
7849    // We don't perform ADL in C.
7850    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
7851  } else
7852    assert(!ULE->isStdAssociatedNamespace() &&
7853           "std is associated namespace but not doing ADL");
7854#endif
7855
7856  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
7857
7858  // Add the functions denoted by the callee to the set of candidate
7859  // functions, including those from argument-dependent lookup.
7860  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
7861
7862  // If we found nothing, try to recover.
7863  // AddRecoveryCallCandidates diagnoses the error itself, so we just
7864  // bailout out if it fails.
7865  if (CandidateSet.empty())
7866    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
7867                                 RParenLoc);
7868
7869  OverloadCandidateSet::iterator Best;
7870  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
7871  case OR_Success: {
7872    FunctionDecl *FDecl = Best->Function;
7873    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
7874    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
7875    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
7876                      ULE->getNameLoc());
7877    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
7878    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
7879                                 ExecConfig);
7880  }
7881
7882  case OR_No_Viable_Function:
7883    Diag(Fn->getSourceRange().getBegin(),
7884         diag::err_ovl_no_viable_function_in_call)
7885      << ULE->getName() << Fn->getSourceRange();
7886    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7887    break;
7888
7889  case OR_Ambiguous:
7890    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
7891      << ULE->getName() << Fn->getSourceRange();
7892    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
7893    break;
7894
7895  case OR_Deleted:
7896    {
7897      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
7898        << Best->Function->isDeleted()
7899        << ULE->getName()
7900        << getDeletedOrUnavailableSuffix(Best->Function)
7901        << Fn->getSourceRange();
7902      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7903    }
7904    break;
7905  }
7906
7907  // Overload resolution failed.
7908  return ExprError();
7909}
7910
7911static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
7912  return Functions.size() > 1 ||
7913    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
7914}
7915
7916/// \brief Create a unary operation that may resolve to an overloaded
7917/// operator.
7918///
7919/// \param OpLoc The location of the operator itself (e.g., '*').
7920///
7921/// \param OpcIn The UnaryOperator::Opcode that describes this
7922/// operator.
7923///
7924/// \param Functions The set of non-member functions that will be
7925/// considered by overload resolution. The caller needs to build this
7926/// set based on the context using, e.g.,
7927/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7928/// set should not contain any member functions; those will be added
7929/// by CreateOverloadedUnaryOp().
7930///
7931/// \param input The input argument.
7932ExprResult
7933Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
7934                              const UnresolvedSetImpl &Fns,
7935                              Expr *Input) {
7936  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
7937
7938  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
7939  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
7940  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7941  // TODO: provide better source location info.
7942  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7943
7944  if (Input->getObjectKind() == OK_ObjCProperty) {
7945    ExprResult Result = ConvertPropertyForRValue(Input);
7946    if (Result.isInvalid())
7947      return ExprError();
7948    Input = Result.take();
7949  }
7950
7951  Expr *Args[2] = { Input, 0 };
7952  unsigned NumArgs = 1;
7953
7954  // For post-increment and post-decrement, add the implicit '0' as
7955  // the second argument, so that we know this is a post-increment or
7956  // post-decrement.
7957  if (Opc == UO_PostInc || Opc == UO_PostDec) {
7958    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
7959    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
7960                                     SourceLocation());
7961    NumArgs = 2;
7962  }
7963
7964  if (Input->isTypeDependent()) {
7965    if (Fns.empty())
7966      return Owned(new (Context) UnaryOperator(Input,
7967                                               Opc,
7968                                               Context.DependentTy,
7969                                               VK_RValue, OK_Ordinary,
7970                                               OpLoc));
7971
7972    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7973    UnresolvedLookupExpr *Fn
7974      = UnresolvedLookupExpr::Create(Context, NamingClass,
7975                                     NestedNameSpecifierLoc(), OpNameInfo,
7976                                     /*ADL*/ true, IsOverloaded(Fns),
7977                                     Fns.begin(), Fns.end());
7978    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7979                                                  &Args[0], NumArgs,
7980                                                   Context.DependentTy,
7981                                                   VK_RValue,
7982                                                   OpLoc));
7983  }
7984
7985  // Build an empty overload set.
7986  OverloadCandidateSet CandidateSet(OpLoc);
7987
7988  // Add the candidates from the given function set.
7989  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
7990
7991  // Add operator candidates that are member functions.
7992  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7993
7994  // Add candidates from ADL.
7995  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7996                                       Args, NumArgs,
7997                                       /*ExplicitTemplateArgs*/ 0,
7998                                       CandidateSet);
7999
8000  // Add builtin operator candidates.
8001  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8002
8003  // Perform overload resolution.
8004  OverloadCandidateSet::iterator Best;
8005  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8006  case OR_Success: {
8007    // We found a built-in operator or an overloaded operator.
8008    FunctionDecl *FnDecl = Best->Function;
8009
8010    if (FnDecl) {
8011      // We matched an overloaded operator. Build a call to that
8012      // operator.
8013
8014      MarkDeclarationReferenced(OpLoc, FnDecl);
8015
8016      // Convert the arguments.
8017      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8018        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
8019
8020        ExprResult InputRes =
8021          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
8022                                              Best->FoundDecl, Method);
8023        if (InputRes.isInvalid())
8024          return ExprError();
8025        Input = InputRes.take();
8026      } else {
8027        // Convert the arguments.
8028        ExprResult InputInit
8029          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8030                                                      Context,
8031                                                      FnDecl->getParamDecl(0)),
8032                                      SourceLocation(),
8033                                      Input);
8034        if (InputInit.isInvalid())
8035          return ExprError();
8036        Input = InputInit.take();
8037      }
8038
8039      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8040
8041      // Determine the result type.
8042      QualType ResultTy = FnDecl->getResultType();
8043      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8044      ResultTy = ResultTy.getNonLValueExprType(Context);
8045
8046      // Build the actual expression node.
