SemaOverload.cpp revision dc7b641574a733624489bd87fc7061771edf2113
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34
35namespace clang {
36using namespace sema;
37
38/// A convenience routine for creating a decayed reference to a
39/// function.
40static ExprResult
41CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
42                      SourceLocation Loc = SourceLocation(),
43                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
44  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
45                                                 VK_LValue, Loc, LocInfo);
46  if (HadMultipleCandidates)
47    DRE->setHadMultipleCandidates(true);
48  ExprResult E = S.Owned(DRE);
49  E = S.DefaultFunctionArrayConversion(E.take());
50  if (E.isInvalid())
51    return ExprError();
52  return E;
53}
54
55static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
56                                 bool InOverloadResolution,
57                                 StandardConversionSequence &SCS,
58                                 bool CStyle,
59                                 bool AllowObjCWritebackConversion);
60
61static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
62                                                 QualType &ToType,
63                                                 bool InOverloadResolution,
64                                                 StandardConversionSequence &SCS,
65                                                 bool CStyle);
66static OverloadingResult
67IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
68                        UserDefinedConversionSequence& User,
69                        OverloadCandidateSet& Conversions,
70                        bool AllowExplicit);
71
72
73static ImplicitConversionSequence::CompareKind
74CompareStandardConversionSequences(Sema &S,
75                                   const StandardConversionSequence& SCS1,
76                                   const StandardConversionSequence& SCS2);
77
78static ImplicitConversionSequence::CompareKind
79CompareQualificationConversions(Sema &S,
80                                const StandardConversionSequence& SCS1,
81                                const StandardConversionSequence& SCS2);
82
83static ImplicitConversionSequence::CompareKind
84CompareDerivedToBaseConversions(Sema &S,
85                                const StandardConversionSequence& SCS1,
86                                const StandardConversionSequence& SCS2);
87
88
89
90/// GetConversionCategory - Retrieve the implicit conversion
91/// category corresponding to the given implicit conversion kind.
92ImplicitConversionCategory
93GetConversionCategory(ImplicitConversionKind Kind) {
94  static const ImplicitConversionCategory
95    Category[(int)ICK_Num_Conversion_Kinds] = {
96    ICC_Identity,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Lvalue_Transformation,
100    ICC_Identity,
101    ICC_Qualification_Adjustment,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Promotion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion,
117    ICC_Conversion
118  };
119  return Category[(int)Kind];
120}
121
122/// GetConversionRank - Retrieve the implicit conversion rank
123/// corresponding to the given implicit conversion kind.
124ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
125  static const ImplicitConversionRank
126    Rank[(int)ICK_Num_Conversion_Kinds] = {
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Exact_Match,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Promotion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Conversion,
147    ICR_Complex_Real_Conversion,
148    ICR_Conversion,
149    ICR_Conversion,
150    ICR_Writeback_Conversion
151  };
152  return Rank[(int)Kind];
153}
154
155/// GetImplicitConversionName - Return the name of this kind of
156/// implicit conversion.
157const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159    "No conversion",
160    "Lvalue-to-rvalue",
161    "Array-to-pointer",
162    "Function-to-pointer",
163    "Noreturn adjustment",
164    "Qualification",
165    "Integral promotion",
166    "Floating point promotion",
167    "Complex promotion",
168    "Integral conversion",
169    "Floating conversion",
170    "Complex conversion",
171    "Floating-integral conversion",
172    "Pointer conversion",
173    "Pointer-to-member conversion",
174    "Boolean conversion",
175    "Compatible-types conversion",
176    "Derived-to-base conversion",
177    "Vector conversion",
178    "Vector splat",
179    "Complex-real conversion",
180    "Block Pointer conversion",
181    "Transparent Union Conversion"
182    "Writeback conversion"
183  };
184  return Name[Kind];
185}
186
187/// StandardConversionSequence - Set the standard conversion
188/// sequence to the identity conversion.
189void StandardConversionSequence::setAsIdentityConversion() {
190  First = ICK_Identity;
191  Second = ICK_Identity;
192  Third = ICK_Identity;
193  DeprecatedStringLiteralToCharPtr = false;
194  QualificationIncludesObjCLifetime = false;
195  ReferenceBinding = false;
196  DirectBinding = false;
197  IsLvalueReference = true;
198  BindsToFunctionLvalue = false;
199  BindsToRvalue = false;
200  BindsImplicitObjectArgumentWithoutRefQualifier = false;
201  ObjCLifetimeConversionBinding = false;
202  CopyConstructor = 0;
203}
204
205/// getRank - Retrieve the rank of this standard conversion sequence
206/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
207/// implicit conversions.
208ImplicitConversionRank StandardConversionSequence::getRank() const {
209  ImplicitConversionRank Rank = ICR_Exact_Match;
210  if  (GetConversionRank(First) > Rank)
211    Rank = GetConversionRank(First);
212  if  (GetConversionRank(Second) > Rank)
213    Rank = GetConversionRank(Second);
214  if  (GetConversionRank(Third) > Rank)
215    Rank = GetConversionRank(Third);
216  return Rank;
217}
218
219/// isPointerConversionToBool - Determines whether this conversion is
220/// a conversion of a pointer or pointer-to-member to bool. This is
221/// used as part of the ranking of standard conversion sequences
222/// (C++ 13.3.3.2p4).
223bool StandardConversionSequence::isPointerConversionToBool() const {
224  // Note that FromType has not necessarily been transformed by the
225  // array-to-pointer or function-to-pointer implicit conversions, so
226  // check for their presence as well as checking whether FromType is
227  // a pointer.
228  if (getToType(1)->isBooleanType() &&
229      (getFromType()->isPointerType() ||
230       getFromType()->isObjCObjectPointerType() ||
231       getFromType()->isBlockPointerType() ||
232       getFromType()->isNullPtrType() ||
233       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
234    return true;
235
236  return false;
237}
238
239/// isPointerConversionToVoidPointer - Determines whether this
240/// conversion is a conversion of a pointer to a void pointer. This is
241/// used as part of the ranking of standard conversion sequences (C++
242/// 13.3.3.2p4).
243bool
244StandardConversionSequence::
245isPointerConversionToVoidPointer(ASTContext& Context) const {
246  QualType FromType = getFromType();
247  QualType ToType = getToType(1);
248
249  // Note that FromType has not necessarily been transformed by the
250  // array-to-pointer implicit conversion, so check for its presence
251  // and redo the conversion to get a pointer.
252  if (First == ICK_Array_To_Pointer)
253    FromType = Context.getArrayDecayedType(FromType);
254
255  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
256    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
257      return ToPtrType->getPointeeType()->isVoidType();
258
259  return false;
260}
261
262/// Skip any implicit casts which could be either part of a narrowing conversion
263/// or after one in an implicit conversion.
264static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
265  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
266    switch (ICE->getCastKind()) {
267    case CK_NoOp:
268    case CK_IntegralCast:
269    case CK_IntegralToBoolean:
270    case CK_IntegralToFloating:
271    case CK_FloatingToIntegral:
272    case CK_FloatingToBoolean:
273    case CK_FloatingCast:
274      Converted = ICE->getSubExpr();
275      continue;
276
277    default:
278      return Converted;
279    }
280  }
281
282  return Converted;
283}
284
285/// Check if this standard conversion sequence represents a narrowing
286/// conversion, according to C++11 [dcl.init.list]p7.
287///
288/// \param Ctx  The AST context.
289/// \param Converted  The result of applying this standard conversion sequence.
290/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
291///        value of the expression prior to the narrowing conversion.
292/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
293///        type of the expression prior to the narrowing conversion.
294NarrowingKind
295StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
296                                             const Expr *Converted,
297                                             APValue &ConstantValue,
298                                             QualType &ConstantType) const {
299  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
300
301  // C++11 [dcl.init.list]p7:
302  //   A narrowing conversion is an implicit conversion ...
303  QualType FromType = getToType(0);
304  QualType ToType = getToType(1);
305  switch (Second) {
306  // -- from a floating-point type to an integer type, or
307  //
308  // -- from an integer type or unscoped enumeration type to a floating-point
309  //    type, except where the source is a constant expression and the actual
310  //    value after conversion will fit into the target type and will produce
311  //    the original value when converted back to the original type, or
312  case ICK_Floating_Integral:
313    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
314      return NK_Type_Narrowing;
315    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
316      llvm::APSInt IntConstantValue;
317      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
318      if (Initializer &&
319          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
320        // Convert the integer to the floating type.
321        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
322        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
323                                llvm::APFloat::rmNearestTiesToEven);
324        // And back.
325        llvm::APSInt ConvertedValue = IntConstantValue;
326        bool ignored;
327        Result.convertToInteger(ConvertedValue,
328                                llvm::APFloat::rmTowardZero, &ignored);
329        // If the resulting value is different, this was a narrowing conversion.
330        if (IntConstantValue != ConvertedValue) {
331          ConstantValue = APValue(IntConstantValue);
332          ConstantType = Initializer->getType();
333          return NK_Constant_Narrowing;
334        }
335      } else {
336        // Variables are always narrowings.
337        return NK_Variable_Narrowing;
338      }
339    }
340    return NK_Not_Narrowing;
341
342  // -- from long double to double or float, or from double to float, except
343  //    where the source is a constant expression and the actual value after
344  //    conversion is within the range of values that can be represented (even
345  //    if it cannot be represented exactly), or
346  case ICK_Floating_Conversion:
347    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
348        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
349      // FromType is larger than ToType.
350      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
351      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
352        // Constant!
353        assert(ConstantValue.isFloat());
354        llvm::APFloat FloatVal = ConstantValue.getFloat();
355        // Convert the source value into the target type.
356        bool ignored;
357        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
358          Ctx.getFloatTypeSemantics(ToType),
359          llvm::APFloat::rmNearestTiesToEven, &ignored);
360        // If there was no overflow, the source value is within the range of
361        // values that can be represented.
362        if (ConvertStatus & llvm::APFloat::opOverflow) {
363          ConstantType = Initializer->getType();
364          return NK_Constant_Narrowing;
365        }
366      } else {
367        return NK_Variable_Narrowing;
368      }
369    }
370    return NK_Not_Narrowing;
371
372  // -- from an integer type or unscoped enumeration type to an integer type
373  //    that cannot represent all the values of the original type, except where
374  //    the source is a constant expression and the actual value after
375  //    conversion will fit into the target type and will produce the original
376  //    value when converted back to the original type.
377  case ICK_Boolean_Conversion:  // Bools are integers too.
378    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
379      // Boolean conversions can be from pointers and pointers to members
380      // [conv.bool], and those aren't considered narrowing conversions.
381      return NK_Not_Narrowing;
382    }  // Otherwise, fall through to the integral case.
383  case ICK_Integral_Conversion: {
384    assert(FromType->isIntegralOrUnscopedEnumerationType());
385    assert(ToType->isIntegralOrUnscopedEnumerationType());
386    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
387    const unsigned FromWidth = Ctx.getIntWidth(FromType);
388    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
389    const unsigned ToWidth = Ctx.getIntWidth(ToType);
390
391    if (FromWidth > ToWidth ||
392        (FromWidth == ToWidth && FromSigned != ToSigned) ||
393        (FromSigned && !ToSigned)) {
394      // Not all values of FromType can be represented in ToType.
395      llvm::APSInt InitializerValue;
396      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
397      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
398        // Such conversions on variables are always narrowing.
399        return NK_Variable_Narrowing;
400      }
401      bool Narrowing = false;
402      if (FromWidth < ToWidth) {
403        // Negative -> unsigned is narrowing. Otherwise, more bits is never
404        // narrowing.
405        if (InitializerValue.isSigned() && InitializerValue.isNegative())
406          Narrowing = true;
407      } else {
408        // Add a bit to the InitializerValue so we don't have to worry about
409        // signed vs. unsigned comparisons.
410        InitializerValue = InitializerValue.extend(
411          InitializerValue.getBitWidth() + 1);
412        // Convert the initializer to and from the target width and signed-ness.
413        llvm::APSInt ConvertedValue = InitializerValue;
414        ConvertedValue = ConvertedValue.trunc(ToWidth);
415        ConvertedValue.setIsSigned(ToSigned);
416        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
417        ConvertedValue.setIsSigned(InitializerValue.isSigned());
418        // If the result is different, this was a narrowing conversion.
419        if (ConvertedValue != InitializerValue)
420          Narrowing = true;
421      }
422      if (Narrowing) {
423        ConstantType = Initializer->getType();
424        ConstantValue = APValue(InitializerValue);
425        return NK_Constant_Narrowing;
426      }
427    }
428    return NK_Not_Narrowing;
429  }
430
431  default:
432    // Other kinds of conversions are not narrowings.
433    return NK_Not_Narrowing;
434  }
435}
436
437/// DebugPrint - Print this standard conversion sequence to standard
438/// error. Useful for debugging overloading issues.
439void StandardConversionSequence::DebugPrint() const {
440  raw_ostream &OS = llvm::errs();
441  bool PrintedSomething = false;
442  if (First != ICK_Identity) {
443    OS << GetImplicitConversionName(First);
444    PrintedSomething = true;
445  }
446
447  if (Second != ICK_Identity) {
448    if (PrintedSomething) {
449      OS << " -> ";
450    }
451    OS << GetImplicitConversionName(Second);
452
453    if (CopyConstructor) {
454      OS << " (by copy constructor)";
455    } else if (DirectBinding) {
456      OS << " (direct reference binding)";
457    } else if (ReferenceBinding) {
458      OS << " (reference binding)";
459    }
460    PrintedSomething = true;
461  }
462
463  if (Third != ICK_Identity) {
464    if (PrintedSomething) {
465      OS << " -> ";
466    }
467    OS << GetImplicitConversionName(Third);
468    PrintedSomething = true;
469  }
470
471  if (!PrintedSomething) {
472    OS << "No conversions required";
473  }
474}
475
476/// DebugPrint - Print this user-defined conversion sequence to standard
477/// error. Useful for debugging overloading issues.
478void UserDefinedConversionSequence::DebugPrint() const {
479  raw_ostream &OS = llvm::errs();
480  if (Before.First || Before.Second || Before.Third) {
481    Before.DebugPrint();
482    OS << " -> ";
483  }
484  if (ConversionFunction)
485    OS << '\'' << *ConversionFunction << '\'';
486  else
487    OS << "aggregate initialization";
488  if (After.First || After.Second || After.Third) {
489    OS << " -> ";
490    After.DebugPrint();
491  }
492}
493
494/// DebugPrint - Print this implicit conversion sequence to standard
495/// error. Useful for debugging overloading issues.
496void ImplicitConversionSequence::DebugPrint() const {
497  raw_ostream &OS = llvm::errs();
498  switch (ConversionKind) {
499  case StandardConversion:
500    OS << "Standard conversion: ";
501    Standard.DebugPrint();
502    break;
503  case UserDefinedConversion:
504    OS << "User-defined conversion: ";
505    UserDefined.DebugPrint();
506    break;
507  case EllipsisConversion:
508    OS << "Ellipsis conversion";
509    break;
510  case AmbiguousConversion:
511    OS << "Ambiguous conversion";
512    break;
513  case BadConversion:
514    OS << "Bad conversion";
515    break;
516  }
517
518  OS << "\n";
519}
520
521void AmbiguousConversionSequence::construct() {
522  new (&conversions()) ConversionSet();
523}
524
525void AmbiguousConversionSequence::destruct() {
526  conversions().~ConversionSet();
527}
528
529void
530AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
531  FromTypePtr = O.FromTypePtr;
532  ToTypePtr = O.ToTypePtr;
533  new (&conversions()) ConversionSet(O.conversions());
534}
535
536namespace {
537  // Structure used by OverloadCandidate::DeductionFailureInfo to store
538  // template parameter and template argument information.
539  struct DFIParamWithArguments {
540    TemplateParameter Param;
541    TemplateArgument FirstArg;
542    TemplateArgument SecondArg;
543  };
544}
545
546/// \brief Convert from Sema's representation of template deduction information
547/// to the form used in overload-candidate information.
