SemaOverload.cpp revision 593564ba94ff854b7a410a4ca17ad34a90c5b761
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, TPL_TemplateMatch) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407/// If @p UserCast, the implicit conversion is being done for a user-specified
408/// cast.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue,
413                            bool InOverloadResolution,
414                            bool UserCast) {
415  ImplicitConversionSequence ICS;
416  OverloadCandidateSet Conversions;
417  OverloadingResult UserDefResult = OR_Success;
418  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
419    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
420  else if (getLangOptions().CPlusPlus &&
421           (UserDefResult = IsUserDefinedConversion(From, ToType,
422                                   ICS.UserDefined,
423                                   Conversions,
424                                   !SuppressUserConversions, AllowExplicit,
425				   ForceRValue, UserCast)) == OR_Success) {
426    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
427    // C++ [over.ics.user]p4:
428    //   A conversion of an expression of class type to the same class
429    //   type is given Exact Match rank, and a conversion of an
430    //   expression of class type to a base class of that type is
431    //   given Conversion rank, in spite of the fact that a copy
432    //   constructor (i.e., a user-defined conversion function) is
433    //   called for those cases.
434    if (CXXConstructorDecl *Constructor
435          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
436      QualType FromCanon
437        = Context.getCanonicalType(From->getType().getUnqualifiedType());
438      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
439      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
440        // Turn this into a "standard" conversion sequence, so that it
441        // gets ranked with standard conversion sequences.
442        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
443        ICS.Standard.setAsIdentityConversion();
444        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
445        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
446        ICS.Standard.CopyConstructor = Constructor;
447        if (ToCanon != FromCanon)
448          ICS.Standard.Second = ICK_Derived_To_Base;
449      }
450    }
451
452    // C++ [over.best.ics]p4:
453    //   However, when considering the argument of a user-defined
454    //   conversion function that is a candidate by 13.3.1.3 when
455    //   invoked for the copying of the temporary in the second step
456    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
457    //   13.3.1.6 in all cases, only standard conversion sequences and
458    //   ellipsis conversion sequences are allowed.
459    if (SuppressUserConversions &&
460        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
461      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
462  } else {
463    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
464    if (UserDefResult == OR_Ambiguous) {
465      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
466           Cand != Conversions.end(); ++Cand)
467        if (Cand->Viable)
468          ICS.ConversionFunctionSet.push_back(Cand->Function);
469    }
470  }
471
472  return ICS;
473}
474
475/// IsStandardConversion - Determines whether there is a standard
476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
477/// expression From to the type ToType. Standard conversion sequences
478/// only consider non-class types; for conversions that involve class
479/// types, use TryImplicitConversion. If a conversion exists, SCS will
480/// contain the standard conversion sequence required to perform this
481/// conversion and this routine will return true. Otherwise, this
482/// routine will return false and the value of SCS is unspecified.
483bool
484Sema::IsStandardConversion(Expr* From, QualType ToType,
485                           bool InOverloadResolution,
486                           StandardConversionSequence &SCS) {
487  QualType FromType = From->getType();
488
489  // Standard conversions (C++ [conv])
490  SCS.setAsIdentityConversion();
491  SCS.Deprecated = false;
492  SCS.IncompatibleObjC = false;
493  SCS.FromTypePtr = FromType.getAsOpaquePtr();
494  SCS.CopyConstructor = 0;
495
496  // There are no standard conversions for class types in C++, so
497  // abort early. When overloading in C, however, we do permit
498  if (FromType->isRecordType() || ToType->isRecordType()) {
499    if (getLangOptions().CPlusPlus)
500      return false;
501
502    // When we're overloading in C, we allow, as standard conversions,
503  }
504
505  // The first conversion can be an lvalue-to-rvalue conversion,
506  // array-to-pointer conversion, or function-to-pointer conversion
507  // (C++ 4p1).
508
509  // Lvalue-to-rvalue conversion (C++ 4.1):
510  //   An lvalue (3.10) of a non-function, non-array type T can be
511  //   converted to an rvalue.
512  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
513  if (argIsLvalue == Expr::LV_Valid &&
514      !FromType->isFunctionType() && !FromType->isArrayType() &&
515      Context.getCanonicalType(FromType) != Context.OverloadTy) {
516    SCS.First = ICK_Lvalue_To_Rvalue;
517
518    // If T is a non-class type, the type of the rvalue is the
519    // cv-unqualified version of T. Otherwise, the type of the rvalue
520    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
521    // just strip the qualifiers because they don't matter.
522
523    // FIXME: Doesn't see through to qualifiers behind a typedef!
524    FromType = FromType.getUnqualifiedType();
525  } else if (FromType->isArrayType()) {
526    // Array-to-pointer conversion (C++ 4.2)
527    SCS.First = ICK_Array_To_Pointer;
528
529    // An lvalue or rvalue of type "array of N T" or "array of unknown
530    // bound of T" can be converted to an rvalue of type "pointer to
531    // T" (C++ 4.2p1).
532    FromType = Context.getArrayDecayedType(FromType);
533
534    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
535      // This conversion is deprecated. (C++ D.4).
536      SCS.Deprecated = true;
537
538      // For the purpose of ranking in overload resolution
539      // (13.3.3.1.1), this conversion is considered an
540      // array-to-pointer conversion followed by a qualification
541      // conversion (4.4). (C++ 4.2p2)
542      SCS.Second = ICK_Identity;
543      SCS.Third = ICK_Qualification;
544      SCS.ToTypePtr = ToType.getAsOpaquePtr();
545      return true;
546    }
547  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
548    // Function-to-pointer conversion (C++ 4.3).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // An lvalue of function type T can be converted to an rvalue of
552    // type "pointer to T." The result is a pointer to the
553    // function. (C++ 4.3p1).
554    FromType = Context.getPointerType(FromType);
555  } else if (FunctionDecl *Fn
556             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
557    // Address of overloaded function (C++ [over.over]).
558    SCS.First = ICK_Function_To_Pointer;
559
560    // We were able to resolve the address of the overloaded function,
561    // so we can convert to the type of that function.
562    FromType = Fn->getType();
563    if (ToType->isLValueReferenceType())
564      FromType = Context.getLValueReferenceType(FromType);
565    else if (ToType->isRValueReferenceType())
566      FromType = Context.getRValueReferenceType(FromType);
567    else if (ToType->isMemberPointerType()) {
568      // Resolve address only succeeds if both sides are member pointers,
569      // but it doesn't have to be the same class. See DR 247.
570      // Note that this means that the type of &Derived::fn can be
571      // Ret (Base::*)(Args) if the fn overload actually found is from the
572      // base class, even if it was brought into the derived class via a
573      // using declaration. The standard isn't clear on this issue at all.
574      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
575      FromType = Context.getMemberPointerType(FromType,
576                    Context.getTypeDeclType(M->getParent()).getTypePtr());
577    } else
578      FromType = Context.getPointerType(FromType);
579  } else {
580    // We don't require any conversions for the first step.
581    SCS.First = ICK_Identity;
582  }
583
584  // The second conversion can be an integral promotion, floating
585  // point promotion, integral conversion, floating point conversion,
586  // floating-integral conversion, pointer conversion,
587  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
588  // For overloading in C, this can also be a "compatible-type"
589  // conversion.
590  bool IncompatibleObjC = false;
591  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
592    // The unqualified versions of the types are the same: there's no
593    // conversion to do.
594    SCS.Second = ICK_Identity;
595  } else if (IsIntegralPromotion(From, FromType, ToType)) {
596    // Integral promotion (C++ 4.5).
597    SCS.Second = ICK_Integral_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsFloatingPointPromotion(FromType, ToType)) {
600    // Floating point promotion (C++ 4.6).
601    SCS.Second = ICK_Floating_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (IsComplexPromotion(FromType, ToType)) {
604    // Complex promotion (Clang extension)
605    SCS.Second = ICK_Complex_Promotion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
608           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
609    // Integral conversions (C++ 4.7).
610    // FIXME: isIntegralType shouldn't be true for enums in C++.
611    SCS.Second = ICK_Integral_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
614    // Floating point conversions (C++ 4.8).
615    SCS.Second = ICK_Floating_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if (FromType->isComplexType() && ToType->isComplexType()) {
618    // Complex conversions (C99 6.3.1.6)
619    SCS.Second = ICK_Complex_Conversion;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isFloatingType() &&
622              ToType->isIntegralType() && (!ToType->isBooleanType() &&
623                                           !ToType->isEnumeralType())) ||
624             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625              ToType->isFloatingType())) {
626    // Floating-integral conversions (C++ 4.9).
627    // FIXME: isIntegralType shouldn't be true for enums in C++.
628    SCS.Second = ICK_Floating_Integral;
629    FromType = ToType.getUnqualifiedType();
630  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631             (ToType->isComplexType() && FromType->isArithmeticType())) {
632    // Complex-real conversions (C99 6.3.1.7)
633    SCS.Second = ICK_Complex_Real;
634    FromType = ToType.getUnqualifiedType();
635  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
636                                 FromType, IncompatibleObjC)) {
637    // Pointer conversions (C++ 4.10).
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  } else if (IsMemberPointerConversion(From, FromType, ToType,
641                                       InOverloadResolution, FromType)) {
642    // Pointer to member conversions (4.11).
643    SCS.Second = ICK_Pointer_Member;
644  } else if (ToType->isBooleanType() &&
645             (FromType->isArithmeticType() ||
646              FromType->isEnumeralType() ||
647              FromType->isPointerType() ||
648              FromType->isBlockPointerType() ||
649              FromType->isMemberPointerType() ||
650              FromType->isNullPtrType())) {
651    // Boolean conversions (C++ 4.12).
652    SCS.Second = ICK_Boolean_Conversion;
653    FromType = Context.BoolTy;
654  } else if (!getLangOptions().CPlusPlus &&
655             Context.typesAreCompatible(ToType, FromType)) {
656    // Compatible conversions (Clang extension for C function overloading)
657    SCS.Second = ICK_Compatible_Conversion;
658  } else {
659    // No second conversion required.
660    SCS.Second = ICK_Identity;
661  }
662
663  QualType CanonFrom;
664  QualType CanonTo;
665  // The third conversion can be a qualification conversion (C++ 4p1).
666  if (IsQualificationConversion(FromType, ToType)) {
667    SCS.Third = ICK_Qualification;
668    FromType = ToType;
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671  } else {
672    // No conversion required
673    SCS.Third = ICK_Identity;
674
675    // C++ [over.best.ics]p6:
676    //   [...] Any difference in top-level cv-qualification is
677    //   subsumed by the initialization itself and does not constitute
678    //   a conversion. [...]
679    CanonFrom = Context.getCanonicalType(FromType);
680    CanonTo = Context.getCanonicalType(ToType);
681    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
682        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
683      FromType = ToType;
684      CanonFrom = CanonTo;
685    }
686  }
687
688  // If we have not converted the argument type to the parameter type,
689  // this is a bad conversion sequence.
690  if (CanonFrom != CanonTo)
691    return false;
692
693  SCS.ToTypePtr = FromType.getAsOpaquePtr();
694  return true;
695}
696
697/// IsIntegralPromotion - Determines whether the conversion from the
698/// expression From (whose potentially-adjusted type is FromType) to
699/// ToType is an integral promotion (C++ 4.5). If so, returns true and
700/// sets PromotedType to the promoted type.
701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
702  const BuiltinType *To = ToType->getAs<BuiltinType>();
703  // All integers are built-in.
704  if (!To) {
705    return false;
706  }
707
708  // An rvalue of type char, signed char, unsigned char, short int, or
709  // unsigned short int can be converted to an rvalue of type int if
710  // int can represent all the values of the source type; otherwise,
711  // the source rvalue can be converted to an rvalue of type unsigned
712  // int (C++ 4.5p1).
713  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
714    if (// We can promote any signed, promotable integer type to an int
715        (FromType->isSignedIntegerType() ||
716         // We can promote any unsigned integer type whose size is
717         // less than int to an int.
718         (!FromType->isSignedIntegerType() &&
719          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
720      return To->getKind() == BuiltinType::Int;
721    }
722
723    return To->getKind() == BuiltinType::UInt;
724  }
725
726  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
727  // can be converted to an rvalue of the first of the following types
728  // that can represent all the values of its underlying type: int,
729  // unsigned int, long, or unsigned long (C++ 4.5p2).
730  if ((FromType->isEnumeralType() || FromType->isWideCharType())
731      && ToType->isIntegerType()) {
732    // Determine whether the type we're converting from is signed or
733    // unsigned.
734    bool FromIsSigned;
735    uint64_t FromSize = Context.getTypeSize(FromType);
736    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
737      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
738      FromIsSigned = UnderlyingType->isSignedIntegerType();
739    } else {
740      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
741      FromIsSigned = true;
742    }
743
744    // The types we'll try to promote to, in the appropriate
745    // order. Try each of these types.
746    QualType PromoteTypes[6] = {
747      Context.IntTy, Context.UnsignedIntTy,
748      Context.LongTy, Context.UnsignedLongTy ,
749      Context.LongLongTy, Context.UnsignedLongLongTy
750    };
751    for (int Idx = 0; Idx < 6; ++Idx) {
752      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
753      if (FromSize < ToSize ||
754          (FromSize == ToSize &&
755           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
756        // We found the type that we can promote to. If this is the
757        // type we wanted, we have a promotion. Otherwise, no
758        // promotion.
759        return Context.getCanonicalType(ToType).getUnqualifiedType()
760          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
761      }
762    }
763  }
764
765  // An rvalue for an integral bit-field (9.6) can be converted to an
766  // rvalue of type int if int can represent all the values of the
767  // bit-field; otherwise, it can be converted to unsigned int if
768  // unsigned int can represent all the values of the bit-field. If
769  // the bit-field is larger yet, no integral promotion applies to
770  // it. If the bit-field has an enumerated type, it is treated as any
771  // other value of that type for promotion purposes (C++ 4.5p3).
772  // FIXME: We should delay checking of bit-fields until we actually perform the
773  // conversion.
774  using llvm::APSInt;
775  if (From)
776    if (FieldDecl *MemberDecl = From->getBitField()) {
777      APSInt BitWidth;
778      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
779          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
780        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
781        ToSize = Context.getTypeSize(ToType);
782
783        // Are we promoting to an int from a bitfield that fits in an int?
784        if (BitWidth < ToSize ||
785            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
786          return To->getKind() == BuiltinType::Int;
787        }
788
789        // Are we promoting to an unsigned int from an unsigned bitfield
790        // that fits into an unsigned int?
791        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
792          return To->getKind() == BuiltinType::UInt;
793        }
794
795        return false;
796      }
797    }
798
799  // An rvalue of type bool can be converted to an rvalue of type int,
800  // with false becoming zero and true becoming one (C++ 4.5p4).
801  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
802    return true;
803  }
804
805  return false;
806}
807
808/// IsFloatingPointPromotion - Determines whether the conversion from
809/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
810/// returns true and sets PromotedType to the promoted type.
811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
812  /// An rvalue of type float can be converted to an rvalue of type
813  /// double. (C++ 4.6p1).
814  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
815    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
816      if (FromBuiltin->getKind() == BuiltinType::Float &&
817          ToBuiltin->getKind() == BuiltinType::Double)
818        return true;
819
820      // C99 6.3.1.5p1:
821      //   When a float is promoted to double or long double, or a
822      //   double is promoted to long double [...].
823      if (!getLangOptions().CPlusPlus &&
824          (FromBuiltin->getKind() == BuiltinType::Float ||
825           FromBuiltin->getKind() == BuiltinType::Double) &&
826          (ToBuiltin->getKind() == BuiltinType::LongDouble))
827        return true;
828    }
829
830  return false;
831}
832
833/// \brief Determine if a conversion is a complex promotion.
834///
835/// A complex promotion is defined as a complex -> complex conversion
836/// where the conversion between the underlying real types is a
837/// floating-point or integral promotion.
838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
839  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
840  if (!FromComplex)
841    return false;
842
843  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
844  if (!ToComplex)
845    return false;
846
847  return IsFloatingPointPromotion(FromComplex->getElementType(),
848                                  ToComplex->getElementType()) ||
849    IsIntegralPromotion(0, FromComplex->getElementType(),
850                        ToComplex->getElementType());
851}
852
853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
854/// the pointer type FromPtr to a pointer to type ToPointee, with the
855/// same type qualifiers as FromPtr has on its pointee type. ToType,
856/// if non-empty, will be a pointer to ToType that may or may not have
857/// the right set of qualifiers on its pointee.
858static QualType
859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
860                                   QualType ToPointee, QualType ToType,
861                                   ASTContext &Context) {
862  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
863  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
864  Qualifiers Quals = CanonFromPointee.getQualifiers();
865
866  // Exact qualifier match -> return the pointer type we're converting to.
867  if (CanonToPointee.getQualifiers() == Quals) {
868    // ToType is exactly what we need. Return it.
869    if (!ToType.isNull())
870      return ToType;
871
872    // Build a pointer to ToPointee. It has the right qualifiers
873    // already.
874    return Context.getPointerType(ToPointee);
875  }
876
877  // Just build a canonical type that has the right qualifiers.
878  return Context.getPointerType(
879         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
880}
881
882static bool isNullPointerConstantForConversion(Expr *Expr,
883                                               bool InOverloadResolution,
884                                               ASTContext &Context) {
885  // Handle value-dependent integral null pointer constants correctly.
886  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
887  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
888      Expr->getType()->isIntegralType())
889    return !InOverloadResolution;
890
891  return Expr->isNullPointerConstant(Context,
892                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
893                                        : Expr::NPC_ValueDependentIsNull);
894}
895
896/// IsPointerConversion - Determines whether the conversion of the
897/// expression From, which has the (possibly adjusted) type FromType,
898/// can be converted to the type ToType via a pointer conversion (C++
899/// 4.10). If so, returns true and places the converted type (that
900/// might differ from ToType in its cv-qualifiers at some level) into
901/// ConvertedType.
902///
903/// This routine also supports conversions to and from block pointers
904/// and conversions with Objective-C's 'id', 'id<protocols...>', and
905/// pointers to interfaces. FIXME: Once we've determined the
906/// appropriate overloading rules for Objective-C, we may want to
907/// split the Objective-C checks into a different routine; however,
908/// GCC seems to consider all of these conversions to be pointer
909/// conversions, so for now they live here. IncompatibleObjC will be
910/// set if the conversion is an allowed Objective-C conversion that
911/// should result in a warning.
912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
913                               bool InOverloadResolution,
914                               QualType& ConvertedType,
915                               bool &IncompatibleObjC) {
916  IncompatibleObjC = false;
917  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
918    return true;
919
920  // Conversion from a null pointer constant to any Objective-C pointer type.
921  if (ToType->isObjCObjectPointerType() &&
922      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
923    ConvertedType = ToType;
924    return true;
925  }
926
927  // Blocks: Block pointers can be converted to void*.
928  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
929      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
930    ConvertedType = ToType;
931    return true;
932  }
933  // Blocks: A null pointer constant can be converted to a block
934  // pointer type.
935  if (ToType->isBlockPointerType() &&
936      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // If the left-hand-side is nullptr_t, the right side can be a null
942  // pointer constant.
943  if (ToType->isNullPtrType() &&
944      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
950  if (!ToTypePtr)
951    return false;
952
953  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
954  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
955    ConvertedType = ToType;
956    return true;
957  }
958
959  // Beyond this point, both types need to be pointers.
960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
961  if (!FromTypePtr)
962    return false;
963
964  QualType FromPointeeType = FromTypePtr->getPointeeType();
965  QualType ToPointeeType = ToTypePtr->getPointeeType();
966
967  // An rvalue of type "pointer to cv T," where T is an object type,
968  // can be converted to an rvalue of type "pointer to cv void" (C++
969  // 4.10p2).
970  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // When we're overloading in C, we allow a special kind of pointer
978  // conversion for compatible-but-not-identical pointee types.
979  if (!getLangOptions().CPlusPlus &&
980      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
981    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
982                                                       ToPointeeType,
983                                                       ToType, Context);
984    return true;
985  }
986
987  // C++ [conv.ptr]p3:
988  //
989  //   An rvalue of type "pointer to cv D," where D is a class type,
990  //   can be converted to an rvalue of type "pointer to cv B," where
991  //   B is a base class (clause 10) of D. If B is an inaccessible
992  //   (clause 11) or ambiguous (10.2) base class of D, a program that
993  //   necessitates this conversion is ill-formed. The result of the
994  //   conversion is a pointer to the base class sub-object of the
995  //   derived class object. The null pointer value is converted to
996  //   the null pointer value of the destination type.
997  //
998  // Note that we do not check for ambiguity or inaccessibility
999  // here. That is handled by CheckPointerConversion.
1000  if (getLangOptions().CPlusPlus &&
1001      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1002      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1003      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1004    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1005                                                       ToPointeeType,
1006                                                       ToType, Context);
1007    return true;
1008  }
1009
1010  return false;
1011}
1012
1013/// isObjCPointerConversion - Determines whether this is an
1014/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1015/// with the same arguments and return values.
1016bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1017                                   QualType& ConvertedType,
1018                                   bool &IncompatibleObjC) {
1019  if (!getLangOptions().ObjC1)
1020    return false;
1021
1022  // First, we handle all conversions on ObjC object pointer types.
1023  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1024  const ObjCObjectPointerType *FromObjCPtr =
1025    FromType->getAs<ObjCObjectPointerType>();
1026
1027  if (ToObjCPtr && FromObjCPtr) {
1028    // Objective C++: We're able to convert between "id" or "Class" and a
1029    // pointer to any interface (in both directions).
1030    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1031      ConvertedType = ToType;
1032      return true;
1033    }
1034    // Conversions with Objective-C's id<...>.
1035    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1036         ToObjCPtr->isObjCQualifiedIdType()) &&
1037        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1038                                                  /*compare=*/false)) {
1039      ConvertedType = ToType;
1040      return true;
1041    }
1042    // Objective C++: We're able to convert from a pointer to an
1043    // interface to a pointer to a different interface.
1044    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1045      ConvertedType = ToType;
1046      return true;
1047    }
1048
1049    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1050      // Okay: this is some kind of implicit downcast of Objective-C
1051      // interfaces, which is permitted. However, we're going to
1052      // complain about it.