8047      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl);
8048      if (FnExpr.isInvalid())
8049        return ExprError();
8050
8051      Args[0] = Input;
8052      CallExpr *TheCall =
8053        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8054                                          Args, NumArgs, ResultTy, VK, OpLoc);
8055
8056      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8057                              FnDecl))
8058        return ExprError();
8059
8060      return MaybeBindToTemporary(TheCall);
8061    } else {
8062      // We matched a built-in operator. Convert the arguments, then
8063      // break out so that we will build the appropriate built-in
8064      // operator node.
8065      ExprResult InputRes =
8066        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8067                                  Best->Conversions[0], AA_Passing);
8068      if (InputRes.isInvalid())
8069        return ExprError();
8070      Input = InputRes.take();
8071      break;
8072    }
8073  }
8074
8075  case OR_No_Viable_Function:
8076    // No viable function; fall through to handling this as a
8077    // built-in operator, which will produce an error message for us.
8078    break;
8079
8080  case OR_Ambiguous:
8081    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8082        << UnaryOperator::getOpcodeStr(Opc)
8083        << Input->getType()
8084        << Input->getSourceRange();
8085    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
8086                                Args, NumArgs,
8087                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8088    return ExprError();
8089
8090  case OR_Deleted:
8091    Diag(OpLoc, diag::err_ovl_deleted_oper)
8092      << Best->Function->isDeleted()
8093      << UnaryOperator::getOpcodeStr(Opc)
8094      << getDeletedOrUnavailableSuffix(Best->Function)
8095      << Input->getSourceRange();
8096    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8097    return ExprError();
8098  }
8099
8100  // Either we found no viable overloaded operator or we matched a
8101  // built-in operator. In either case, fall through to trying to
8102  // build a built-in operation.
8103  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8104}
8105
8106/// \brief Create a binary operation that may resolve to an overloaded
8107/// operator.
8108///
8109/// \param OpLoc The location of the operator itself (e.g., '+').
8110///
8111/// \param OpcIn The BinaryOperator::Opcode that describes this
8112/// operator.
8113///
8114/// \param Functions The set of non-member functions that will be
8115/// considered by overload resolution. The caller needs to build this
8116/// set based on the context using, e.g.,
8117/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8118/// set should not contain any member functions; those will be added
8119/// by CreateOverloadedBinOp().
8120///
8121/// \param LHS Left-hand argument.
8122/// \param RHS Right-hand argument.
8123ExprResult
8124Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8125                            unsigned OpcIn,
8126                            const UnresolvedSetImpl &Fns,
8127                            Expr *LHS, Expr *RHS) {
8128  Expr *Args[2] = { LHS, RHS };
8129  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
8130
8131  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
8132  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
8133  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8134
8135  // If either side is type-dependent, create an appropriate dependent
8136  // expression.
8137  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8138    if (Fns.empty()) {
8139      // If there are no functions to store, just build a dependent
8140      // BinaryOperator or CompoundAssignment.
8141      if (Opc <= BO_Assign || Opc > BO_OrAssign)
8142        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
8143                                                  Context.DependentTy,
8144                                                  VK_RValue, OK_Ordinary,
8145                                                  OpLoc));
8146
8147      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
8148                                                        Context.DependentTy,
8149                                                        VK_LValue,
8150                                                        OK_Ordinary,
8151                                                        Context.DependentTy,
8152                                                        Context.DependentTy,
8153                                                        OpLoc));
8154    }
8155
8156    // FIXME: save results of ADL from here?
8157    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8158    // TODO: provide better source location info in DNLoc component.
8159    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8160    UnresolvedLookupExpr *Fn
8161      = UnresolvedLookupExpr::Create(Context, NamingClass,
8162                                     NestedNameSpecifierLoc(), OpNameInfo,
8163                                     /*ADL*/ true, IsOverloaded(Fns),
8164                                     Fns.begin(), Fns.end());
8165    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8166                                                   Args, 2,
8167                                                   Context.DependentTy,
8168                                                   VK_RValue,
8169                                                   OpLoc));
8170  }
8171
8172  // Always do property rvalue conversions on the RHS.
8173  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8174    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8175    if (Result.isInvalid())
8176      return ExprError();
8177    Args[1] = Result.take();
8178  }
8179
8180  // The LHS is more complicated.
8181  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8182
8183    // There's a tension for assignment operators between primitive
8184    // property assignment and the overloaded operators.
8185    if (BinaryOperator::isAssignmentOp(Opc)) {
8186      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
8187
8188      // Is the property "logically" settable?
8189      bool Settable = (PRE->isExplicitProperty() ||
8190                       PRE->getImplicitPropertySetter());
8191
8192      // To avoid gratuitously inventing semantics, use the primitive
8193      // unless it isn't.  Thoughts in case we ever really care:
8194      // - If the property isn't logically settable, we have to
8195      //   load and hope.
8196      // - If the property is settable and this is simple assignment,
8197      //   we really should use the primitive.
8198      // - If the property is settable, then we could try overloading
8199      //   on a generic lvalue of the appropriate type;  if it works
8200      //   out to a builtin candidate, we would do that same operation
8201      //   on the property, and otherwise just error.
8202      if (Settable)
8203        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8204    }
8205
8206    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8207    if (Result.isInvalid())
8208      return ExprError();
8209    Args[0] = Result.take();
8210  }
8211
8212  // If this is the assignment operator, we only perform overload resolution
8213  // if the left-hand side is a class or enumeration type. This is actually
8214  // a hack. The standard requires that we do overload resolution between the
8215  // various built-in candidates, but as DR507 points out, this can lead to
8216  // problems. So we do it this way, which pretty much follows what GCC does.
8217  // Note that we go the traditional code path for compound assignment forms.
8218  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
8219    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8220
8221  // If this is the .* operator, which is not overloadable, just
8222  // create a built-in binary operator.
8223  if (Opc == BO_PtrMemD)
8224    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8225
8226  // Build an empty overload set.