548OverloadCandidate::DeductionFailureInfo
549static MakeDeductionFailureInfo(ASTContext &Context,
550                                Sema::TemplateDeductionResult TDK,
551                                TemplateDeductionInfo &Info) {
552  OverloadCandidate::DeductionFailureInfo Result;
553  Result.Result = static_cast<unsigned>(TDK);
554  Result.HasDiagnostic = false;
555  Result.Data = 0;
556  switch (TDK) {
557  case Sema::TDK_Success:
558  case Sema::TDK_Invalid:
559  case Sema::TDK_InstantiationDepth:
560  case Sema::TDK_TooManyArguments:
561  case Sema::TDK_TooFewArguments:
562    break;
563
564  case Sema::TDK_Incomplete:
565  case Sema::TDK_InvalidExplicitArguments:
566    Result.Data = Info.Param.getOpaqueValue();
567    break;
568
569  case Sema::TDK_Inconsistent:
570  case Sema::TDK_Underqualified: {
571    // FIXME: Should allocate from normal heap so that we can free this later.
572    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
573    Saved->Param = Info.Param;
574    Saved->FirstArg = Info.FirstArg;
575    Saved->SecondArg = Info.SecondArg;
576    Result.Data = Saved;
577    break;
578  }
579
580  case Sema::TDK_SubstitutionFailure:
581    Result.Data = Info.take();
582    if (Info.hasSFINAEDiagnostic()) {
583      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
584          SourceLocation(), PartialDiagnostic::NullDiagnostic());
585      Info.takeSFINAEDiagnostic(*Diag);
586      Result.HasDiagnostic = true;
587    }
588    break;
589
590  case Sema::TDK_NonDeducedMismatch:
591  case Sema::TDK_FailedOverloadResolution:
592    break;
593  }
594
595  return Result;
596}
597
598void OverloadCandidate::DeductionFailureInfo::Destroy() {
599  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
600  case Sema::TDK_Success:
601  case Sema::TDK_Invalid:
602  case Sema::TDK_InstantiationDepth:
603  case Sema::TDK_Incomplete:
604  case Sema::TDK_TooManyArguments:
605  case Sema::TDK_TooFewArguments:
606  case Sema::TDK_InvalidExplicitArguments:
607    break;
608
609  case Sema::TDK_Inconsistent:
610  case Sema::TDK_Underqualified:
611    // FIXME: Destroy the data?
612    Data = 0;
613    break;
614
615  case Sema::TDK_SubstitutionFailure:
616    // FIXME: Destroy the template argument list?
617    Data = 0;
618    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
619      Diag->~PartialDiagnosticAt();
620      HasDiagnostic = false;
621    }
622    break;
623
624  // Unhandled
625  case Sema::TDK_NonDeducedMismatch:
626  case Sema::TDK_FailedOverloadResolution:
627    break;
628  }
629}
630
631PartialDiagnosticAt *
632OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
633  if (HasDiagnostic)
634    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
635  return 0;
636}
637
638TemplateParameter
639OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
640  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
641  case Sema::TDK_Success:
642  case Sema::TDK_Invalid:
643  case Sema::TDK_InstantiationDepth:
644  case Sema::TDK_TooManyArguments:
645  case Sema::TDK_TooFewArguments:
646  case Sema::TDK_SubstitutionFailure:
647    return TemplateParameter();
648
649  case Sema::TDK_Incomplete:
650  case Sema::TDK_InvalidExplicitArguments:
651    return TemplateParameter::getFromOpaqueValue(Data);
652
653  case Sema::TDK_Inconsistent:
654  case Sema::TDK_Underqualified:
655    return static_cast<DFIParamWithArguments*>(Data)->Param;
656
657  // Unhandled
658  case Sema::TDK_NonDeducedMismatch:
659  case Sema::TDK_FailedOverloadResolution:
660    break;
661  }
662
663  return TemplateParameter();
664}
665
666TemplateArgumentList *
667OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
668  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
669    case Sema::TDK_Success:
670    case Sema::TDK_Invalid:
671    case Sema::TDK_InstantiationDepth:
672    case Sema::TDK_TooManyArguments:
673    case Sema::TDK_TooFewArguments:
674    case Sema::TDK_Incomplete:
675    case Sema::TDK_InvalidExplicitArguments:
676    case Sema::TDK_Inconsistent:
677    case Sema::TDK_Underqualified:
678      return 0;
679
680    case Sema::TDK_SubstitutionFailure:
681      return static_cast<TemplateArgumentList*>(Data);
682
683    // Unhandled
684    case Sema::TDK_NonDeducedMismatch:
685    case Sema::TDK_FailedOverloadResolution:
686      break;
687  }
688
689  return 0;
690}
691
692const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
693  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
694  case Sema::TDK_Success:
695  case Sema::TDK_Invalid:
696  case Sema::TDK_InstantiationDepth:
697  case Sema::TDK_Incomplete:
698  case Sema::TDK_TooManyArguments:
699  case Sema::TDK_TooFewArguments:
700  case Sema::TDK_InvalidExplicitArguments:
701  case Sema::TDK_SubstitutionFailure:
702    return 0;
703
704  case Sema::TDK_Inconsistent:
705  case Sema::TDK_Underqualified:
706    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
707
708  // Unhandled
709  case Sema::TDK_NonDeducedMismatch:
710  case Sema::TDK_FailedOverloadResolution:
711    break;
712  }
713
714  return 0;
715}
716
717const TemplateArgument *
718OverloadCandidate::DeductionFailureInfo::getSecondArg() {
719  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
720  case Sema::TDK_Success:
721  case Sema::TDK_Invalid:
722  case Sema::TDK_InstantiationDepth:
723  case Sema::TDK_Incomplete:
724  case Sema::TDK_TooManyArguments:
725  case Sema::TDK_TooFewArguments:
726  case Sema::TDK_InvalidExplicitArguments:
727  case Sema::TDK_SubstitutionFailure:
728    return 0;
729
730  case Sema::TDK_Inconsistent:
731  case Sema::TDK_Underqualified:
732    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
733
734  // Unhandled
735  case Sema::TDK_NonDeducedMismatch:
736  case Sema::TDK_FailedOverloadResolution:
737    break;
738  }
739
740  return 0;
741}
742
743void OverloadCandidateSet::destroyCandidates() {
744  for (iterator i = begin(), e = end(); i != e; ++i) {
745    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
746      i->Conversions[ii].~ImplicitConversionSequence();
747    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
748      i->DeductionFailure.Destroy();
749  }
750}
751
752void OverloadCandidateSet::clear() {
753  destroyCandidates();
754  NumInlineSequences = 0;
755  Candidates.clear();
756  Functions.clear();
757}
758
759namespace {
760  class UnbridgedCastsSet {
761    struct Entry {
762      Expr **Addr;
763      Expr *Saved;
764    };
765    SmallVector<Entry, 2> Entries;
766
767  public:
768    void save(Sema &S, Expr *&E) {
769      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
770      Entry entry = { &E, E };
771      Entries.push_back(entry);
772      E = S.stripARCUnbridgedCast(E);
773    }
774
775    void restore() {
776      for (SmallVectorImpl<Entry>::iterator
777             i = Entries.begin(), e = Entries.end(); i != e; ++i)
778        *i->Addr = i->Saved;
779    }
780  };
781}
782
783/// checkPlaceholderForOverload - Do any interesting placeholder-like
784/// preprocessing on the given expression.
785///
786/// \param unbridgedCasts a collection to which to add unbridged casts;
787///   without this, they will be immediately diagnosed as errors
788///
789/// Return true on unrecoverable error.
790static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
791                                        UnbridgedCastsSet *unbridgedCasts = 0) {
792  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
793    // We can't handle overloaded expressions here because overload
794    // resolution might reasonably tweak them.
795    if (placeholder->getKind() == BuiltinType::Overload) return false;
796
797    // If the context potentially accepts unbridged ARC casts, strip
798    // the unbridged cast and add it to the collection for later restoration.
799    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
800        unbridgedCasts) {
801      unbridgedCasts->save(S, E);
802      return false;
803    }
804
805    // Go ahead and check everything else.
806    ExprResult result = S.CheckPlaceholderExpr(E);
807    if (result.isInvalid())
808      return true;
809
810    E = result.take();
811    return false;
812  }
813
814  // Nothing to do.
815  return false;
816}
817
818/// checkArgPlaceholdersForOverload - Check a set of call operands for
819/// placeholders.
820static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
821                                            unsigned numArgs,
822                                            UnbridgedCastsSet &unbridged) {
823  for (unsigned i = 0; i != numArgs; ++i)
824    if (checkPlaceholderForOverload(S, args[i], &unbridged))
825      return true;
826
827  return false;
828}
829
830// IsOverload - Determine whether the given New declaration is an
831// overload of the declarations in Old. This routine returns false if
832// New and Old cannot be overloaded, e.g., if New has the same
833// signature as some function in Old (C++ 1.3.10) or if the Old
834// declarations aren't functions (or function templates) at all. When
835// it does return false, MatchedDecl will point to the decl that New
836// cannot be overloaded with.  This decl may be a UsingShadowDecl on
837// top of the underlying declaration.
838//
839// Example: Given the following input:
840//
841//   void f(int, float); // #1
842//   void f(int, int); // #2
843//   int f(int, int); // #3
844//
845// When we process #1, there is no previous declaration of "f",
846// so IsOverload will not be used.
847//
848// When we process #2, Old contains only the FunctionDecl for #1.  By
849// comparing the parameter types, we see that #1 and #2 are overloaded
850// (since they have different signatures), so this routine returns
851// false; MatchedDecl is unchanged.
852//
853// When we process #3, Old is an overload set containing #1 and #2. We
854// compare the signatures of #3 to #1 (they're overloaded, so we do
855// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
856// identical (return types of functions are not part of the
857// signature), IsOverload returns false and MatchedDecl will be set to
858// point to the FunctionDecl for #2.
859//
860// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
861// into a class by a using declaration.  The rules for whether to hide
862// shadow declarations ignore some properties which otherwise figure
863// into a function template's signature.
864Sema::OverloadKind
865Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
866                    NamedDecl *&Match, bool NewIsUsingDecl) {
867  for (LookupResult::iterator I = Old.begin(), E = Old.end();
868         I != E; ++I) {
869    NamedDecl *OldD = *I;
870
871    bool OldIsUsingDecl = false;
872    if (isa<UsingShadowDecl>(OldD)) {
873      OldIsUsingDecl = true;
874
875      // We can always introduce two using declarations into the same
876      // context, even if they have identical signatures.
877      if (NewIsUsingDecl) continue;
878
879      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
880    }
881
882    // If either declaration was introduced by a using declaration,
883    // we'll need to use slightly different rules for matching.
884    // Essentially, these rules are the normal rules, except that
885    // function templates hide function templates with different
886    // return types or template parameter lists.
887    bool UseMemberUsingDeclRules =
888      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
889
890    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
891      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
892        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
893          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
894          continue;
895        }
896
897        Match = *I;
898        return Ovl_Match;
899      }
900    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
901      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
902        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
903          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
904          continue;
905        }
906
907        Match = *I;
908        return Ovl_Match;
909      }
910    } else if (isa<UsingDecl>(OldD)) {
911      // We can overload with these, which can show up when doing
912      // redeclaration checks for UsingDecls.
913      assert(Old.getLookupKind() == LookupUsingDeclName);
914    } else if (isa<TagDecl>(OldD)) {
915      // We can always overload with tags by hiding them.
916    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
917      // Optimistically assume that an unresolved using decl will
918      // overload; if it doesn't, we'll have to diagnose during
919      // template instantiation.
920    } else {
921      // (C++ 13p1):
922      //   Only function declarations can be overloaded; object and type
923      //   declarations cannot be overloaded.
924      Match = *I;
925      return Ovl_NonFunction;
926    }
927  }
928
929  return Ovl_Overload;
930}
931
932bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
933                      bool UseUsingDeclRules) {
934  // If both of the functions are extern "C", then they are not
935  // overloads.
936  if (Old->isExternC() && New->isExternC())
937    return false;
938
939  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
940  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
941
942  // C++ [temp.fct]p2:
943  //   A function template can be overloaded with other function templates
944  //   and with normal (non-template) functions.
945  if ((OldTemplate == 0) != (NewTemplate == 0))
946    return true;
947
948  // Is the function New an overload of the function Old?
949  QualType OldQType = Context.getCanonicalType(Old->getType());
950  QualType NewQType = Context.getCanonicalType(New->getType());
951
952  // Compare the signatures (C++ 1.3.10) of the two functions to
953  // determine whether they are overloads. If we find any mismatch
954  // in the signature, they are overloads.
955
956  // If either of these functions is a K&R-style function (no
957  // prototype), then we consider them to have matching signatures.
958  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
959      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
960    return false;
961
962  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
963  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
964
965  // The signature of a function includes the types of its
966  // parameters (C++ 1.3.10), which includes the presence or absence
967  // of the ellipsis; see C++ DR 357).
968  if (OldQType != NewQType &&
969      (OldType->getNumArgs() != NewType->getNumArgs() ||
970       OldType->isVariadic() != NewType->isVariadic() ||
971       !FunctionArgTypesAreEqual(OldType, NewType)))
972    return true;
973
974  // C++ [temp.over.link]p4:
975  //   The signature of a function template consists of its function
976  //   signature, its return type and its template parameter list. The names
977  //   of the template parameters are significant only for establishing the
978  //   relationship between the template parameters and the rest of the
979  //   signature.
980  //
981  // We check the return type and template parameter lists for function
982  // templates first; the remaining checks follow.
983  //
984  // However, we don't consider either of these when deciding whether
985  // a member introduced by a shadow declaration is hidden.
986  if (!UseUsingDeclRules && NewTemplate &&
987      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
988                                       OldTemplate->getTemplateParameters(),
989                                       false, TPL_TemplateMatch) ||
990       OldType->getResultType() != NewType->getResultType()))
991    return true;
992
993  // If the function is a class member, its signature includes the
994  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
995  //
996  // As part of this, also check whether one of the member functions
997  // is static, in which case they are not overloads (C++
998  // 13.1p2). While not part of the definition of the signature,
999  // this check is important to determine whether these functions
1000  // can be overloaded.
1001  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1002  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1003  if (OldMethod && NewMethod &&
1004      !OldMethod->isStatic() && !NewMethod->isStatic() &&
1005      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
1006       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
1007    if (!UseUsingDeclRules &&
1008        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
1009        (OldMethod->getRefQualifier() == RQ_None ||
1010         NewMethod->getRefQualifier() == RQ_None)) {
1011      // C++0x [over.load]p2:
1012      //   - Member function declarations with the same name and the same
1013      //     parameter-type-list as well as member function template
1014      //     declarations with the same name, the same parameter-type-list, and
1015      //     the same template parameter lists cannot be overloaded if any of
1016      //     them, but not all, have a ref-qualifier (8.3.5).
1017      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1018        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1019      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1020    }
1021
1022    return true;
1023  }
1024
1025  // The signatures match; this is not an overload.
1026  return false;
1027}
1028
1029/// \brief Checks availability of the function depending on the current
1030/// function context. Inside an unavailable function, unavailability is ignored.
1031///
1032/// \returns true if \arg FD is unavailable and current context is inside
1033/// an available function, false otherwise.
1034bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1035  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1036}
1037
1038/// \brief Tries a user-defined conversion from From to ToType.
1039///
1040/// Produces an implicit conversion sequence for when a standard conversion
1041/// is not an option. See TryImplicitConversion for more information.
1042static ImplicitConversionSequence
1043TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1044                         bool SuppressUserConversions,
1045                         bool AllowExplicit,
1046                         bool InOverloadResolution,
1047                         bool CStyle,
1048                         bool AllowObjCWritebackConversion) {
1049  ImplicitConversionSequence ICS;
1050
1051  if (SuppressUserConversions) {
1052    // We're not in the case above, so there is no conversion that
1053    // we can perform.