1053      IncompatibleObjC = true;
1054      ConvertedType = FromType;
1055      return true;
1056    }
1057  }
1058  // Beyond this point, both types need to be C pointers or block pointers.
1059  QualType ToPointeeType;
1060  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1061    ToPointeeType = ToCPtr->getPointeeType();
1062  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1063    ToPointeeType = ToBlockPtr->getPointeeType();
1064  else
1065    return false;
1066
1067  QualType FromPointeeType;
1068  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1069    FromPointeeType = FromCPtr->getPointeeType();
1070  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1071    FromPointeeType = FromBlockPtr->getPointeeType();
1072  else
1073    return false;
1074
1075  // If we have pointers to pointers, recursively check whether this
1076  // is an Objective-C conversion.
1077  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1078      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1079                              IncompatibleObjC)) {
1080    // We always complain about this conversion.
1081    IncompatibleObjC = true;
1082    ConvertedType = ToType;
1083    return true;
1084  }
1085  // If we have pointers to functions or blocks, check whether the only
1086  // differences in the argument and result types are in Objective-C
1087  // pointer conversions. If so, we permit the conversion (but
1088  // complain about it).
1089  const FunctionProtoType *FromFunctionType
1090    = FromPointeeType->getAs<FunctionProtoType>();
1091  const FunctionProtoType *ToFunctionType
1092    = ToPointeeType->getAs<FunctionProtoType>();
1093  if (FromFunctionType && ToFunctionType) {
1094    // If the function types are exactly the same, this isn't an
1095    // Objective-C pointer conversion.
1096    if (Context.getCanonicalType(FromPointeeType)
1097          == Context.getCanonicalType(ToPointeeType))
1098      return false;
1099
1100    // Perform the quick checks that will tell us whether these
1101    // function types are obviously different.
1102    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1103        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1104        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1105      return false;
1106
1107    bool HasObjCConversion = false;
1108    if (Context.getCanonicalType(FromFunctionType->getResultType())
1109          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1110      // Okay, the types match exactly. Nothing to do.
1111    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1112                                       ToFunctionType->getResultType(),
1113                                       ConvertedType, IncompatibleObjC)) {
1114      // Okay, we have an Objective-C pointer conversion.
1115      HasObjCConversion = true;
1116    } else {
1117      // Function types are too different. Abort.
1118      return false;
1119    }
1120
1121    // Check argument types.
1122    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1123         ArgIdx != NumArgs; ++ArgIdx) {
1124      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1125      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1126      if (Context.getCanonicalType(FromArgType)
1127            == Context.getCanonicalType(ToArgType)) {
1128        // Okay, the types match exactly. Nothing to do.
1129      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1130                                         ConvertedType, IncompatibleObjC)) {
1131        // Okay, we have an Objective-C pointer conversion.
1132        HasObjCConversion = true;
1133      } else {
1134        // Argument types are too different. Abort.
1135        return false;
1136      }
1137    }
1138
1139    if (HasObjCConversion) {
1140      // We had an Objective-C conversion. Allow this pointer
1141      // conversion, but complain about it.
1142      ConvertedType = ToType;
1143      IncompatibleObjC = true;
1144      return true;
1145    }
1146  }
1147
1148  return false;
1149}
1150
1151/// CheckPointerConversion - Check the pointer conversion from the
1152/// expression From to the type ToType. This routine checks for
1153/// ambiguous or inaccessible derived-to-base pointer
1154/// conversions for which IsPointerConversion has already returned
1155/// true. It returns true and produces a diagnostic if there was an
1156/// error, or returns false otherwise.
1157bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1158                                  CastExpr::CastKind &Kind,
1159                                  bool IgnoreBaseAccess) {
1160  QualType FromType = From->getType();
1161
1162  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1163    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1164      QualType FromPointeeType = FromPtrType->getPointeeType(),
1165               ToPointeeType   = ToPtrType->getPointeeType();
1166
1167      if (FromPointeeType->isRecordType() &&
1168          ToPointeeType->isRecordType()) {
1169        // We must have a derived-to-base conversion. Check an
1170        // ambiguous or inaccessible conversion.
1171        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1172                                         From->getExprLoc(),
1173                                         From->getSourceRange(),
1174                                         IgnoreBaseAccess))
1175          return true;
1176
1177        // The conversion was successful.
1178        Kind = CastExpr::CK_DerivedToBase;
1179      }
1180    }
1181  if (const ObjCObjectPointerType *FromPtrType =
1182        FromType->getAs<ObjCObjectPointerType>())
1183    if (const ObjCObjectPointerType *ToPtrType =
1184          ToType->getAs<ObjCObjectPointerType>()) {
1185      // Objective-C++ conversions are always okay.
1186      // FIXME: We should have a different class of conversions for the
1187      // Objective-C++ implicit conversions.
1188      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1189        return false;
1190
1191  }
1192  return false;
1193}
1194
1195/// IsMemberPointerConversion - Determines whether the conversion of the
1196/// expression From, which has the (possibly adjusted) type FromType, can be
1197/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1198/// If so, returns true and places the converted type (that might differ from
1199/// ToType in its cv-qualifiers at some level) into ConvertedType.
1200bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1201                                     QualType ToType,
1202                                     bool InOverloadResolution,
1203                                     QualType &ConvertedType) {
1204  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1205  if (!ToTypePtr)
1206    return false;
1207
1208  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1209  if (From->isNullPointerConstant(Context,
1210                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1211                                        : Expr::NPC_ValueDependentIsNull)) {
1212    ConvertedType = ToType;
1213    return true;
1214  }
1215
1216  // Otherwise, both types have to be member pointers.
1217  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1218  if (!FromTypePtr)
1219    return false;
1220
1221  // A pointer to member of B can be converted to a pointer to member of D,
1222  // where D is derived from B (C++ 4.11p2).
1223  QualType FromClass(FromTypePtr->getClass(), 0);
1224  QualType ToClass(ToTypePtr->getClass(), 0);
1225  // FIXME: What happens when these are dependent? Is this function even called?
1226
1227  if (IsDerivedFrom(ToClass, FromClass)) {
1228    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1229                                                 ToClass.getTypePtr());
1230    return true;
1231  }
1232
1233  return false;
1234}
1235
1236/// CheckMemberPointerConversion - Check the member pointer conversion from the
1237/// expression From to the type ToType. This routine checks for ambiguous or
1238/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1239/// for which IsMemberPointerConversion has already returned true. It returns
1240/// true and produces a diagnostic if there was an error, or returns false
1241/// otherwise.
1242bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1243                                        CastExpr::CastKind &Kind,
1244                                        bool IgnoreBaseAccess) {
1245  (void)IgnoreBaseAccess;
1246  QualType FromType = From->getType();
1247  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1248  if (!FromPtrType) {
1249    // This must be a null pointer to member pointer conversion
1250    assert(From->isNullPointerConstant(Context,
1251                                       Expr::NPC_ValueDependentIsNull) &&
1252           "Expr must be null pointer constant!");
1253    Kind = CastExpr::CK_NullToMemberPointer;
1254    return false;
1255  }
1256
1257  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1258  assert(ToPtrType && "No member pointer cast has a target type "
1259                      "that is not a member pointer.");
1260
1261  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1262  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1263
1264  // FIXME: What about dependent types?
1265  assert(FromClass->isRecordType() && "Pointer into non-class.");
1266  assert(ToClass->isRecordType() && "Pointer into non-class.");
1267
1268  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1269                     /*DetectVirtual=*/true);
1270  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1271  assert(DerivationOkay &&
1272         "Should not have been called if derivation isn't OK.");
1273  (void)DerivationOkay;
1274
1275  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1276                                  getUnqualifiedType())) {
1277    // Derivation is ambiguous. Redo the check to find the exact paths.
1278    Paths.clear();
1279    Paths.setRecordingPaths(true);
1280    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1281    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1282    (void)StillOkay;
1283
1284    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1285    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1286      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1287    return true;
1288  }
1289
1290  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1291    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1292      << FromClass << ToClass << QualType(VBase, 0)
1293      << From->getSourceRange();
1294    return true;
1295  }
1296
1297  // Must be a base to derived member conversion.
1298  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1299  return false;
1300}
1301
1302/// IsQualificationConversion - Determines whether the conversion from
1303/// an rvalue of type FromType to ToType is a qualification conversion
1304/// (C++ 4.4).
1305bool
1306Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1307  FromType = Context.getCanonicalType(FromType);
1308  ToType = Context.getCanonicalType(ToType);
1309
1310  // If FromType and ToType are the same type, this is not a
1311  // qualification conversion.
1312  if (FromType == ToType)
1313    return false;
1314
1315  // (C++ 4.4p4):
1316  //   A conversion can add cv-qualifiers at levels other than the first
1317  //   in multi-level pointers, subject to the following rules: [...]
1318  bool PreviousToQualsIncludeConst = true;
1319  bool UnwrappedAnyPointer = false;
1320  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1321    // Within each iteration of the loop, we check the qualifiers to
1322    // determine if this still looks like a qualification
1323    // conversion. Then, if all is well, we unwrap one more level of
1324    // pointers or pointers-to-members and do it all again
1325    // until there are no more pointers or pointers-to-members left to
1326    // unwrap.
1327    UnwrappedAnyPointer = true;
1328
1329    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1330    //      2,j, and similarly for volatile.
1331    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1332      return false;
1333
1334    //   -- if the cv 1,j and cv 2,j are different, then const is in
1335    //      every cv for 0 < k < j.
1336    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1337        && !PreviousToQualsIncludeConst)
1338      return false;
1339
1340    // Keep track of whether all prior cv-qualifiers in the "to" type
1341    // include const.
1342    PreviousToQualsIncludeConst
1343      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1344  }
1345
1346  // We are left with FromType and ToType being the pointee types
1347  // after unwrapping the original FromType and ToType the same number
1348  // of types. If we unwrapped any pointers, and if FromType and
1349  // ToType have the same unqualified type (since we checked
1350  // qualifiers above), then this is a qualification conversion.
1351  return UnwrappedAnyPointer &&
1352    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1353}
1354
1355/// \brief Given a function template or function, extract the function template
1356/// declaration (if any) and the underlying function declaration.
1357template<typename T>
1358static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1359                                   FunctionTemplateDecl *&FunctionTemplate) {
1360  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1361  if (FunctionTemplate)
1362    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1363  else
1364    Function = cast<T>(Orig);
1365}
1366
1367/// Determines whether there is a user-defined conversion sequence
1368/// (C++ [over.ics.user]) that converts expression From to the type
1369/// ToType. If such a conversion exists, User will contain the
1370/// user-defined conversion sequence that performs such a conversion
1371/// and this routine will return true. Otherwise, this routine returns
1372/// false and User is unspecified.
1373///
1374/// \param AllowConversionFunctions true if the conversion should
1375/// consider conversion functions at all. If false, only constructors
1376/// will be considered.
1377///
1378/// \param AllowExplicit  true if the conversion should consider C++0x
1379/// "explicit" conversion functions as well as non-explicit conversion
1380/// functions (C++0x [class.conv.fct]p2).
1381///
1382/// \param ForceRValue  true if the expression should be treated as an rvalue
1383/// for overload resolution.
1384/// \param UserCast true if looking for user defined conversion for a static
1385/// cast.
1386Sema::OverloadingResult Sema::IsUserDefinedConversion(
1387                                   Expr *From, QualType ToType,
1388                                   UserDefinedConversionSequence& User,
1389                                   OverloadCandidateSet& CandidateSet,
1390                                   bool AllowConversionFunctions,
1391                                   bool AllowExplicit, bool ForceRValue,
1392                                   bool UserCast) {
1393  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1394    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1395      // We're not going to find any constructors.
1396    } else if (CXXRecordDecl *ToRecordDecl
1397                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1398      // C++ [over.match.ctor]p1:
1399      //   When objects of class type are direct-initialized (8.5), or
1400      //   copy-initialized from an expression of the same or a
1401      //   derived class type (8.5), overload resolution selects the
1402      //   constructor. [...] For copy-initialization, the candidate
1403      //   functions are all the converting constructors (12.3.1) of
1404      //   that class. The argument list is the expression-list within
1405      //   the parentheses of the initializer.
1406      bool SuppressUserConversions = !UserCast;
1407      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1408          IsDerivedFrom(From->getType(), ToType)) {
1409        SuppressUserConversions = false;
1410        AllowConversionFunctions = false;
1411      }
1412
1413      DeclarationName ConstructorName
1414        = Context.DeclarationNames.getCXXConstructorName(
1415                          Context.getCanonicalType(ToType).getUnqualifiedType());
1416      DeclContext::lookup_iterator Con, ConEnd;
1417      for (llvm::tie(Con, ConEnd)
1418             = ToRecordDecl->lookup(ConstructorName);
1419           Con != ConEnd; ++Con) {
1420        // Find the constructor (which may be a template).
1421        CXXConstructorDecl *Constructor = 0;
1422        FunctionTemplateDecl *ConstructorTmpl
1423          = dyn_cast<FunctionTemplateDecl>(*Con);
1424        if (ConstructorTmpl)
1425          Constructor
1426            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1427        else
1428          Constructor = cast<CXXConstructorDecl>(*Con);
1429
1430        if (!Constructor->isInvalidDecl() &&
1431            Constructor->isConvertingConstructor(AllowExplicit)) {
1432          if (ConstructorTmpl)
1433            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1434                                         1, CandidateSet,
1435                                         SuppressUserConversions, ForceRValue);
1436          else
1437            // Allow one user-defined conversion when user specifies a
1438            // From->ToType conversion via an static cast (c-style, etc).
1439            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1440                                 SuppressUserConversions, ForceRValue);
1441        }
1442      }
1443    }
1444  }
1445
1446  if (!AllowConversionFunctions) {
1447    // Don't allow any conversion functions to enter the overload set.
1448  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1449                                 PDiag(0)
1450                                   << From->getSourceRange())) {
1451    // No conversion functions from incomplete types.
1452  } else if (const RecordType *FromRecordType
1453               = From->getType()->getAs<RecordType>()) {
1454    if (CXXRecordDecl *FromRecordDecl
1455         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1456      // Add all of the conversion functions as candidates.
1457      OverloadedFunctionDecl *Conversions
1458        = FromRecordDecl->getVisibleConversionFunctions();
1459      for (OverloadedFunctionDecl::function_iterator Func
1460             = Conversions->function_begin();
1461           Func != Conversions->function_end(); ++Func) {
1462        CXXConversionDecl *Conv;
1463        FunctionTemplateDecl *ConvTemplate;
1464        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1465        if (ConvTemplate)
1466          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1467        else
1468          Conv = dyn_cast<CXXConversionDecl>(*Func);
1469
1470        if (AllowExplicit || !Conv->isExplicit()) {
1471          if (ConvTemplate)
1472            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1473                                           CandidateSet);
1474          else
1475            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1476        }
1477      }
1478    }
1479  }
1480
1481  OverloadCandidateSet::iterator Best;
1482  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1483    case OR_Success:
1484      // Record the standard conversion we used and the conversion function.
1485      if (CXXConstructorDecl *Constructor
1486            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1487        // C++ [over.ics.user]p1:
1488        //   If the user-defined conversion is specified by a
1489        //   constructor (12.3.1), the initial standard conversion
1490        //   sequence converts the source type to the type required by
1491        //   the argument of the constructor.
1492        //
1493        QualType ThisType = Constructor->getThisType(Context);
1494        if (Best->Conversions[0].ConversionKind ==
1495            ImplicitConversionSequence::EllipsisConversion)
1496          User.EllipsisConversion = true;
1497        else {
1498          User.Before = Best->Conversions[0].Standard;
1499          User.EllipsisConversion = false;
1500        }
1501        User.ConversionFunction = Constructor;
1502        User.After.setAsIdentityConversion();
1503        User.After.FromTypePtr
1504          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1505        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1506        return OR_Success;
1507      } else if (CXXConversionDecl *Conversion
1508                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1509        // C++ [over.ics.user]p1:
1510        //
1511        //   [...] If the user-defined conversion is specified by a
1512        //   conversion function (12.3.2), the initial standard
1513        //   conversion sequence converts the source type to the
1514        //   implicit object parameter of the conversion function.
1515        User.Before = Best->Conversions[0].Standard;
1516        User.ConversionFunction = Conversion;
1517        User.EllipsisConversion = false;
1518
1519        // C++ [over.ics.user]p2:
1520        //   The second standard conversion sequence converts the
1521        //   result of the user-defined conversion to the target type
1522        //   for the sequence. Since an implicit conversion sequence
1523        //   is an initialization, the special rules for
1524        //   initialization by user-defined conversion apply when
1525        //   selecting the best user-defined conversion for a
1526        //   user-defined conversion sequence (see 13.3.3 and
1527        //   13.3.3.1).
1528        User.After = Best->FinalConversion;
1529        return OR_Success;
1530      } else {
1531        assert(false && "Not a constructor or conversion function?");
1532        return OR_No_Viable_Function;
1533      }
1534
1535    case OR_No_Viable_Function:
1536      return OR_No_Viable_Function;
1537    case OR_Deleted:
1538      // No conversion here! We're done.
1539      return OR_Deleted;
1540
1541    case OR_Ambiguous:
1542      return OR_Ambiguous;
1543    }
1544
1545  return OR_No_Viable_Function;
1546}
1547
1548bool
1549Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1550  ImplicitConversionSequence ICS;
1551  OverloadCandidateSet CandidateSet;
1552  OverloadingResult OvResult =
1553    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1554                            CandidateSet, true, false, false);
1555  if (OvResult != OR_Ambiguous)
1556    return false;
1557  Diag(From->getSourceRange().getBegin(),
1558       diag::err_typecheck_ambiguous_condition)
1559  << From->getType() << ToType << From->getSourceRange();
1560    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1561  return true;
1562}
1563
1564/// CompareImplicitConversionSequences - Compare two implicit
1565/// conversion sequences to determine whether one is better than the
1566/// other or if they are indistinguishable (C++ 13.3.3.2).
1567ImplicitConversionSequence::CompareKind
1568Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1569                                         const ImplicitConversionSequence& ICS2)
1570{
1571  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1572  // conversion sequences (as defined in 13.3.3.1)
1573  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1574  //      conversion sequence than a user-defined conversion sequence or
1575  //      an ellipsis conversion sequence, and
1576  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1577  //      conversion sequence than an ellipsis conversion sequence
1578  //      (13.3.3.1.3).
1579  //
1580  if (ICS1.ConversionKind < ICS2.ConversionKind)
1581    return ImplicitConversionSequence::Better;
1582  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1583    return ImplicitConversionSequence::Worse;
1584
1585  // Two implicit conversion sequences of the same form are
1586  // indistinguishable conversion sequences unless one of the
1587  // following rules apply: (C++ 13.3.3.2p3):
1588  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1589    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1590  else if (ICS1.ConversionKind ==
1591             ImplicitConversionSequence::UserDefinedConversion) {
1592    // User-defined conversion sequence U1 is a better conversion
1593    // sequence than another user-defined conversion sequence U2 if
1594    // they contain the same user-defined conversion function or
1595    // constructor and if the second standard conversion sequence of
1596    // U1 is better than the second standard conversion sequence of
1597    // U2 (C++ 13.3.3.2p3).
1598    if (ICS1.UserDefined.ConversionFunction ==
1599          ICS2.UserDefined.ConversionFunction)
1600      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1601                                                ICS2.UserDefined.After);
1602  }
1603
1604  return ImplicitConversionSequence::Indistinguishable;
1605}
1606
1607/// CompareStandardConversionSequences - Compare two standard
1608/// conversion sequences to determine whether one is better than the
1609/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1610ImplicitConversionSequence::CompareKind
1611Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1612                                         const StandardConversionSequence& SCS2)
1613{
1614  // Standard conversion sequence S1 is a better conversion sequence
1615  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1616
1617  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1618  //     sequences in the canonical form defined by 13.3.3.1.1,
1619  //     excluding any Lvalue Transformation; the identity conversion
1620  //     sequence is considered to be a subsequence of any
1621  //     non-identity conversion sequence) or, if not that,
1622  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1623    // Neither is a proper subsequence of the other. Do nothing.
1624    ;
1625  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1626           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1627           (SCS1.Second == ICK_Identity &&
1628            SCS1.Third == ICK_Identity))
1629    // SCS1 is a proper subsequence of SCS2.
1630    return ImplicitConversionSequence::Better;
1631  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1632           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1633           (SCS2.Second == ICK_Identity &&
1634            SCS2.Third == ICK_Identity))
1635    // SCS2 is a proper subsequence of SCS1.
1636    return ImplicitConversionSequence::Worse;
1637
1638  //  -- the rank of S1 is better than the rank of S2 (by the rules
1639  //     defined below), or, if not that,
1640  ImplicitConversionRank Rank1 = SCS1.getRank();
1641  ImplicitConversionRank Rank2 = SCS2.getRank();
1642  if (Rank1 < Rank2)
1643    return ImplicitConversionSequence::Better;
1644  else if (Rank2 < Rank1)
1645    return ImplicitConversionSequence::Worse;
1646
1647  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1648  // are indistinguishable unless one of the following rules
1649  // applies:
1650
1651  //   A conversion that is not a conversion of a pointer, or
1652  //   pointer to member, to bool is better than another conversion
1653  //   that is such a conversion.
1654  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1655    return SCS2.isPointerConversionToBool()
1656             ? ImplicitConversionSequence::Better
1657             : ImplicitConversionSequence::Worse;
1658
1659  // C++ [over.ics.rank]p4b2:
1660  //
1661  //   If class B is derived directly or indirectly from class A,
1662  //   conversion of B* to A* is better than conversion of B* to
1663  //   void*, and conversion of A* to void* is better than conversion
1664  //   of B* to void*.
1665  bool SCS1ConvertsToVoid
1666    = SCS1.isPointerConversionToVoidPointer(Context);
1667  bool SCS2ConvertsToVoid
1668    = SCS2.isPointerConversionToVoidPointer(Context);
1669  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1670    // Exactly one of the conversion sequences is a conversion to
1671    // a void pointer; it's the worse conversion.