8227  OverloadCandidateSet CandidateSet(OpLoc);
8228
8229  // Add the candidates from the given function set.
8230  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
8231
8232  // Add operator candidates that are member functions.
8233  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8234
8235  // Add candidates from ADL.
8236  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8237                                       Args, 2,
8238                                       /*ExplicitTemplateArgs*/ 0,
8239                                       CandidateSet);
8240
8241  // Add builtin operator candidates.
8242  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8243
8244  // Perform overload resolution.
8245  OverloadCandidateSet::iterator Best;
8246  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8247    case OR_Success: {
8248      // We found a built-in operator or an overloaded operator.
8249      FunctionDecl *FnDecl = Best->Function;
8250
8251      if (FnDecl) {
8252        // We matched an overloaded operator. Build a call to that
8253        // operator.
8254
8255        MarkDeclarationReferenced(OpLoc, FnDecl);
8256
8257        // Convert the arguments.
8258        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8259          // Best->Access is only meaningful for class members.
8260          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
8261
8262          ExprResult Arg1 =
8263            PerformCopyInitialization(
8264              InitializedEntity::InitializeParameter(Context,
8265                                                     FnDecl->getParamDecl(0)),
8266              SourceLocation(), Owned(Args[1]));
8267          if (Arg1.isInvalid())
8268            return ExprError();
8269
8270          ExprResult Arg0 =
8271            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8272                                                Best->FoundDecl, Method);
8273          if (Arg0.isInvalid())
8274            return ExprError();
8275          Args[0] = Arg0.takeAs<Expr>();
8276          Args[1] = RHS = Arg1.takeAs<Expr>();
8277        } else {
8278          // Convert the arguments.
8279          ExprResult Arg0 = PerformCopyInitialization(
8280            InitializedEntity::InitializeParameter(Context,
8281                                                   FnDecl->getParamDecl(0)),
8282            SourceLocation(), Owned(Args[0]));
8283          if (Arg0.isInvalid())
8284            return ExprError();
8285
8286          ExprResult Arg1 =
8287            PerformCopyInitialization(
8288              InitializedEntity::InitializeParameter(Context,
8289                                                     FnDecl->getParamDecl(1)),
8290              SourceLocation(), Owned(Args[1]));
8291          if (Arg1.isInvalid())
8292            return ExprError();
8293          Args[0] = LHS = Arg0.takeAs<Expr>();
8294          Args[1] = RHS = Arg1.takeAs<Expr>();
8295        }
8296
8297        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8298
8299        // Determine the result type.
8300        QualType ResultTy = FnDecl->getResultType();
8301        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8302        ResultTy = ResultTy.getNonLValueExprType(Context);
8303
8304        // Build the actual expression node.
8305        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
8306        if (FnExpr.isInvalid())
8307          return ExprError();
8308
8309        CXXOperatorCallExpr *TheCall =
8310          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8311                                            Args, 2, ResultTy, VK, OpLoc);
8312
8313        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8314                                FnDecl))
8315          return ExprError();
8316
8317        return MaybeBindToTemporary(TheCall);
8318      } else {
8319        // We matched a built-in operator. Convert the arguments, then
8320        // break out so that we will build the appropriate built-in
8321        // operator node.
8322        ExprResult ArgsRes0 =
8323          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8324                                    Best->Conversions[0], AA_Passing);
8325        if (ArgsRes0.isInvalid())
8326          return ExprError();
8327        Args[0] = ArgsRes0.take();
8328
8329        ExprResult ArgsRes1 =
8330          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8331                                    Best->Conversions[1], AA_Passing);
8332        if (ArgsRes1.isInvalid())
8333          return ExprError();
8334        Args[1] = ArgsRes1.take();
8335        break;
8336      }
8337    }
8338
8339    case OR_No_Viable_Function: {
8340      // C++ [over.match.oper]p9:
8341      //   If the operator is the operator , [...] and there are no
8342      //   viable functions, then the operator is assumed to be the
8343      //   built-in operator and interpreted according to clause 5.
8344      if (Opc == BO_Comma)
8345        break;
8346
8347      // For class as left operand for assignment or compound assigment
8348      // operator do not fall through to handling in built-in, but report that
8349      // no overloaded assignment operator found
8350      ExprResult Result = ExprError();
8351      if (Args[0]->getType()->isRecordType() &&
8352          Opc >= BO_Assign && Opc <= BO_OrAssign) {
8353        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
8354             << BinaryOperator::getOpcodeStr(Opc)
8355             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8356      } else {
8357        // No viable function; try to create a built-in operation, which will
8358        // produce an error. Then, show the non-viable candidates.
8359        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8360      }
8361      assert(Result.isInvalid() &&
8362             "C++ binary operator overloading is missing candidates!");
8363      if (Result.isInvalid())
8364        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8365                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
8366      return move(Result);
8367    }
8368
8369    case OR_Ambiguous:
8370      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
8371          << BinaryOperator::getOpcodeStr(Opc)
8372          << Args[0]->getType() << Args[1]->getType()
8373          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8374      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8375                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
8376      return ExprError();
8377
8378    case OR_Deleted:
8379      Diag(OpLoc, diag::err_ovl_deleted_oper)
8380        << Best->Function->isDeleted()
8381        << BinaryOperator::getOpcodeStr(Opc)
8382        << getDeletedOrUnavailableSuffix(Best->Function)
8383        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8384      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
8385      return ExprError();
8386  }
8387
8388  // We matched a built-in operator; build it.
8389  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8390}
8391
8392ExprResult
8393Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
8394                                         SourceLocation RLoc,
8395                                         Expr *Base, Expr *Idx) {
8396  Expr *Args[2] = { Base, Idx };
8397  DeclarationName OpName =
8398      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
8399
8400  // If either side is type-dependent, create an appropriate dependent
8401  // expression.
8402  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8403
8404    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8405    // CHECKME: no 'operator' keyword?