1054    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1055    return ICS;
1056  }
1057
1058  // Attempt user-defined conversion.
1059  OverloadCandidateSet Conversions(From->getExprLoc());
1060  OverloadingResult UserDefResult
1061    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1062                              AllowExplicit);
1063
1064  if (UserDefResult == OR_Success) {
1065    ICS.setUserDefined();
1066    // C++ [over.ics.user]p4:
1067    //   A conversion of an expression of class type to the same class
1068    //   type is given Exact Match rank, and a conversion of an
1069    //   expression of class type to a base class of that type is
1070    //   given Conversion rank, in spite of the fact that a copy
1071    //   constructor (i.e., a user-defined conversion function) is
1072    //   called for those cases.
1073    if (CXXConstructorDecl *Constructor
1074          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1075      QualType FromCanon
1076        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1077      QualType ToCanon
1078        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1079      if (Constructor->isCopyConstructor() &&
1080          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1081        // Turn this into a "standard" conversion sequence, so that it
1082        // gets ranked with standard conversion sequences.
1083        ICS.setStandard();
1084        ICS.Standard.setAsIdentityConversion();
1085        ICS.Standard.setFromType(From->getType());
1086        ICS.Standard.setAllToTypes(ToType);
1087        ICS.Standard.CopyConstructor = Constructor;
1088        if (ToCanon != FromCanon)
1089          ICS.Standard.Second = ICK_Derived_To_Base;
1090      }
1091    }
1092
1093    // C++ [over.best.ics]p4:
1094    //   However, when considering the argument of a user-defined
1095    //   conversion function that is a candidate by 13.3.1.3 when
1096    //   invoked for the copying of the temporary in the second step
1097    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1098    //   13.3.1.6 in all cases, only standard conversion sequences and
1099    //   ellipsis conversion sequences are allowed.
1100    if (SuppressUserConversions && ICS.isUserDefined()) {
1101      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1102    }
1103  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1104    ICS.setAmbiguous();
1105    ICS.Ambiguous.setFromType(From->getType());
1106    ICS.Ambiguous.setToType(ToType);
1107    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1108         Cand != Conversions.end(); ++Cand)
1109      if (Cand->Viable)
1110        ICS.Ambiguous.addConversion(Cand->Function);
1111  } else {
1112    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1113  }
1114
1115  return ICS;
1116}
1117
1118/// TryImplicitConversion - Attempt to perform an implicit conversion
1119/// from the given expression (Expr) to the given type (ToType). This
1120/// function returns an implicit conversion sequence that can be used
1121/// to perform the initialization. Given
1122///
1123///   void f(float f);
1124///   void g(int i) { f(i); }
1125///
1126/// this routine would produce an implicit conversion sequence to
1127/// describe the initialization of f from i, which will be a standard
1128/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1129/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1130//
1131/// Note that this routine only determines how the conversion can be
1132/// performed; it does not actually perform the conversion. As such,
1133/// it will not produce any diagnostics if no conversion is available,
1134/// but will instead return an implicit conversion sequence of kind
1135/// "BadConversion".
1136///
1137/// If @p SuppressUserConversions, then user-defined conversions are
1138/// not permitted.
1139/// If @p AllowExplicit, then explicit user-defined conversions are
1140/// permitted.
1141///
1142/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1143/// writeback conversion, which allows __autoreleasing id* parameters to
1144/// be initialized with __strong id* or __weak id* arguments.
1145static ImplicitConversionSequence
1146TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1147                      bool SuppressUserConversions,
1148                      bool AllowExplicit,
1149                      bool InOverloadResolution,
1150                      bool CStyle,
1151                      bool AllowObjCWritebackConversion) {
1152  ImplicitConversionSequence ICS;
1153  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1154                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1155    ICS.setStandard();
1156    return ICS;
1157  }
1158
1159  if (!S.getLangOpts().CPlusPlus) {
1160    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1161    return ICS;
1162  }
1163
1164  // C++ [over.ics.user]p4:
1165  //   A conversion of an expression of class type to the same class
1166  //   type is given Exact Match rank, and a conversion of an
1167  //   expression of class type to a base class of that type is
1168  //   given Conversion rank, in spite of the fact that a copy/move
1169  //   constructor (i.e., a user-defined conversion function) is
1170  //   called for those cases.
1171  QualType FromType = From->getType();
1172  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1173      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1174       S.IsDerivedFrom(FromType, ToType))) {
1175    ICS.setStandard();
1176    ICS.Standard.setAsIdentityConversion();
1177    ICS.Standard.setFromType(FromType);
1178    ICS.Standard.setAllToTypes(ToType);
1179
1180    // We don't actually check at this point whether there is a valid
1181    // copy/move constructor, since overloading just assumes that it
1182    // exists. When we actually perform initialization, we'll find the
1183    // appropriate constructor to copy the returned object, if needed.
1184    ICS.Standard.CopyConstructor = 0;
1185
1186    // Determine whether this is considered a derived-to-base conversion.
1187    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1188      ICS.Standard.Second = ICK_Derived_To_Base;
1189
1190    return ICS;
1191  }
1192
1193  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1194                                  AllowExplicit, InOverloadResolution, CStyle,
1195                                  AllowObjCWritebackConversion);
1196}
1197
1198ImplicitConversionSequence
1199Sema::TryImplicitConversion(Expr *From, QualType ToType,
1200                            bool SuppressUserConversions,
1201                            bool AllowExplicit,
1202                            bool InOverloadResolution,
1203                            bool CStyle,
1204                            bool AllowObjCWritebackConversion) {
1205  return clang::TryImplicitConversion(*this, From, ToType,
1206                                      SuppressUserConversions, AllowExplicit,
1207                                      InOverloadResolution, CStyle,
1208                                      AllowObjCWritebackConversion);
1209}
1210
1211/// PerformImplicitConversion - Perform an implicit conversion of the
1212/// expression From to the type ToType. Returns the
1213/// converted expression. Flavor is the kind of conversion we're
1214/// performing, used in the error message. If @p AllowExplicit,
1215/// explicit user-defined conversions are permitted.
1216ExprResult
1217Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1218                                AssignmentAction Action, bool AllowExplicit) {
1219  ImplicitConversionSequence ICS;
1220  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1221}
1222
1223ExprResult
1224Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1225                                AssignmentAction Action, bool AllowExplicit,
1226                                ImplicitConversionSequence& ICS) {
1227  if (checkPlaceholderForOverload(*this, From))
1228    return ExprError();
1229
1230  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1231  bool AllowObjCWritebackConversion
1232    = getLangOpts().ObjCAutoRefCount &&
1233      (Action == AA_Passing || Action == AA_Sending);
1234
1235  ICS = clang::TryImplicitConversion(*this, From, ToType,
1236                                     /*SuppressUserConversions=*/false,
1237                                     AllowExplicit,
1238                                     /*InOverloadResolution=*/false,
1239                                     /*CStyle=*/false,
1240                                     AllowObjCWritebackConversion);
1241  return PerformImplicitConversion(From, ToType, ICS, Action);
1242}
1243
1244/// \brief Determine whether the conversion from FromType to ToType is a valid
1245/// conversion that strips "noreturn" off the nested function type.
1246bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1247                                QualType &ResultTy) {
1248  if (Context.hasSameUnqualifiedType(FromType, ToType))
1249    return false;
1250
1251  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1252  // where F adds one of the following at most once:
1253  //   - a pointer
1254  //   - a member pointer
1255  //   - a block pointer
1256  CanQualType CanTo = Context.getCanonicalType(ToType);
1257  CanQualType CanFrom = Context.getCanonicalType(FromType);
1258  Type::TypeClass TyClass = CanTo->getTypeClass();
1259  if (TyClass != CanFrom->getTypeClass()) return false;
1260  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1261    if (TyClass == Type::Pointer) {
1262      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1263      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1264    } else if (TyClass == Type::BlockPointer) {
1265      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1266      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1267    } else if (TyClass == Type::MemberPointer) {
1268      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1269      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1270    } else {
1271      return false;
1272    }
1273
1274    TyClass = CanTo->getTypeClass();
1275    if (TyClass != CanFrom->getTypeClass()) return false;
1276    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1277      return false;
1278  }
1279
1280  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1281  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1282  if (!EInfo.getNoReturn()) return false;
1283
1284  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1285  assert(QualType(FromFn, 0).isCanonical());
1286  if (QualType(FromFn, 0) != CanTo) return false;
1287
1288  ResultTy = ToType;
1289  return true;
1290}
1291
1292/// \brief Determine whether the conversion from FromType to ToType is a valid
1293/// vector conversion.
1294///
1295/// \param ICK Will be set to the vector conversion kind, if this is a vector
1296/// conversion.
1297static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1298                               QualType ToType, ImplicitConversionKind &ICK) {
1299  // We need at least one of these types to be a vector type to have a vector
1300  // conversion.
1301  if (!ToType->isVectorType() && !FromType->isVectorType())
1302    return false;
1303
1304  // Identical types require no conversions.
1305  if (Context.hasSameUnqualifiedType(FromType, ToType))
1306    return false;
1307
1308  // There are no conversions between extended vector types, only identity.
1309  if (ToType->isExtVectorType()) {
1310    // There are no conversions between extended vector types other than the
1311    // identity conversion.
1312    if (FromType->isExtVectorType())
1313      return false;
1314
1315    // Vector splat from any arithmetic type to a vector.
1316    if (FromType->isArithmeticType()) {
1317      ICK = ICK_Vector_Splat;
1318      return true;
1319    }
1320  }
1321
1322  // We can perform the conversion between vector types in the following cases:
1323  // 1)vector types are equivalent AltiVec and GCC vector types
1324  // 2)lax vector conversions are permitted and the vector types are of the
1325  //   same size
1326  if (ToType->isVectorType() && FromType->isVectorType()) {
1327    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1328        (Context.getLangOpts().LaxVectorConversions &&
1329         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1330      ICK = ICK_Vector_Conversion;
1331      return true;
1332    }
1333  }
1334
1335  return false;
1336}
1337
1338static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1339                                bool InOverloadResolution,
1340                                StandardConversionSequence &SCS,
1341                                bool CStyle);
1342
1343/// IsStandardConversion - Determines whether there is a standard
1344/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1345/// expression From to the type ToType. Standard conversion sequences
1346/// only consider non-class types; for conversions that involve class
1347/// types, use TryImplicitConversion. If a conversion exists, SCS will
1348/// contain the standard conversion sequence required to perform this
1349/// conversion and this routine will return true. Otherwise, this
1350/// routine will return false and the value of SCS is unspecified.
1351static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1352                                 bool InOverloadResolution,
1353                                 StandardConversionSequence &SCS,
1354                                 bool CStyle,
1355                                 bool AllowObjCWritebackConversion) {
1356  QualType FromType = From->getType();
1357
1358  // Standard conversions (C++ [conv])
1359  SCS.setAsIdentityConversion();
1360  SCS.DeprecatedStringLiteralToCharPtr = false;
1361  SCS.IncompatibleObjC = false;
1362  SCS.setFromType(FromType);
1363  SCS.CopyConstructor = 0;
1364
1365  // There are no standard conversions for class types in C++, so
1366  // abort early. When overloading in C, however, we do permit
1367  if (FromType->isRecordType() || ToType->isRecordType()) {
1368    if (S.getLangOpts().CPlusPlus)
1369      return false;
1370
1371    // When we're overloading in C, we allow, as standard conversions,
1372  }
1373
1374  // The first conversion can be an lvalue-to-rvalue conversion,
1375  // array-to-pointer conversion, or function-to-pointer conversion
1376  // (C++ 4p1).
1377
1378  if (FromType == S.Context.OverloadTy) {
1379    DeclAccessPair AccessPair;
1380    if (FunctionDecl *Fn
1381          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1382                                                 AccessPair)) {
1383      // We were able to resolve the address of the overloaded function,
1384      // so we can convert to the type of that function.
1385      FromType = Fn->getType();
1386
1387      // we can sometimes resolve &foo<int> regardless of ToType, so check
1388      // if the type matches (identity) or we are converting to bool
1389      if (!S.Context.hasSameUnqualifiedType(
1390                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1391        QualType resultTy;
1392        // if the function type matches except for [[noreturn]], it's ok
1393        if (!S.IsNoReturnConversion(FromType,
1394              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1395          // otherwise, only a boolean conversion is standard
1396          if (!ToType->isBooleanType())
1397            return false;
1398      }
1399
1400      // Check if the "from" expression is taking the address of an overloaded
1401      // function and recompute the FromType accordingly. Take advantage of the
1402      // fact that non-static member functions *must* have such an address-of
1403      // expression.
1404      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1405      if (Method && !Method->isStatic()) {
1406        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1407               "Non-unary operator on non-static member address");
1408        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1409               == UO_AddrOf &&
1410               "Non-address-of operator on non-static member address");
1411        const Type *ClassType
1412          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1413        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1414      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1415        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1416               UO_AddrOf &&
1417               "Non-address-of operator for overloaded function expression");
1418        FromType = S.Context.getPointerType(FromType);
1419      }
1420
1421      // Check that we've computed the proper type after overload resolution.
1422      assert(S.Context.hasSameType(
1423        FromType,
1424        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1425    } else {
1426      return false;
1427    }
1428  }
1429  // Lvalue-to-rvalue conversion (C++11 4.1):
1430  //   A glvalue (3.10) of a non-function, non-array type T can
1431  //   be converted to a prvalue.
1432  bool argIsLValue = From->isGLValue();
1433  if (argIsLValue &&
1434      !FromType->isFunctionType() && !FromType->isArrayType() &&
1435      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1436    SCS.First = ICK_Lvalue_To_Rvalue;
1437
1438    // C11 6.3.2.1p2:
1439    //   ... if the lvalue has atomic type, the value has the non-atomic version
1440    //   of the type of the lvalue ...
1441    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1442      FromType = Atomic->getValueType();
1443
1444    // If T is a non-class type, the type of the rvalue is the
1445    // cv-unqualified version of T. Otherwise, the type of the rvalue
1446    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1447    // just strip the qualifiers because they don't matter.
1448    FromType = FromType.getUnqualifiedType();
1449  } else if (FromType->isArrayType()) {
1450    // Array-to-pointer conversion (C++ 4.2)
1451    SCS.First = ICK_Array_To_Pointer;
1452
1453    // An lvalue or rvalue of type "array of N T" or "array of unknown
1454    // bound of T" can be converted to an rvalue of type "pointer to
1455    // T" (C++ 4.2p1).
1456    FromType = S.Context.getArrayDecayedType(FromType);
1457
1458    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1459      // This conversion is deprecated. (C++ D.4).
1460      SCS.DeprecatedStringLiteralToCharPtr = true;
1461
1462      // For the purpose of ranking in overload resolution
1463      // (13.3.3.1.1), this conversion is considered an
1464      // array-to-pointer conversion followed by a qualification
1465      // conversion (4.4). (C++ 4.2p2)
1466      SCS.Second = ICK_Identity;
1467      SCS.Third = ICK_Qualification;
1468      SCS.QualificationIncludesObjCLifetime = false;
1469      SCS.setAllToTypes(FromType);
1470      return true;
1471    }
1472  } else if (FromType->isFunctionType() && argIsLValue) {
1473    // Function-to-pointer conversion (C++ 4.3).
1474    SCS.First = ICK_Function_To_Pointer;
1475
1476    // An lvalue of function type T can be converted to an rvalue of
1477    // type "pointer to T." The result is a pointer to the
1478    // function. (C++ 4.3p1).
1479    FromType = S.Context.getPointerType(FromType);
1480  } else {
1481    // We don't require any conversions for the first step.
1482    SCS.First = ICK_Identity;
1483  }
1484  SCS.setToType(0, FromType);
1485
1486  // The second conversion can be an integral promotion, floating
1487  // point promotion, integral conversion, floating point conversion,
1488  // floating-integral conversion, pointer conversion,
1489  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1490  // For overloading in C, this can also be a "compatible-type"
1491  // conversion.