1672    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1673                              : ImplicitConversionSequence::Worse;
1674  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1675    // Neither conversion sequence converts to a void pointer; compare
1676    // their derived-to-base conversions.
1677    if (ImplicitConversionSequence::CompareKind DerivedCK
1678          = CompareDerivedToBaseConversions(SCS1, SCS2))
1679      return DerivedCK;
1680  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1681    // Both conversion sequences are conversions to void
1682    // pointers. Compare the source types to determine if there's an
1683    // inheritance relationship in their sources.
1684    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1685    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1686
1687    // Adjust the types we're converting from via the array-to-pointer
1688    // conversion, if we need to.
1689    if (SCS1.First == ICK_Array_To_Pointer)
1690      FromType1 = Context.getArrayDecayedType(FromType1);
1691    if (SCS2.First == ICK_Array_To_Pointer)
1692      FromType2 = Context.getArrayDecayedType(FromType2);
1693
1694    QualType FromPointee1
1695      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1696    QualType FromPointee2
1697      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1698
1699    if (IsDerivedFrom(FromPointee2, FromPointee1))
1700      return ImplicitConversionSequence::Better;
1701    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1702      return ImplicitConversionSequence::Worse;
1703
1704    // Objective-C++: If one interface is more specific than the
1705    // other, it is the better one.
1706    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1707    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1708    if (FromIface1 && FromIface1) {
1709      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1710        return ImplicitConversionSequence::Better;
1711      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1712        return ImplicitConversionSequence::Worse;
1713    }
1714  }
1715
1716  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1717  // bullet 3).
1718  if (ImplicitConversionSequence::CompareKind QualCK
1719        = CompareQualificationConversions(SCS1, SCS2))
1720    return QualCK;
1721
1722  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1723    // C++0x [over.ics.rank]p3b4:
1724    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1725    //      implicit object parameter of a non-static member function declared
1726    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1727    //      rvalue and S2 binds an lvalue reference.
1728    // FIXME: We don't know if we're dealing with the implicit object parameter,
1729    // or if the member function in this case has a ref qualifier.
1730    // (Of course, we don't have ref qualifiers yet.)
1731    if (SCS1.RRefBinding != SCS2.RRefBinding)
1732      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1733                              : ImplicitConversionSequence::Worse;
1734
1735    // C++ [over.ics.rank]p3b4:
1736    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1737    //      which the references refer are the same type except for
1738    //      top-level cv-qualifiers, and the type to which the reference
1739    //      initialized by S2 refers is more cv-qualified than the type
1740    //      to which the reference initialized by S1 refers.
1741    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1742    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1743    T1 = Context.getCanonicalType(T1);
1744    T2 = Context.getCanonicalType(T2);
1745    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1746      if (T2.isMoreQualifiedThan(T1))
1747        return ImplicitConversionSequence::Better;
1748      else if (T1.isMoreQualifiedThan(T2))
1749        return ImplicitConversionSequence::Worse;
1750    }
1751  }
1752
1753  return ImplicitConversionSequence::Indistinguishable;
1754}
1755
1756/// CompareQualificationConversions - Compares two standard conversion
1757/// sequences to determine whether they can be ranked based on their
1758/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1759ImplicitConversionSequence::CompareKind
1760Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1761                                      const StandardConversionSequence& SCS2) {
1762  // C++ 13.3.3.2p3:
1763  //  -- S1 and S2 differ only in their qualification conversion and
1764  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1765  //     cv-qualification signature of type T1 is a proper subset of
1766  //     the cv-qualification signature of type T2, and S1 is not the
1767  //     deprecated string literal array-to-pointer conversion (4.2).
1768  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1769      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1770    return ImplicitConversionSequence::Indistinguishable;
1771
1772  // FIXME: the example in the standard doesn't use a qualification
1773  // conversion (!)
1774  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1775  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1776  T1 = Context.getCanonicalType(T1);
1777  T2 = Context.getCanonicalType(T2);
1778
1779  // If the types are the same, we won't learn anything by unwrapped
1780  // them.
1781  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1782    return ImplicitConversionSequence::Indistinguishable;
1783
1784  ImplicitConversionSequence::CompareKind Result
1785    = ImplicitConversionSequence::Indistinguishable;
1786  while (UnwrapSimilarPointerTypes(T1, T2)) {
1787    // Within each iteration of the loop, we check the qualifiers to
1788    // determine if this still looks like a qualification
1789    // conversion. Then, if all is well, we unwrap one more level of
1790    // pointers or pointers-to-members and do it all again
1791    // until there are no more pointers or pointers-to-members left
1792    // to unwrap. This essentially mimics what
1793    // IsQualificationConversion does, but here we're checking for a
1794    // strict subset of qualifiers.
1795    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1796      // The qualifiers are the same, so this doesn't tell us anything
1797      // about how the sequences rank.
1798      ;
1799    else if (T2.isMoreQualifiedThan(T1)) {
1800      // T1 has fewer qualifiers, so it could be the better sequence.
1801      if (Result == ImplicitConversionSequence::Worse)
1802        // Neither has qualifiers that are a subset of the other's
1803        // qualifiers.
1804        return ImplicitConversionSequence::Indistinguishable;
1805
1806      Result = ImplicitConversionSequence::Better;
1807    } else if (T1.isMoreQualifiedThan(T2)) {
1808      // T2 has fewer qualifiers, so it could be the better sequence.
1809      if (Result == ImplicitConversionSequence::Better)
1810        // Neither has qualifiers that are a subset of the other's
1811        // qualifiers.
1812        return ImplicitConversionSequence::Indistinguishable;
1813
1814      Result = ImplicitConversionSequence::Worse;
1815    } else {
1816      // Qualifiers are disjoint.
1817      return ImplicitConversionSequence::Indistinguishable;
1818    }
1819
1820    // If the types after this point are equivalent, we're done.
1821    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1822      break;
1823  }
1824
1825  // Check that the winning standard conversion sequence isn't using
1826  // the deprecated string literal array to pointer conversion.
1827  switch (Result) {
1828  case ImplicitConversionSequence::Better:
1829    if (SCS1.Deprecated)
1830      Result = ImplicitConversionSequence::Indistinguishable;
1831    break;
1832
1833  case ImplicitConversionSequence::Indistinguishable:
1834    break;
1835
1836  case ImplicitConversionSequence::Worse:
1837    if (SCS2.Deprecated)
1838      Result = ImplicitConversionSequence::Indistinguishable;
1839    break;
1840  }
1841
1842  return Result;
1843}
1844
1845/// CompareDerivedToBaseConversions - Compares two standard conversion
1846/// sequences to determine whether they can be ranked based on their
1847/// various kinds of derived-to-base conversions (C++
1848/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1849/// conversions between Objective-C interface types.
1850ImplicitConversionSequence::CompareKind
1851Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1852                                      const StandardConversionSequence& SCS2) {
1853  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1854  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1855  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1856  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1857
1858  // Adjust the types we're converting from via the array-to-pointer
1859  // conversion, if we need to.
1860  if (SCS1.First == ICK_Array_To_Pointer)
1861    FromType1 = Context.getArrayDecayedType(FromType1);
1862  if (SCS2.First == ICK_Array_To_Pointer)
1863    FromType2 = Context.getArrayDecayedType(FromType2);
1864
1865  // Canonicalize all of the types.
1866  FromType1 = Context.getCanonicalType(FromType1);
1867  ToType1 = Context.getCanonicalType(ToType1);
1868  FromType2 = Context.getCanonicalType(FromType2);
1869  ToType2 = Context.getCanonicalType(ToType2);
1870
1871  // C++ [over.ics.rank]p4b3:
1872  //
1873  //   If class B is derived directly or indirectly from class A and
1874  //   class C is derived directly or indirectly from B,
1875  //
1876  // For Objective-C, we let A, B, and C also be Objective-C
1877  // interfaces.
1878
1879  // Compare based on pointer conversions.
1880  if (SCS1.Second == ICK_Pointer_Conversion &&
1881      SCS2.Second == ICK_Pointer_Conversion &&
1882      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1883      FromType1->isPointerType() && FromType2->isPointerType() &&
1884      ToType1->isPointerType() && ToType2->isPointerType()) {
1885    QualType FromPointee1
1886      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1887    QualType ToPointee1
1888      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1889    QualType FromPointee2
1890      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1891    QualType ToPointee2
1892      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1893
1894    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1895    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1896    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1897    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1898
1899    //   -- conversion of C* to B* is better than conversion of C* to A*,
1900    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1901      if (IsDerivedFrom(ToPointee1, ToPointee2))
1902        return ImplicitConversionSequence::Better;
1903      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1904        return ImplicitConversionSequence::Worse;
1905
1906      if (ToIface1 && ToIface2) {
1907        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1908          return ImplicitConversionSequence::Better;
1909        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1910          return ImplicitConversionSequence::Worse;
1911      }
1912    }
1913
1914    //   -- conversion of B* to A* is better than conversion of C* to A*,
1915    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1916      if (IsDerivedFrom(FromPointee2, FromPointee1))
1917        return ImplicitConversionSequence::Better;
1918      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1919        return ImplicitConversionSequence::Worse;
1920
1921      if (FromIface1 && FromIface2) {
1922        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1923          return ImplicitConversionSequence::Better;
1924        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1925          return ImplicitConversionSequence::Worse;
1926      }
1927    }
1928  }
1929
1930  // Compare based on reference bindings.
1931  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1932      SCS1.Second == ICK_Derived_To_Base) {
1933    //   -- binding of an expression of type C to a reference of type
1934    //      B& is better than binding an expression of type C to a
1935    //      reference of type A&,
1936    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1937        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1938      if (IsDerivedFrom(ToType1, ToType2))
1939        return ImplicitConversionSequence::Better;
1940      else if (IsDerivedFrom(ToType2, ToType1))
1941        return ImplicitConversionSequence::Worse;
1942    }
1943
1944    //   -- binding of an expression of type B to a reference of type
1945    //      A& is better than binding an expression of type C to a
1946    //      reference of type A&,
1947    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1948        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1949      if (IsDerivedFrom(FromType2, FromType1))
1950        return ImplicitConversionSequence::Better;
1951      else if (IsDerivedFrom(FromType1, FromType2))
1952        return ImplicitConversionSequence::Worse;
1953    }
1954  }
1955
1956  // Ranking of member-pointer types.
1957  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1958      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1959      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1960    const MemberPointerType * FromMemPointer1 =
1961                                        FromType1->getAs<MemberPointerType>();
1962    const MemberPointerType * ToMemPointer1 =
1963                                          ToType1->getAs<MemberPointerType>();
1964    const MemberPointerType * FromMemPointer2 =
1965                                          FromType2->getAs<MemberPointerType>();
1966    const MemberPointerType * ToMemPointer2 =
1967                                          ToType2->getAs<MemberPointerType>();
1968    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1969    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1970    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1971    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1972    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1973    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1974    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1975    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1976    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1977    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1978      if (IsDerivedFrom(ToPointee1, ToPointee2))
1979        return ImplicitConversionSequence::Worse;
1980      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1981        return ImplicitConversionSequence::Better;
1982    }
1983    // conversion of B::* to C::* is better than conversion of A::* to C::*
1984    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1985      if (IsDerivedFrom(FromPointee1, FromPointee2))
1986        return ImplicitConversionSequence::Better;
1987      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1988        return ImplicitConversionSequence::Worse;
1989    }
1990  }
1991
1992  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1993      SCS1.Second == ICK_Derived_To_Base) {
1994    //   -- conversion of C to B is better than conversion of C to A,
1995    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1996        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1997      if (IsDerivedFrom(ToType1, ToType2))
1998        return ImplicitConversionSequence::Better;
1999      else if (IsDerivedFrom(ToType2, ToType1))
2000        return ImplicitConversionSequence::Worse;
2001    }
2002
2003    //   -- conversion of B to A is better than conversion of C to A.
2004    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
2005        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
2006      if (IsDerivedFrom(FromType2, FromType1))
2007        return ImplicitConversionSequence::Better;
2008      else if (IsDerivedFrom(FromType1, FromType2))
2009        return ImplicitConversionSequence::Worse;
2010    }
2011  }
2012
2013  return ImplicitConversionSequence::Indistinguishable;
2014}
2015
2016/// TryCopyInitialization - Try to copy-initialize a value of type
2017/// ToType from the expression From. Return the implicit conversion
2018/// sequence required to pass this argument, which may be a bad
2019/// conversion sequence (meaning that the argument cannot be passed to
2020/// a parameter of this type). If @p SuppressUserConversions, then we
2021/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2022/// then we treat @p From as an rvalue, even if it is an lvalue.
2023ImplicitConversionSequence
2024Sema::TryCopyInitialization(Expr *From, QualType ToType,
2025                            bool SuppressUserConversions, bool ForceRValue,
2026                            bool InOverloadResolution) {
2027  if (ToType->isReferenceType()) {
2028    ImplicitConversionSequence ICS;
2029    CheckReferenceInit(From, ToType,
2030                       /*FIXME:*/From->getLocStart(),
2031                       SuppressUserConversions,
2032                       /*AllowExplicit=*/false,
2033                       ForceRValue,
2034                       &ICS);
2035    return ICS;
2036  } else {
2037    return TryImplicitConversion(From, ToType,
2038                                 SuppressUserConversions,
2039                                 /*AllowExplicit=*/false,
2040                                 ForceRValue,
2041                                 InOverloadResolution);
2042  }
2043}
2044
2045/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2046/// the expression @p From. Returns true (and emits a diagnostic) if there was
2047/// an error, returns false if the initialization succeeded. Elidable should
2048/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2049/// differently in C++0x for this case.
2050bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2051                                     const char* Flavor, bool Elidable) {
2052  if (!getLangOptions().CPlusPlus) {
2053    // In C, argument passing is the same as performing an assignment.
2054    QualType FromType = From->getType();
2055
2056    AssignConvertType ConvTy =
2057      CheckSingleAssignmentConstraints(ToType, From);
2058    if (ConvTy != Compatible &&
2059        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2060      ConvTy = Compatible;
2061
2062    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2063                                    FromType, From, Flavor);
2064  }
2065
2066  if (ToType->isReferenceType())
2067    return CheckReferenceInit(From, ToType,
2068                              /*FIXME:*/From->getLocStart(),
2069                              /*SuppressUserConversions=*/false,
2070                              /*AllowExplicit=*/false,
2071                              /*ForceRValue=*/false);
2072
2073  if (!PerformImplicitConversion(From, ToType, Flavor,
2074                                 /*AllowExplicit=*/false, Elidable))
2075    return false;
2076  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2077    return Diag(From->getSourceRange().getBegin(),
2078                diag::err_typecheck_convert_incompatible)
2079      << ToType << From->getType() << Flavor << From->getSourceRange();
2080  return true;
2081}
2082
2083/// TryObjectArgumentInitialization - Try to initialize the object
2084/// parameter of the given member function (@c Method) from the
2085/// expression @p From.
2086ImplicitConversionSequence
2087Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2088  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2089  QualType ImplicitParamType
2090    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2091
2092  // Set up the conversion sequence as a "bad" conversion, to allow us
2093  // to exit early.
2094  ImplicitConversionSequence ICS;
2095  ICS.Standard.setAsIdentityConversion();
2096  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2097
2098  // We need to have an object of class type.
2099  QualType FromType = From->getType();
2100  if (const PointerType *PT = FromType->getAs<PointerType>())
2101    FromType = PT->getPointeeType();
2102
2103  assert(FromType->isRecordType());
2104
2105  // The implicit object parmeter is has the type "reference to cv X",
2106  // where X is the class of which the function is a member
2107  // (C++ [over.match.funcs]p4). However, when finding an implicit
2108  // conversion sequence for the argument, we are not allowed to
2109  // create temporaries or perform user-defined conversions
2110  // (C++ [over.match.funcs]p5). We perform a simplified version of
2111  // reference binding here, that allows class rvalues to bind to
2112  // non-constant references.
2113
2114  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2115  // with the implicit object parameter (C++ [over.match.funcs]p5).
2116  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2117  if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getCVRQualifiers() &&
2118      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2119    return ICS;
2120
2121  // Check that we have either the same type or a derived type. It
2122  // affects the conversion rank.
2123  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2124  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2125    ICS.Standard.Second = ICK_Identity;
2126  else if (IsDerivedFrom(FromType, ClassType))
2127    ICS.Standard.Second = ICK_Derived_To_Base;
2128  else
2129    return ICS;
2130
2131  // Success. Mark this as a reference binding.
2132  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2133  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2134  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2135  ICS.Standard.ReferenceBinding = true;
2136  ICS.Standard.DirectBinding = true;
2137  ICS.Standard.RRefBinding = false;
2138  return ICS;
2139}
2140
2141/// PerformObjectArgumentInitialization - Perform initialization of
2142/// the implicit object parameter for the given Method with the given
2143/// expression.
2144bool
2145Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2146  QualType FromRecordType, DestType;
2147  QualType ImplicitParamRecordType  =
2148    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2149
2150  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2151    FromRecordType = PT->getPointeeType();
2152    DestType = Method->getThisType(Context);
2153  } else {
2154    FromRecordType = From->getType();
2155    DestType = ImplicitParamRecordType;
2156  }
2157
2158  ImplicitConversionSequence ICS
2159    = TryObjectArgumentInitialization(From, Method);
2160  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2161    return Diag(From->getSourceRange().getBegin(),
2162                diag::err_implicit_object_parameter_init)
2163       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2164
2165  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2166      CheckDerivedToBaseConversion(FromRecordType,
2167                                   ImplicitParamRecordType,
2168                                   From->getSourceRange().getBegin(),
2169                                   From->getSourceRange()))
2170    return true;
2171
2172  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2173                    /*isLvalue=*/true);
2174  return false;
2175}
2176
2177/// TryContextuallyConvertToBool - Attempt to contextually convert the
2178/// expression From to bool (C++0x [conv]p3).
2179ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2180  return TryImplicitConversion(From, Context.BoolTy,
2181                               // FIXME: Are these flags correct?
2182                               /*SuppressUserConversions=*/false,
2183                               /*AllowExplicit=*/true,
2184                               /*ForceRValue=*/false,
2185                               /*InOverloadResolution=*/false);
2186}
2187
2188/// PerformContextuallyConvertToBool - Perform a contextual conversion
2189/// of the expression From to bool (C++0x [conv]p3).
2190bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2191  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2192  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2193    return false;
2194
2195  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2196    return  Diag(From->getSourceRange().getBegin(),
2197                 diag::err_typecheck_bool_condition)
2198                  << From->getType() << From->getSourceRange();
2199  return true;
2200}
2201
2202/// AddOverloadCandidate - Adds the given function to the set of
2203/// candidate functions, using the given function call arguments.  If
2204/// @p SuppressUserConversions, then don't allow user-defined
2205/// conversions via constructors or conversion operators.
2206/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2207/// hacky way to implement the overloading rules for elidable copy
2208/// initialization in C++0x (C++0x 12.8p15).
2209///
2210/// \para PartialOverloading true if we are performing "partial" overloading
2211/// based on an incomplete set of function arguments. This feature is used by
2212/// code completion.
2213void
2214Sema::AddOverloadCandidate(FunctionDecl *Function,
2215                           Expr **Args, unsigned NumArgs,
2216                           OverloadCandidateSet& CandidateSet,
2217                           bool SuppressUserConversions,
2218                           bool ForceRValue,
2219                           bool PartialOverloading) {
2220  const FunctionProtoType* Proto
2221    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2222  assert(Proto && "Functions without a prototype cannot be overloaded");
2223  assert(!isa<CXXConversionDecl>(Function) &&
2224         "Use AddConversionCandidate for conversion functions");
2225  assert(!Function->getDescribedFunctionTemplate() &&
2226         "Use AddTemplateOverloadCandidate for function templates");
2227
2228  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2229    if (!isa<CXXConstructorDecl>(Method)) {
2230      // If we get here, it's because we're calling a member function
2231      // that is named without a member access expression (e.g.,
2232      // "this->f") that was either written explicitly or created
2233      // implicitly. This can happen with a qualified call to a member
2234      // function, e.g., X::f(). We use a NULL object as the implied
2235      // object argument (C++ [over.call.func]p3).
2236      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2237                         SuppressUserConversions, ForceRValue);
2238      return;
2239    }
2240    // We treat a constructor like a non-member function, since its object
2241    // argument doesn't participate in overload resolution.
2242  }
2243
2244  if (!CandidateSet.isNewCandidate(Function))
2245    return;
2246
2247  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2248    // C++ [class.copy]p3:
2249    //   A member function template is never instantiated to perform the copy
2250    //   of a class object to an object of its class type.
2251    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2252    if (NumArgs == 1 &&
2253        Constructor->isCopyConstructorLikeSpecialization() &&
2254        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2255      return;
2256  }
2257
2258  // Add this candidate
2259  CandidateSet.push_back(OverloadCandidate());
2260  OverloadCandidate& Candidate = CandidateSet.back();
2261  Candidate.Function = Function;
2262  Candidate.Viable = true;
2263  Candidate.IsSurrogate = false;
2264  Candidate.IgnoreObjectArgument = false;
2265
2266  unsigned NumArgsInProto = Proto->getNumArgs();
2267
2268  // (C++ 13.3.2p2): A candidate function having fewer than m
2269  // parameters is viable only if it has an ellipsis in its parameter
2270  // list (8.3.5).
2271  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2272      !Proto->isVariadic()) {
2273    Candidate.Viable = false;
2274    return;
2275  }
2276
2277  // (C++ 13.3.2p2): A candidate function having more than m parameters
2278  // is viable only if the (m+1)st parameter has a default argument
2279  // (8.3.6). For the purposes of overload resolution, the
2280  // parameter list is truncated on the right, so that there are
2281  // exactly m parameters.
2282  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2283  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2284    // Not enough arguments.
2285    Candidate.Viable = false;
2286    return;
2287  }
2288
2289  // Determine the implicit conversion sequences for each of the
2290  // arguments.
2291  Candidate.Conversions.resize(NumArgs);
2292  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2293    if (ArgIdx < NumArgsInProto) {
2294      // (C++ 13.3.2p3): for F to be a viable function, there shall
2295      // exist for each argument an implicit conversion sequence
2296      // (13.3.3.1) that converts that argument to the corresponding
2297      // parameter of F.