8406    DeclarationNameInfo OpNameInfo(OpName, LLoc);
8407    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
8408    UnresolvedLookupExpr *Fn
8409      = UnresolvedLookupExpr::Create(Context, NamingClass,
8410                                     NestedNameSpecifierLoc(), OpNameInfo,
8411                                     /*ADL*/ true, /*Overloaded*/ false,
8412                                     UnresolvedSetIterator(),
8413                                     UnresolvedSetIterator());
8414    // Can't add any actual overloads yet
8415
8416    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
8417                                                   Args, 2,
8418                                                   Context.DependentTy,
8419                                                   VK_RValue,
8420                                                   RLoc));
8421  }
8422
8423  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8424    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8425    if (Result.isInvalid())
8426      return ExprError();
8427    Args[0] = Result.take();
8428  }
8429  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8430    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8431    if (Result.isInvalid())
8432      return ExprError();
8433    Args[1] = Result.take();
8434  }
8435
8436  // Build an empty overload set.
8437  OverloadCandidateSet CandidateSet(LLoc);
8438
8439  // Subscript can only be overloaded as a member function.
8440
8441  // Add operator candidates that are member functions.
8442  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8443
8444  // Add builtin operator candidates.
8445  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8446
8447  // Perform overload resolution.
8448  OverloadCandidateSet::iterator Best;
8449  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
8450    case OR_Success: {
8451      // We found a built-in operator or an overloaded operator.
8452      FunctionDecl *FnDecl = Best->Function;
8453
8454      if (FnDecl) {
8455        // We matched an overloaded operator. Build a call to that
8456        // operator.
8457
8458        MarkDeclarationReferenced(LLoc, FnDecl);
8459
8460        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
8461        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
8462
8463        // Convert the arguments.
8464        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
8465        ExprResult Arg0 =
8466          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8467                                              Best->FoundDecl, Method);
8468        if (Arg0.isInvalid())
8469          return ExprError();
8470        Args[0] = Arg0.take();
8471
8472        // Convert the arguments.
8473        ExprResult InputInit
8474          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8475                                                      Context,
8476                                                      FnDecl->getParamDecl(0)),
8477                                      SourceLocation(),
8478                                      Owned(Args[1]));
8479        if (InputInit.isInvalid())
8480          return ExprError();
8481
8482        Args[1] = InputInit.takeAs<Expr>();
8483
8484        // Determine the result type
8485        QualType ResultTy = FnDecl->getResultType();
8486        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8487        ResultTy = ResultTy.getNonLValueExprType(Context);
8488
8489        // Build the actual expression node.
8490        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc);
8491        if (FnExpr.isInvalid())
8492          return ExprError();
8493
8494        CXXOperatorCallExpr *TheCall =
8495          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
8496                                            FnExpr.take(), Args, 2,
8497                                            ResultTy, VK, RLoc);
8498
8499        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
8500                                FnDecl))
8501          return ExprError();
8502
8503        return MaybeBindToTemporary(TheCall);
8504      } else {
8505        // We matched a built-in operator. Convert the arguments, then
8506        // break out so that we will build the appropriate built-in
8507        // operator node.
8508        ExprResult ArgsRes0 =
8509          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8510                                    Best->Conversions[0], AA_Passing);
8511        if (ArgsRes0.isInvalid())
8512          return ExprError();
8513        Args[0] = ArgsRes0.take();
8514
8515        ExprResult ArgsRes1 =
8516          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8517                                    Best->Conversions[1], AA_Passing);
8518        if (ArgsRes1.isInvalid())
8519          return ExprError();
8520        Args[1] = ArgsRes1.take();
8521
8522        break;
8523      }
8524    }
8525
8526    case OR_No_Viable_Function: {
8527      if (CandidateSet.empty())
8528        Diag(LLoc, diag::err_ovl_no_oper)
8529          << Args[0]->getType() << /*subscript*/ 0
8530          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8531      else
8532        Diag(LLoc, diag::err_ovl_no_viable_subscript)
8533          << Args[0]->getType()
8534          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8535      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8536                                  "[]", LLoc);
8537      return ExprError();
8538    }
8539
8540    case OR_Ambiguous:
8541      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
8542          << "[]"
8543          << Args[0]->getType() << Args[1]->getType()
8544          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8545      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8546                                  "[]", LLoc);
8547      return ExprError();
8548
8549    case OR_Deleted:
8550      Diag(LLoc, diag::err_ovl_deleted_oper)
8551        << Best->Function->isDeleted() << "[]"
8552        << getDeletedOrUnavailableSuffix(Best->Function)
8553        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8554      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8555                                  "[]", LLoc);
8556      return ExprError();
8557    }
8558
8559  // We matched a built-in operator; build it.
8560  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
8561}
8562
8563/// BuildCallToMemberFunction - Build a call to a member
8564/// function. MemExpr is the expression that refers to the member
8565/// function (and includes the object parameter), Args/NumArgs are the
8566/// arguments to the function call (not including the object
8567/// parameter). The caller needs to validate that the member
8568/// expression refers to a non-static member function or an overloaded
8569/// member function.
8570ExprResult
8571Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
8572                                SourceLocation LParenLoc, Expr **Args,
8573                                unsigned NumArgs, SourceLocation RParenLoc) {
8574  assert(MemExprE->getType() == Context.BoundMemberTy ||
8575         MemExprE->getType() == Context.OverloadTy);
8576
8577  // Dig out the member expression. This holds both the object
8578  // argument and the member function we're referring to.
8579  Expr *NakedMemExpr = MemExprE->IgnoreParens();
8580
8581  // Determine whether this is a call to a pointer-to-member function.
8582  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
8583    assert(op->getType() == Context.BoundMemberTy);
8584    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
8585
8586    QualType fnType =
8587      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
8588
8589    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
8590    QualType resultType = proto->getCallResultType(Context);
8591    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
8592
8593    // Check that the object type isn't more qualified than the
8594    // member function we're calling.