1492  bool IncompatibleObjC = false;
1493  ImplicitConversionKind SecondICK = ICK_Identity;
1494  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1495    // The unqualified versions of the types are the same: there's no
1496    // conversion to do.
1497    SCS.Second = ICK_Identity;
1498  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1499    // Integral promotion (C++ 4.5).
1500    SCS.Second = ICK_Integral_Promotion;
1501    FromType = ToType.getUnqualifiedType();
1502  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1503    // Floating point promotion (C++ 4.6).
1504    SCS.Second = ICK_Floating_Promotion;
1505    FromType = ToType.getUnqualifiedType();
1506  } else if (S.IsComplexPromotion(FromType, ToType)) {
1507    // Complex promotion (Clang extension)
1508    SCS.Second = ICK_Complex_Promotion;
1509    FromType = ToType.getUnqualifiedType();
1510  } else if (ToType->isBooleanType() &&
1511             (FromType->isArithmeticType() ||
1512              FromType->isAnyPointerType() ||
1513              FromType->isBlockPointerType() ||
1514              FromType->isMemberPointerType() ||
1515              FromType->isNullPtrType())) {
1516    // Boolean conversions (C++ 4.12).
1517    SCS.Second = ICK_Boolean_Conversion;
1518    FromType = S.Context.BoolTy;
1519  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1520             ToType->isIntegralType(S.Context)) {
1521    // Integral conversions (C++ 4.7).
1522    SCS.Second = ICK_Integral_Conversion;
1523    FromType = ToType.getUnqualifiedType();
1524  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1525    // Complex conversions (C99 6.3.1.6)
1526    SCS.Second = ICK_Complex_Conversion;
1527    FromType = ToType.getUnqualifiedType();
1528  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1529             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1530    // Complex-real conversions (C99 6.3.1.7)
1531    SCS.Second = ICK_Complex_Real;
1532    FromType = ToType.getUnqualifiedType();
1533  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1534    // Floating point conversions (C++ 4.8).
1535    SCS.Second = ICK_Floating_Conversion;
1536    FromType = ToType.getUnqualifiedType();
1537  } else if ((FromType->isRealFloatingType() &&
1538              ToType->isIntegralType(S.Context)) ||
1539             (FromType->isIntegralOrUnscopedEnumerationType() &&
1540              ToType->isRealFloatingType())) {
1541    // Floating-integral conversions (C++ 4.9).
1542    SCS.Second = ICK_Floating_Integral;
1543    FromType = ToType.getUnqualifiedType();
1544  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1545    SCS.Second = ICK_Block_Pointer_Conversion;
1546  } else if (AllowObjCWritebackConversion &&
1547             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1548    SCS.Second = ICK_Writeback_Conversion;
1549  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1550                                   FromType, IncompatibleObjC)) {
1551    // Pointer conversions (C++ 4.10).
1552    SCS.Second = ICK_Pointer_Conversion;
1553    SCS.IncompatibleObjC = IncompatibleObjC;
1554    FromType = FromType.getUnqualifiedType();
1555  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1556                                         InOverloadResolution, FromType)) {
1557    // Pointer to member conversions (4.11).
1558    SCS.Second = ICK_Pointer_Member;
1559  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1560    SCS.Second = SecondICK;
1561    FromType = ToType.getUnqualifiedType();
1562  } else if (!S.getLangOpts().CPlusPlus &&
1563             S.Context.typesAreCompatible(ToType, FromType)) {
1564    // Compatible conversions (Clang extension for C function overloading)
1565    SCS.Second = ICK_Compatible_Conversion;
1566    FromType = ToType.getUnqualifiedType();
1567  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1568    // Treat a conversion that strips "noreturn" as an identity conversion.
1569    SCS.Second = ICK_NoReturn_Adjustment;
1570  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1571                                             InOverloadResolution,
1572                                             SCS, CStyle)) {
1573    SCS.Second = ICK_TransparentUnionConversion;
1574    FromType = ToType;
1575  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1576                                 CStyle)) {
1577    // tryAtomicConversion has updated the standard conversion sequence
1578    // appropriately.
1579    return true;
1580  } else {
1581    // No second conversion required.
1582    SCS.Second = ICK_Identity;
1583  }
1584  SCS.setToType(1, FromType);
1585
1586  QualType CanonFrom;
1587  QualType CanonTo;
1588  // The third conversion can be a qualification conversion (C++ 4p1).
1589  bool ObjCLifetimeConversion;
1590  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1591                                  ObjCLifetimeConversion)) {
1592    SCS.Third = ICK_Qualification;
1593    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1594    FromType = ToType;
1595    CanonFrom = S.Context.getCanonicalType(FromType);
1596    CanonTo = S.Context.getCanonicalType(ToType);
1597  } else {
1598    // No conversion required
1599    SCS.Third = ICK_Identity;
1600
1601    // C++ [over.best.ics]p6:
1602    //   [...] Any difference in top-level cv-qualification is
1603    //   subsumed by the initialization itself and does not constitute
1604    //   a conversion. [...]
1605    CanonFrom = S.Context.getCanonicalType(FromType);
1606    CanonTo = S.Context.getCanonicalType(ToType);
1607    if (CanonFrom.getLocalUnqualifiedType()
1608                                       == CanonTo.getLocalUnqualifiedType() &&
1609        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1610         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1611         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1612      FromType = ToType;
1613      CanonFrom = CanonTo;
1614    }
1615  }
1616  SCS.setToType(2, FromType);
1617
1618  // If we have not converted the argument type to the parameter type,
1619  // this is a bad conversion sequence.
1620  if (CanonFrom != CanonTo)
1621    return false;
1622
1623  return true;
1624}
1625
1626static bool
1627IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1628                                     QualType &ToType,
1629                                     bool InOverloadResolution,
1630                                     StandardConversionSequence &SCS,
1631                                     bool CStyle) {
1632
1633  const RecordType *UT = ToType->getAsUnionType();
1634  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1635    return false;
1636  // The field to initialize within the transparent union.
1637  RecordDecl *UD = UT->getDecl();
1638  // It's compatible if the expression matches any of the fields.
1639  for (RecordDecl::field_iterator it = UD->field_begin(),
1640       itend = UD->field_end();
1641       it != itend; ++it) {
1642    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1643                             CStyle, /*ObjCWritebackConversion=*/false)) {
1644      ToType = it->getType();
1645      return true;
1646    }
1647  }
1648  return false;
1649}
1650
1651/// IsIntegralPromotion - Determines whether the conversion from the
1652/// expression From (whose potentially-adjusted type is FromType) to
1653/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1654/// sets PromotedType to the promoted type.
1655bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1656  const BuiltinType *To = ToType->getAs<BuiltinType>();
1657  // All integers are built-in.
1658  if (!To) {
1659    return false;
1660  }
1661
1662  // An rvalue of type char, signed char, unsigned char, short int, or
1663  // unsigned short int can be converted to an rvalue of type int if
1664  // int can represent all the values of the source type; otherwise,
1665  // the source rvalue can be converted to an rvalue of type unsigned
1666  // int (C++ 4.5p1).
1667  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1668      !FromType->isEnumeralType()) {
1669    if (// We can promote any signed, promotable integer type to an int
1670        (FromType->isSignedIntegerType() ||
1671         // We can promote any unsigned integer type whose size is
1672         // less than int to an int.
1673         (!FromType->isSignedIntegerType() &&
1674          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1675      return To->getKind() == BuiltinType::Int;
1676    }
1677
1678    return To->getKind() == BuiltinType::UInt;
1679  }
1680
1681  // C++11 [conv.prom]p3:
1682  //   A prvalue of an unscoped enumeration type whose underlying type is not
1683  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1684  //   following types that can represent all the values of the enumeration
1685  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1686  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1687  //   long long int. If none of the types in that list can represent all the
1688  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1689  //   type can be converted to an rvalue a prvalue of the extended integer type
1690  //   with lowest integer conversion rank (4.13) greater than the rank of long
1691  //   long in which all the values of the enumeration can be represented. If
1692  //   there are two such extended types, the signed one is chosen.
1693  // C++11 [conv.prom]p4:
1694  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1695  //   can be converted to a prvalue of its underlying type. Moreover, if
1696  //   integral promotion can be applied to its underlying type, a prvalue of an
1697  //   unscoped enumeration type whose underlying type is fixed can also be
1698  //   converted to a prvalue of the promoted underlying type.
1699  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1700    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1701    // provided for a scoped enumeration.
1702    if (FromEnumType->getDecl()->isScoped())
1703      return false;
1704
1705    // We can perform an integral promotion to the underlying type of the enum,
1706    // even if that's not the promoted type.
1707    if (FromEnumType->getDecl()->isFixed()) {
1708      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1709      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1710             IsIntegralPromotion(From, Underlying, ToType);
1711    }
1712
1713    // We have already pre-calculated the promotion type, so this is trivial.
1714    if (ToType->isIntegerType() &&
1715        !RequireCompleteType(From->getLocStart(), FromType, 0))
1716      return Context.hasSameUnqualifiedType(ToType,
1717                                FromEnumType->getDecl()->getPromotionType());
1718  }
1719
1720  // C++0x [conv.prom]p2:
1721  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1722  //   to an rvalue a prvalue of the first of the following types that can
1723  //   represent all the values of its underlying type: int, unsigned int,
1724  //   long int, unsigned long int, long long int, or unsigned long long int.
1725  //   If none of the types in that list can represent all the values of its
1726  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1727  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1728  //   type.
1729  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1730      ToType->isIntegerType()) {
1731    // Determine whether the type we're converting from is signed or
1732    // unsigned.
1733    bool FromIsSigned = FromType->isSignedIntegerType();
1734    uint64_t FromSize = Context.getTypeSize(FromType);
1735
1736    // The types we'll try to promote to, in the appropriate
1737    // order. Try each of these types.
1738    QualType PromoteTypes[6] = {
1739      Context.IntTy, Context.UnsignedIntTy,
1740      Context.LongTy, Context.UnsignedLongTy ,
1741      Context.LongLongTy, Context.UnsignedLongLongTy
1742    };
1743    for (int Idx = 0; Idx < 6; ++Idx) {
1744      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1745      if (FromSize < ToSize ||
1746          (FromSize == ToSize &&
1747           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1748        // We found the type that we can promote to. If this is the
1749        // type we wanted, we have a promotion. Otherwise, no
1750        // promotion.
1751        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1752      }
1753    }
1754  }
1755
1756  // An rvalue for an integral bit-field (9.6) can be converted to an
1757  // rvalue of type int if int can represent all the values of the
1758  // bit-field; otherwise, it can be converted to unsigned int if
1759  // unsigned int can represent all the values of the bit-field. If
1760  // the bit-field is larger yet, no integral promotion applies to
1761  // it. If the bit-field has an enumerated type, it is treated as any
1762  // other value of that type for promotion purposes (C++ 4.5p3).
1763  // FIXME: We should delay checking of bit-fields until we actually perform the
1764  // conversion.
1765  using llvm::APSInt;
1766  if (From)
1767    if (FieldDecl *MemberDecl = From->getBitField()) {
1768      APSInt BitWidth;
1769      if (FromType->isIntegralType(Context) &&
1770          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1771        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1772        ToSize = Context.getTypeSize(ToType);
1773
1774        // Are we promoting to an int from a bitfield that fits in an int?
1775        if (BitWidth < ToSize ||
1776            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1777          return To->getKind() == BuiltinType::Int;
1778        }
1779
1780        // Are we promoting to an unsigned int from an unsigned bitfield
1781        // that fits into an unsigned int?
1782        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1783          return To->getKind() == BuiltinType::UInt;
1784        }
1785
1786        return false;
1787      }
1788    }
1789
1790  // An rvalue of type bool can be converted to an rvalue of type int,
1791  // with false becoming zero and true becoming one (C++ 4.5p4).
1792  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1793    return true;
1794  }
1795
1796  return false;
1797}
1798
1799/// IsFloatingPointPromotion - Determines whether the conversion from
1800/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1801/// returns true and sets PromotedType to the promoted type.
1802bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1803  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1804    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1805      /// An rvalue of type float can be converted to an rvalue of type
1806      /// double. (C++ 4.6p1).
1807      if (FromBuiltin->getKind() == BuiltinType::Float &&
1808          ToBuiltin->getKind() == BuiltinType::Double)
1809        return true;
1810
1811      // C99 6.3.1.5p1:
1812      //   When a float is promoted to double or long double, or a
1813      //   double is promoted to long double [...].
1814      if (!getLangOpts().CPlusPlus &&
1815          (FromBuiltin->getKind() == BuiltinType::Float ||
1816           FromBuiltin->getKind() == BuiltinType::Double) &&
1817          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1818        return true;
1819
1820      // Half can be promoted to float.
1821      if (FromBuiltin->getKind() == BuiltinType::Half &&
1822          ToBuiltin->getKind() == BuiltinType::Float)
1823        return true;
1824    }
1825
1826  return false;
1827}
1828
1829/// \brief Determine if a conversion is a complex promotion.
1830///
1831/// A complex promotion is defined as a complex -> complex conversion
1832/// where the conversion between the underlying real types is a
1833/// floating-point or integral promotion.
1834bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1835  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1836  if (!FromComplex)
1837    return false;
1838
1839  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1840  if (!ToComplex)
1841    return false;
1842
1843  return IsFloatingPointPromotion(FromComplex->getElementType(),
1844                                  ToComplex->getElementType()) ||
1845    IsIntegralPromotion(0, FromComplex->getElementType(),
1846                        ToComplex->getElementType());
1847}
1848
1849/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1850/// the pointer type FromPtr to a pointer to type ToPointee, with the
1851/// same type qualifiers as FromPtr has on its pointee type. ToType,
1852/// if non-empty, will be a pointer to ToType that may or may not have
1853/// the right set of qualifiers on its pointee.
1854///
1855static QualType
1856BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1857                                   QualType ToPointee, QualType ToType,
1858                                   ASTContext &Context,
1859                                   bool StripObjCLifetime = false) {
1860  assert((FromPtr->getTypeClass() == Type::Pointer ||
1861          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1862         "Invalid similarly-qualified pointer type");
1863
1864  /// Conversions to 'id' subsume cv-qualifier conversions.
1865  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1866    return ToType.getUnqualifiedType();
1867
1868  QualType CanonFromPointee
1869    = Context.getCanonicalType(FromPtr->getPointeeType());
1870  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1871  Qualifiers Quals = CanonFromPointee.getQualifiers();
1872
1873  if (StripObjCLifetime)
1874    Quals.removeObjCLifetime();
1875
1876  // Exact qualifier match -> return the pointer type we're converting to.
1877  if (CanonToPointee.getLocalQualifiers() == Quals) {
1878    // ToType is exactly what we need. Return it.
1879    if (!ToType.isNull())
1880      return ToType.getUnqualifiedType();
1881
1882    // Build a pointer to ToPointee. It has the right qualifiers
1883    // already.
1884    if (isa<ObjCObjectPointerType>(ToType))
1885      return Context.getObjCObjectPointerType(ToPointee);
1886    return Context.getPointerType(ToPointee);
1887  }
1888
1889  // Just build a canonical type that has the right qualifiers.
1890  QualType QualifiedCanonToPointee
1891    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1892
1893  if (isa<ObjCObjectPointerType>(ToType))
1894    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1895  return Context.getPointerType(QualifiedCanonToPointee);
1896}
1897
1898static bool isNullPointerConstantForConversion(Expr *Expr,
1899                                               bool InOverloadResolution,
1900                                               ASTContext &Context) {
1901  // Handle value-dependent integral null pointer constants correctly.