2298      QualType ParamType = Proto->getArgType(ArgIdx);
2299      Candidate.Conversions[ArgIdx]
2300        = TryCopyInitialization(Args[ArgIdx], ParamType,
2301                                SuppressUserConversions, ForceRValue,
2302                                /*InOverloadResolution=*/true);
2303      if (Candidate.Conversions[ArgIdx].ConversionKind
2304            == ImplicitConversionSequence::BadConversion) {
2305      // 13.3.3.1-p10 If several different sequences of conversions exist that
2306      // each convert the argument to the parameter type, the implicit conversion
2307      // sequence associated with the parameter is defined to be the unique conversion
2308      // sequence designated the ambiguous conversion sequence. For the purpose of
2309      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2310      // conversion sequence is treated as a user-defined sequence that is
2311      // indistinguishable from any other user-defined conversion sequence
2312        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2313          Candidate.Conversions[ArgIdx].ConversionKind =
2314            ImplicitConversionSequence::UserDefinedConversion;
2315          // Set the conversion function to one of them. As due to ambiguity,
2316          // they carry the same weight and is needed for overload resolution
2317          // later.
2318          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2319            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2320        }
2321        else {
2322          Candidate.Viable = false;
2323          break;
2324        }
2325      }
2326    } else {
2327      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2328      // argument for which there is no corresponding parameter is
2329      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2330      Candidate.Conversions[ArgIdx].ConversionKind
2331        = ImplicitConversionSequence::EllipsisConversion;
2332    }
2333  }
2334}
2335
2336/// \brief Add all of the function declarations in the given function set to
2337/// the overload canddiate set.
2338void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2339                                 Expr **Args, unsigned NumArgs,
2340                                 OverloadCandidateSet& CandidateSet,
2341                                 bool SuppressUserConversions) {
2342  for (FunctionSet::const_iterator F = Functions.begin(),
2343                                FEnd = Functions.end();
2344       F != FEnd; ++F) {
2345    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2346      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2347        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2348                           Args[0], Args + 1, NumArgs - 1,
2349                           CandidateSet, SuppressUserConversions);
2350      else
2351        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2352                             SuppressUserConversions);
2353    } else {
2354      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2355      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2356          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2357        AddMethodTemplateCandidate(FunTmpl,
2358                                   /*FIXME: explicit args */false, 0, 0,
2359                                   Args[0], Args + 1, NumArgs - 1,
2360                                   CandidateSet,
2361                                   SuppressUserConversions);
2362      else
2363        AddTemplateOverloadCandidate(FunTmpl,
2364                                     /*FIXME: explicit args */false, 0, 0,
2365                                     Args, NumArgs, CandidateSet,
2366                                     SuppressUserConversions);
2367    }
2368  }
2369}
2370
2371/// AddMethodCandidate - Adds the given C++ member function to the set
2372/// of candidate functions, using the given function call arguments
2373/// and the object argument (@c Object). For example, in a call
2374/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2375/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2376/// allow user-defined conversions via constructors or conversion
2377/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2378/// a slightly hacky way to implement the overloading rules for elidable copy
2379/// initialization in C++0x (C++0x 12.8p15).
2380void
2381Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2382                         Expr **Args, unsigned NumArgs,
2383                         OverloadCandidateSet& CandidateSet,
2384                         bool SuppressUserConversions, bool ForceRValue) {
2385  const FunctionProtoType* Proto
2386    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2387  assert(Proto && "Methods without a prototype cannot be overloaded");
2388  assert(!isa<CXXConversionDecl>(Method) &&
2389         "Use AddConversionCandidate for conversion functions");
2390  assert(!isa<CXXConstructorDecl>(Method) &&
2391         "Use AddOverloadCandidate for constructors");
2392
2393  if (!CandidateSet.isNewCandidate(Method))
2394    return;
2395
2396  // Add this candidate
2397  CandidateSet.push_back(OverloadCandidate());
2398  OverloadCandidate& Candidate = CandidateSet.back();
2399  Candidate.Function = Method;
2400  Candidate.IsSurrogate = false;
2401  Candidate.IgnoreObjectArgument = false;
2402
2403  unsigned NumArgsInProto = Proto->getNumArgs();
2404
2405  // (C++ 13.3.2p2): A candidate function having fewer than m
2406  // parameters is viable only if it has an ellipsis in its parameter
2407  // list (8.3.5).
2408  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2409    Candidate.Viable = false;
2410    return;
2411  }
2412
2413  // (C++ 13.3.2p2): A candidate function having more than m parameters
2414  // is viable only if the (m+1)st parameter has a default argument
2415  // (8.3.6). For the purposes of overload resolution, the
2416  // parameter list is truncated on the right, so that there are
2417  // exactly m parameters.
2418  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2419  if (NumArgs < MinRequiredArgs) {
2420    // Not enough arguments.
2421    Candidate.Viable = false;
2422    return;
2423  }
2424
2425  Candidate.Viable = true;
2426  Candidate.Conversions.resize(NumArgs + 1);
2427
2428  if (Method->isStatic() || !Object)
2429    // The implicit object argument is ignored.
2430    Candidate.IgnoreObjectArgument = true;
2431  else {
2432    // Determine the implicit conversion sequence for the object
2433    // parameter.
2434    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2435    if (Candidate.Conversions[0].ConversionKind
2436          == ImplicitConversionSequence::BadConversion) {
2437      Candidate.Viable = false;
2438      return;
2439    }
2440  }
2441
2442  // Determine the implicit conversion sequences for each of the
2443  // arguments.
2444  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2445    if (ArgIdx < NumArgsInProto) {
2446      // (C++ 13.3.2p3): for F to be a viable function, there shall
2447      // exist for each argument an implicit conversion sequence
2448      // (13.3.3.1) that converts that argument to the corresponding
2449      // parameter of F.
2450      QualType ParamType = Proto->getArgType(ArgIdx);
2451      Candidate.Conversions[ArgIdx + 1]
2452        = TryCopyInitialization(Args[ArgIdx], ParamType,
2453                                SuppressUserConversions, ForceRValue,
2454                                /*InOverloadResolution=*/true);
2455      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2456            == ImplicitConversionSequence::BadConversion) {
2457        Candidate.Viable = false;
2458        break;
2459      }
2460    } else {
2461      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2462      // argument for which there is no corresponding parameter is
2463      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2464      Candidate.Conversions[ArgIdx + 1].ConversionKind
2465        = ImplicitConversionSequence::EllipsisConversion;
2466    }
2467  }
2468}
2469
2470/// \brief Add a C++ member function template as a candidate to the candidate
2471/// set, using template argument deduction to produce an appropriate member
2472/// function template specialization.
2473void
2474Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2475                                 bool HasExplicitTemplateArgs,
2476                             const TemplateArgumentLoc *ExplicitTemplateArgs,
2477                                 unsigned NumExplicitTemplateArgs,
2478                                 Expr *Object, Expr **Args, unsigned NumArgs,
2479                                 OverloadCandidateSet& CandidateSet,
2480                                 bool SuppressUserConversions,
2481                                 bool ForceRValue) {
2482  if (!CandidateSet.isNewCandidate(MethodTmpl))
2483    return;
2484
2485  // C++ [over.match.funcs]p7:
2486  //   In each case where a candidate is a function template, candidate
2487  //   function template specializations are generated using template argument
2488  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2489  //   candidate functions in the usual way.113) A given name can refer to one
2490  //   or more function templates and also to a set of overloaded non-template
2491  //   functions. In such a case, the candidate functions generated from each
2492  //   function template are combined with the set of non-template candidate
2493  //   functions.
2494  TemplateDeductionInfo Info(Context);
2495  FunctionDecl *Specialization = 0;
2496  if (TemplateDeductionResult Result
2497      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2498                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2499                                Args, NumArgs, Specialization, Info)) {
2500        // FIXME: Record what happened with template argument deduction, so
2501        // that we can give the user a beautiful diagnostic.
2502        (void)Result;
2503        return;
2504      }
2505
2506  // Add the function template specialization produced by template argument
2507  // deduction as a candidate.
2508  assert(Specialization && "Missing member function template specialization?");
2509  assert(isa<CXXMethodDecl>(Specialization) &&
2510         "Specialization is not a member function?");
2511  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2512                     CandidateSet, SuppressUserConversions, ForceRValue);
2513}
2514
2515/// \brief Add a C++ function template specialization as a candidate
2516/// in the candidate set, using template argument deduction to produce
2517/// an appropriate function template specialization.
2518void
2519Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2520                                   bool HasExplicitTemplateArgs,
2521                          const TemplateArgumentLoc *ExplicitTemplateArgs,
2522                                   unsigned NumExplicitTemplateArgs,
2523                                   Expr **Args, unsigned NumArgs,
2524                                   OverloadCandidateSet& CandidateSet,
2525                                   bool SuppressUserConversions,
2526                                   bool ForceRValue) {
2527  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2528    return;
2529
2530  // C++ [over.match.funcs]p7:
2531  //   In each case where a candidate is a function template, candidate
2532  //   function template specializations are generated using template argument
2533  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2534  //   candidate functions in the usual way.113) A given name can refer to one
2535  //   or more function templates and also to a set of overloaded non-template
2536  //   functions. In such a case, the candidate functions generated from each
2537  //   function template are combined with the set of non-template candidate
2538  //   functions.
2539  TemplateDeductionInfo Info(Context);
2540  FunctionDecl *Specialization = 0;
2541  if (TemplateDeductionResult Result
2542        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2543                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2544                                  Args, NumArgs, Specialization, Info)) {
2545    // FIXME: Record what happened with template argument deduction, so
2546    // that we can give the user a beautiful diagnostic.
2547    (void)Result;
2548    return;
2549  }
2550
2551  // Add the function template specialization produced by template argument
2552  // deduction as a candidate.
2553  assert(Specialization && "Missing function template specialization?");
2554  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2555                       SuppressUserConversions, ForceRValue);
2556}
2557
2558/// AddConversionCandidate - Add a C++ conversion function as a
2559/// candidate in the candidate set (C++ [over.match.conv],
2560/// C++ [over.match.copy]). From is the expression we're converting from,
2561/// and ToType is the type that we're eventually trying to convert to
2562/// (which may or may not be the same type as the type that the
2563/// conversion function produces).
2564void
2565Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2566                             Expr *From, QualType ToType,
2567                             OverloadCandidateSet& CandidateSet) {
2568  assert(!Conversion->getDescribedFunctionTemplate() &&
2569         "Conversion function templates use AddTemplateConversionCandidate");
2570
2571  if (!CandidateSet.isNewCandidate(Conversion))
2572    return;
2573
2574  // Add this candidate
2575  CandidateSet.push_back(OverloadCandidate());
2576  OverloadCandidate& Candidate = CandidateSet.back();
2577  Candidate.Function = Conversion;
2578  Candidate.IsSurrogate = false;
2579  Candidate.IgnoreObjectArgument = false;
2580  Candidate.FinalConversion.setAsIdentityConversion();
2581  Candidate.FinalConversion.FromTypePtr
2582    = Conversion->getConversionType().getAsOpaquePtr();
2583  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2584
2585  // Determine the implicit conversion sequence for the implicit
2586  // object parameter.
2587  Candidate.Viable = true;
2588  Candidate.Conversions.resize(1);
2589  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2590  // Conversion functions to a different type in the base class is visible in
2591  // the derived class.  So, a derived to base conversion should not participate
2592  // in overload resolution.
2593  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2594    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2595  if (Candidate.Conversions[0].ConversionKind
2596      == ImplicitConversionSequence::BadConversion) {
2597    Candidate.Viable = false;
2598    return;
2599  }
2600
2601  // We won't go through a user-define type conversion function to convert a
2602  // derived to base as such conversions are given Conversion Rank. They only
2603  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2604  QualType FromCanon
2605    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2606  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2607  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2608    Candidate.Viable = false;
2609    return;
2610  }
2611
2612
2613  // To determine what the conversion from the result of calling the
2614  // conversion function to the type we're eventually trying to
2615  // convert to (ToType), we need to synthesize a call to the
2616  // conversion function and attempt copy initialization from it. This
2617  // makes sure that we get the right semantics with respect to
2618  // lvalues/rvalues and the type. Fortunately, we can allocate this
2619  // call on the stack and we don't need its arguments to be
2620  // well-formed.
2621  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2622                            SourceLocation());
2623  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2624                                CastExpr::CK_FunctionToPointerDecay,
2625                                &ConversionRef, false);
2626
2627  // Note that it is safe to allocate CallExpr on the stack here because
2628  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2629  // allocator).
2630  CallExpr Call(Context, &ConversionFn, 0, 0,
2631                Conversion->getConversionType().getNonReferenceType(),
2632                SourceLocation());
2633  ImplicitConversionSequence ICS =
2634    TryCopyInitialization(&Call, ToType,
2635                          /*SuppressUserConversions=*/true,
2636                          /*ForceRValue=*/false,
2637                          /*InOverloadResolution=*/false);
2638
2639  switch (ICS.ConversionKind) {
2640  case ImplicitConversionSequence::StandardConversion:
2641    Candidate.FinalConversion = ICS.Standard;
2642    break;
2643
2644  case ImplicitConversionSequence::BadConversion:
2645    Candidate.Viable = false;
2646    break;
2647
2648  default:
2649    assert(false &&
2650           "Can only end up with a standard conversion sequence or failure");
2651  }
2652}
2653
2654/// \brief Adds a conversion function template specialization
2655/// candidate to the overload set, using template argument deduction
2656/// to deduce the template arguments of the conversion function
2657/// template from the type that we are converting to (C++
2658/// [temp.deduct.conv]).
2659void
2660Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2661                                     Expr *From, QualType ToType,
2662                                     OverloadCandidateSet &CandidateSet) {
2663  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2664         "Only conversion function templates permitted here");
2665
2666  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2667    return;
2668
2669  TemplateDeductionInfo Info(Context);
2670  CXXConversionDecl *Specialization = 0;
2671  if (TemplateDeductionResult Result
2672        = DeduceTemplateArguments(FunctionTemplate, ToType,
2673                                  Specialization, Info)) {
2674    // FIXME: Record what happened with template argument deduction, so
2675    // that we can give the user a beautiful diagnostic.
2676    (void)Result;
2677    return;
2678  }
2679
2680  // Add the conversion function template specialization produced by
2681  // template argument deduction as a candidate.
2682  assert(Specialization && "Missing function template specialization?");
2683  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2684}
2685
2686/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2687/// converts the given @c Object to a function pointer via the
2688/// conversion function @c Conversion, and then attempts to call it
2689/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2690/// the type of function that we'll eventually be calling.
2691void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2692                                 const FunctionProtoType *Proto,
2693                                 Expr *Object, Expr **Args, unsigned NumArgs,
2694                                 OverloadCandidateSet& CandidateSet) {
2695  if (!CandidateSet.isNewCandidate(Conversion))
2696    return;
2697
2698  CandidateSet.push_back(OverloadCandidate());
2699  OverloadCandidate& Candidate = CandidateSet.back();
2700  Candidate.Function = 0;
2701  Candidate.Surrogate = Conversion;
2702  Candidate.Viable = true;
2703  Candidate.IsSurrogate = true;
2704  Candidate.IgnoreObjectArgument = false;
2705  Candidate.Conversions.resize(NumArgs + 1);
2706
2707  // Determine the implicit conversion sequence for the implicit
2708  // object parameter.
2709  ImplicitConversionSequence ObjectInit
2710    = TryObjectArgumentInitialization(Object, Conversion);
2711  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2712    Candidate.Viable = false;
2713    return;
2714  }
2715
2716  // The first conversion is actually a user-defined conversion whose
2717  // first conversion is ObjectInit's standard conversion (which is
2718  // effectively a reference binding). Record it as such.
2719  Candidate.Conversions[0].ConversionKind
2720    = ImplicitConversionSequence::UserDefinedConversion;
2721  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2722  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2723  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2724  Candidate.Conversions[0].UserDefined.After
2725    = Candidate.Conversions[0].UserDefined.Before;
2726  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2727
2728  // Find the
2729  unsigned NumArgsInProto = Proto->getNumArgs();
2730
2731  // (C++ 13.3.2p2): A candidate function having fewer than m
2732  // parameters is viable only if it has an ellipsis in its parameter
2733  // list (8.3.5).
2734  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2735    Candidate.Viable = false;
2736    return;
2737  }
2738
2739  // Function types don't have any default arguments, so just check if
2740  // we have enough arguments.
2741  if (NumArgs < NumArgsInProto) {
2742    // Not enough arguments.
2743    Candidate.Viable = false;
2744    return;
2745  }
2746
2747  // Determine the implicit conversion sequences for each of the
2748  // arguments.
2749  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2750    if (ArgIdx < NumArgsInProto) {
2751      // (C++ 13.3.2p3): for F to be a viable function, there shall
2752      // exist for each argument an implicit conversion sequence
2753      // (13.3.3.1) that converts that argument to the corresponding
2754      // parameter of F.
2755      QualType ParamType = Proto->getArgType(ArgIdx);
2756      Candidate.Conversions[ArgIdx + 1]
2757        = TryCopyInitialization(Args[ArgIdx], ParamType,
2758                                /*SuppressUserConversions=*/false,
2759                                /*ForceRValue=*/false,
2760                                /*InOverloadResolution=*/false);
2761      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2762            == ImplicitConversionSequence::BadConversion) {
2763        Candidate.Viable = false;
2764        break;
2765      }
2766    } else {
2767      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2768      // argument for which there is no corresponding parameter is
2769      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2770      Candidate.Conversions[ArgIdx + 1].ConversionKind
2771        = ImplicitConversionSequence::EllipsisConversion;
2772    }
2773  }
2774}
2775
2776// FIXME: This will eventually be removed, once we've migrated all of the
2777// operator overloading logic over to the scheme used by binary operators, which
2778// works for template instantiation.
2779void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2780                                 SourceLocation OpLoc,
2781                                 Expr **Args, unsigned NumArgs,
2782                                 OverloadCandidateSet& CandidateSet,
2783                                 SourceRange OpRange) {
2784  FunctionSet Functions;
2785
2786  QualType T1 = Args[0]->getType();
2787  QualType T2;
2788  if (NumArgs > 1)
2789    T2 = Args[1]->getType();
2790
2791  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2792  if (S)
2793    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2794  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2795  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2796  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2797  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2798}
2799
2800/// \brief Add overload candidates for overloaded operators that are
2801/// member functions.
2802///
2803/// Add the overloaded operator candidates that are member functions
2804/// for the operator Op that was used in an operator expression such
2805/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2806/// CandidateSet will store the added overload candidates. (C++
2807/// [over.match.oper]).
2808void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2809                                       SourceLocation OpLoc,
2810                                       Expr **Args, unsigned NumArgs,
2811                                       OverloadCandidateSet& CandidateSet,
2812                                       SourceRange OpRange) {
2813  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2814
2815  // C++ [over.match.oper]p3:
2816  //   For a unary operator @ with an operand of a type whose
2817  //   cv-unqualified version is T1, and for a binary operator @ with
2818  //   a left operand of a type whose cv-unqualified version is T1 and
2819  //   a right operand of a type whose cv-unqualified version is T2,
2820  //   three sets of candidate functions, designated member
2821  //   candidates, non-member candidates and built-in candidates, are
2822  //   constructed as follows:
2823  QualType T1 = Args[0]->getType();
2824  QualType T2;
2825  if (NumArgs > 1)
2826    T2 = Args[1]->getType();
2827
2828  //     -- If T1 is a class type, the set of member candidates is the
2829  //        result of the qualified lookup of T1::operator@
2830  //        (13.3.1.1.1); otherwise, the set of member candidates is
2831  //        empty.
2832  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2833    // Complete the type if it can be completed. Otherwise, we're done.
2834    if (RequireCompleteType(OpLoc, T1, PDiag()))
2835      return;
2836
2837    LookupResult Operators;
2838    LookupQualifiedName(Operators, T1Rec->getDecl(), OpName,
2839                        LookupOrdinaryName, false);
2840    for (LookupResult::iterator Oper = Operators.begin(),
2841                             OperEnd = Operators.end();
2842         Oper != OperEnd;
2843         ++Oper) {
2844      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) {
2845        AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2846                           /*SuppressUserConversions=*/false);
2847        continue;
2848      }
2849
2850      assert(isa<FunctionTemplateDecl>(*Oper) &&
2851             isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper)
2852                                                        ->getTemplatedDecl()) &&
2853             "Expected a member function template");
2854      AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0,
2855                                 Args[0], Args+1, NumArgs - 1, CandidateSet,
2856                                 /*SuppressUserConversions=*/false);
2857    }
2858  }
2859}
2860
2861/// AddBuiltinCandidate - Add a candidate for a built-in
2862/// operator. ResultTy and ParamTys are the result and parameter types
2863/// of the built-in candidate, respectively. Args and NumArgs are the
2864/// arguments being passed to the candidate. IsAssignmentOperator
2865/// should be true when this built-in candidate is an assignment
2866/// operator. NumContextualBoolArguments is the number of arguments
2867/// (at the beginning of the argument list) that will be contextually
2868/// converted to bool.
2869void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2870                               Expr **Args, unsigned NumArgs,
2871                               OverloadCandidateSet& CandidateSet,
2872                               bool IsAssignmentOperator,
2873                               unsigned NumContextualBoolArguments) {
2874  // Add this candidate
2875  CandidateSet.push_back(OverloadCandidate());
2876  OverloadCandidate& Candidate = CandidateSet.back();
2877  Candidate.Function = 0;
2878  Candidate.IsSurrogate = false;
2879  Candidate.IgnoreObjectArgument = false;
2880  Candidate.BuiltinTypes.ResultTy = ResultTy;
2881  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2882    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2883
2884  // Determine the implicit conversion sequences for each of the
2885  // arguments.
2886  Candidate.Viable = true;
2887  Candidate.Conversions.resize(NumArgs);
2888  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2889    // C++ [over.match.oper]p4:
2890    //   For the built-in assignment operators, conversions of the
2891    //   left operand are restricted as follows:
2892    //     -- no temporaries are introduced to hold the left operand, and
2893    //     -- no user-defined conversions are applied to the left
2894    //        operand to achieve a type match with the left-most
2895    //        parameter of a built-in candidate.