8595    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
8596
8597    QualType objectType = op->getLHS()->getType();
8598    if (op->getOpcode() == BO_PtrMemI)
8599      objectType = objectType->castAs<PointerType>()->getPointeeType();
8600    Qualifiers objectQuals = objectType.getQualifiers();
8601
8602    Qualifiers difference = objectQuals - funcQuals;
8603    difference.removeObjCGCAttr();
8604    difference.removeAddressSpace();
8605    if (difference) {
8606      std::string qualsString = difference.getAsString();
8607      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
8608        << fnType.getUnqualifiedType()
8609        << qualsString
8610        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
8611    }
8612
8613    CXXMemberCallExpr *call
8614      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
8615                                        resultType, valueKind, RParenLoc);
8616
8617    if (CheckCallReturnType(proto->getResultType(),
8618                            op->getRHS()->getSourceRange().getBegin(),
8619                            call, 0))
8620      return ExprError();
8621
8622    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
8623      return ExprError();
8624
8625    return MaybeBindToTemporary(call);
8626  }
8627
8628  MemberExpr *MemExpr;
8629  CXXMethodDecl *Method = 0;
8630  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
8631  NestedNameSpecifier *Qualifier = 0;
8632  if (isa<MemberExpr>(NakedMemExpr)) {
8633    MemExpr = cast<MemberExpr>(NakedMemExpr);
8634    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
8635    FoundDecl = MemExpr->getFoundDecl();
8636    Qualifier = MemExpr->getQualifier();
8637  } else {
8638    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
8639    Qualifier = UnresExpr->getQualifier();
8640
8641    QualType ObjectType = UnresExpr->getBaseType();
8642    Expr::Classification ObjectClassification
8643      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
8644                            : UnresExpr->getBase()->Classify(Context);
8645
8646    // Add overload candidates
8647    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
8648
8649    // FIXME: avoid copy.
8650    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8651    if (UnresExpr->hasExplicitTemplateArgs()) {
8652      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
8653      TemplateArgs = &TemplateArgsBuffer;
8654    }
8655
8656    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
8657           E = UnresExpr->decls_end(); I != E; ++I) {
8658
8659      NamedDecl *Func = *I;
8660      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
8661      if (isa<UsingShadowDecl>(Func))
8662        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
8663
8664
8665      // Microsoft supports direct constructor calls.
8666      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
8667        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
8668                             CandidateSet);
8669      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
8670        // If explicit template arguments were provided, we can't call a
8671        // non-template member function.
8672        if (TemplateArgs)
8673          continue;
8674
8675        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
8676                           ObjectClassification,
8677                           Args, NumArgs, CandidateSet,
8678                           /*SuppressUserConversions=*/false);
8679      } else {
8680        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
8681                                   I.getPair(), ActingDC, TemplateArgs,
8682                                   ObjectType,  ObjectClassification,
8683                                   Args, NumArgs, CandidateSet,
8684                                   /*SuppressUsedConversions=*/false);
8685      }
8686    }
8687
8688    DeclarationName DeclName = UnresExpr->getMemberName();
8689
8690    OverloadCandidateSet::iterator Best;
8691    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
8692                                            Best)) {
8693    case OR_Success:
8694      Method = cast<CXXMethodDecl>(Best->Function);
8695      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
8696      FoundDecl = Best->FoundDecl;
8697      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
8698      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
8699      break;
8700
8701    case OR_No_Viable_Function:
8702      Diag(UnresExpr->getMemberLoc(),
8703           diag::err_ovl_no_viable_member_function_in_call)
8704        << DeclName << MemExprE->getSourceRange();
8705      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8706      // FIXME: Leaking incoming expressions!
8707      return ExprError();
8708
8709    case OR_Ambiguous:
8710      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
8711        << DeclName << MemExprE->getSourceRange();
8712      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8713      // FIXME: Leaking incoming expressions!
8714      return ExprError();
8715
8716    case OR_Deleted:
8717      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
8718        << Best->Function->isDeleted()
8719        << DeclName
8720        << getDeletedOrUnavailableSuffix(Best->Function)
8721        << MemExprE->getSourceRange();
8722      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8723      // FIXME: Leaking incoming expressions!
8724      return ExprError();
8725    }
8726
8727    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
8728
8729    // If overload resolution picked a static member, build a
8730    // non-member call based on that function.
8731    if (Method->isStatic()) {
8732      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
8733                                   Args, NumArgs, RParenLoc);
8734    }
8735
8736    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
8737  }
8738
8739  QualType ResultType = Method->getResultType();
8740  ExprValueKind VK = Expr::getValueKindForType(ResultType);
8741  ResultType = ResultType.getNonLValueExprType(Context);
8742
8743  assert(Method && "Member call to something that isn't a method?");
8744  CXXMemberCallExpr *TheCall =
8745    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
8746                                    ResultType, VK, RParenLoc);
8747
8748  // Check for a valid return type.
8749  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
8750                          TheCall, Method))
8751    return ExprError();
8752
8753  // Convert the object argument (for a non-static member function call).
8754  // We only need to do this if there was actually an overload; otherwise
8755  // it was done at lookup.
8756  if (!Method->isStatic()) {
8757    ExprResult ObjectArg =
8758      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
8759                                          FoundDecl, Method);
8760    if (ObjectArg.isInvalid())
8761      return ExprError();
8762    MemExpr->setBase(ObjectArg.take());
8763  }
8764
8765  // Convert the rest of the arguments
8766  const FunctionProtoType *Proto =
8767    Method->getType()->getAs<FunctionProtoType>();
8768  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
8769                              RParenLoc))
8770    return ExprError();
8771
8772  if (CheckFunctionCall(Method, TheCall))
8773    return ExprError();
8774
8775  return MaybeBindToTemporary(TheCall);
8776}
8777
8778/// BuildCallToObjectOfClassType - Build a call to an object of class
8779/// type (C++ [over.call.object]), which can end up invoking an
8780/// overloaded function call operator (@c operator()) or performing a
8781/// user-defined conversion on the object argument.