1902  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1903  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1904      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1905    return !InOverloadResolution;
1906
1907  return Expr->isNullPointerConstant(Context,
1908                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1909                                        : Expr::NPC_ValueDependentIsNull);
1910}
1911
1912/// IsPointerConversion - Determines whether the conversion of the
1913/// expression From, which has the (possibly adjusted) type FromType,
1914/// can be converted to the type ToType via a pointer conversion (C++
1915/// 4.10). If so, returns true and places the converted type (that
1916/// might differ from ToType in its cv-qualifiers at some level) into
1917/// ConvertedType.
1918///
1919/// This routine also supports conversions to and from block pointers
1920/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1921/// pointers to interfaces. FIXME: Once we've determined the
1922/// appropriate overloading rules for Objective-C, we may want to
1923/// split the Objective-C checks into a different routine; however,
1924/// GCC seems to consider all of these conversions to be pointer
1925/// conversions, so for now they live here. IncompatibleObjC will be
1926/// set if the conversion is an allowed Objective-C conversion that
1927/// should result in a warning.
1928bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1929                               bool InOverloadResolution,
1930                               QualType& ConvertedType,
1931                               bool &IncompatibleObjC) {
1932  IncompatibleObjC = false;
1933  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1934                              IncompatibleObjC))
1935    return true;
1936
1937  // Conversion from a null pointer constant to any Objective-C pointer type.
1938  if (ToType->isObjCObjectPointerType() &&
1939      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1940    ConvertedType = ToType;
1941    return true;
1942  }
1943
1944  // Blocks: Block pointers can be converted to void*.
1945  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1946      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1947    ConvertedType = ToType;
1948    return true;
1949  }
1950  // Blocks: A null pointer constant can be converted to a block
1951  // pointer type.
1952  if (ToType->isBlockPointerType() &&
1953      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1954    ConvertedType = ToType;
1955    return true;
1956  }
1957
1958  // If the left-hand-side is nullptr_t, the right side can be a null
1959  // pointer constant.
1960  if (ToType->isNullPtrType() &&
1961      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1962    ConvertedType = ToType;
1963    return true;
1964  }
1965
1966  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1967  if (!ToTypePtr)
1968    return false;
1969
1970  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1971  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1972    ConvertedType = ToType;
1973    return true;
1974  }
1975
1976  // Beyond this point, both types need to be pointers
1977  // , including objective-c pointers.
1978  QualType ToPointeeType = ToTypePtr->getPointeeType();
1979  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1980      !getLangOpts().ObjCAutoRefCount) {
1981    ConvertedType = BuildSimilarlyQualifiedPointerType(
1982                                      FromType->getAs<ObjCObjectPointerType>(),
1983                                                       ToPointeeType,
1984                                                       ToType, Context);
1985    return true;
1986  }
1987  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1988  if (!FromTypePtr)
1989    return false;
1990
1991  QualType FromPointeeType = FromTypePtr->getPointeeType();
1992
1993  // If the unqualified pointee types are the same, this can't be a
1994  // pointer conversion, so don't do all of the work below.
1995  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1996    return false;
1997
1998  // An rvalue of type "pointer to cv T," where T is an object type,
1999  // can be converted to an rvalue of type "pointer to cv void" (C++
2000  // 4.10p2).
2001  if (FromPointeeType->isIncompleteOrObjectType() &&
2002      ToPointeeType->isVoidType()) {
2003    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2004                                                       ToPointeeType,
2005                                                       ToType, Context,
2006                                                   /*StripObjCLifetime=*/true);
2007    return true;
2008  }
2009
2010  // MSVC allows implicit function to void* type conversion.
2011  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2012      ToPointeeType->isVoidType()) {
2013    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2014                                                       ToPointeeType,
2015                                                       ToType, Context);
2016    return true;
2017  }
2018
2019  // When we're overloading in C, we allow a special kind of pointer
2020  // conversion for compatible-but-not-identical pointee types.
2021  if (!getLangOpts().CPlusPlus &&
2022      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2023    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2024                                                       ToPointeeType,
2025                                                       ToType, Context);
2026    return true;
2027  }
2028
2029  // C++ [conv.ptr]p3:
2030  //
2031  //   An rvalue of type "pointer to cv D," where D is a class type,
2032  //   can be converted to an rvalue of type "pointer to cv B," where
2033  //   B is a base class (clause 10) of D. If B is an inaccessible
2034  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2035  //   necessitates this conversion is ill-formed. The result of the
2036  //   conversion is a pointer to the base class sub-object of the
2037  //   derived class object. The null pointer value is converted to
2038  //   the null pointer value of the destination type.
2039  //
2040  // Note that we do not check for ambiguity or inaccessibility
2041  // here. That is handled by CheckPointerConversion.
2042  if (getLangOpts().CPlusPlus &&
2043      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2044      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2045      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2046      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2047    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2048                                                       ToPointeeType,
2049                                                       ToType, Context);
2050    return true;
2051  }
2052
2053  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2054      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2055    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2056                                                       ToPointeeType,
2057                                                       ToType, Context);
2058    return true;
2059  }
2060
2061  return false;
2062}
2063
2064/// \brief Adopt the given qualifiers for the given type.
2065static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2066  Qualifiers TQs = T.getQualifiers();
2067
2068  // Check whether qualifiers already match.
2069  if (TQs == Qs)
2070    return T;
2071
2072  if (Qs.compatiblyIncludes(TQs))
2073    return Context.getQualifiedType(T, Qs);
2074
2075  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2076}
2077
2078/// isObjCPointerConversion - Determines whether this is an
2079/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2080/// with the same arguments and return values.
2081bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2082                                   QualType& ConvertedType,
2083                                   bool &IncompatibleObjC) {
2084  if (!getLangOpts().ObjC1)
2085    return false;
2086
2087  // The set of qualifiers on the type we're converting from.
2088  Qualifiers FromQualifiers = FromType.getQualifiers();
2089
2090  // First, we handle all conversions on ObjC object pointer types.
2091  const ObjCObjectPointerType* ToObjCPtr =
2092    ToType->getAs<ObjCObjectPointerType>();
2093  const ObjCObjectPointerType *FromObjCPtr =
2094    FromType->getAs<ObjCObjectPointerType>();
2095
2096  if (ToObjCPtr && FromObjCPtr) {
2097    // If the pointee types are the same (ignoring qualifications),
2098    // then this is not a pointer conversion.
2099    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2100                                       FromObjCPtr->getPointeeType()))
2101      return false;
2102
2103    // Check for compatible
2104    // Objective C++: We're able to convert between "id" or "Class" and a
2105    // pointer to any interface (in both directions).
2106    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2107      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2108      return true;
2109    }
2110    // Conversions with Objective-C's id<...>.
2111    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2112         ToObjCPtr->isObjCQualifiedIdType()) &&
2113        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2114                                                  /*compare=*/false)) {
2115      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2116      return true;
2117    }
2118    // Objective C++: We're able to convert from a pointer to an
2119    // interface to a pointer to a different interface.
2120    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2121      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2122      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2123      if (getLangOpts().CPlusPlus && LHS && RHS &&
2124          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2125                                                FromObjCPtr->getPointeeType()))
2126        return false;
2127      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2128                                                   ToObjCPtr->getPointeeType(),
2129                                                         ToType, Context);
2130      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2131      return true;
2132    }
2133
2134    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2135      // Okay: this is some kind of implicit downcast of Objective-C
2136      // interfaces, which is permitted. However, we're going to
2137      // complain about it.
2138      IncompatibleObjC = true;
2139      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2140                                                   ToObjCPtr->getPointeeType(),
2141                                                         ToType, Context);
2142      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2143      return true;
2144    }
2145  }
2146  // Beyond this point, both types need to be C pointers or block pointers.
2147  QualType ToPointeeType;
2148  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2149    ToPointeeType = ToCPtr->getPointeeType();
2150  else if (const BlockPointerType *ToBlockPtr =
2151            ToType->getAs<BlockPointerType>()) {
2152    // Objective C++: We're able to convert from a pointer to any object
2153    // to a block pointer type.
2154    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2155      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2156      return true;
2157    }
2158    ToPointeeType = ToBlockPtr->getPointeeType();
2159  }
2160  else if (FromType->getAs<BlockPointerType>() &&
2161           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2162    // Objective C++: We're able to convert from a block pointer type to a
2163    // pointer to any object.
2164    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2165    return true;
2166  }
2167  else
2168    return false;
2169
2170  QualType FromPointeeType;
2171  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2172    FromPointeeType = FromCPtr->getPointeeType();
2173  else if (const BlockPointerType *FromBlockPtr =
2174           FromType->getAs<BlockPointerType>())
2175    FromPointeeType = FromBlockPtr->getPointeeType();
2176  else
2177    return false;
2178
2179  // If we have pointers to pointers, recursively check whether this
2180  // is an Objective-C conversion.
2181  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2182      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2183                              IncompatibleObjC)) {
2184    // We always complain about this conversion.
2185    IncompatibleObjC = true;
2186    ConvertedType = Context.getPointerType(ConvertedType);
2187    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2188    return true;
2189  }
2190  // Allow conversion of pointee being objective-c pointer to another one;
2191  // as in I* to id.
2192  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2193      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2194      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2195                              IncompatibleObjC)) {
2196
2197    ConvertedType = Context.getPointerType(ConvertedType);
2198    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2199    return true;
2200  }
2201
2202  // If we have pointers to functions or blocks, check whether the only
2203  // differences in the argument and result types are in Objective-C
2204  // pointer conversions. If so, we permit the conversion (but
2205  // complain about it).
2206  const FunctionProtoType *FromFunctionType
2207    = FromPointeeType->getAs<FunctionProtoType>();
2208  const FunctionProtoType *ToFunctionType
2209    = ToPointeeType->getAs<FunctionProtoType>();
2210  if (FromFunctionType && ToFunctionType) {
2211    // If the function types are exactly the same, this isn't an
2212    // Objective-C pointer conversion.
2213    if (Context.getCanonicalType(FromPointeeType)
2214          == Context.getCanonicalType(ToPointeeType))
2215      return false;
2216
2217    // Perform the quick checks that will tell us whether these
2218    // function types are obviously different.
2219    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2220        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2221        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2222      return false;
2223
2224    bool HasObjCConversion = false;
2225    if (Context.getCanonicalType(FromFunctionType->getResultType())
2226          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2227      // Okay, the types match exactly. Nothing to do.
2228    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2229                                       ToFunctionType->getResultType(),
2230                                       ConvertedType, IncompatibleObjC)) {
2231      // Okay, we have an Objective-C pointer conversion.
2232      HasObjCConversion = true;
2233    } else {
2234      // Function types are too different. Abort.
2235      return false;
2236    }
2237
2238    // Check argument types.
2239    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2240         ArgIdx != NumArgs; ++ArgIdx) {
2241      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2242      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2243      if (Context.getCanonicalType(FromArgType)
2244            == Context.getCanonicalType(ToArgType)) {
2245        // Okay, the types match exactly. Nothing to do.
2246      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2247                                         ConvertedType, IncompatibleObjC)) {
2248        // Okay, we have an Objective-C pointer conversion.
2249        HasObjCConversion = true;
2250      } else {
2251        // Argument types are too different. Abort.
2252        return false;
2253      }
2254    }
2255
2256    if (HasObjCConversion) {
2257      // We had an Objective-C conversion. Allow this pointer
2258      // conversion, but complain about it.
2259      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2260      IncompatibleObjC = true;
2261      return true;
2262    }
2263  }
2264
2265  return false;
2266}
2267
2268/// \brief Determine whether this is an Objective-C writeback conversion,
2269/// used for parameter passing when performing automatic reference counting.
2270///
2271/// \param FromType The type we're converting form.
2272///
2273/// \param ToType The type we're converting to.
2274///
2275/// \param ConvertedType The type that will be produced after applying
2276/// this conversion.
2277bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2278                                     QualType &ConvertedType) {
2279  if (!getLangOpts().ObjCAutoRefCount ||
2280      Context.hasSameUnqualifiedType(FromType, ToType))
2281    return false;
2282
2283  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2284  QualType ToPointee;
2285  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2286    ToPointee = ToPointer->getPointeeType();
2287  else
2288    return false;
2289
2290  Qualifiers ToQuals = ToPointee.getQualifiers();
2291  if (!ToPointee->isObjCLifetimeType() ||
2292      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2293      !ToQuals.withoutObjCLifetime().empty())
2294    return false;
2295
2296  // Argument must be a pointer to __strong to __weak.
2297  QualType FromPointee;
2298  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2299    FromPointee = FromPointer->getPointeeType();
2300  else
2301    return false;
2302
2303  Qualifiers FromQuals = FromPointee.getQualifiers();
2304  if (!FromPointee->isObjCLifetimeType() ||
2305      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2306       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2307    return false;
2308
2309  // Make sure that we have compatible qualifiers.
2310  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2311  if (!ToQuals.compatiblyIncludes(FromQuals))
2312    return false;
2313
2314  // Remove qualifiers from the pointee type we're converting from; they
2315  // aren't used in the compatibility check belong, and we'll be adding back
2316  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2317  FromPointee = FromPointee.getUnqualifiedType();
2318
2319  // The unqualified form of the pointee types must be compatible.
2320  ToPointee = ToPointee.getUnqualifiedType();
2321  bool IncompatibleObjC;
2322  if (Context.typesAreCompatible(FromPointee, ToPointee))
2323    FromPointee = ToPointee;
2324  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2325                                    IncompatibleObjC))
2326    return false;
2327
2328  /// \brief Construct the type we're converting to, which is a pointer to
2329  /// __autoreleasing pointee.
2330  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2331  ConvertedType = Context.getPointerType(FromPointee);
2332  return true;
2333}
2334
2335bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2336                                    QualType& ConvertedType) {
2337  QualType ToPointeeType;
2338  if (const BlockPointerType *ToBlockPtr =
2339        ToType->getAs<BlockPointerType>())
2340    ToPointeeType = ToBlockPtr->getPointeeType();
2341  else
2342    return false;
2343
2344  QualType FromPointeeType;
2345  if (const BlockPointerType *FromBlockPtr =
2346      FromType->getAs<BlockPointerType>())
2347    FromPointeeType = FromBlockPtr->getPointeeType();
2348  else
2349    return false;
2350  // We have pointer to blocks, check whether the only
2351  // differences in the argument and result types are in Objective-C
2352  // pointer conversions. If so, we permit the conversion.
2353
2354  const FunctionProtoType *FromFunctionType
2355    = FromPointeeType->getAs<FunctionProtoType>();
2356  const FunctionProtoType *ToFunctionType
2357    = ToPointeeType->getAs<FunctionProtoType>();
2358
2359  if (!FromFunctionType || !ToFunctionType)
2360    return false;
2361
2362  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2363    return true;
2364
2365  // Perform the quick checks that will tell us whether these
2366  // function types are obviously different.
2367  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2368      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2369    return false;
2370
2371  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2372  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2373  if (FromEInfo != ToEInfo)
2374    return false;
2375
2376  bool IncompatibleObjC = false;
2377  if (Context.hasSameType(FromFunctionType->getResultType(),
2378                          ToFunctionType->getResultType())) {
2379    // Okay, the types match exactly. Nothing to do.
2380  } else {
2381    QualType RHS = FromFunctionType->getResultType();
2382    QualType LHS = ToFunctionType->getResultType();
2383    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2384        !RHS.hasQualifiers() && LHS.hasQualifiers())
2385       LHS = LHS.getUnqualifiedType();
2386
2387     if (Context.hasSameType(RHS,LHS)) {
2388       // OK exact match.
2389     } else if (isObjCPointerConversion(RHS, LHS,
2390                                        ConvertedType, IncompatibleObjC)) {
2391     if (IncompatibleObjC)
2392       return false;
2393     // Okay, we have an Objective-C pointer conversion.
2394     }
2395     else
2396       return false;
2397   }
2398
2399   // Check argument types.
2400   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2401        ArgIdx != NumArgs; ++ArgIdx) {
2402     IncompatibleObjC = false;
2403     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2404     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2405     if (Context.hasSameType(FromArgType, ToArgType)) {
2406       // Okay, the types match exactly. Nothing to do.