2896    //
2897    // We block these conversions by turning off user-defined
2898    // conversions, since that is the only way that initialization of
2899    // a reference to a non-class type can occur from something that
2900    // is not of the same type.
2901    if (ArgIdx < NumContextualBoolArguments) {
2902      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2903             "Contextual conversion to bool requires bool type");
2904      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2905    } else {
2906      Candidate.Conversions[ArgIdx]
2907        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2908                                ArgIdx == 0 && IsAssignmentOperator,
2909                                /*ForceRValue=*/false,
2910                                /*InOverloadResolution=*/false);
2911    }
2912    if (Candidate.Conversions[ArgIdx].ConversionKind
2913        == ImplicitConversionSequence::BadConversion) {
2914      Candidate.Viable = false;
2915      break;
2916    }
2917  }
2918}
2919
2920/// BuiltinCandidateTypeSet - A set of types that will be used for the
2921/// candidate operator functions for built-in operators (C++
2922/// [over.built]). The types are separated into pointer types and
2923/// enumeration types.
2924class BuiltinCandidateTypeSet  {
2925  /// TypeSet - A set of types.
2926  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2927
2928  /// PointerTypes - The set of pointer types that will be used in the
2929  /// built-in candidates.
2930  TypeSet PointerTypes;
2931
2932  /// MemberPointerTypes - The set of member pointer types that will be
2933  /// used in the built-in candidates.
2934  TypeSet MemberPointerTypes;
2935
2936  /// EnumerationTypes - The set of enumeration types that will be
2937  /// used in the built-in candidates.
2938  TypeSet EnumerationTypes;
2939
2940  /// Sema - The semantic analysis instance where we are building the
2941  /// candidate type set.
2942  Sema &SemaRef;
2943
2944  /// Context - The AST context in which we will build the type sets.
2945  ASTContext &Context;
2946
2947  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2948                                               const Qualifiers &VisibleQuals);
2949  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2950
2951public:
2952  /// iterator - Iterates through the types that are part of the set.
2953  typedef TypeSet::iterator iterator;
2954
2955  BuiltinCandidateTypeSet(Sema &SemaRef)
2956    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2957
2958  void AddTypesConvertedFrom(QualType Ty,
2959                             SourceLocation Loc,
2960                             bool AllowUserConversions,
2961                             bool AllowExplicitConversions,
2962                             const Qualifiers &VisibleTypeConversionsQuals);
2963
2964  /// pointer_begin - First pointer type found;
2965  iterator pointer_begin() { return PointerTypes.begin(); }
2966
2967  /// pointer_end - Past the last pointer type found;
2968  iterator pointer_end() { return PointerTypes.end(); }
2969
2970  /// member_pointer_begin - First member pointer type found;
2971  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2972
2973  /// member_pointer_end - Past the last member pointer type found;
2974  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2975
2976  /// enumeration_begin - First enumeration type found;
2977  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2978
2979  /// enumeration_end - Past the last enumeration type found;
2980  iterator enumeration_end() { return EnumerationTypes.end(); }
2981};
2982
2983/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2984/// the set of pointer types along with any more-qualified variants of
2985/// that type. For example, if @p Ty is "int const *", this routine
2986/// will add "int const *", "int const volatile *", "int const
2987/// restrict *", and "int const volatile restrict *" to the set of
2988/// pointer types. Returns true if the add of @p Ty itself succeeded,
2989/// false otherwise.
2990///
2991/// FIXME: what to do about extended qualifiers?
2992bool
2993BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2994                                             const Qualifiers &VisibleQuals) {
2995
2996  // Insert this type.
2997  if (!PointerTypes.insert(Ty))
2998    return false;
2999
3000  const PointerType *PointerTy = Ty->getAs<PointerType>();
3001  assert(PointerTy && "type was not a pointer type!");
3002
3003  QualType PointeeTy = PointerTy->getPointeeType();
3004  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3005  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3006    BaseCVR = Array->getElementType().getCVRQualifiers();
3007  bool hasVolatile = VisibleQuals.hasVolatile();
3008  bool hasRestrict = VisibleQuals.hasRestrict();
3009
3010  // Iterate through all strict supersets of BaseCVR.
3011  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3012    if ((CVR | BaseCVR) != CVR) continue;
3013    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3014    // in the types.
3015    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3016    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3017    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3018    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3019  }
3020
3021  return true;
3022}
3023
3024/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3025/// to the set of pointer types along with any more-qualified variants of
3026/// that type. For example, if @p Ty is "int const *", this routine
3027/// will add "int const *", "int const volatile *", "int const
3028/// restrict *", and "int const volatile restrict *" to the set of
3029/// pointer types. Returns true if the add of @p Ty itself succeeded,
3030/// false otherwise.
3031///
3032/// FIXME: what to do about extended qualifiers?
3033bool
3034BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3035    QualType Ty) {
3036  // Insert this type.
3037  if (!MemberPointerTypes.insert(Ty))
3038    return false;
3039
3040  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3041  assert(PointerTy && "type was not a member pointer type!");
3042
3043  QualType PointeeTy = PointerTy->getPointeeType();
3044  const Type *ClassTy = PointerTy->getClass();
3045
3046  // Iterate through all strict supersets of the pointee type's CVR
3047  // qualifiers.
3048  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3049  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3050    if ((CVR | BaseCVR) != CVR) continue;
3051
3052    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3053    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3054  }
3055
3056  return true;
3057}
3058
3059/// AddTypesConvertedFrom - Add each of the types to which the type @p
3060/// Ty can be implicit converted to the given set of @p Types. We're
3061/// primarily interested in pointer types and enumeration types. We also
3062/// take member pointer types, for the conditional operator.
3063/// AllowUserConversions is true if we should look at the conversion
3064/// functions of a class type, and AllowExplicitConversions if we
3065/// should also include the explicit conversion functions of a class
3066/// type.
3067void
3068BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3069                                               SourceLocation Loc,
3070                                               bool AllowUserConversions,
3071                                               bool AllowExplicitConversions,
3072                                               const Qualifiers &VisibleQuals) {
3073  // Only deal with canonical types.
3074  Ty = Context.getCanonicalType(Ty);
3075
3076  // Look through reference types; they aren't part of the type of an
3077  // expression for the purposes of conversions.
3078  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3079    Ty = RefTy->getPointeeType();
3080
3081  // We don't care about qualifiers on the type.
3082  Ty = Ty.getUnqualifiedType();
3083
3084  // If we're dealing with an array type, decay to the pointer.
3085  if (Ty->isArrayType())
3086    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3087
3088  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3089    QualType PointeeTy = PointerTy->getPointeeType();
3090
3091    // Insert our type, and its more-qualified variants, into the set
3092    // of types.
3093    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3094      return;
3095  } else if (Ty->isMemberPointerType()) {
3096    // Member pointers are far easier, since the pointee can't be converted.
3097    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3098      return;
3099  } else if (Ty->isEnumeralType()) {
3100    EnumerationTypes.insert(Ty);
3101  } else if (AllowUserConversions) {
3102    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3103      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3104        // No conversion functions in incomplete types.
3105        return;
3106      }
3107
3108      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3109      OverloadedFunctionDecl *Conversions
3110        = ClassDecl->getVisibleConversionFunctions();
3111      for (OverloadedFunctionDecl::function_iterator Func
3112             = Conversions->function_begin();
3113           Func != Conversions->function_end(); ++Func) {
3114        CXXConversionDecl *Conv;
3115        FunctionTemplateDecl *ConvTemplate;
3116        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
3117
3118        // Skip conversion function templates; they don't tell us anything
3119        // about which builtin types we can convert to.
3120        if (ConvTemplate)
3121          continue;
3122
3123        if (AllowExplicitConversions || !Conv->isExplicit()) {
3124          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3125                                VisibleQuals);
3126        }
3127      }
3128    }
3129  }
3130}
3131
3132/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3133/// the volatile- and non-volatile-qualified assignment operators for the
3134/// given type to the candidate set.
3135static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3136                                                   QualType T,
3137                                                   Expr **Args,
3138                                                   unsigned NumArgs,
3139                                    OverloadCandidateSet &CandidateSet) {
3140  QualType ParamTypes[2];
3141
3142  // T& operator=(T&, T)
3143  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3144  ParamTypes[1] = T;
3145  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3146                        /*IsAssignmentOperator=*/true);
3147
3148  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3149    // volatile T& operator=(volatile T&, T)
3150    ParamTypes[0]
3151      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3152    ParamTypes[1] = T;
3153    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3154                          /*IsAssignmentOperator=*/true);
3155  }
3156}
3157
3158/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3159/// if any, found in visible type conversion functions found in ArgExpr's type.
3160static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3161    Qualifiers VRQuals;
3162    const RecordType *TyRec;
3163    if (const MemberPointerType *RHSMPType =
3164        ArgExpr->getType()->getAs<MemberPointerType>())
3165      TyRec = cast<RecordType>(RHSMPType->getClass());
3166    else
3167      TyRec = ArgExpr->getType()->getAs<RecordType>();
3168    if (!TyRec) {
3169      // Just to be safe, assume the worst case.
3170      VRQuals.addVolatile();
3171      VRQuals.addRestrict();
3172      return VRQuals;
3173    }
3174
3175    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3176    OverloadedFunctionDecl *Conversions =
3177      ClassDecl->getVisibleConversionFunctions();
3178
3179    for (OverloadedFunctionDecl::function_iterator Func
3180         = Conversions->function_begin();
3181         Func != Conversions->function_end(); ++Func) {
3182      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) {
3183        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3184        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3185          CanTy = ResTypeRef->getPointeeType();
3186        // Need to go down the pointer/mempointer chain and add qualifiers
3187        // as see them.
3188        bool done = false;
3189        while (!done) {
3190          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3191            CanTy = ResTypePtr->getPointeeType();
3192          else if (const MemberPointerType *ResTypeMPtr =
3193                CanTy->getAs<MemberPointerType>())
3194            CanTy = ResTypeMPtr->getPointeeType();
3195          else
3196            done = true;
3197          if (CanTy.isVolatileQualified())
3198            VRQuals.addVolatile();
3199          if (CanTy.isRestrictQualified())
3200            VRQuals.addRestrict();
3201          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3202            return VRQuals;
3203        }
3204      }
3205    }
3206    return VRQuals;
3207}
3208
3209/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3210/// operator overloads to the candidate set (C++ [over.built]), based
3211/// on the operator @p Op and the arguments given. For example, if the
3212/// operator is a binary '+', this routine might add "int
3213/// operator+(int, int)" to cover integer addition.
3214void
3215Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3216                                   SourceLocation OpLoc,
3217                                   Expr **Args, unsigned NumArgs,
3218                                   OverloadCandidateSet& CandidateSet) {
3219  // The set of "promoted arithmetic types", which are the arithmetic
3220  // types are that preserved by promotion (C++ [over.built]p2). Note
3221  // that the first few of these types are the promoted integral
3222  // types; these types need to be first.
3223  // FIXME: What about complex?
3224  const unsigned FirstIntegralType = 0;
3225  const unsigned LastIntegralType = 13;
3226  const unsigned FirstPromotedIntegralType = 7,
3227                 LastPromotedIntegralType = 13;
3228  const unsigned FirstPromotedArithmeticType = 7,
3229                 LastPromotedArithmeticType = 16;
3230  const unsigned NumArithmeticTypes = 16;
3231  QualType ArithmeticTypes[NumArithmeticTypes] = {
3232    Context.BoolTy, Context.CharTy, Context.WCharTy,
3233// FIXME:   Context.Char16Ty, Context.Char32Ty,
3234    Context.SignedCharTy, Context.ShortTy,
3235    Context.UnsignedCharTy, Context.UnsignedShortTy,
3236    Context.IntTy, Context.LongTy, Context.LongLongTy,
3237    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3238    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3239  };
3240  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3241         "Invalid first promoted integral type");
3242  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3243           == Context.UnsignedLongLongTy &&
3244         "Invalid last promoted integral type");
3245  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3246         "Invalid first promoted arithmetic type");
3247  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3248            == Context.LongDoubleTy &&
3249         "Invalid last promoted arithmetic type");
3250
3251  // Find all of the types that the arguments can convert to, but only
3252  // if the operator we're looking at has built-in operator candidates
3253  // that make use of these types.
3254  Qualifiers VisibleTypeConversionsQuals;
3255  VisibleTypeConversionsQuals.addConst();
3256  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3257    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3258
3259  BuiltinCandidateTypeSet CandidateTypes(*this);
3260  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3261      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3262      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3263      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3264      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3265      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3266    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3267      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3268                                           OpLoc,
3269                                           true,
3270                                           (Op == OO_Exclaim ||
3271                                            Op == OO_AmpAmp ||
3272                                            Op == OO_PipePipe),
3273                                           VisibleTypeConversionsQuals);
3274  }
3275
3276  bool isComparison = false;
3277  switch (Op) {
3278  case OO_None:
3279  case NUM_OVERLOADED_OPERATORS:
3280    assert(false && "Expected an overloaded operator");
3281    break;
3282
3283  case OO_Star: // '*' is either unary or binary
3284    if (NumArgs == 1)
3285      goto UnaryStar;
3286    else
3287      goto BinaryStar;
3288    break;
3289
3290  case OO_Plus: // '+' is either unary or binary
3291    if (NumArgs == 1)
3292      goto UnaryPlus;
3293    else
3294      goto BinaryPlus;
3295    break;
3296
3297  case OO_Minus: // '-' is either unary or binary
3298    if (NumArgs == 1)
3299      goto UnaryMinus;
3300    else
3301      goto BinaryMinus;
3302    break;
3303
3304  case OO_Amp: // '&' is either unary or binary
3305    if (NumArgs == 1)
3306      goto UnaryAmp;
3307    else
3308      goto BinaryAmp;
3309
3310  case OO_PlusPlus:
3311  case OO_MinusMinus:
3312    // C++ [over.built]p3:
3313    //
3314    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3315    //   is either volatile or empty, there exist candidate operator
3316    //   functions of the form
3317    //
3318    //       VQ T&      operator++(VQ T&);
3319    //       T          operator++(VQ T&, int);
3320    //
3321    // C++ [over.built]p4:
3322    //
3323    //   For every pair (T, VQ), where T is an arithmetic type other
3324    //   than bool, and VQ is either volatile or empty, there exist
3325    //   candidate operator functions of the form
3326    //
3327    //       VQ T&      operator--(VQ T&);
3328    //       T          operator--(VQ T&, int);
3329    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3330         Arith < NumArithmeticTypes; ++Arith) {
3331      QualType ArithTy = ArithmeticTypes[Arith];
3332      QualType ParamTypes[2]
3333        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3334
3335      // Non-volatile version.
3336      if (NumArgs == 1)
3337        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3338      else
3339        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3340      // heuristic to reduce number of builtin candidates in the set.
3341      // Add volatile version only if there are conversions to a volatile type.
3342      if (VisibleTypeConversionsQuals.hasVolatile()) {
3343        // Volatile version
3344        ParamTypes[0]
3345          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3346        if (NumArgs == 1)
3347          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3348        else
3349          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3350      }
3351    }
3352
3353    // C++ [over.built]p5:
3354    //
3355    //   For every pair (T, VQ), where T is a cv-qualified or
3356    //   cv-unqualified object type, and VQ is either volatile or
3357    //   empty, there exist candidate operator functions of the form
3358    //
3359    //       T*VQ&      operator++(T*VQ&);
3360    //       T*VQ&      operator--(T*VQ&);
3361    //       T*         operator++(T*VQ&, int);
3362    //       T*         operator--(T*VQ&, int);
3363    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3364         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3365      // Skip pointer types that aren't pointers to object types.
3366      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3367        continue;
3368
3369      QualType ParamTypes[2] = {
3370        Context.getLValueReferenceType(*Ptr), Context.IntTy
3371      };
3372
3373      // Without volatile
3374      if (NumArgs == 1)
3375        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3376      else
3377        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3378
3379      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3380          VisibleTypeConversionsQuals.hasVolatile()) {
3381        // With volatile
3382        ParamTypes[0]
3383          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3384        if (NumArgs == 1)
3385          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3386        else
3387          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3388      }
3389    }
3390    break;
3391
3392  UnaryStar:
3393    // C++ [over.built]p6:
3394    //   For every cv-qualified or cv-unqualified object type T, there
3395    //   exist candidate operator functions of the form
3396    //
3397    //       T&         operator*(T*);
3398    //
3399    // C++ [over.built]p7:
3400    //   For every function type T, there exist candidate operator
3401    //   functions of the form
3402    //       T&         operator*(T*);
3403    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3404         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3405      QualType ParamTy = *Ptr;
3406      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3407      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3408                          &ParamTy, Args, 1, CandidateSet);
3409    }
3410    break;
3411
3412  UnaryPlus:
3413    // C++ [over.built]p8:
3414    //   For every type T, there exist candidate operator functions of
3415    //   the form
3416    //
3417    //       T*         operator+(T*);
3418    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3419         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3420      QualType ParamTy = *Ptr;
3421      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3422    }
3423
3424    // Fall through
3425
3426  UnaryMinus:
3427    // C++ [over.built]p9:
3428    //  For every promoted arithmetic type T, there exist candidate
3429    //  operator functions of the form
3430    //
3431    //       T         operator+(T);
3432    //       T         operator-(T);
3433    for (unsigned Arith = FirstPromotedArithmeticType;
3434         Arith < LastPromotedArithmeticType; ++Arith) {
3435      QualType ArithTy = ArithmeticTypes[Arith];
3436      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3437    }
3438    break;
3439
3440  case OO_Tilde:
3441    // C++ [over.built]p10:
3442    //   For every promoted integral type T, there exist candidate
3443    //   operator functions of the form
3444    //
3445    //        T         operator~(T);
3446    for (unsigned Int = FirstPromotedIntegralType;
3447         Int < LastPromotedIntegralType; ++Int) {
3448      QualType IntTy = ArithmeticTypes[Int];
3449      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3450    }
3451    break;
3452
3453  case OO_New:
3454  case OO_Delete:
3455  case OO_Array_New:
3456  case OO_Array_Delete:
3457  case OO_Call:
3458    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3459    break;
3460
3461  case OO_Comma:
3462  UnaryAmp:
3463  case OO_Arrow:
3464    // C++ [over.match.oper]p3:
3465    //   -- For the operator ',', the unary operator '&', or the
3466    //      operator '->', the built-in candidates set is empty.
3467    break;
3468
3469  case OO_EqualEqual:
3470  case OO_ExclaimEqual:
3471    // C++ [over.match.oper]p16:
3472    //   For every pointer to member type T, there exist candidate operator
3473    //   functions of the form
3474    //
3475    //        bool operator==(T,T);
3476    //        bool operator!=(T,T);
3477    for (BuiltinCandidateTypeSet::iterator
3478           MemPtr = CandidateTypes.member_pointer_begin(),
3479           MemPtrEnd = CandidateTypes.member_pointer_end();
3480         MemPtr != MemPtrEnd;
3481         ++MemPtr) {
3482      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3483      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3484    }
3485
3486    // Fall through
3487
3488  case OO_Less:
3489  case OO_Greater:
3490  case OO_LessEqual:
3491  case OO_GreaterEqual:
3492    // C++ [over.built]p15:
3493    //
3494    //   For every pointer or enumeration type T, there exist
3495    //   candidate operator functions of the form
3496    //
3497    //        bool       operator<(T, T);
3498    //        bool       operator>(T, T);
3499    //        bool       operator<=(T, T);
3500    //        bool       operator>=(T, T);
3501    //        bool       operator==(T, T);
3502    //        bool       operator!=(T, T);
3503    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3504         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3505      QualType ParamTypes[2] = { *Ptr, *Ptr };
3506      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3507    }
3508    for (BuiltinCandidateTypeSet::iterator Enum
3509           = CandidateTypes.enumeration_begin();
3510         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3511      QualType ParamTypes[2] = { *Enum, *Enum };
3512      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3513    }
3514
3515    // Fall through.
3516    isComparison = true;
3517
3518  BinaryPlus:
3519  BinaryMinus:
3520    if (!isComparison) {
3521      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3522
3523      // C++ [over.built]p13:
3524      //
3525      //   For every cv-qualified or cv-unqualified object type T
3526      //   there exist candidate operator functions of the form
3527      //
3528      //      T*         operator+(T*, ptrdiff_t);
3529      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3530      //      T*         operator-(T*, ptrdiff_t);
3531      //      T*         operator+(ptrdiff_t, T*);
3532      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3533      //
3534      // C++ [over.built]p14:
3535      //
3536      //   For every T, where T is a pointer to object type, there
3537      //   exist candidate operator functions of the form
3538      //
3539      //      ptrdiff_t  operator-(T, T);
3540      for (BuiltinCandidateTypeSet::iterator Ptr
3541             = CandidateTypes.pointer_begin();
3542           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3543        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3544
3545        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3546        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3547
3548        if (Op == OO_Plus) {
3549          // T* operator+(ptrdiff_t, T*);
3550          ParamTypes[0] = ParamTypes[1];
3551          ParamTypes[1] = *Ptr;
3552          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3553        } else {
3554          // ptrdiff_t operator-(T, T);
3555          ParamTypes[1] = *Ptr;
3556          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3557                              Args, 2, CandidateSet);
3558        }
3559      }
3560    }
3561    // Fall through
3562
3563  case OO_Slash:
3564  BinaryStar:
3565  Conditional:
3566    // C++ [over.built]p12:
3567    //
3568    //   For every pair of promoted arithmetic types L and R, there
3569    //   exist candidate operator functions of the form
3570    //
3571    //        LR         operator*(L, R);
3572    //        LR         operator/(L, R);
3573    //        LR         operator+(L, R);
3574    //        LR         operator-(L, R);
3575    //        bool       operator<(L, R);
3576    //        bool       operator>(L, R);
3577    //        bool       operator<=(L, R);
3578    //        bool       operator>=(L, R);
3579    //        bool       operator==(L, R);
3580    //        bool       operator!=(L, R);
3581    //
3582    //   where LR is the result of the usual arithmetic conversions
3583    //   between types L and R.