8782ExprResult
8783Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
8784                                   SourceLocation LParenLoc,
8785                                   Expr **Args, unsigned NumArgs,
8786                                   SourceLocation RParenLoc) {
8787  ExprResult Object = Owned(Obj);
8788  if (Object.get()->getObjectKind() == OK_ObjCProperty) {
8789    Object = ConvertPropertyForRValue(Object.take());
8790    if (Object.isInvalid())
8791      return ExprError();
8792  }
8793
8794  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
8795  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
8796
8797  // C++ [over.call.object]p1:
8798  //  If the primary-expression E in the function call syntax
8799  //  evaluates to a class object of type "cv T", then the set of
8800  //  candidate functions includes at least the function call
8801  //  operators of T. The function call operators of T are obtained by
8802  //  ordinary lookup of the name operator() in the context of
8803  //  (E).operator().
8804  OverloadCandidateSet CandidateSet(LParenLoc);
8805  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
8806
8807  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
8808                          PDiag(diag::err_incomplete_object_call)
8809                          << Object.get()->getSourceRange()))
8810    return true;
8811
8812  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
8813  LookupQualifiedName(R, Record->getDecl());
8814  R.suppressDiagnostics();
8815
8816  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8817       Oper != OperEnd; ++Oper) {
8818    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
8819                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
8820                       /*SuppressUserConversions=*/ false);
8821  }
8822
8823  // C++ [over.call.object]p2:
8824  //   In addition, for each conversion function declared in T of the
8825  //   form
8826  //
8827  //        operator conversion-type-id () cv-qualifier;
8828  //
8829  //   where cv-qualifier is the same cv-qualification as, or a
8830  //   greater cv-qualification than, cv, and where conversion-type-id
8831  //   denotes the type "pointer to function of (P1,...,Pn) returning
8832  //   R", or the type "reference to pointer to function of
8833  //   (P1,...,Pn) returning R", or the type "reference to function
8834  //   of (P1,...,Pn) returning R", a surrogate call function [...]
8835  //   is also considered as a candidate function. Similarly,
8836  //   surrogate call functions are added to the set of candidate
8837  //   functions for each conversion function declared in an
8838  //   accessible base class provided the function is not hidden
8839  //   within T by another intervening declaration.
8840  const UnresolvedSetImpl *Conversions
8841    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
8842  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
8843         E = Conversions->end(); I != E; ++I) {
8844    NamedDecl *D = *I;
8845    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
8846    if (isa<UsingShadowDecl>(D))
8847      D = cast<UsingShadowDecl>(D)->getTargetDecl();
8848
8849    // Skip over templated conversion functions; they aren't
8850    // surrogates.
8851    if (isa<FunctionTemplateDecl>(D))
8852      continue;
8853
8854    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8855
8856    // Strip the reference type (if any) and then the pointer type (if
8857    // any) to get down to what might be a function type.
8858    QualType ConvType = Conv->getConversionType().getNonReferenceType();
8859    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8860      ConvType = ConvPtrType->getPointeeType();
8861
8862    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
8863      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
8864                            Object.get(), Args, NumArgs, CandidateSet);
8865  }
8866
8867  // Perform overload resolution.
8868  OverloadCandidateSet::iterator Best;
8869  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
8870                             Best)) {
8871  case OR_Success:
8872    // Overload resolution succeeded; we'll build the appropriate call
8873    // below.
8874    break;
8875
8876  case OR_No_Viable_Function:
8877    if (CandidateSet.empty())
8878      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
8879        << Object.get()->getType() << /*call*/ 1
8880        << Object.get()->getSourceRange();
8881    else
8882      Diag(Object.get()->getSourceRange().getBegin(),
8883           diag::err_ovl_no_viable_object_call)
8884        << Object.get()->getType() << Object.get()->getSourceRange();
8885    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8886    break;
8887
8888  case OR_Ambiguous:
8889    Diag(Object.get()->getSourceRange().getBegin(),
8890         diag::err_ovl_ambiguous_object_call)
8891      << Object.get()->getType() << Object.get()->getSourceRange();
8892    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8893    break;
8894
8895  case OR_Deleted:
8896    Diag(Object.get()->getSourceRange().getBegin(),
8897         diag::err_ovl_deleted_object_call)
8898      << Best->Function->isDeleted()
8899      << Object.get()->getType()
8900      << getDeletedOrUnavailableSuffix(Best->Function)
8901      << Object.get()->getSourceRange();
8902    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8903    break;
8904  }
8905
8906  if (Best == CandidateSet.end())
8907    return true;
8908
8909  if (Best->Function == 0) {
8910    // Since there is no function declaration, this is one of the
8911    // surrogate candidates. Dig out the conversion function.
8912    CXXConversionDecl *Conv
8913      = cast<CXXConversionDecl>(
8914                         Best->Conversions[0].UserDefined.ConversionFunction);
8915
8916    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
8917    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8918
8919    // We selected one of the surrogate functions that converts the
8920    // object parameter to a function pointer. Perform the conversion
8921    // on the object argument, then let ActOnCallExpr finish the job.
8922
8923    // Create an implicit member expr to refer to the conversion operator.
8924    // and then call it.
8925    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv);
8926    if (Call.isInvalid())
8927      return ExprError();
8928
8929    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
8930                         RParenLoc);
8931  }
8932
8933  MarkDeclarationReferenced(LParenLoc, Best->Function);
8934  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
8935  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8936
8937  // We found an overloaded operator(). Build a CXXOperatorCallExpr
8938  // that calls this method, using Object for the implicit object
8939  // parameter and passing along the remaining arguments.
8940  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8941  const FunctionProtoType *Proto =
8942    Method->getType()->getAs<FunctionProtoType>();
8943
8944  unsigned NumArgsInProto = Proto->getNumArgs();
8945  unsigned NumArgsToCheck = NumArgs;
8946
8947  // Build the full argument list for the method call (the
8948  // implicit object parameter is placed at the beginning of the
8949  // list).