2407     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2408                                        ConvertedType, IncompatibleObjC)) {
2409       if (IncompatibleObjC)
2410         return false;
2411       // Okay, we have an Objective-C pointer conversion.
2412     } else
2413       // Argument types are too different. Abort.
2414       return false;
2415   }
2416   if (LangOpts.ObjCAutoRefCount &&
2417       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2418                                                    ToFunctionType))
2419     return false;
2420
2421   ConvertedType = ToType;
2422   return true;
2423}
2424
2425enum {
2426  ft_default,
2427  ft_different_class,
2428  ft_parameter_arity,
2429  ft_parameter_mismatch,
2430  ft_return_type,
2431  ft_qualifer_mismatch
2432};
2433
2434/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2435/// function types.  Catches different number of parameter, mismatch in
2436/// parameter types, and different return types.
2437void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2438                                      QualType FromType, QualType ToType) {
2439  // If either type is not valid, include no extra info.
2440  if (FromType.isNull() || ToType.isNull()) {
2441    PDiag << ft_default;
2442    return;
2443  }
2444
2445  // Get the function type from the pointers.
2446  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2447    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2448                            *ToMember = ToType->getAs<MemberPointerType>();
2449    if (FromMember->getClass() != ToMember->getClass()) {
2450      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2451            << QualType(FromMember->getClass(), 0);
2452      return;
2453    }
2454    FromType = FromMember->getPointeeType();
2455    ToType = ToMember->getPointeeType();
2456  }
2457
2458  if (FromType->isPointerType())
2459    FromType = FromType->getPointeeType();
2460  if (ToType->isPointerType())
2461    ToType = ToType->getPointeeType();
2462
2463  // Remove references.
2464  FromType = FromType.getNonReferenceType();
2465  ToType = ToType.getNonReferenceType();
2466
2467  // Don't print extra info for non-specialized template functions.
2468  if (FromType->isInstantiationDependentType() &&
2469      !FromType->getAs<TemplateSpecializationType>()) {
2470    PDiag << ft_default;
2471    return;
2472  }
2473
2474  // No extra info for same types.
2475  if (Context.hasSameType(FromType, ToType)) {
2476    PDiag << ft_default;
2477    return;
2478  }
2479
2480  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2481                          *ToFunction = ToType->getAs<FunctionProtoType>();
2482
2483  // Both types need to be function types.
2484  if (!FromFunction || !ToFunction) {
2485    PDiag << ft_default;
2486    return;
2487  }
2488
2489  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2490    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2491          << FromFunction->getNumArgs();
2492    return;
2493  }
2494
2495  // Handle different parameter types.
2496  unsigned ArgPos;
2497  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2498    PDiag << ft_parameter_mismatch << ArgPos + 1
2499          << ToFunction->getArgType(ArgPos)
2500          << FromFunction->getArgType(ArgPos);
2501    return;
2502  }
2503
2504  // Handle different return type.
2505  if (!Context.hasSameType(FromFunction->getResultType(),
2506                           ToFunction->getResultType())) {
2507    PDiag << ft_return_type << ToFunction->getResultType()
2508          << FromFunction->getResultType();
2509    return;
2510  }
2511
2512  unsigned FromQuals = FromFunction->getTypeQuals(),
2513           ToQuals = ToFunction->getTypeQuals();
2514  if (FromQuals != ToQuals) {
2515    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2516    return;
2517  }
2518
2519  // Unable to find a difference, so add no extra info.
2520  PDiag << ft_default;
2521}
2522
2523/// FunctionArgTypesAreEqual - This routine checks two function proto types
2524/// for equality of their argument types. Caller has already checked that
2525/// they have same number of arguments. This routine assumes that Objective-C
2526/// pointer types which only differ in their protocol qualifiers are equal.
2527/// If the parameters are different, ArgPos will have the parameter index
2528/// of the first different parameter.
2529bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2530                                    const FunctionProtoType *NewType,
2531                                    unsigned *ArgPos) {
2532  if (!getLangOpts().ObjC1) {
2533    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2534         N = NewType->arg_type_begin(),
2535         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2536      if (!Context.hasSameType(*O, *N)) {
2537        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2538        return false;
2539      }
2540    }
2541    return true;
2542  }
2543
2544  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2545       N = NewType->arg_type_begin(),
2546       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2547    QualType ToType = (*O);
2548    QualType FromType = (*N);
2549    if (!Context.hasSameType(ToType, FromType)) {
2550      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2551        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2552          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2553               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2554              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2555               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2556            continue;
2557      }
2558      else if (const ObjCObjectPointerType *PTTo =
2559                 ToType->getAs<ObjCObjectPointerType>()) {
2560        if (const ObjCObjectPointerType *PTFr =
2561              FromType->getAs<ObjCObjectPointerType>())
2562          if (Context.hasSameUnqualifiedType(
2563                PTTo->getObjectType()->getBaseType(),
2564                PTFr->getObjectType()->getBaseType()))
2565            continue;
2566      }
2567      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2568      return false;
2569    }
2570  }
2571  return true;
2572}
2573
2574/// CheckPointerConversion - Check the pointer conversion from the
2575/// expression From to the type ToType. This routine checks for
2576/// ambiguous or inaccessible derived-to-base pointer
2577/// conversions for which IsPointerConversion has already returned
2578/// true. It returns true and produces a diagnostic if there was an
2579/// error, or returns false otherwise.
2580bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2581                                  CastKind &Kind,
2582                                  CXXCastPath& BasePath,
2583                                  bool IgnoreBaseAccess) {
2584  QualType FromType = From->getType();
2585  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2586
2587  Kind = CK_BitCast;
2588
2589  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2590      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2591      Expr::NPCK_ZeroExpression) {
2592    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2593      DiagRuntimeBehavior(From->getExprLoc(), From,
2594                          PDiag(diag::warn_impcast_bool_to_null_pointer)
2595                            << ToType << From->getSourceRange());
2596    else if (!isUnevaluatedContext())
2597      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2598        << ToType << From->getSourceRange();
2599  }
2600  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2601    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2602      QualType FromPointeeType = FromPtrType->getPointeeType(),
2603               ToPointeeType   = ToPtrType->getPointeeType();
2604
2605      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2606          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2607        // We must have a derived-to-base conversion. Check an
2608        // ambiguous or inaccessible conversion.
2609        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2610                                         From->getExprLoc(),
2611                                         From->getSourceRange(), &BasePath,
2612                                         IgnoreBaseAccess))
2613          return true;
2614
2615        // The conversion was successful.
2616        Kind = CK_DerivedToBase;
2617      }
2618    }
2619  } else if (const ObjCObjectPointerType *ToPtrType =
2620               ToType->getAs<ObjCObjectPointerType>()) {
2621    if (const ObjCObjectPointerType *FromPtrType =
2622          FromType->getAs<ObjCObjectPointerType>()) {
2623      // Objective-C++ conversions are always okay.
2624      // FIXME: We should have a different class of conversions for the
2625      // Objective-C++ implicit conversions.
2626      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2627        return false;
2628    } else if (FromType->isBlockPointerType()) {
2629      Kind = CK_BlockPointerToObjCPointerCast;
2630    } else {
2631      Kind = CK_CPointerToObjCPointerCast;
2632    }
2633  } else if (ToType->isBlockPointerType()) {
2634    if (!FromType->isBlockPointerType())
2635      Kind = CK_AnyPointerToBlockPointerCast;
2636  }
2637
2638  // We shouldn't fall into this case unless it's valid for other
2639  // reasons.
2640  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2641    Kind = CK_NullToPointer;
2642
2643  return false;
2644}
2645
2646/// IsMemberPointerConversion - Determines whether the conversion of the
2647/// expression From, which has the (possibly adjusted) type FromType, can be
2648/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2649/// If so, returns true and places the converted type (that might differ from
2650/// ToType in its cv-qualifiers at some level) into ConvertedType.
2651bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2652                                     QualType ToType,
2653                                     bool InOverloadResolution,
2654                                     QualType &ConvertedType) {
2655  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2656  if (!ToTypePtr)
2657    return false;
2658
2659  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2660  if (From->isNullPointerConstant(Context,
2661                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2662                                        : Expr::NPC_ValueDependentIsNull)) {
2663    ConvertedType = ToType;
2664    return true;
2665  }
2666
2667  // Otherwise, both types have to be member pointers.
2668  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2669  if (!FromTypePtr)
2670    return false;
2671
2672  // A pointer to member of B can be converted to a pointer to member of D,
2673  // where D is derived from B (C++ 4.11p2).
2674  QualType FromClass(FromTypePtr->getClass(), 0);
2675  QualType ToClass(ToTypePtr->getClass(), 0);
2676
2677  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2678      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2679      IsDerivedFrom(ToClass, FromClass)) {
2680    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2681                                                 ToClass.getTypePtr());
2682    return true;
2683  }
2684
2685  return false;
2686}
2687
2688/// CheckMemberPointerConversion - Check the member pointer conversion from the
2689/// expression From to the type ToType. This routine checks for ambiguous or
2690/// virtual or inaccessible base-to-derived member pointer conversions
2691/// for which IsMemberPointerConversion has already returned true. It returns
2692/// true and produces a diagnostic if there was an error, or returns false
2693/// otherwise.
2694bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2695                                        CastKind &Kind,
2696                                        CXXCastPath &BasePath,
2697                                        bool IgnoreBaseAccess) {
2698  QualType FromType = From->getType();
2699  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2700  if (!FromPtrType) {
2701    // This must be a null pointer to member pointer conversion
2702    assert(From->isNullPointerConstant(Context,
2703                                       Expr::NPC_ValueDependentIsNull) &&
2704           "Expr must be null pointer constant!");
2705    Kind = CK_NullToMemberPointer;
2706    return false;
2707  }
2708
2709  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2710  assert(ToPtrType && "No member pointer cast has a target type "
2711                      "that is not a member pointer.");
2712
2713  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2714  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2715
2716  // FIXME: What about dependent types?
2717  assert(FromClass->isRecordType() && "Pointer into non-class.");
2718  assert(ToClass->isRecordType() && "Pointer into non-class.");
2719
2720  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2721                     /*DetectVirtual=*/true);
2722  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2723  assert(DerivationOkay &&
2724         "Should not have been called if derivation isn't OK.");
2725  (void)DerivationOkay;
2726
2727  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2728                                  getUnqualifiedType())) {
2729    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2730    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2731      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2732    return true;
2733  }
2734
2735  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2736    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2737      << FromClass << ToClass << QualType(VBase, 0)
2738      << From->getSourceRange();
2739    return true;
2740  }
2741
2742  if (!IgnoreBaseAccess)
2743    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2744                         Paths.front(),
2745                         diag::err_downcast_from_inaccessible_base);
2746
2747  // Must be a base to derived member conversion.
2748  BuildBasePathArray(Paths, BasePath);
2749  Kind = CK_BaseToDerivedMemberPointer;
2750  return false;
2751}
2752
2753/// IsQualificationConversion - Determines whether the conversion from
2754/// an rvalue of type FromType to ToType is a qualification conversion
2755/// (C++ 4.4).
2756///
2757/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2758/// when the qualification conversion involves a change in the Objective-C
2759/// object lifetime.
2760bool
2761Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2762                                bool CStyle, bool &ObjCLifetimeConversion) {
2763  FromType = Context.getCanonicalType(FromType);
2764  ToType = Context.getCanonicalType(ToType);
2765  ObjCLifetimeConversion = false;
2766
2767  // If FromType and ToType are the same type, this is not a
2768  // qualification conversion.
2769  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2770    return false;
2771
2772  // (C++ 4.4p4):
2773  //   A conversion can add cv-qualifiers at levels other than the first
2774  //   in multi-level pointers, subject to the following rules: [...]
2775  bool PreviousToQualsIncludeConst = true;
2776  bool UnwrappedAnyPointer = false;
2777  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2778    // Within each iteration of the loop, we check the qualifiers to
2779    // determine if this still looks like a qualification
2780    // conversion. Then, if all is well, we unwrap one more level of
2781    // pointers or pointers-to-members and do it all again
2782    // until there are no more pointers or pointers-to-members left to
2783    // unwrap.
2784    UnwrappedAnyPointer = true;
2785
2786    Qualifiers FromQuals = FromType.getQualifiers();
2787    Qualifiers ToQuals = ToType.getQualifiers();
2788
2789    // Objective-C ARC:
2790    //   Check Objective-C lifetime conversions.
2791    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2792        UnwrappedAnyPointer) {
2793      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2794        ObjCLifetimeConversion = true;
2795        FromQuals.removeObjCLifetime();
2796        ToQuals.removeObjCLifetime();
2797      } else {
2798        // Qualification conversions cannot cast between different
2799        // Objective-C lifetime qualifiers.
2800        return false;
2801      }
2802    }
2803
2804    // Allow addition/removal of GC attributes but not changing GC attributes.
2805    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2806        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2807      FromQuals.removeObjCGCAttr();
2808      ToQuals.removeObjCGCAttr();
2809    }
2810
2811    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2812    //      2,j, and similarly for volatile.
2813    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2814      return false;
2815
2816    //   -- if the cv 1,j and cv 2,j are different, then const is in
2817    //      every cv for 0 < k < j.
2818    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2819        && !PreviousToQualsIncludeConst)
2820      return false;
2821
2822    // Keep track of whether all prior cv-qualifiers in the "to" type
2823    // include const.
2824    PreviousToQualsIncludeConst
2825      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2826  }
2827
2828  // We are left with FromType and ToType being the pointee types
2829  // after unwrapping the original FromType and ToType the same number
2830  // of types. If we unwrapped any pointers, and if FromType and
2831  // ToType have the same unqualified type (since we checked
2832  // qualifiers above), then this is a qualification conversion.
2833  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2834}
2835
2836/// \brief - Determine whether this is a conversion from a scalar type to an
2837/// atomic type.
2838///
2839/// If successful, updates \c SCS's second and third steps in the conversion
2840/// sequence to finish the conversion.
2841static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2842                                bool InOverloadResolution,
2843                                StandardConversionSequence &SCS,
2844                                bool CStyle) {
2845  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2846  if (!ToAtomic)
2847    return false;
2848
2849  StandardConversionSequence InnerSCS;
2850  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2851                            InOverloadResolution, InnerSCS,
2852                            CStyle, /*AllowObjCWritebackConversion=*/false))
2853    return false;
2854
2855  SCS.Second = InnerSCS.Second;
2856  SCS.setToType(1, InnerSCS.getToType(1));
2857  SCS.Third = InnerSCS.Third;
2858  SCS.QualificationIncludesObjCLifetime
2859    = InnerSCS.QualificationIncludesObjCLifetime;
2860  SCS.setToType(2, InnerSCS.getToType(2));
2861  return true;
2862}
2863
2864static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2865                                              CXXConstructorDecl *Constructor,
2866                                              QualType Type) {
2867  const FunctionProtoType *CtorType =
2868      Constructor->getType()->getAs<FunctionProtoType>();
2869  if (CtorType->getNumArgs() > 0) {
2870    QualType FirstArg = CtorType->getArgType(0);
2871    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2872      return true;
2873  }
2874  return false;
2875}
2876
2877static OverloadingResult
2878IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2879                                       CXXRecordDecl *To,
2880                                       UserDefinedConversionSequence &User,
2881                                       OverloadCandidateSet &CandidateSet,
2882                                       bool AllowExplicit) {
2883  DeclContext::lookup_iterator Con, ConEnd;
2884  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
2885       Con != ConEnd; ++Con) {
2886    NamedDecl *D = *Con;
2887    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2888
2889    // Find the constructor (which may be a template).
2890    CXXConstructorDecl *Constructor = 0;
2891    FunctionTemplateDecl *ConstructorTmpl
2892      = dyn_cast<FunctionTemplateDecl>(D);
2893    if (ConstructorTmpl)
2894      Constructor
2895        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2896    else
2897      Constructor = cast<CXXConstructorDecl>(D);
2898
2899    bool Usable = !Constructor->isInvalidDecl() &&
2900                  S.isInitListConstructor(Constructor) &&
2901                  (AllowExplicit || !Constructor->isExplicit());
2902    if (Usable) {
2903      // If the first argument is (a reference to) the target type,
2904      // suppress conversions.