3584    //
3585    // C++ [over.built]p24:
3586    //
3587    //   For every pair of promoted arithmetic types L and R, there exist
3588    //   candidate operator functions of the form
3589    //
3590    //        LR       operator?(bool, L, R);
3591    //
3592    //   where LR is the result of the usual arithmetic conversions
3593    //   between types L and R.
3594    // Our candidates ignore the first parameter.
3595    for (unsigned Left = FirstPromotedArithmeticType;
3596         Left < LastPromotedArithmeticType; ++Left) {
3597      for (unsigned Right = FirstPromotedArithmeticType;
3598           Right < LastPromotedArithmeticType; ++Right) {
3599        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3600        QualType Result
3601          = isComparison
3602          ? Context.BoolTy
3603          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3604        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3605      }
3606    }
3607    break;
3608
3609  case OO_Percent:
3610  BinaryAmp:
3611  case OO_Caret:
3612  case OO_Pipe:
3613  case OO_LessLess:
3614  case OO_GreaterGreater:
3615    // C++ [over.built]p17:
3616    //
3617    //   For every pair of promoted integral types L and R, there
3618    //   exist candidate operator functions of the form
3619    //
3620    //      LR         operator%(L, R);
3621    //      LR         operator&(L, R);
3622    //      LR         operator^(L, R);
3623    //      LR         operator|(L, R);
3624    //      L          operator<<(L, R);
3625    //      L          operator>>(L, R);
3626    //
3627    //   where LR is the result of the usual arithmetic conversions
3628    //   between types L and R.
3629    for (unsigned Left = FirstPromotedIntegralType;
3630         Left < LastPromotedIntegralType; ++Left) {
3631      for (unsigned Right = FirstPromotedIntegralType;
3632           Right < LastPromotedIntegralType; ++Right) {
3633        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3634        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3635            ? LandR[0]
3636            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3637        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3638      }
3639    }
3640    break;
3641
3642  case OO_Equal:
3643    // C++ [over.built]p20:
3644    //
3645    //   For every pair (T, VQ), where T is an enumeration or
3646    //   pointer to member type and VQ is either volatile or
3647    //   empty, there exist candidate operator functions of the form
3648    //
3649    //        VQ T&      operator=(VQ T&, T);
3650    for (BuiltinCandidateTypeSet::iterator
3651           Enum = CandidateTypes.enumeration_begin(),
3652           EnumEnd = CandidateTypes.enumeration_end();
3653         Enum != EnumEnd; ++Enum)
3654      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3655                                             CandidateSet);
3656    for (BuiltinCandidateTypeSet::iterator
3657           MemPtr = CandidateTypes.member_pointer_begin(),
3658         MemPtrEnd = CandidateTypes.member_pointer_end();
3659         MemPtr != MemPtrEnd; ++MemPtr)
3660      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3661                                             CandidateSet);
3662      // Fall through.
3663
3664  case OO_PlusEqual:
3665  case OO_MinusEqual:
3666    // C++ [over.built]p19:
3667    //
3668    //   For every pair (T, VQ), where T is any type and VQ is either
3669    //   volatile or empty, there exist candidate operator functions
3670    //   of the form
3671    //
3672    //        T*VQ&      operator=(T*VQ&, T*);
3673    //
3674    // C++ [over.built]p21:
3675    //
3676    //   For every pair (T, VQ), where T is a cv-qualified or
3677    //   cv-unqualified object type and VQ is either volatile or
3678    //   empty, there exist candidate operator functions of the form
3679    //
3680    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3681    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3682    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3683         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3684      QualType ParamTypes[2];
3685      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3686
3687      // non-volatile version
3688      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3689      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3690                          /*IsAssigmentOperator=*/Op == OO_Equal);
3691
3692      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3693          VisibleTypeConversionsQuals.hasVolatile()) {
3694        // volatile version
3695        ParamTypes[0]
3696          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3697        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3698                            /*IsAssigmentOperator=*/Op == OO_Equal);
3699      }
3700    }
3701    // Fall through.
3702
3703  case OO_StarEqual:
3704  case OO_SlashEqual:
3705    // C++ [over.built]p18:
3706    //
3707    //   For every triple (L, VQ, R), where L is an arithmetic type,
3708    //   VQ is either volatile or empty, and R is a promoted
3709    //   arithmetic type, there exist candidate operator functions of
3710    //   the form
3711    //
3712    //        VQ L&      operator=(VQ L&, R);
3713    //        VQ L&      operator*=(VQ L&, R);
3714    //        VQ L&      operator/=(VQ L&, R);
3715    //        VQ L&      operator+=(VQ L&, R);
3716    //        VQ L&      operator-=(VQ L&, R);
3717    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3718      for (unsigned Right = FirstPromotedArithmeticType;
3719           Right < LastPromotedArithmeticType; ++Right) {
3720        QualType ParamTypes[2];
3721        ParamTypes[1] = ArithmeticTypes[Right];
3722
3723        // Add this built-in operator as a candidate (VQ is empty).
3724        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3725        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3726                            /*IsAssigmentOperator=*/Op == OO_Equal);
3727
3728        // Add this built-in operator as a candidate (VQ is 'volatile').
3729        if (VisibleTypeConversionsQuals.hasVolatile()) {
3730          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3731          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3732          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3733                              /*IsAssigmentOperator=*/Op == OO_Equal);
3734        }
3735      }
3736    }
3737    break;
3738
3739  case OO_PercentEqual:
3740  case OO_LessLessEqual:
3741  case OO_GreaterGreaterEqual:
3742  case OO_AmpEqual:
3743  case OO_CaretEqual:
3744  case OO_PipeEqual:
3745    // C++ [over.built]p22:
3746    //
3747    //   For every triple (L, VQ, R), where L is an integral type, VQ
3748    //   is either volatile or empty, and R is a promoted integral
3749    //   type, there exist candidate operator functions of the form
3750    //
3751    //        VQ L&       operator%=(VQ L&, R);
3752    //        VQ L&       operator<<=(VQ L&, R);
3753    //        VQ L&       operator>>=(VQ L&, R);
3754    //        VQ L&       operator&=(VQ L&, R);
3755    //        VQ L&       operator^=(VQ L&, R);
3756    //        VQ L&       operator|=(VQ L&, R);
3757    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3758      for (unsigned Right = FirstPromotedIntegralType;
3759           Right < LastPromotedIntegralType; ++Right) {
3760        QualType ParamTypes[2];
3761        ParamTypes[1] = ArithmeticTypes[Right];
3762
3763        // Add this built-in operator as a candidate (VQ is empty).
3764        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3765        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3766        if (VisibleTypeConversionsQuals.hasVolatile()) {
3767          // Add this built-in operator as a candidate (VQ is 'volatile').
3768          ParamTypes[0] = ArithmeticTypes[Left];
3769          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3770          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3771          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3772        }
3773      }
3774    }
3775    break;
3776
3777  case OO_Exclaim: {
3778    // C++ [over.operator]p23:
3779    //
3780    //   There also exist candidate operator functions of the form
3781    //
3782    //        bool        operator!(bool);
3783    //        bool        operator&&(bool, bool);     [BELOW]
3784    //        bool        operator||(bool, bool);     [BELOW]
3785    QualType ParamTy = Context.BoolTy;
3786    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3787                        /*IsAssignmentOperator=*/false,
3788                        /*NumContextualBoolArguments=*/1);
3789    break;
3790  }
3791
3792  case OO_AmpAmp:
3793  case OO_PipePipe: {
3794    // C++ [over.operator]p23:
3795    //
3796    //   There also exist candidate operator functions of the form
3797    //
3798    //        bool        operator!(bool);            [ABOVE]
3799    //        bool        operator&&(bool, bool);
3800    //        bool        operator||(bool, bool);
3801    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3802    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3803                        /*IsAssignmentOperator=*/false,
3804                        /*NumContextualBoolArguments=*/2);
3805    break;
3806  }
3807
3808  case OO_Subscript:
3809    // C++ [over.built]p13:
3810    //
3811    //   For every cv-qualified or cv-unqualified object type T there
3812    //   exist candidate operator functions of the form
3813    //
3814    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3815    //        T&         operator[](T*, ptrdiff_t);
3816    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3817    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3818    //        T&         operator[](ptrdiff_t, T*);
3819    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3820         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3821      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3822      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3823      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3824
3825      // T& operator[](T*, ptrdiff_t)
3826      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3827
3828      // T& operator[](ptrdiff_t, T*);
3829      ParamTypes[0] = ParamTypes[1];
3830      ParamTypes[1] = *Ptr;
3831      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3832    }
3833    break;
3834
3835  case OO_ArrowStar:
3836    // C++ [over.built]p11:
3837    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3838    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3839    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3840    //    there exist candidate operator functions of the form
3841    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3842    //    where CV12 is the union of CV1 and CV2.
3843    {
3844      for (BuiltinCandidateTypeSet::iterator Ptr =
3845             CandidateTypes.pointer_begin();
3846           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3847        QualType C1Ty = (*Ptr);
3848        QualType C1;
3849        QualifierCollector Q1;
3850        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3851          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3852          if (!isa<RecordType>(C1))
3853            continue;
3854          // heuristic to reduce number of builtin candidates in the set.
3855          // Add volatile/restrict version only if there are conversions to a
3856          // volatile/restrict type.
3857          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3858            continue;
3859          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3860            continue;
3861        }
3862        for (BuiltinCandidateTypeSet::iterator
3863             MemPtr = CandidateTypes.member_pointer_begin(),
3864             MemPtrEnd = CandidateTypes.member_pointer_end();
3865             MemPtr != MemPtrEnd; ++MemPtr) {
3866          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3867          QualType C2 = QualType(mptr->getClass(), 0);
3868          C2 = C2.getUnqualifiedType();
3869          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3870            break;
3871          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3872          // build CV12 T&
3873          QualType T = mptr->getPointeeType();
3874          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3875              T.isVolatileQualified())
3876            continue;
3877          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3878              T.isRestrictQualified())
3879            continue;
3880          T = Q1.apply(T);
3881          QualType ResultTy = Context.getLValueReferenceType(T);
3882          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3883        }
3884      }
3885    }
3886    break;
3887
3888  case OO_Conditional:
3889    // Note that we don't consider the first argument, since it has been
3890    // contextually converted to bool long ago. The candidates below are
3891    // therefore added as binary.
3892    //
3893    // C++ [over.built]p24:
3894    //   For every type T, where T is a pointer or pointer-to-member type,
3895    //   there exist candidate operator functions of the form
3896    //
3897    //        T        operator?(bool, T, T);
3898    //
3899    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3900         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3901      QualType ParamTypes[2] = { *Ptr, *Ptr };
3902      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3903    }
3904    for (BuiltinCandidateTypeSet::iterator Ptr =
3905           CandidateTypes.member_pointer_begin(),
3906         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3907      QualType ParamTypes[2] = { *Ptr, *Ptr };
3908      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3909    }
3910    goto Conditional;
3911  }
3912}
3913
3914/// \brief Add function candidates found via argument-dependent lookup
3915/// to the set of overloading candidates.
3916///
3917/// This routine performs argument-dependent name lookup based on the
3918/// given function name (which may also be an operator name) and adds
3919/// all of the overload candidates found by ADL to the overload
3920/// candidate set (C++ [basic.lookup.argdep]).
3921void
3922Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3923                                           Expr **Args, unsigned NumArgs,
3924                                           bool HasExplicitTemplateArgs,
3925                            const TemplateArgumentLoc *ExplicitTemplateArgs,
3926                                           unsigned NumExplicitTemplateArgs,
3927                                           OverloadCandidateSet& CandidateSet,
3928                                           bool PartialOverloading) {
3929  FunctionSet Functions;
3930
3931  // FIXME: Should we be trafficking in canonical function decls throughout?
3932
3933  // Record all of the function candidates that we've already
3934  // added to the overload set, so that we don't add those same
3935  // candidates a second time.
3936  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3937                                   CandEnd = CandidateSet.end();
3938       Cand != CandEnd; ++Cand)
3939    if (Cand->Function) {
3940      Functions.insert(Cand->Function);
3941      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3942        Functions.insert(FunTmpl);
3943    }
3944
3945  // FIXME: Pass in the explicit template arguments?
3946  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
3947
3948  // Erase all of the candidates we already knew about.
3949  // FIXME: This is suboptimal. Is there a better way?
3950  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3951                                   CandEnd = CandidateSet.end();
3952       Cand != CandEnd; ++Cand)
3953    if (Cand->Function) {
3954      Functions.erase(Cand->Function);
3955      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3956        Functions.erase(FunTmpl);
3957    }
3958
3959  // For each of the ADL candidates we found, add it to the overload
3960  // set.
3961  for (FunctionSet::iterator Func = Functions.begin(),
3962                          FuncEnd = Functions.end();
3963       Func != FuncEnd; ++Func) {
3964    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3965      if (HasExplicitTemplateArgs)
3966        continue;
3967
3968      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3969                           false, false, PartialOverloading);
3970    } else
3971      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3972                                   HasExplicitTemplateArgs,
3973                                   ExplicitTemplateArgs,
3974                                   NumExplicitTemplateArgs,
3975                                   Args, NumArgs, CandidateSet);
3976  }
3977}
3978
3979/// isBetterOverloadCandidate - Determines whether the first overload
3980/// candidate is a better candidate than the second (C++ 13.3.3p1).
3981bool
3982Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3983                                const OverloadCandidate& Cand2) {
3984  // Define viable functions to be better candidates than non-viable
3985  // functions.
3986  if (!Cand2.Viable)
3987    return Cand1.Viable;
3988  else if (!Cand1.Viable)
3989    return false;
3990
3991  // C++ [over.match.best]p1:
3992  //
3993  //   -- if F is a static member function, ICS1(F) is defined such
3994  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3995  //      any function G, and, symmetrically, ICS1(G) is neither
3996  //      better nor worse than ICS1(F).
3997  unsigned StartArg = 0;
3998  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3999    StartArg = 1;
4000
4001  // C++ [over.match.best]p1:
4002  //   A viable function F1 is defined to be a better function than another
4003  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4004  //   conversion sequence than ICSi(F2), and then...
4005  unsigned NumArgs = Cand1.Conversions.size();
4006  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4007  bool HasBetterConversion = false;
4008  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4009    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4010                                               Cand2.Conversions[ArgIdx])) {
4011    case ImplicitConversionSequence::Better:
4012      // Cand1 has a better conversion sequence.
4013      HasBetterConversion = true;
4014      break;
4015
4016    case ImplicitConversionSequence::Worse:
4017      // Cand1 can't be better than Cand2.
4018      return false;
4019
4020    case ImplicitConversionSequence::Indistinguishable:
4021      // Do nothing.
4022      break;
4023    }
4024  }
4025
4026  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4027  //       ICSj(F2), or, if not that,
4028  if (HasBetterConversion)
4029    return true;
4030
4031  //     - F1 is a non-template function and F2 is a function template
4032  //       specialization, or, if not that,
4033  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4034      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4035    return true;
4036
4037  //   -- F1 and F2 are function template specializations, and the function
4038  //      template for F1 is more specialized than the template for F2
4039  //      according to the partial ordering rules described in 14.5.5.2, or,
4040  //      if not that,
4041  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4042      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4043    if (FunctionTemplateDecl *BetterTemplate
4044          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4045                                       Cand2.Function->getPrimaryTemplate(),
4046                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4047                                                             : TPOC_Call))
4048      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4049
4050  //   -- the context is an initialization by user-defined conversion
4051  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4052  //      from the return type of F1 to the destination type (i.e.,
4053  //      the type of the entity being initialized) is a better
4054  //      conversion sequence than the standard conversion sequence
4055  //      from the return type of F2 to the destination type.
4056  if (Cand1.Function && Cand2.Function &&
4057      isa<CXXConversionDecl>(Cand1.Function) &&
4058      isa<CXXConversionDecl>(Cand2.Function)) {
4059    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4060                                               Cand2.FinalConversion)) {
4061    case ImplicitConversionSequence::Better:
4062      // Cand1 has a better conversion sequence.
4063      return true;
4064
4065    case ImplicitConversionSequence::Worse:
4066      // Cand1 can't be better than Cand2.
4067      return false;
4068
4069    case ImplicitConversionSequence::Indistinguishable:
4070      // Do nothing
4071      break;
4072    }
4073  }
4074
4075  return false;
4076}
4077
4078/// \brief Computes the best viable function (C++ 13.3.3)
4079/// within an overload candidate set.
4080///
4081/// \param CandidateSet the set of candidate functions.
4082///
4083/// \param Loc the location of the function name (or operator symbol) for
4084/// which overload resolution occurs.
4085///
4086/// \param Best f overload resolution was successful or found a deleted
4087/// function, Best points to the candidate function found.
4088///
4089/// \returns The result of overload resolution.
4090Sema::OverloadingResult
4091Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4092                         SourceLocation Loc,
4093                         OverloadCandidateSet::iterator& Best) {
4094  // Find the best viable function.
4095  Best = CandidateSet.end();
4096  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4097       Cand != CandidateSet.end(); ++Cand) {
4098    if (Cand->Viable) {
4099      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4100        Best = Cand;
4101    }
4102  }
4103
4104  // If we didn't find any viable functions, abort.
4105  if (Best == CandidateSet.end())
4106    return OR_No_Viable_Function;
4107
4108  // Make sure that this function is better than every other viable
4109  // function. If not, we have an ambiguity.
4110  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4111       Cand != CandidateSet.end(); ++Cand) {
4112    if (Cand->Viable &&
4113        Cand != Best &&
4114        !isBetterOverloadCandidate(*Best, *Cand)) {
4115      Best = CandidateSet.end();
4116      return OR_Ambiguous;
4117    }
4118  }
4119
4120  // Best is the best viable function.
4121  if (Best->Function &&
4122      (Best->Function->isDeleted() ||
4123       Best->Function->getAttr<UnavailableAttr>()))
4124    return OR_Deleted;
4125
4126  // C++ [basic.def.odr]p2:
4127  //   An overloaded function is used if it is selected by overload resolution
4128  //   when referred to from a potentially-evaluated expression. [Note: this
4129  //   covers calls to named functions (5.2.2), operator overloading
4130  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4131  //   placement new (5.3.4), as well as non-default initialization (8.5).
4132  if (Best->Function)
4133    MarkDeclarationReferenced(Loc, Best->Function);
4134  return OR_Success;
4135}
4136
4137/// PrintOverloadCandidates - When overload resolution fails, prints
4138/// diagnostic messages containing the candidates in the candidate
4139/// set. If OnlyViable is true, only viable candidates will be printed.
4140void
4141Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4142                              bool OnlyViable,
4143                              const char *Opc,
4144                              SourceLocation OpLoc) {
4145  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4146                             LastCand = CandidateSet.end();
4147  bool Reported = false;
4148  for (; Cand != LastCand; ++Cand) {
4149    if (Cand->Viable || !OnlyViable) {
4150      if (Cand->Function) {
4151        if (Cand->Function->isDeleted() ||
4152            Cand->Function->getAttr<UnavailableAttr>()) {
4153          // Deleted or "unavailable" function.
4154          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4155            << Cand->Function->isDeleted();
4156        } else if (FunctionTemplateDecl *FunTmpl
4157                     = Cand->Function->getPrimaryTemplate()) {
4158          // Function template specialization
4159          // FIXME: Give a better reason!
4160          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4161            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4162                              *Cand->Function->getTemplateSpecializationArgs());
4163        } else {
4164          // Normal function
4165          bool errReported = false;
4166          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4167            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4168              const ImplicitConversionSequence &Conversion =
4169                                                        Cand->Conversions[i];
4170              if ((Conversion.ConversionKind !=
4171                   ImplicitConversionSequence::BadConversion) ||
4172                  Conversion.ConversionFunctionSet.size() == 0)
4173                continue;
4174              Diag(Cand->Function->getLocation(),
4175                   diag::err_ovl_candidate_not_viable) << (i+1);
4176              errReported = true;
4177              for (int j = Conversion.ConversionFunctionSet.size()-1;
4178                   j >= 0; j--) {
4179                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4180                Diag(Func->getLocation(), diag::err_ovl_candidate);
4181              }
4182            }
4183          }
4184          if (!errReported)
4185            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4186        }
4187      } else if (Cand->IsSurrogate) {
4188        // Desugar the type of the surrogate down to a function type,
4189        // retaining as many typedefs as possible while still showing
4190        // the function type (and, therefore, its parameter types).
4191        QualType FnType = Cand->Surrogate->getConversionType();
4192        bool isLValueReference = false;
4193        bool isRValueReference = false;
4194        bool isPointer = false;
4195        if (const LValueReferenceType *FnTypeRef =
4196              FnType->getAs<LValueReferenceType>()) {
4197          FnType = FnTypeRef->getPointeeType();
4198          isLValueReference = true;
4199        } else if (const RValueReferenceType *FnTypeRef =
4200                     FnType->getAs<RValueReferenceType>()) {
4201          FnType = FnTypeRef->getPointeeType();
4202          isRValueReference = true;
4203        }
4204        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4205          FnType = FnTypePtr->getPointeeType();
4206          isPointer = true;
4207        }
4208        // Desugar down to a function type.
4209        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4210        // Reconstruct the pointer/reference as appropriate.
4211        if (isPointer) FnType = Context.getPointerType(FnType);
4212        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4213        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4214
4215        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4216          << FnType;
4217      } else if (OnlyViable) {
4218        assert(Cand->Conversions.size() <= 2 &&
4219               "builtin-binary-operator-not-binary");
4220        std::string TypeStr("operator");
4221        TypeStr += Opc;
4222        TypeStr += "(";
4223        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4224        if (Cand->Conversions.size() == 1) {
4225          TypeStr += ")";
4226          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4227        }
4228        else {
4229          TypeStr += ", ";
4230          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4231          TypeStr += ")";
4232          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4233        }
4234      }
4235      else if (!Cand->Viable && !Reported) {
4236        // Non-viability might be due to ambiguous user-defined conversions,
4237        // needed for built-in operators. Report them as well, but only once
4238        // as we have typically many built-in candidates.