8950  Expr **MethodArgs;
8951  if (NumArgs < NumArgsInProto) {
8952    NumArgsToCheck = NumArgsInProto;
8953    MethodArgs = new Expr*[NumArgsInProto + 1];
8954  } else {
8955    MethodArgs = new Expr*[NumArgs + 1];
8956  }
8957  MethodArgs[0] = Object.get();
8958  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
8959    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
8960
8961  ExprResult NewFn = CreateFunctionRefExpr(*this, Method);
8962  if (NewFn.isInvalid())
8963    return true;
8964
8965  // Once we've built TheCall, all of the expressions are properly
8966  // owned.
8967  QualType ResultTy = Method->getResultType();
8968  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8969  ResultTy = ResultTy.getNonLValueExprType(Context);
8970
8971  CXXOperatorCallExpr *TheCall =
8972    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
8973                                      MethodArgs, NumArgs + 1,
8974                                      ResultTy, VK, RParenLoc);
8975  delete [] MethodArgs;
8976
8977  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
8978                          Method))
8979    return true;
8980
8981  // We may have default arguments. If so, we need to allocate more
8982  // slots in the call for them.
8983  if (NumArgs < NumArgsInProto)
8984    TheCall->setNumArgs(Context, NumArgsInProto + 1);
8985  else if (NumArgs > NumArgsInProto)
8986    NumArgsToCheck = NumArgsInProto;
8987
8988  bool IsError = false;
8989
8990  // Initialize the implicit object parameter.
8991  ExprResult ObjRes =
8992    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
8993                                        Best->FoundDecl, Method);
8994  if (ObjRes.isInvalid())
8995    IsError = true;
8996  else
8997    Object = move(ObjRes);
8998  TheCall->setArg(0, Object.take());
8999
9000  // Check the argument types.
9001  for (unsigned i = 0; i != NumArgsToCheck; i++) {
9002    Expr *Arg;
9003    if (i < NumArgs) {
9004      Arg = Args[i];
9005
9006      // Pass the argument.
9007
9008      ExprResult InputInit
9009        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9010                                                    Context,
9011                                                    Method->getParamDecl(i)),
9012                                    SourceLocation(), Arg);
9013
9014      IsError |= InputInit.isInvalid();
9015      Arg = InputInit.takeAs<Expr>();
9016    } else {
9017      ExprResult DefArg
9018        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
9019      if (DefArg.isInvalid()) {
9020        IsError = true;
9021        break;
9022      }
9023
9024      Arg = DefArg.takeAs<Expr>();
9025    }
9026
9027    TheCall->setArg(i + 1, Arg);
9028  }
9029
9030  // If this is a variadic call, handle args passed through "...".
9031  if (Proto->isVariadic()) {
9032    // Promote the arguments (C99 6.5.2.2p7).
9033    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
9034      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
9035      IsError |= Arg.isInvalid();
9036      TheCall->setArg(i + 1, Arg.take());
9037    }
9038  }
9039
9040  if (IsError) return true;
9041
9042  if (CheckFunctionCall(Method, TheCall))
9043    return true;
9044
9045  return MaybeBindToTemporary(TheCall);
9046}
9047
9048/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
9049///  (if one exists), where @c Base is an expression of class type and
9050/// @c Member is the name of the member we're trying to find.
9051ExprResult
9052Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
9053  assert(Base->getType()->isRecordType() &&
9054         "left-hand side must have class type");
9055
9056  if (Base->getObjectKind() == OK_ObjCProperty) {
9057    ExprResult Result = ConvertPropertyForRValue(Base);
9058    if (Result.isInvalid())
9059      return ExprError();
9060    Base = Result.take();
9061  }
9062
9063  SourceLocation Loc = Base->getExprLoc();
9064
9065  // C++ [over.ref]p1:
9066  //
9067  //   [...] An expression x->m is interpreted as (x.operator->())->m
9068  //   for a class object x of type T if T::operator->() exists and if
9069  //   the operator is selected as the best match function by the
9070  //   overload resolution mechanism (13.3).
9071  DeclarationName OpName =
9072    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
9073  OverloadCandidateSet CandidateSet(Loc);
9074  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
9075
9076  if (RequireCompleteType(Loc, Base->getType(),
9077                          PDiag(diag::err_typecheck_incomplete_tag)
9078                            << Base->getSourceRange()))
9079    return ExprError();
9080
9081  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
9082  LookupQualifiedName(R, BaseRecord->getDecl());
9083  R.suppressDiagnostics();
9084
9085  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9086       Oper != OperEnd; ++Oper) {
9087    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
9088                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
9089  }
9090
9091  // Perform overload resolution.
9092  OverloadCandidateSet::iterator Best;
9093  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9094  case OR_Success:
9095    // Overload resolution succeeded; we'll build the call below.
9096    break;
9097
9098  case OR_No_Viable_Function:
9099    if (CandidateSet.empty())
9100      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
9101        << Base->getType() << Base->getSourceRange();
9102    else
9103      Diag(OpLoc, diag::err_ovl_no_viable_oper)
9104        << "operator->" << Base->getSourceRange();
9105    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9106    return ExprError();
9107
9108  case OR_Ambiguous:
9109    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9110      << "->" << Base->getType() << Base->getSourceRange();
9111    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
9112    return ExprError();
9113
9114  case OR_Deleted:
9115    Diag(OpLoc,  diag::err_ovl_deleted_oper)
9116      << Best->Function->isDeleted()
9117      << "->"
9118      << getDeletedOrUnavailableSuffix(Best->Function)
9119      << Base->getSourceRange();
9120    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9121    return ExprError();
9122  }
9123
9124  MarkDeclarationReferenced(OpLoc, Best->Function);
9125  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
9126  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9127
9128  // Convert the object parameter.