2905      bool SuppressUserConversions =
2906          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2907      if (ConstructorTmpl)
2908        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2909                                       /*ExplicitArgs*/ 0,
2910                                       From, CandidateSet,
2911                                       SuppressUserConversions);
2912      else
2913        S.AddOverloadCandidate(Constructor, FoundDecl,
2914                               From, CandidateSet,
2915                               SuppressUserConversions);
2916    }
2917  }
2918
2919  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2920
2921  OverloadCandidateSet::iterator Best;
2922  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2923  case OR_Success: {
2924    // Record the standard conversion we used and the conversion function.
2925    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2926    S.MarkFunctionReferenced(From->getLocStart(), Constructor);
2927
2928    QualType ThisType = Constructor->getThisType(S.Context);
2929    // Initializer lists don't have conversions as such.
2930    User.Before.setAsIdentityConversion();
2931    User.HadMultipleCandidates = HadMultipleCandidates;
2932    User.ConversionFunction = Constructor;
2933    User.FoundConversionFunction = Best->FoundDecl;
2934    User.After.setAsIdentityConversion();
2935    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2936    User.After.setAllToTypes(ToType);
2937    return OR_Success;
2938  }
2939
2940  case OR_No_Viable_Function:
2941    return OR_No_Viable_Function;
2942  case OR_Deleted:
2943    return OR_Deleted;
2944  case OR_Ambiguous:
2945    return OR_Ambiguous;
2946  }
2947
2948  llvm_unreachable("Invalid OverloadResult!");
2949}
2950
2951/// Determines whether there is a user-defined conversion sequence
2952/// (C++ [over.ics.user]) that converts expression From to the type
2953/// ToType. If such a conversion exists, User will contain the
2954/// user-defined conversion sequence that performs such a conversion
2955/// and this routine will return true. Otherwise, this routine returns
2956/// false and User is unspecified.
2957///
2958/// \param AllowExplicit  true if the conversion should consider C++0x
2959/// "explicit" conversion functions as well as non-explicit conversion
2960/// functions (C++0x [class.conv.fct]p2).
2961static OverloadingResult
2962IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2963                        UserDefinedConversionSequence &User,
2964                        OverloadCandidateSet &CandidateSet,
2965                        bool AllowExplicit) {
2966  // Whether we will only visit constructors.
2967  bool ConstructorsOnly = false;
2968
2969  // If the type we are conversion to is a class type, enumerate its
2970  // constructors.
2971  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2972    // C++ [over.match.ctor]p1:
2973    //   When objects of class type are direct-initialized (8.5), or
2974    //   copy-initialized from an expression of the same or a
2975    //   derived class type (8.5), overload resolution selects the
2976    //   constructor. [...] For copy-initialization, the candidate
2977    //   functions are all the converting constructors (12.3.1) of
2978    //   that class. The argument list is the expression-list within
2979    //   the parentheses of the initializer.
2980    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2981        (From->getType()->getAs<RecordType>() &&
2982         S.IsDerivedFrom(From->getType(), ToType)))
2983      ConstructorsOnly = true;
2984
2985    S.RequireCompleteType(From->getLocStart(), ToType, 0);
2986    // RequireCompleteType may have returned true due to some invalid decl
2987    // during template instantiation, but ToType may be complete enough now
2988    // to try to recover.
2989    if (ToType->isIncompleteType()) {
2990      // We're not going to find any constructors.
2991    } else if (CXXRecordDecl *ToRecordDecl
2992                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2993
2994      Expr **Args = &From;
2995      unsigned NumArgs = 1;
2996      bool ListInitializing = false;
2997      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2998        // But first, see if there is an init-list-contructor that will work.
2999        OverloadingResult Result = IsInitializerListConstructorConversion(
3000            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3001        if (Result != OR_No_Viable_Function)
3002          return Result;
3003        // Never mind.
3004        CandidateSet.clear();
3005
3006        // If we're list-initializing, we pass the individual elements as
3007        // arguments, not the entire list.
3008        Args = InitList->getInits();
3009        NumArgs = InitList->getNumInits();
3010        ListInitializing = true;
3011      }
3012
3013      DeclContext::lookup_iterator Con, ConEnd;
3014      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
3015           Con != ConEnd; ++Con) {
3016        NamedDecl *D = *Con;
3017        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3018
3019        // Find the constructor (which may be a template).
3020        CXXConstructorDecl *Constructor = 0;
3021        FunctionTemplateDecl *ConstructorTmpl
3022          = dyn_cast<FunctionTemplateDecl>(D);
3023        if (ConstructorTmpl)
3024          Constructor
3025            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3026        else
3027          Constructor = cast<CXXConstructorDecl>(D);
3028
3029        bool Usable = !Constructor->isInvalidDecl();
3030        if (ListInitializing)
3031          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3032        else
3033          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3034        if (Usable) {
3035          bool SuppressUserConversions = !ConstructorsOnly;
3036          if (SuppressUserConversions && ListInitializing) {
3037            SuppressUserConversions = false;
3038            if (NumArgs == 1) {
3039              // If the first argument is (a reference to) the target type,
3040              // suppress conversions.
3041              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3042                                                S.Context, Constructor, ToType);
3043            }
3044          }
3045          if (ConstructorTmpl)
3046            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3047                                           /*ExplicitArgs*/ 0,
3048                                           llvm::makeArrayRef(Args, NumArgs),
3049                                           CandidateSet, SuppressUserConversions);
3050          else
3051            // Allow one user-defined conversion when user specifies a
3052            // From->ToType conversion via an static cast (c-style, etc).
3053            S.AddOverloadCandidate(Constructor, FoundDecl,
3054                                   llvm::makeArrayRef(Args, NumArgs),
3055                                   CandidateSet, SuppressUserConversions);
3056        }
3057      }
3058    }
3059  }
3060
3061  // Enumerate conversion functions, if we're allowed to.
3062  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3063  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3064    // No conversion functions from incomplete types.
3065  } else if (const RecordType *FromRecordType
3066                                   = From->getType()->getAs<RecordType>()) {
3067    if (CXXRecordDecl *FromRecordDecl
3068         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3069      // Add all of the conversion functions as candidates.
3070      const UnresolvedSetImpl *Conversions
3071        = FromRecordDecl->getVisibleConversionFunctions();
3072      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3073             E = Conversions->end(); I != E; ++I) {
3074        DeclAccessPair FoundDecl = I.getPair();
3075        NamedDecl *D = FoundDecl.getDecl();
3076        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3077        if (isa<UsingShadowDecl>(D))
3078          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3079
3080        CXXConversionDecl *Conv;
3081        FunctionTemplateDecl *ConvTemplate;
3082        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3083          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3084        else
3085          Conv = cast<CXXConversionDecl>(D);
3086
3087        if (AllowExplicit || !Conv->isExplicit()) {
3088          if (ConvTemplate)
3089            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3090                                             ActingContext, From, ToType,
3091                                             CandidateSet);
3092          else
3093            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3094                                     From, ToType, CandidateSet);
3095        }
3096      }
3097    }
3098  }
3099
3100  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3101
3102  OverloadCandidateSet::iterator Best;
3103  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3104  case OR_Success:
3105    // Record the standard conversion we used and the conversion function.
3106    if (CXXConstructorDecl *Constructor
3107          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3108      S.MarkFunctionReferenced(From->getLocStart(), Constructor);
3109
3110      // C++ [over.ics.user]p1:
3111      //   If the user-defined conversion is specified by a
3112      //   constructor (12.3.1), the initial standard conversion
3113      //   sequence converts the source type to the type required by
3114      //   the argument of the constructor.
3115      //
3116      QualType ThisType = Constructor->getThisType(S.Context);
3117      if (isa<InitListExpr>(From)) {
3118        // Initializer lists don't have conversions as such.
3119        User.Before.setAsIdentityConversion();
3120      } else {
3121        if (Best->Conversions[0].isEllipsis())
3122          User.EllipsisConversion = true;
3123        else {
3124          User.Before = Best->Conversions[0].Standard;
3125          User.EllipsisConversion = false;
3126        }
3127      }
3128      User.HadMultipleCandidates = HadMultipleCandidates;
3129      User.ConversionFunction = Constructor;
3130      User.FoundConversionFunction = Best->FoundDecl;
3131      User.After.setAsIdentityConversion();
3132      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3133      User.After.setAllToTypes(ToType);
3134      return OR_Success;
3135    }
3136    if (CXXConversionDecl *Conversion
3137                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3138      S.MarkFunctionReferenced(From->getLocStart(), Conversion);
3139
3140      // C++ [over.ics.user]p1:
3141      //
3142      //   [...] If the user-defined conversion is specified by a
3143      //   conversion function (12.3.2), the initial standard
3144      //   conversion sequence converts the source type to the
3145      //   implicit object parameter of the conversion function.
3146      User.Before = Best->Conversions[0].Standard;
3147      User.HadMultipleCandidates = HadMultipleCandidates;
3148      User.ConversionFunction = Conversion;
3149      User.FoundConversionFunction = Best->FoundDecl;
3150      User.EllipsisConversion = false;
3151
3152      // C++ [over.ics.user]p2:
3153      //   The second standard conversion sequence converts the
3154      //   result of the user-defined conversion to the target type
3155      //   for the sequence. Since an implicit conversion sequence
3156      //   is an initialization, the special rules for
3157      //   initialization by user-defined conversion apply when
3158      //   selecting the best user-defined conversion for a
3159      //   user-defined conversion sequence (see 13.3.3 and
3160      //   13.3.3.1).
3161      User.After = Best->FinalConversion;
3162      return OR_Success;
3163    }
3164    llvm_unreachable("Not a constructor or conversion function?");
3165
3166  case OR_No_Viable_Function:
3167    return OR_No_Viable_Function;
3168  case OR_Deleted:
3169    // No conversion here! We're done.
3170    return OR_Deleted;
3171
3172  case OR_Ambiguous:
3173    return OR_Ambiguous;
3174  }
3175
3176  llvm_unreachable("Invalid OverloadResult!");
3177}
3178
3179bool
3180Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3181  ImplicitConversionSequence ICS;
3182  OverloadCandidateSet CandidateSet(From->getExprLoc());
3183  OverloadingResult OvResult =
3184    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3185                            CandidateSet, false);
3186  if (OvResult == OR_Ambiguous)
3187    Diag(From->getLocStart(),
3188         diag::err_typecheck_ambiguous_condition)
3189          << From->getType() << ToType << From->getSourceRange();
3190  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
3191    Diag(From->getLocStart(),
3192         diag::err_typecheck_nonviable_condition)
3193    << From->getType() << ToType << From->getSourceRange();
3194  else
3195    return false;
3196  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3197  return true;
3198}
3199
3200/// \brief Compare the user-defined conversion functions or constructors
3201/// of two user-defined conversion sequences to determine whether any ordering
3202/// is possible.
3203static ImplicitConversionSequence::CompareKind
3204compareConversionFunctions(Sema &S,
3205                           FunctionDecl *Function1,
3206                           FunctionDecl *Function2) {
3207  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
3208    return ImplicitConversionSequence::Indistinguishable;
3209
3210  // Objective-C++:
3211  //   If both conversion functions are implicitly-declared conversions from
3212  //   a lambda closure type to a function pointer and a block pointer,
3213  //   respectively, always prefer the conversion to a function pointer,
3214  //   because the function pointer is more lightweight and is more likely
3215  //   to keep code working.
3216  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3217  if (!Conv1)
3218    return ImplicitConversionSequence::Indistinguishable;
3219
3220  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3221  if (!Conv2)
3222    return ImplicitConversionSequence::Indistinguishable;
3223
3224  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3225    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3226    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3227    if (Block1 != Block2)
3228      return Block1? ImplicitConversionSequence::Worse
3229                   : ImplicitConversionSequence::Better;
3230  }
3231
3232  return ImplicitConversionSequence::Indistinguishable;
3233}
3234
3235/// CompareImplicitConversionSequences - Compare two implicit
3236/// conversion sequences to determine whether one is better than the
3237/// other or if they are indistinguishable (C++ 13.3.3.2).
3238static ImplicitConversionSequence::CompareKind
3239CompareImplicitConversionSequences(Sema &S,
3240                                   const ImplicitConversionSequence& ICS1,
3241                                   const ImplicitConversionSequence& ICS2)
3242{
3243  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3244  // conversion sequences (as defined in 13.3.3.1)
3245  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3246  //      conversion sequence than a user-defined conversion sequence or
3247  //      an ellipsis conversion sequence, and
3248  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3249  //      conversion sequence than an ellipsis conversion sequence
3250  //      (13.3.3.1.3).
3251  //
3252  // C++0x [over.best.ics]p10:
3253  //   For the purpose of ranking implicit conversion sequences as
3254  //   described in 13.3.3.2, the ambiguous conversion sequence is
3255  //   treated as a user-defined sequence that is indistinguishable
3256  //   from any other user-defined conversion sequence.
3257  if (ICS1.getKindRank() < ICS2.getKindRank())
3258    return ImplicitConversionSequence::Better;
3259  if (ICS2.getKindRank() < ICS1.getKindRank())
3260    return ImplicitConversionSequence::Worse;
3261
3262  // The following checks require both conversion sequences to be of
3263  // the same kind.
3264  if (ICS1.getKind() != ICS2.getKind())
3265    return ImplicitConversionSequence::Indistinguishable;
3266
3267  ImplicitConversionSequence::CompareKind Result =
3268      ImplicitConversionSequence::Indistinguishable;
3269
3270  // Two implicit conversion sequences of the same form are
3271  // indistinguishable conversion sequences unless one of the
3272  // following rules apply: (C++ 13.3.3.2p3):
3273  if (ICS1.isStandard())
3274    Result = CompareStandardConversionSequences(S,
3275                                                ICS1.Standard, ICS2.Standard);
3276  else if (ICS1.isUserDefined()) {
3277    // User-defined conversion sequence U1 is a better conversion
3278    // sequence than another user-defined conversion sequence U2 if
3279    // they contain the same user-defined conversion function or
3280    // constructor and if the second standard conversion sequence of
3281    // U1 is better than the second standard conversion sequence of
3282    // U2 (C++ 13.3.3.2p3).
3283    if (ICS1.UserDefined.ConversionFunction ==
3284          ICS2.UserDefined.ConversionFunction)
3285      Result = CompareStandardConversionSequences(S,
3286                                                  ICS1.UserDefined.After,
3287                                                  ICS2.UserDefined.After);
3288    else
3289      Result = compareConversionFunctions(S,
3290                                          ICS1.UserDefined.ConversionFunction,
3291                                          ICS2.UserDefined.ConversionFunction);
3292  }
3293
3294  // List-initialization sequence L1 is a better conversion sequence than
3295  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3296  // for some X and L2 does not.
3297  if (Result == ImplicitConversionSequence::Indistinguishable &&
3298      !ICS1.isBad() &&
3299      ICS1.isListInitializationSequence() &&
3300      ICS2.isListInitializationSequence()) {
3301    if (ICS1.isStdInitializerListElement() &&
3302        !ICS2.isStdInitializerListElement())
3303      return ImplicitConversionSequence::Better;
3304    if (!ICS1.isStdInitializerListElement() &&
3305        ICS2.isStdInitializerListElement())
3306      return ImplicitConversionSequence::Worse;
3307  }
3308
3309  return Result;
3310}
3311
3312static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3313  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3314    Qualifiers Quals;
3315    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3316    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3317  }
3318
3319  return Context.hasSameUnqualifiedType(T1, T2);
3320}
3321
3322// Per 13.3.3.2p3, compare the given standard conversion sequences to
3323// determine if one is a proper subset of the other.