4239        unsigned NoOperands = Cand->Conversions.size();
4240        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4241          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4242          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4243              ICS.ConversionFunctionSet.empty())
4244            continue;
4245          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4246                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4247            QualType FromTy =
4248              QualType(
4249                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4250            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4251                  << FromTy << Func->getConversionType();
4252          }
4253          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4254            FunctionDecl *Func =
4255              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4256            Diag(Func->getLocation(),diag::err_ovl_candidate);
4257          }
4258        }
4259        Reported = true;
4260      }
4261    }
4262  }
4263}
4264
4265/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4266/// an overloaded function (C++ [over.over]), where @p From is an
4267/// expression with overloaded function type and @p ToType is the type
4268/// we're trying to resolve to. For example:
4269///
4270/// @code
4271/// int f(double);
4272/// int f(int);
4273///
4274/// int (*pfd)(double) = f; // selects f(double)
4275/// @endcode
4276///
4277/// This routine returns the resulting FunctionDecl if it could be
4278/// resolved, and NULL otherwise. When @p Complain is true, this
4279/// routine will emit diagnostics if there is an error.
4280FunctionDecl *
4281Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4282                                         bool Complain) {
4283  QualType FunctionType = ToType;
4284  bool IsMember = false;
4285  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4286    FunctionType = ToTypePtr->getPointeeType();
4287  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4288    FunctionType = ToTypeRef->getPointeeType();
4289  else if (const MemberPointerType *MemTypePtr =
4290                    ToType->getAs<MemberPointerType>()) {
4291    FunctionType = MemTypePtr->getPointeeType();
4292    IsMember = true;
4293  }
4294
4295  // We only look at pointers or references to functions.
4296  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4297  if (!FunctionType->isFunctionType())
4298    return 0;
4299
4300  // Find the actual overloaded function declaration.
4301  OverloadedFunctionDecl *Ovl = 0;
4302
4303  // C++ [over.over]p1:
4304  //   [...] [Note: any redundant set of parentheses surrounding the
4305  //   overloaded function name is ignored (5.1). ]
4306  Expr *OvlExpr = From->IgnoreParens();
4307
4308  // C++ [over.over]p1:
4309  //   [...] The overloaded function name can be preceded by the &
4310  //   operator.
4311  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4312    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4313      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4314  }
4315
4316  bool HasExplicitTemplateArgs = false;
4317  const TemplateArgumentLoc *ExplicitTemplateArgs = 0;
4318  unsigned NumExplicitTemplateArgs = 0;
4319
4320  // Try to dig out the overloaded function.
4321  FunctionTemplateDecl *FunctionTemplate = 0;
4322  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4323    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4324    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4325    HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList();
4326    ExplicitTemplateArgs = DR->getTemplateArgs();
4327    NumExplicitTemplateArgs = DR->getNumTemplateArgs();
4328  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4329    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4330    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4331    HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList();
4332    ExplicitTemplateArgs = ME->getTemplateArgs();
4333    NumExplicitTemplateArgs = ME->getNumTemplateArgs();
4334  } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) {
4335    TemplateName Name = TIRE->getTemplateName();
4336    Ovl = Name.getAsOverloadedFunctionDecl();
4337    FunctionTemplate =
4338      dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4339
4340    HasExplicitTemplateArgs = true;
4341    ExplicitTemplateArgs = TIRE->getTemplateArgs();
4342    NumExplicitTemplateArgs = TIRE->getNumTemplateArgs();
4343  }
4344
4345  // If there's no overloaded function declaration or function template,
4346  // we're done.
4347  if (!Ovl && !FunctionTemplate)
4348    return 0;
4349
4350  OverloadIterator Fun;
4351  if (Ovl)
4352    Fun = Ovl;
4353  else
4354    Fun = FunctionTemplate;
4355
4356  // Look through all of the overloaded functions, searching for one
4357  // whose type matches exactly.
4358  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4359  bool FoundNonTemplateFunction = false;
4360  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4361    // C++ [over.over]p3:
4362    //   Non-member functions and static member functions match
4363    //   targets of type "pointer-to-function" or "reference-to-function."
4364    //   Nonstatic member functions match targets of
4365    //   type "pointer-to-member-function."
4366    // Note that according to DR 247, the containing class does not matter.
4367
4368    if (FunctionTemplateDecl *FunctionTemplate
4369          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4370      if (CXXMethodDecl *Method
4371            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4372        // Skip non-static function templates when converting to pointer, and
4373        // static when converting to member pointer.
4374        if (Method->isStatic() == IsMember)
4375          continue;
4376      } else if (IsMember)
4377        continue;
4378
4379      // C++ [over.over]p2:
4380      //   If the name is a function template, template argument deduction is
4381      //   done (14.8.2.2), and if the argument deduction succeeds, the
4382      //   resulting template argument list is used to generate a single
4383      //   function template specialization, which is added to the set of
4384      //   overloaded functions considered.
4385      // FIXME: We don't really want to build the specialization here, do we?
4386      FunctionDecl *Specialization = 0;
4387      TemplateDeductionInfo Info(Context);
4388      if (TemplateDeductionResult Result
4389            = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
4390                                      ExplicitTemplateArgs,
4391                                      NumExplicitTemplateArgs,
4392                                      FunctionType, Specialization, Info)) {
4393        // FIXME: make a note of the failed deduction for diagnostics.
4394        (void)Result;
4395      } else {
4396        // FIXME: If the match isn't exact, shouldn't we just drop this as
4397        // a candidate? Find a testcase before changing the code.
4398        assert(FunctionType
4399                 == Context.getCanonicalType(Specialization->getType()));
4400        Matches.insert(
4401                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4402      }
4403    }
4404
4405    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4406      // Skip non-static functions when converting to pointer, and static
4407      // when converting to member pointer.
4408      if (Method->isStatic() == IsMember)
4409        continue;
4410
4411      // If we have explicit template arguments, skip non-templates.
4412      if (HasExplicitTemplateArgs)
4413        continue;
4414    } else if (IsMember)
4415      continue;
4416
4417    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4418      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4419        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4420        FoundNonTemplateFunction = true;
4421      }
4422    }
4423  }
4424
4425  // If there were 0 or 1 matches, we're done.
4426  if (Matches.empty())
4427    return 0;
4428  else if (Matches.size() == 1) {
4429    FunctionDecl *Result = *Matches.begin();
4430    MarkDeclarationReferenced(From->getLocStart(), Result);
4431    return Result;
4432  }
4433
4434  // C++ [over.over]p4:
4435  //   If more than one function is selected, [...]
4436  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4437  if (!FoundNonTemplateFunction) {
4438    //   [...] and any given function template specialization F1 is
4439    //   eliminated if the set contains a second function template
4440    //   specialization whose function template is more specialized
4441    //   than the function template of F1 according to the partial
4442    //   ordering rules of 14.5.5.2.
4443
4444    // The algorithm specified above is quadratic. We instead use a
4445    // two-pass algorithm (similar to the one used to identify the
4446    // best viable function in an overload set) that identifies the
4447    // best function template (if it exists).
4448    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4449                                                         Matches.end());
4450    FunctionDecl *Result =
4451        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4452                           TPOC_Other, From->getLocStart(),
4453                           PDiag(),
4454                           PDiag(diag::err_addr_ovl_ambiguous)
4455                               << TemplateMatches[0]->getDeclName(),
4456                           PDiag(diag::err_ovl_template_candidate));
4457    MarkDeclarationReferenced(From->getLocStart(), Result);
4458    return Result;
4459  }
4460
4461  //   [...] any function template specializations in the set are
4462  //   eliminated if the set also contains a non-template function, [...]
4463  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4464  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4465    if ((*M)->getPrimaryTemplate() == 0)
4466      RemainingMatches.push_back(*M);
4467
4468  // [...] After such eliminations, if any, there shall remain exactly one
4469  // selected function.
4470  if (RemainingMatches.size() == 1) {
4471    FunctionDecl *Result = RemainingMatches.front();
4472    MarkDeclarationReferenced(From->getLocStart(), Result);
4473    return Result;
4474  }
4475
4476  // FIXME: We should probably return the same thing that BestViableFunction
4477  // returns (even if we issue the diagnostics here).
4478  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4479    << RemainingMatches[0]->getDeclName();
4480  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4481    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4482  return 0;
4483}
4484
4485/// \brief Add a single candidate to the overload set.
4486static void AddOverloadedCallCandidate(Sema &S,
4487                                       AnyFunctionDecl Callee,
4488                                       bool &ArgumentDependentLookup,
4489                                       bool HasExplicitTemplateArgs,
4490                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4491                                       unsigned NumExplicitTemplateArgs,
4492                                       Expr **Args, unsigned NumArgs,
4493                                       OverloadCandidateSet &CandidateSet,
4494                                       bool PartialOverloading) {
4495  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4496    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4497    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4498                           PartialOverloading);
4499
4500    if (Func->getDeclContext()->isRecord() ||
4501        Func->getDeclContext()->isFunctionOrMethod())
4502      ArgumentDependentLookup = false;
4503    return;
4504  }
4505
4506  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4507  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4508                                 ExplicitTemplateArgs,
4509                                 NumExplicitTemplateArgs,
4510                                 Args, NumArgs, CandidateSet);
4511
4512  if (FuncTemplate->getDeclContext()->isRecord())
4513    ArgumentDependentLookup = false;
4514}
4515
4516/// \brief Add the overload candidates named by callee and/or found by argument
4517/// dependent lookup to the given overload set.
4518void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4519                                       DeclarationName &UnqualifiedName,
4520                                       bool &ArgumentDependentLookup,
4521                                       bool HasExplicitTemplateArgs,
4522                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4523                                       unsigned NumExplicitTemplateArgs,
4524                                       Expr **Args, unsigned NumArgs,
4525                                       OverloadCandidateSet &CandidateSet,
4526                                       bool PartialOverloading) {
4527  // Add the functions denoted by Callee to the set of candidate
4528  // functions. While we're doing so, track whether argument-dependent
4529  // lookup still applies, per:
4530  //
4531  // C++0x [basic.lookup.argdep]p3:
4532  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4533  //   and let Y be the lookup set produced by argument dependent
4534  //   lookup (defined as follows). If X contains
4535  //
4536  //     -- a declaration of a class member, or
4537  //
4538  //     -- a block-scope function declaration that is not a
4539  //        using-declaration (FIXME: check for using declaration), or
4540  //
4541  //     -- a declaration that is neither a function or a function
4542  //        template
4543  //
4544  //   then Y is empty.
4545  if (!Callee) {
4546    // Nothing to do.
4547  } else if (OverloadedFunctionDecl *Ovl
4548               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4549    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4550                                                FuncEnd = Ovl->function_end();
4551         Func != FuncEnd; ++Func)
4552      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4553                                 HasExplicitTemplateArgs,
4554                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4555                                 Args, NumArgs, CandidateSet,
4556                                 PartialOverloading);
4557  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4558    AddOverloadedCallCandidate(*this,
4559                               AnyFunctionDecl::getFromNamedDecl(Callee),
4560                               ArgumentDependentLookup,
4561                               HasExplicitTemplateArgs,
4562                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4563                               Args, NumArgs, CandidateSet,
4564                               PartialOverloading);
4565  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4566  // checking dynamically.
4567
4568  if (Callee)
4569    UnqualifiedName = Callee->getDeclName();
4570
4571  if (ArgumentDependentLookup)
4572    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4573                                         HasExplicitTemplateArgs,
4574                                         ExplicitTemplateArgs,
4575                                         NumExplicitTemplateArgs,
4576                                         CandidateSet,
4577                                         PartialOverloading);
4578}
4579
4580/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4581/// (which eventually refers to the declaration Func) and the call
4582/// arguments Args/NumArgs, attempt to resolve the function call down
4583/// to a specific function. If overload resolution succeeds, returns
4584/// the function declaration produced by overload
4585/// resolution. Otherwise, emits diagnostics, deletes all of the
4586/// arguments and Fn, and returns NULL.
4587FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4588                                            DeclarationName UnqualifiedName,
4589                                            bool HasExplicitTemplateArgs,
4590                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4591                                            unsigned NumExplicitTemplateArgs,
4592                                            SourceLocation LParenLoc,
4593                                            Expr **Args, unsigned NumArgs,
4594                                            SourceLocation *CommaLocs,
4595                                            SourceLocation RParenLoc,
4596                                            bool &ArgumentDependentLookup) {
4597  OverloadCandidateSet CandidateSet;
4598
4599  // Add the functions denoted by Callee to the set of candidate
4600  // functions.
4601  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4602                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4603                              NumExplicitTemplateArgs, Args, NumArgs,
4604                              CandidateSet);
4605  OverloadCandidateSet::iterator Best;
4606  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4607  case OR_Success:
4608    return Best->Function;
4609
4610  case OR_No_Viable_Function:
4611    Diag(Fn->getSourceRange().getBegin(),
4612         diag::err_ovl_no_viable_function_in_call)
4613      << UnqualifiedName << Fn->getSourceRange();
4614    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4615    break;
4616
4617  case OR_Ambiguous:
4618    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4619      << UnqualifiedName << Fn->getSourceRange();
4620    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4621    break;
4622
4623  case OR_Deleted:
4624    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4625      << Best->Function->isDeleted()
4626      << UnqualifiedName
4627      << Fn->getSourceRange();
4628    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4629    break;
4630  }
4631
4632  // Overload resolution failed. Destroy all of the subexpressions and
4633  // return NULL.
4634  Fn->Destroy(Context);
4635  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4636    Args[Arg]->Destroy(Context);
4637  return 0;
4638}
4639
4640/// \brief Create a unary operation that may resolve to an overloaded
4641/// operator.
4642///
4643/// \param OpLoc The location of the operator itself (e.g., '*').
4644///
4645/// \param OpcIn The UnaryOperator::Opcode that describes this
4646/// operator.
4647///
4648/// \param Functions The set of non-member functions that will be
4649/// considered by overload resolution. The caller needs to build this
4650/// set based on the context using, e.g.,
4651/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4652/// set should not contain any member functions; those will be added
4653/// by CreateOverloadedUnaryOp().
4654///
4655/// \param input The input argument.
4656Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4657                                                     unsigned OpcIn,
4658                                                     FunctionSet &Functions,
4659                                                     ExprArg input) {
4660  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4661  Expr *Input = (Expr *)input.get();
4662
4663  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4664  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4665  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4666
4667  Expr *Args[2] = { Input, 0 };
4668  unsigned NumArgs = 1;
4669
4670  // For post-increment and post-decrement, add the implicit '0' as
4671  // the second argument, so that we know this is a post-increment or
4672  // post-decrement.
4673  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4674    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4675    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4676                                           SourceLocation());
4677    NumArgs = 2;
4678  }
4679
4680  if (Input->isTypeDependent()) {
4681    OverloadedFunctionDecl *Overloads
4682      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4683    for (FunctionSet::iterator Func = Functions.begin(),
4684                            FuncEnd = Functions.end();
4685         Func != FuncEnd; ++Func)
4686      Overloads->addOverload(*Func);
4687
4688    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4689                                                OpLoc, false, false);
4690
4691    input.release();
4692    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4693                                                   &Args[0], NumArgs,
4694                                                   Context.DependentTy,
4695                                                   OpLoc));
4696  }
4697
4698  // Build an empty overload set.
4699  OverloadCandidateSet CandidateSet;
4700
4701  // Add the candidates from the given function set.
4702  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4703
4704  // Add operator candidates that are member functions.
4705  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4706
4707  // Add builtin operator candidates.
4708  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4709
4710  // Perform overload resolution.
4711  OverloadCandidateSet::iterator Best;
4712  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4713  case OR_Success: {
4714    // We found a built-in operator or an overloaded operator.
4715    FunctionDecl *FnDecl = Best->Function;
4716
4717    if (FnDecl) {
4718      // We matched an overloaded operator. Build a call to that
4719      // operator.
4720
4721      // Convert the arguments.
4722      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4723        if (PerformObjectArgumentInitialization(Input, Method))
4724          return ExprError();
4725      } else {
4726        // Convert the arguments.
4727        if (PerformCopyInitialization(Input,
4728                                      FnDecl->getParamDecl(0)->getType(),
4729                                      "passing"))
4730          return ExprError();
4731      }
4732
4733      // Determine the result type
4734      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4735
4736      // Build the actual expression node.
4737      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4738                                               SourceLocation());
4739      UsualUnaryConversions(FnExpr);
4740
4741      input.release();
4742
4743      ExprOwningPtr<CallExpr> TheCall(this,
4744        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4745                                          &Input, 1, ResultTy, OpLoc));
4746
4747      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4748                              FnDecl))
4749        return ExprError();
4750
4751      return MaybeBindToTemporary(TheCall.release());
4752    } else {
4753      // We matched a built-in operator. Convert the arguments, then
4754      // break out so that we will build the appropriate built-in
4755      // operator node.
4756        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4757                                      Best->Conversions[0], "passing"))
4758          return ExprError();
4759
4760        break;
4761      }
4762    }
4763
4764    case OR_No_Viable_Function:
4765      // No viable function; fall through to handling this as a
4766      // built-in operator, which will produce an error message for us.
4767      break;
4768
4769    case OR_Ambiguous:
4770      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4771          << UnaryOperator::getOpcodeStr(Opc)
4772          << Input->getSourceRange();
4773      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4774                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4775      return ExprError();
4776
4777    case OR_Deleted:
4778      Diag(OpLoc, diag::err_ovl_deleted_oper)
4779        << Best->Function->isDeleted()
4780        << UnaryOperator::getOpcodeStr(Opc)
4781        << Input->getSourceRange();
4782      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4783      return ExprError();
4784    }
4785
4786  // Either we found no viable overloaded operator or we matched a
4787  // built-in operator. In either case, fall through to trying to
4788  // build a built-in operation.
4789  input.release();
4790  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4791}
4792
4793/// \brief Create a binary operation that may resolve to an overloaded
4794/// operator.
4795///
4796/// \param OpLoc The location of the operator itself (e.g., '+').
4797///
4798/// \param OpcIn The BinaryOperator::Opcode that describes this
4799/// operator.
4800///
4801/// \param Functions The set of non-member functions that will be
4802/// considered by overload resolution. The caller needs to build this
4803/// set based on the context using, e.g.,
4804/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4805/// set should not contain any member functions; those will be added
4806/// by CreateOverloadedBinOp().
4807///
4808/// \param LHS Left-hand argument.
4809/// \param RHS Right-hand argument.
4810Sema::OwningExprResult
4811Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4812                            unsigned OpcIn,
4813                            FunctionSet &Functions,
4814                            Expr *LHS, Expr *RHS) {
4815  Expr *Args[2] = { LHS, RHS };
4816  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4817
4818  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4819  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4820  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4821
4822  // If either side is type-dependent, create an appropriate dependent
4823  // expression.
4824  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4825    if (Functions.empty()) {
4826      // If there are no functions to store, just build a dependent
4827      // BinaryOperator or CompoundAssignment.
4828      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
4829        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4830                                                  Context.DependentTy, OpLoc));
4831
4832      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
4833                                                        Context.DependentTy,
4834                                                        Context.DependentTy,
4835                                                        Context.DependentTy,
4836                                                        OpLoc));
4837    }
4838
4839    OverloadedFunctionDecl *Overloads
4840      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4841    for (FunctionSet::iterator Func = Functions.begin(),
4842                            FuncEnd = Functions.end();
4843         Func != FuncEnd; ++Func)
4844      Overloads->addOverload(*Func);
4845
4846    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4847                                                OpLoc, false, false);
4848
4849    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4850                                                   Args, 2,
4851                                                   Context.DependentTy,
4852                                                   OpLoc));
4853  }
4854
4855  // If this is the .* operator, which is not overloadable, just
4856  // create a built-in binary operator.
4857  if (Opc == BinaryOperator::PtrMemD)
4858    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4859
4860  // If this is one of the assignment operators, we only perform
4861  // overload resolution if the left-hand side is a class or
4862  // enumeration type (C++ [expr.ass]p3).
4863  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4864      !Args[0]->getType()->isOverloadableType())
4865    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4866
4867  // Build an empty overload set.
4868  OverloadCandidateSet CandidateSet;
4869
4870  // Add the candidates from the given function set.
4871  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4872
4873  // Add operator candidates that are member functions.
4874  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4875
4876  // Add builtin operator candidates.
4877  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4878
4879  // Perform overload resolution.
4880  OverloadCandidateSet::iterator Best;
4881  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4882    case OR_Success: {
4883      // We found a built-in operator or an overloaded operator.
4884      FunctionDecl *FnDecl = Best->Function;
4885
4886      if (FnDecl) {
4887        // We matched an overloaded operator. Build a call to that
4888        // operator.
4889
4890        // Convert the arguments.
4891        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4892          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4893              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4894                                        "passing"))
4895            return ExprError();
4896        } else {
4897          // Convert the arguments.
4898          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4899                                        "passing") ||
4900              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4901                                        "passing"))
4902            return ExprError();
4903        }
4904
4905        // Determine the result type
4906        QualType ResultTy
4907          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4908        ResultTy = ResultTy.getNonReferenceType();
4909
4910        // Build the actual expression node.
4911        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4912                                                 OpLoc);
4913        UsualUnaryConversions(FnExpr);
4914
4915        ExprOwningPtr<CXXOperatorCallExpr>
4916          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4917                                                          Args, 2, ResultTy,
4918                                                          OpLoc));
4919
4920        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4921                                FnDecl))
4922          return ExprError();
4923
4924        return MaybeBindToTemporary(TheCall.release());
4925      } else {
4926        // We matched a built-in operator. Convert the arguments, then
4927        // break out so that we will build the appropriate built-in
4928        // operator node.
4929        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4930                                      Best->Conversions[0], "passing") ||
4931            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4932                                      Best->Conversions[1], "passing"))
4933          return ExprError();
4934
4935        break;
4936      }
4937    }
4938
4939    case OR_No_Viable_Function: {
4940      // C++ [over.match.oper]p9:
4941      //   If the operator is the operator , [...] and there are no
4942      //   viable functions, then the operator is assumed to be the
4943      //   built-in operator and interpreted according to clause 5.