9129  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9130  ExprResult BaseResult =
9131    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
9132                                        Best->FoundDecl, Method);
9133  if (BaseResult.isInvalid())
9134    return ExprError();
9135  Base = BaseResult.take();
9136
9137  // Build the operator call.
9138  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method);
9139  if (FnExpr.isInvalid())
9140    return ExprError();
9141
9142  QualType ResultTy = Method->getResultType();
9143  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9144  ResultTy = ResultTy.getNonLValueExprType(Context);
9145  CXXOperatorCallExpr *TheCall =
9146    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
9147                                      &Base, 1, ResultTy, VK, OpLoc);
9148
9149  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
9150                          Method))
9151          return ExprError();
9152
9153  return MaybeBindToTemporary(TheCall);
9154}
9155
9156/// FixOverloadedFunctionReference - E is an expression that refers to
9157/// a C++ overloaded function (possibly with some parentheses and
9158/// perhaps a '&' around it). We have resolved the overloaded function
9159/// to the function declaration Fn, so patch up the expression E to
9160/// refer (possibly indirectly) to Fn. Returns the new expr.
9161Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
9162                                           FunctionDecl *Fn) {
9163  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
9164    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
9165                                                   Found, Fn);
9166    if (SubExpr == PE->getSubExpr())
9167      return PE;
9168
9169    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
9170  }
9171
9172  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9173    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
9174                                                   Found, Fn);
9175    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
9176                               SubExpr->getType()) &&
9177           "Implicit cast type cannot be determined from overload");
9178    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
9179    if (SubExpr == ICE->getSubExpr())
9180      return ICE;
9181
9182    return ImplicitCastExpr::Create(Context, ICE->getType(),
9183                                    ICE->getCastKind(),
9184                                    SubExpr, 0,
9185                                    ICE->getValueKind());
9186  }
9187
9188  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
9189    assert(UnOp->getOpcode() == UO_AddrOf &&
9190           "Can only take the address of an overloaded function");
9191    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9192      if (Method->isStatic()) {
9193        // Do nothing: static member functions aren't any different
9194        // from non-member functions.
9195      } else {
9196        // Fix the sub expression, which really has to be an
9197        // UnresolvedLookupExpr holding an overloaded member function
9198        // or template.
9199        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9200                                                       Found, Fn);
9201        if (SubExpr == UnOp->getSubExpr())
9202          return UnOp;
9203
9204        assert(isa<DeclRefExpr>(SubExpr)
9205               && "fixed to something other than a decl ref");
9206        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
9207               && "fixed to a member ref with no nested name qualifier");
9208
9209        // We have taken the address of a pointer to member
9210        // function. Perform the computation here so that we get the
9211        // appropriate pointer to member type.
9212        QualType ClassType
9213          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
9214        QualType MemPtrType
9215          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
9216
9217        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
9218                                           VK_RValue, OK_Ordinary,
9219                                           UnOp->getOperatorLoc());
9220      }
9221    }
9222    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9223                                                   Found, Fn);
9224    if (SubExpr == UnOp->getSubExpr())
9225      return UnOp;
9226
9227    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
9228                                     Context.getPointerType(SubExpr->getType()),
9229                                       VK_RValue, OK_Ordinary,
9230                                       UnOp->getOperatorLoc());
9231  }
9232
9233  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9234    // FIXME: avoid copy.
9235    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9236    if (ULE->hasExplicitTemplateArgs()) {
9237      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
9238      TemplateArgs = &TemplateArgsBuffer;
9239    }
9240
9241    return DeclRefExpr::Create(Context,
9242                               ULE->getQualifierLoc(),
9243                               Fn,
9244                               ULE->getNameLoc(),
9245                               Fn->getType(),
9246                               VK_LValue,
9247                               Found.getDecl(),
9248                               TemplateArgs);
9249  }
9250
9251  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
9252    // FIXME: avoid copy.
9253    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9254    if (MemExpr->hasExplicitTemplateArgs()) {
9255      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9256      TemplateArgs = &TemplateArgsBuffer;
9257    }
9258
9259    Expr *Base;
9260
9261    // If we're filling in a static method where we used to have an
9262    // implicit member access, rewrite to a simple decl ref.
9263    if (MemExpr->isImplicitAccess()) {
9264      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9265        return DeclRefExpr::Create(Context,
9266                                   MemExpr->getQualifierLoc(),
9267                                   Fn,
9268                                   MemExpr->getMemberLoc(),
9269                                   Fn->getType(),
9270                                   VK_LValue,
9271                                   Found.getDecl(),
9272                                   TemplateArgs);
9273      } else {
9274        SourceLocation Loc = MemExpr->getMemberLoc();
9275        if (MemExpr->getQualifier())
9276          Loc = MemExpr->getQualifierLoc().getBeginLoc();
9277        Base = new (Context) CXXThisExpr(Loc,
9278                                         MemExpr->getBaseType(),
9279                                         /*isImplicit=*/true);
9280      }
9281    } else
9282      Base = MemExpr->getBase();
9283
9284    ExprValueKind valueKind;
9285    QualType type;
9286    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9287      valueKind = VK_LValue;
9288      type = Fn->getType();
9289    } else {
9290      valueKind = VK_RValue;
9291      type = Context.BoundMemberTy;
9292    }
9293
9294    return MemberExpr::Create(Context, Base,
9295                              MemExpr->isArrow(),
9296                              MemExpr->getQualifierLoc(),
9297                              Fn,
9298                              Found,
9299                              MemExpr->getMemberNameInfo(),
9300                              TemplateArgs,
9301                              type, valueKind, OK_Ordinary);
9302  }
9303
9304  llvm_unreachable("Invalid reference to overloaded function");
9305  return E;
9306}
9307
9308ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
9309                                                DeclAccessPair Found,
9310                                                FunctionDecl *Fn) {
9311  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
9312}
9313
9314} // end namespace clang
9315