4944      if (Opc == BinaryOperator::Comma)
4945        break;
4946
4947      // For class as left operand for assignment or compound assigment operator
4948      // do not fall through to handling in built-in, but report that no overloaded
4949      // assignment operator found
4950      OwningExprResult Result = ExprError();
4951      if (Args[0]->getType()->isRecordType() &&
4952          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4953        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4954             << BinaryOperator::getOpcodeStr(Opc)
4955             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4956      } else {
4957        // No viable function; try to create a built-in operation, which will
4958        // produce an error. Then, show the non-viable candidates.
4959        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4960      }
4961      assert(Result.isInvalid() &&
4962             "C++ binary operator overloading is missing candidates!");
4963      if (Result.isInvalid())
4964        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4965                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4966      return move(Result);
4967    }
4968
4969    case OR_Ambiguous:
4970      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4971          << BinaryOperator::getOpcodeStr(Opc)
4972          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4973      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4974                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4975      return ExprError();
4976
4977    case OR_Deleted:
4978      Diag(OpLoc, diag::err_ovl_deleted_oper)
4979        << Best->Function->isDeleted()
4980        << BinaryOperator::getOpcodeStr(Opc)
4981        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4982      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4983      return ExprError();
4984    }
4985
4986  // We matched a built-in operator; build it.
4987  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4988}
4989
4990Action::OwningExprResult
4991Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
4992                                         SourceLocation RLoc,
4993                                         ExprArg Base, ExprArg Idx) {
4994  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
4995                    static_cast<Expr*>(Idx.get()) };
4996  DeclarationName OpName =
4997      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
4998
4999  // If either side is type-dependent, create an appropriate dependent
5000  // expression.
5001  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5002
5003    OverloadedFunctionDecl *Overloads
5004      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
5005
5006    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
5007                                                LLoc, false, false);
5008
5009    Base.release();
5010    Idx.release();
5011    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5012                                                   Args, 2,
5013                                                   Context.DependentTy,
5014                                                   RLoc));
5015  }
5016
5017  // Build an empty overload set.
5018  OverloadCandidateSet CandidateSet;
5019
5020  // Subscript can only be overloaded as a member function.
5021
5022  // Add operator candidates that are member functions.
5023  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5024
5025  // Add builtin operator candidates.
5026  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5027
5028  // Perform overload resolution.
5029  OverloadCandidateSet::iterator Best;
5030  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5031    case OR_Success: {
5032      // We found a built-in operator or an overloaded operator.
5033      FunctionDecl *FnDecl = Best->Function;
5034
5035      if (FnDecl) {
5036        // We matched an overloaded operator. Build a call to that
5037        // operator.
5038
5039        // Convert the arguments.
5040        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5041        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5042            PerformCopyInitialization(Args[1],
5043                                      FnDecl->getParamDecl(0)->getType(),
5044                                      "passing"))
5045          return ExprError();
5046
5047        // Determine the result type
5048        QualType ResultTy
5049          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5050        ResultTy = ResultTy.getNonReferenceType();
5051
5052        // Build the actual expression node.
5053        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5054                                                 LLoc);
5055        UsualUnaryConversions(FnExpr);
5056
5057        Base.release();
5058        Idx.release();
5059        ExprOwningPtr<CXXOperatorCallExpr>
5060          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5061                                                          FnExpr, Args, 2,
5062                                                          ResultTy, RLoc));
5063
5064        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5065                                FnDecl))
5066          return ExprError();
5067
5068        return MaybeBindToTemporary(TheCall.release());
5069      } else {
5070        // We matched a built-in operator. Convert the arguments, then
5071        // break out so that we will build the appropriate built-in
5072        // operator node.
5073        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5074                                      Best->Conversions[0], "passing") ||
5075            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5076                                      Best->Conversions[1], "passing"))
5077          return ExprError();
5078
5079        break;
5080      }
5081    }
5082
5083    case OR_No_Viable_Function: {
5084      // No viable function; try to create a built-in operation, which will
5085      // produce an error. Then, show the non-viable candidates.
5086      OwningExprResult Result =
5087          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5088      assert(Result.isInvalid() &&
5089             "C++ subscript operator overloading is missing candidates!");
5090      if (Result.isInvalid())
5091        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5092                                "[]", LLoc);
5093      return move(Result);
5094    }
5095
5096    case OR_Ambiguous:
5097      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5098          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5099      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5100                              "[]", LLoc);
5101      return ExprError();
5102
5103    case OR_Deleted:
5104      Diag(LLoc, diag::err_ovl_deleted_oper)
5105        << Best->Function->isDeleted() << "[]"
5106        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5107      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5108      return ExprError();
5109    }
5110
5111  // We matched a built-in operator; build it.
5112  Base.release();
5113  Idx.release();
5114  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5115                                         Owned(Args[1]), RLoc);
5116}
5117
5118/// BuildCallToMemberFunction - Build a call to a member
5119/// function. MemExpr is the expression that refers to the member
5120/// function (and includes the object parameter), Args/NumArgs are the
5121/// arguments to the function call (not including the object
5122/// parameter). The caller needs to validate that the member
5123/// expression refers to a member function or an overloaded member
5124/// function.
5125Sema::ExprResult
5126Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5127                                SourceLocation LParenLoc, Expr **Args,
5128                                unsigned NumArgs, SourceLocation *CommaLocs,
5129                                SourceLocation RParenLoc) {
5130  // Dig out the member expression. This holds both the object
5131  // argument and the member function we're referring to.
5132  MemberExpr *MemExpr = 0;
5133  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5134    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5135  else
5136    MemExpr = dyn_cast<MemberExpr>(MemExprE);
5137  assert(MemExpr && "Building member call without member expression");
5138
5139  // Extract the object argument.
5140  Expr *ObjectArg = MemExpr->getBase();
5141
5142  CXXMethodDecl *Method = 0;
5143  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5144      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
5145    // Add overload candidates
5146    OverloadCandidateSet CandidateSet;
5147    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
5148
5149    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
5150         Func != FuncEnd; ++Func) {
5151      if ((Method = dyn_cast<CXXMethodDecl>(*Func))) {
5152        // If explicit template arguments were provided, we can't call a
5153        // non-template member function.
5154        if (MemExpr->hasExplicitTemplateArgumentList())
5155          continue;
5156
5157        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
5158                           /*SuppressUserConversions=*/false);
5159      } else
5160        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
5161                                   MemExpr->hasExplicitTemplateArgumentList(),
5162                                   MemExpr->getTemplateArgs(),
5163                                   MemExpr->getNumTemplateArgs(),
5164                                   ObjectArg, Args, NumArgs,
5165                                   CandidateSet,
5166                                   /*SuppressUsedConversions=*/false);
5167    }
5168
5169    OverloadCandidateSet::iterator Best;
5170    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
5171    case OR_Success:
5172      Method = cast<CXXMethodDecl>(Best->Function);
5173      break;
5174
5175    case OR_No_Viable_Function:
5176      Diag(MemExpr->getSourceRange().getBegin(),
5177           diag::err_ovl_no_viable_member_function_in_call)
5178        << DeclName << MemExprE->getSourceRange();
5179      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5180      // FIXME: Leaking incoming expressions!
5181      return true;
5182
5183    case OR_Ambiguous:
5184      Diag(MemExpr->getSourceRange().getBegin(),
5185           diag::err_ovl_ambiguous_member_call)
5186        << DeclName << MemExprE->getSourceRange();
5187      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5188      // FIXME: Leaking incoming expressions!
5189      return true;
5190
5191    case OR_Deleted:
5192      Diag(MemExpr->getSourceRange().getBegin(),
5193           diag::err_ovl_deleted_member_call)
5194        << Best->Function->isDeleted()
5195        << DeclName << MemExprE->getSourceRange();
5196      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5197      // FIXME: Leaking incoming expressions!
5198      return true;
5199    }
5200
5201    FixOverloadedFunctionReference(MemExpr, Method);
5202  } else {
5203    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5204  }
5205
5206  assert(Method && "Member call to something that isn't a method?");
5207  ExprOwningPtr<CXXMemberCallExpr>
5208    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5209                                                  NumArgs,
5210                                  Method->getResultType().getNonReferenceType(),
5211                                  RParenLoc));
5212
5213  // Check for a valid return type.
5214  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5215                          TheCall.get(), Method))
5216    return true;
5217
5218  // Convert the object argument (for a non-static member function call).
5219  if (!Method->isStatic() &&
5220      PerformObjectArgumentInitialization(ObjectArg, Method))
5221    return true;
5222  MemExpr->setBase(ObjectArg);
5223
5224  // Convert the rest of the arguments
5225  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5226  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5227                              RParenLoc))
5228    return true;
5229
5230  if (CheckFunctionCall(Method, TheCall.get()))
5231    return true;
5232
5233  return MaybeBindToTemporary(TheCall.release()).release();
5234}
5235
5236/// BuildCallToObjectOfClassType - Build a call to an object of class
5237/// type (C++ [over.call.object]), which can end up invoking an
5238/// overloaded function call operator (@c operator()) or performing a
5239/// user-defined conversion on the object argument.
5240Sema::ExprResult
5241Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5242                                   SourceLocation LParenLoc,
5243                                   Expr **Args, unsigned NumArgs,
5244                                   SourceLocation *CommaLocs,
5245                                   SourceLocation RParenLoc) {
5246  assert(Object->getType()->isRecordType() && "Requires object type argument");
5247  const RecordType *Record = Object->getType()->getAs<RecordType>();
5248
5249  // C++ [over.call.object]p1:
5250  //  If the primary-expression E in the function call syntax
5251  //  evaluates to a class object of type "cv T", then the set of
5252  //  candidate functions includes at least the function call
5253  //  operators of T. The function call operators of T are obtained by
5254  //  ordinary lookup of the name operator() in the context of
5255  //  (E).operator().
5256  OverloadCandidateSet CandidateSet;
5257  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5258
5259  if (RequireCompleteType(LParenLoc, Object->getType(),
5260                          PartialDiagnostic(diag::err_incomplete_object_call)
5261                          << Object->getSourceRange()))
5262    return true;
5263
5264  LookupResult R;
5265  LookupQualifiedName(R, Record->getDecl(), OpName, LookupOrdinaryName, false);
5266  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5267       Oper != OperEnd; ++Oper) {
5268    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Oper)) {
5269      AddMethodTemplateCandidate(FunTmpl, false, 0, 0, Object, Args, NumArgs,
5270                                 CandidateSet,
5271                                 /*SuppressUserConversions=*/false);
5272      continue;
5273    }
5274
5275    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
5276                       CandidateSet, /*SuppressUserConversions=*/false);
5277  }
5278
5279  // C++ [over.call.object]p2:
5280  //   In addition, for each conversion function declared in T of the
5281  //   form
5282  //
5283  //        operator conversion-type-id () cv-qualifier;
5284  //
5285  //   where cv-qualifier is the same cv-qualification as, or a
5286  //   greater cv-qualification than, cv, and where conversion-type-id
5287  //   denotes the type "pointer to function of (P1,...,Pn) returning
5288  //   R", or the type "reference to pointer to function of
5289  //   (P1,...,Pn) returning R", or the type "reference to function
5290  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5291  //   is also considered as a candidate function. Similarly,
5292  //   surrogate call functions are added to the set of candidate
5293  //   functions for each conversion function declared in an
5294  //   accessible base class provided the function is not hidden
5295  //   within T by another intervening declaration.
5296  // FIXME: Look in base classes for more conversion operators!
5297  OverloadedFunctionDecl *Conversions
5298    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5299  for (OverloadedFunctionDecl::function_iterator
5300         Func = Conversions->function_begin(),
5301         FuncEnd = Conversions->function_end();
5302       Func != FuncEnd; ++Func) {
5303    CXXConversionDecl *Conv;
5304    FunctionTemplateDecl *ConvTemplate;
5305    GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
5306
5307    // Skip over templated conversion functions; they aren't
5308    // surrogates.
5309    if (ConvTemplate)
5310      continue;
5311
5312    // Strip the reference type (if any) and then the pointer type (if
5313    // any) to get down to what might be a function type.
5314    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5315    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5316      ConvType = ConvPtrType->getPointeeType();
5317
5318    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5319      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5320  }
5321
5322  // Perform overload resolution.
5323  OverloadCandidateSet::iterator Best;
5324  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5325  case OR_Success:
5326    // Overload resolution succeeded; we'll build the appropriate call
5327    // below.
5328    break;
5329
5330  case OR_No_Viable_Function:
5331    Diag(Object->getSourceRange().getBegin(),
5332         diag::err_ovl_no_viable_object_call)
5333      << Object->getType() << Object->getSourceRange();
5334    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5335    break;
5336
5337  case OR_Ambiguous:
5338    Diag(Object->getSourceRange().getBegin(),
5339         diag::err_ovl_ambiguous_object_call)
5340      << Object->getType() << Object->getSourceRange();
5341    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5342    break;
5343
5344  case OR_Deleted:
5345    Diag(Object->getSourceRange().getBegin(),
5346         diag::err_ovl_deleted_object_call)
5347      << Best->Function->isDeleted()
5348      << Object->getType() << Object->getSourceRange();
5349    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5350    break;
5351  }
5352
5353  if (Best == CandidateSet.end()) {
5354    // We had an error; delete all of the subexpressions and return
5355    // the error.
5356    Object->Destroy(Context);
5357    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5358      Args[ArgIdx]->Destroy(Context);
5359    return true;
5360  }
5361
5362  if (Best->Function == 0) {
5363    // Since there is no function declaration, this is one of the
5364    // surrogate candidates. Dig out the conversion function.
5365    CXXConversionDecl *Conv
5366      = cast<CXXConversionDecl>(
5367                         Best->Conversions[0].UserDefined.ConversionFunction);
5368
5369    // We selected one of the surrogate functions that converts the
5370    // object parameter to a function pointer. Perform the conversion
5371    // on the object argument, then let ActOnCallExpr finish the job.
5372
5373    // Create an implicit member expr to refer to the conversion operator.
5374    // and then call it.
5375    CXXMemberCallExpr *CE =
5376    BuildCXXMemberCallExpr(Object, Conv);
5377
5378    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5379                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5380                         CommaLocs, RParenLoc).release();
5381  }
5382
5383  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5384  // that calls this method, using Object for the implicit object
5385  // parameter and passing along the remaining arguments.
5386  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5387  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5388
5389  unsigned NumArgsInProto = Proto->getNumArgs();
5390  unsigned NumArgsToCheck = NumArgs;
5391
5392  // Build the full argument list for the method call (the
5393  // implicit object parameter is placed at the beginning of the
5394  // list).
5395  Expr **MethodArgs;
5396  if (NumArgs < NumArgsInProto) {
5397    NumArgsToCheck = NumArgsInProto;
5398    MethodArgs = new Expr*[NumArgsInProto + 1];
5399  } else {
5400    MethodArgs = new Expr*[NumArgs + 1];
5401  }
5402  MethodArgs[0] = Object;
5403  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5404    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5405
5406  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5407                                          SourceLocation());
5408  UsualUnaryConversions(NewFn);
5409
5410  // Once we've built TheCall, all of the expressions are properly
5411  // owned.
5412  QualType ResultTy = Method->getResultType().getNonReferenceType();
5413  ExprOwningPtr<CXXOperatorCallExpr>
5414    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5415                                                    MethodArgs, NumArgs + 1,
5416                                                    ResultTy, RParenLoc));
5417  delete [] MethodArgs;
5418
5419  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5420                          Method))
5421    return true;
5422
5423  // We may have default arguments. If so, we need to allocate more
5424  // slots in the call for them.
5425  if (NumArgs < NumArgsInProto)
5426    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5427  else if (NumArgs > NumArgsInProto)
5428    NumArgsToCheck = NumArgsInProto;
5429
5430  bool IsError = false;
5431
5432  // Initialize the implicit object parameter.
5433  IsError |= PerformObjectArgumentInitialization(Object, Method);
5434  TheCall->setArg(0, Object);
5435
5436
5437  // Check the argument types.
5438  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5439    Expr *Arg;
5440    if (i < NumArgs) {
5441      Arg = Args[i];
5442
5443      // Pass the argument.
5444      QualType ProtoArgType = Proto->getArgType(i);
5445      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5446    } else {
5447      OwningExprResult DefArg
5448        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
5449      if (DefArg.isInvalid()) {
5450        IsError = true;
5451        break;
5452      }
5453
5454      Arg = DefArg.takeAs<Expr>();
5455    }
5456
5457    TheCall->setArg(i + 1, Arg);
5458  }
5459
5460  // If this is a variadic call, handle args passed through "...".
5461  if (Proto->isVariadic()) {
5462    // Promote the arguments (C99 6.5.2.2p7).
5463    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5464      Expr *Arg = Args[i];
5465      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5466      TheCall->setArg(i + 1, Arg);
5467    }
5468  }
5469
5470  if (IsError) return true;
5471
5472  if (CheckFunctionCall(Method, TheCall.get()))
5473    return true;
5474
5475  return MaybeBindToTemporary(TheCall.release()).release();
5476}
5477
5478/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5479///  (if one exists), where @c Base is an expression of class type and
5480/// @c Member is the name of the member we're trying to find.
5481Sema::OwningExprResult
5482Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5483  Expr *Base = static_cast<Expr *>(BaseIn.get());
5484  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5485
5486  // C++ [over.ref]p1:
5487  //
5488  //   [...] An expression x->m is interpreted as (x.operator->())->m
5489  //   for a class object x of type T if T::operator->() exists and if
5490  //   the operator is selected as the best match function by the
5491  //   overload resolution mechanism (13.3).
5492  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5493  OverloadCandidateSet CandidateSet;
5494  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5495
5496  LookupResult R;
5497  LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName);
5498
5499  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5500       Oper != OperEnd; ++Oper)
5501    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5502                       /*SuppressUserConversions=*/false);
5503
5504  // Perform overload resolution.
5505  OverloadCandidateSet::iterator Best;
5506  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5507  case OR_Success:
5508    // Overload resolution succeeded; we'll build the call below.
5509    break;
5510
5511  case OR_No_Viable_Function:
5512    if (CandidateSet.empty())
5513      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5514        << Base->getType() << Base->getSourceRange();
5515    else
5516      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5517        << "operator->" << Base->getSourceRange();
5518    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5519    return ExprError();
5520
5521  case OR_Ambiguous:
5522    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5523      << "->" << Base->getSourceRange();
5524    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5525    return ExprError();
5526
5527  case OR_Deleted:
5528    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5529      << Best->Function->isDeleted()
5530      << "->" << Base->getSourceRange();
5531    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5532    return ExprError();
5533  }
5534
5535  // Convert the object parameter.
5536  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5537  if (PerformObjectArgumentInitialization(Base, Method))
5538    return ExprError();
5539
5540  // No concerns about early exits now.
5541  BaseIn.release();
5542
5543  // Build the operator call.
5544  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5545                                           SourceLocation());
5546  UsualUnaryConversions(FnExpr);
5547
5548  QualType ResultTy = Method->getResultType().getNonReferenceType();
5549  ExprOwningPtr<CXXOperatorCallExpr>
5550    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5551                                                    &Base, 1, ResultTy, OpLoc));
5552
5553  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5554                          Method))
5555          return ExprError();
5556  return move(TheCall);
5557}
5558
5559/// FixOverloadedFunctionReference - E is an expression that refers to
5560/// a C++ overloaded function (possibly with some parentheses and
5561/// perhaps a '&' around it). We have resolved the overloaded function
5562/// to the function declaration Fn, so patch up the expression E to
5563/// refer (possibly indirectly) to Fn. Returns the new expr.
5564Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5565  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5566    Expr *NewExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5567    PE->setSubExpr(NewExpr);
5568    PE->setType(NewExpr->getType());
5569  } else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5570    Expr *NewExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5571    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5572                               NewExpr->getType()) &&
5573           "Implicit cast type cannot be determined from overload");
5574    ICE->setSubExpr(NewExpr);
5575  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5576    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5577           "Can only take the address of an overloaded function");
5578    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5579      if (Method->isStatic()) {
5580        // Do nothing: static member functions aren't any different
5581        // from non-member functions.
5582      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr())) {
5583        if (DRE->getQualifier()) {
5584          // We have taken the address of a pointer to member
5585          // function. Perform the computation here so that we get the
5586          // appropriate pointer to member type.
5587          DRE->setDecl(Fn);
5588          DRE->setType(Fn->getType());
5589          QualType ClassType
5590            = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5591          E->setType(Context.getMemberPointerType(Fn->getType(),
5592                                                  ClassType.getTypePtr()));
5593          return E;
5594        }
5595      }
5596      // FIXME: TemplateIdRefExpr referring to a member function template
5597      // specialization!
5598    }
5599    Expr *NewExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5600    UnOp->setSubExpr(NewExpr);
5601    UnOp->setType(Context.getPointerType(NewExpr->getType()));
5602
5603    return UnOp;
5604  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5605    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5606            isa<FunctionTemplateDecl>(DR->getDecl()) ||
5607            isa<FunctionDecl>(DR->getDecl())) &&
5608           "Expected function or function template");
5609    DR->setDecl(Fn);
5610    E->setType(Fn->getType());
5611  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5612    MemExpr->setMemberDecl(Fn);
5613    E->setType(Fn->getType());
5614  } else if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) {
5615    E = DeclRefExpr::Create(Context,
5616                            TID->getQualifier(), TID->getQualifierRange(),
5617                            Fn, TID->getTemplateNameLoc(),
5618                            true,
5619                            TID->getLAngleLoc(),
5620                            TID->getTemplateArgs(),
5621                            TID->getNumTemplateArgs(),
5622                            TID->getRAngleLoc(),
5623                            Fn->getType(),
5624                            /*FIXME?*/false, /*FIXME?*/false);
5625
5626    // FIXME: Don't destroy TID here, since we need its template arguments
5627    // to survive.
5628    // TID->Destroy(Context);
5629  } else if (isa<UnresolvedFunctionNameExpr>(E)) {
5630    return DeclRefExpr::Create(Context,
5631                               /*Qualifier=*/0,
5632                               /*QualifierRange=*/SourceRange(),
5633                               Fn, E->getLocStart(),
5634                               Fn->getType(), false, false);
5635  } else {
5636    assert(false && "Invalid reference to overloaded function");
5637  }
5638
5639  return E;
5640}
5641
5642} // end namespace clang
5643