3324static ImplicitConversionSequence::CompareKind
3325compareStandardConversionSubsets(ASTContext &Context,
3326                                 const StandardConversionSequence& SCS1,
3327                                 const StandardConversionSequence& SCS2) {
3328  ImplicitConversionSequence::CompareKind Result
3329    = ImplicitConversionSequence::Indistinguishable;
3330
3331  // the identity conversion sequence is considered to be a subsequence of
3332  // any non-identity conversion sequence
3333  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3334    return ImplicitConversionSequence::Better;
3335  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3336    return ImplicitConversionSequence::Worse;
3337
3338  if (SCS1.Second != SCS2.Second) {
3339    if (SCS1.Second == ICK_Identity)
3340      Result = ImplicitConversionSequence::Better;
3341    else if (SCS2.Second == ICK_Identity)
3342      Result = ImplicitConversionSequence::Worse;
3343    else
3344      return ImplicitConversionSequence::Indistinguishable;
3345  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3346    return ImplicitConversionSequence::Indistinguishable;
3347
3348  if (SCS1.Third == SCS2.Third) {
3349    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3350                             : ImplicitConversionSequence::Indistinguishable;
3351  }
3352
3353  if (SCS1.Third == ICK_Identity)
3354    return Result == ImplicitConversionSequence::Worse
3355             ? ImplicitConversionSequence::Indistinguishable
3356             : ImplicitConversionSequence::Better;
3357
3358  if (SCS2.Third == ICK_Identity)
3359    return Result == ImplicitConversionSequence::Better
3360             ? ImplicitConversionSequence::Indistinguishable
3361             : ImplicitConversionSequence::Worse;
3362
3363  return ImplicitConversionSequence::Indistinguishable;
3364}
3365
3366/// \brief Determine whether one of the given reference bindings is better
3367/// than the other based on what kind of bindings they are.
3368static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3369                                       const StandardConversionSequence &SCS2) {
3370  // C++0x [over.ics.rank]p3b4:
3371  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3372  //      implicit object parameter of a non-static member function declared
3373  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3374  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3375  //      lvalue reference to a function lvalue and S2 binds an rvalue
3376  //      reference*.
3377  //
3378  // FIXME: Rvalue references. We're going rogue with the above edits,
3379  // because the semantics in the current C++0x working paper (N3225 at the
3380  // time of this writing) break the standard definition of std::forward
3381  // and std::reference_wrapper when dealing with references to functions.
3382  // Proposed wording changes submitted to CWG for consideration.
3383  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3384      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3385    return false;
3386
3387  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3388          SCS2.IsLvalueReference) ||
3389         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3390          !SCS2.IsLvalueReference);
3391}
3392
3393/// CompareStandardConversionSequences - Compare two standard
3394/// conversion sequences to determine whether one is better than the
3395/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3396static ImplicitConversionSequence::CompareKind
3397CompareStandardConversionSequences(Sema &S,
3398                                   const StandardConversionSequence& SCS1,
3399                                   const StandardConversionSequence& SCS2)
3400{
3401  // Standard conversion sequence S1 is a better conversion sequence
3402  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3403
3404  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3405  //     sequences in the canonical form defined by 13.3.3.1.1,
3406  //     excluding any Lvalue Transformation; the identity conversion
3407  //     sequence is considered to be a subsequence of any
3408  //     non-identity conversion sequence) or, if not that,
3409  if (ImplicitConversionSequence::CompareKind CK
3410        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3411    return CK;
3412
3413  //  -- the rank of S1 is better than the rank of S2 (by the rules
3414  //     defined below), or, if not that,
3415  ImplicitConversionRank Rank1 = SCS1.getRank();
3416  ImplicitConversionRank Rank2 = SCS2.getRank();
3417  if (Rank1 < Rank2)
3418    return ImplicitConversionSequence::Better;
3419  else if (Rank2 < Rank1)
3420    return ImplicitConversionSequence::Worse;
3421
3422  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3423  // are indistinguishable unless one of the following rules
3424  // applies:
3425
3426  //   A conversion that is not a conversion of a pointer, or
3427  //   pointer to member, to bool is better than another conversion
3428  //   that is such a conversion.
3429  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3430    return SCS2.isPointerConversionToBool()
3431             ? ImplicitConversionSequence::Better
3432             : ImplicitConversionSequence::Worse;
3433
3434  // C++ [over.ics.rank]p4b2:
3435  //
3436  //   If class B is derived directly or indirectly from class A,
3437  //   conversion of B* to A* is better than conversion of B* to
3438  //   void*, and conversion of A* to void* is better than conversion
3439  //   of B* to void*.
3440  bool SCS1ConvertsToVoid
3441    = SCS1.isPointerConversionToVoidPointer(S.Context);
3442  bool SCS2ConvertsToVoid
3443    = SCS2.isPointerConversionToVoidPointer(S.Context);
3444  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3445    // Exactly one of the conversion sequences is a conversion to
3446    // a void pointer; it's the worse conversion.
3447    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3448                              : ImplicitConversionSequence::Worse;
3449  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3450    // Neither conversion sequence converts to a void pointer; compare
3451    // their derived-to-base conversions.
3452    if (ImplicitConversionSequence::CompareKind DerivedCK
3453          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3454      return DerivedCK;
3455  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3456             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3457    // Both conversion sequences are conversions to void
3458    // pointers. Compare the source types to determine if there's an
3459    // inheritance relationship in their sources.
3460    QualType FromType1 = SCS1.getFromType();
3461    QualType FromType2 = SCS2.getFromType();
3462
3463    // Adjust the types we're converting from via the array-to-pointer
3464    // conversion, if we need to.
3465    if (SCS1.First == ICK_Array_To_Pointer)
3466      FromType1 = S.Context.getArrayDecayedType(FromType1);
3467    if (SCS2.First == ICK_Array_To_Pointer)
3468      FromType2 = S.Context.getArrayDecayedType(FromType2);
3469
3470    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3471    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3472
3473    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3474      return ImplicitConversionSequence::Better;
3475    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3476      return ImplicitConversionSequence::Worse;
3477
3478    // Objective-C++: If one interface is more specific than the
3479    // other, it is the better one.
3480    const ObjCObjectPointerType* FromObjCPtr1
3481      = FromType1->getAs<ObjCObjectPointerType>();
3482    const ObjCObjectPointerType* FromObjCPtr2
3483      = FromType2->getAs<ObjCObjectPointerType>();
3484    if (FromObjCPtr1 && FromObjCPtr2) {
3485      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3486                                                          FromObjCPtr2);
3487      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3488                                                           FromObjCPtr1);
3489      if (AssignLeft != AssignRight) {
3490        return AssignLeft? ImplicitConversionSequence::Better
3491                         : ImplicitConversionSequence::Worse;
3492      }
3493    }
3494  }
3495
3496  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3497  // bullet 3).
3498  if (ImplicitConversionSequence::CompareKind QualCK
3499        = CompareQualificationConversions(S, SCS1, SCS2))
3500    return QualCK;
3501
3502  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3503    // Check for a better reference binding based on the kind of bindings.
3504    if (isBetterReferenceBindingKind(SCS1, SCS2))
3505      return ImplicitConversionSequence::Better;
3506    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3507      return ImplicitConversionSequence::Worse;
3508
3509    // C++ [over.ics.rank]p3b4:
3510    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3511    //      which the references refer are the same type except for
3512    //      top-level cv-qualifiers, and the type to which the reference
3513    //      initialized by S2 refers is more cv-qualified than the type
3514    //      to which the reference initialized by S1 refers.
3515    QualType T1 = SCS1.getToType(2);
3516    QualType T2 = SCS2.getToType(2);
3517    T1 = S.Context.getCanonicalType(T1);
3518    T2 = S.Context.getCanonicalType(T2);
3519    Qualifiers T1Quals, T2Quals;
3520    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3521    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3522    if (UnqualT1 == UnqualT2) {
3523      // Objective-C++ ARC: If the references refer to objects with different
3524      // lifetimes, prefer bindings that don't change lifetime.
3525      if (SCS1.ObjCLifetimeConversionBinding !=
3526                                          SCS2.ObjCLifetimeConversionBinding) {
3527        return SCS1.ObjCLifetimeConversionBinding
3528                                           ? ImplicitConversionSequence::Worse
3529                                           : ImplicitConversionSequence::Better;
3530      }
3531
3532      // If the type is an array type, promote the element qualifiers to the
3533      // type for comparison.
3534      if (isa<ArrayType>(T1) && T1Quals)
3535        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3536      if (isa<ArrayType>(T2) && T2Quals)
3537        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3538      if (T2.isMoreQualifiedThan(T1))
3539        return ImplicitConversionSequence::Better;
3540      else if (T1.isMoreQualifiedThan(T2))
3541        return ImplicitConversionSequence::Worse;
3542    }
3543  }
3544
3545  // In Microsoft mode, prefer an integral conversion to a
3546  // floating-to-integral conversion if the integral conversion
3547  // is between types of the same size.
3548  // For example:
3549  // void f(float);
3550  // void f(int);
3551  // int main {
3552  //    long a;
3553  //    f(a);
3554  // }
3555  // Here, MSVC will call f(int) instead of generating a compile error
3556  // as clang will do in standard mode.
3557  if (S.getLangOpts().MicrosoftMode &&
3558      SCS1.Second == ICK_Integral_Conversion &&
3559      SCS2.Second == ICK_Floating_Integral &&
3560      S.Context.getTypeSize(SCS1.getFromType()) ==
3561      S.Context.getTypeSize(SCS1.getToType(2)))
3562    return ImplicitConversionSequence::Better;
3563
3564  return ImplicitConversionSequence::Indistinguishable;
3565}
3566
3567/// CompareQualificationConversions - Compares two standard conversion
3568/// sequences to determine whether they can be ranked based on their
3569/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3570ImplicitConversionSequence::CompareKind
3571CompareQualificationConversions(Sema &S,
3572                                const StandardConversionSequence& SCS1,
3573                                const StandardConversionSequence& SCS2) {
3574  // C++ 13.3.3.2p3:
3575  //  -- S1 and S2 differ only in their qualification conversion and
3576  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3577  //     cv-qualification signature of type T1 is a proper subset of
3578  //     the cv-qualification signature of type T2, and S1 is not the
3579  //     deprecated string literal array-to-pointer conversion (4.2).
3580  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3581      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3582    return ImplicitConversionSequence::Indistinguishable;
3583
3584  // FIXME: the example in the standard doesn't use a qualification
3585  // conversion (!)
3586  QualType T1 = SCS1.getToType(2);
3587  QualType T2 = SCS2.getToType(2);
3588  T1 = S.Context.getCanonicalType(T1);
3589  T2 = S.Context.getCanonicalType(T2);
3590  Qualifiers T1Quals, T2Quals;
3591  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3592  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3593
3594  // If the types are the same, we won't learn anything by unwrapped
3595  // them.
3596  if (UnqualT1 == UnqualT2)
3597    return ImplicitConversionSequence::Indistinguishable;
3598
3599  // If the type is an array type, promote the element qualifiers to the type
3600  // for comparison.
3601  if (isa<ArrayType>(T1) && T1Quals)
3602    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3603  if (isa<ArrayType>(T2) && T2Quals)
3604    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3605
3606  ImplicitConversionSequence::CompareKind Result
3607    = ImplicitConversionSequence::Indistinguishable;
3608
3609  // Objective-C++ ARC:
3610  //   Prefer qualification conversions not involving a change in lifetime
3611  //   to qualification conversions that do not change lifetime.
3612  if (SCS1.QualificationIncludesObjCLifetime !=
3613                                      SCS2.QualificationIncludesObjCLifetime) {
3614    Result = SCS1.QualificationIncludesObjCLifetime
3615               ? ImplicitConversionSequence::Worse
3616               : ImplicitConversionSequence::Better;
3617  }
3618
3619  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3620    // Within each iteration of the loop, we check the qualifiers to
3621    // determine if this still looks like a qualification
3622    // conversion. Then, if all is well, we unwrap one more level of
3623    // pointers or pointers-to-members and do it all again
3624    // until there are no more pointers or pointers-to-members left
3625    // to unwrap. This essentially mimics what
3626    // IsQualificationConversion does, but here we're checking for a
3627    // strict subset of qualifiers.
3628    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3629      // The qualifiers are the same, so this doesn't tell us anything
3630      // about how the sequences rank.
3631      ;
3632    else if (T2.isMoreQualifiedThan(T1)) {
3633      // T1 has fewer qualifiers, so it could be the better sequence.
3634      if (Result == ImplicitConversionSequence::Worse)
3635        // Neither has qualifiers that are a subset of the other's
3636        // qualifiers.
3637        return ImplicitConversionSequence::Indistinguishable;
3638
3639      Result = ImplicitConversionSequence::Better;
3640    } else if (T1.isMoreQualifiedThan(T2)) {
3641      // T2 has fewer qualifiers, so it could be the better sequence.
3642      if (Result == ImplicitConversionSequence::Better)
3643        // Neither has qualifiers that are a subset of the other's
3644        // qualifiers.
3645        return ImplicitConversionSequence::Indistinguishable;
3646
3647      Result = ImplicitConversionSequence::Worse;
3648    } else {
3649      // Qualifiers are disjoint.
3650      return ImplicitConversionSequence::Indistinguishable;
3651    }
3652
3653    // If the types after this point are equivalent, we're done.
3654    if (S.Context.hasSameUnqualifiedType(T1, T2))
3655      break;
3656  }
3657
3658  // Check that the winning standard conversion sequence isn't using
3659  // the deprecated string literal array to pointer conversion.
3660  switch (Result) {
3661  case ImplicitConversionSequence::Better:
3662    if (SCS1.DeprecatedStringLiteralToCharPtr)
3663      Result = ImplicitConversionSequence::Indistinguishable;
3664    break;
3665
3666  case ImplicitConversionSequence::Indistinguishable:
3667    break;
3668
3669  case ImplicitConversionSequence::Worse:
3670    if (SCS2.DeprecatedStringLiteralToCharPtr)
3671      Result = ImplicitConversionSequence::Indistinguishable;
3672    break;
3673  }
3674
3675  return Result;
3676}
3677
3678/// CompareDerivedToBaseConversions - Compares two standard conversion
3679/// sequences to determine whether they can be ranked based on their
3680/// various kinds of derived-to-base conversions (C++
3681/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3682/// conversions between Objective-C interface types.
3683ImplicitConversionSequence::CompareKind
3684CompareDerivedToBaseConversions(Sema &S,
3685                                const StandardConversionSequence& SCS1,
3686                                const StandardConversionSequence& SCS2) {
3687  QualType FromType1 = SCS1.getFromType();
3688  QualType ToType1 = SCS1.getToType(1);
3689  QualType FromType2 = SCS2.getFromType();
3690  QualType ToType2 = SCS2.getToType(1);
3691
3692  // Adjust the types we're converting from via the array-to-pointer
3693  // conversion, if we need to.
3694  if (SCS1.First == ICK_Array_To_Pointer)
3695    FromType1 = S.Context.getArrayDecayedType(FromType1);
3696  if (SCS2.First == ICK_Array_To_Pointer)
3697    FromType2 = S.Context.getArrayDecayedType(FromType2);
3698
3699  // Canonicalize all of the types.
3700  FromType1 = S.Context.getCanonicalType(FromType1);
3701  ToType1 = S.Context.getCanonicalType(ToType1);
3702  FromType2 = S.Context.getCanonicalType(FromType2);
3703  ToType2 = S.Context.getCanonicalType(ToType2);
3704
3705  // C++ [over.ics.rank]p4b3:
3706  //
3707  //   If class B is derived directly or indirectly from class A and
3708  //   class C is derived directly or indirectly from B,
3709  //
3710  // Compare based on pointer conversions.
3711  if (SCS1.Second == ICK_Pointer_Conversion &&
3712      SCS2.Second == ICK_Pointer_Conversion &&
3713      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3714      FromType1->isPointerType() && FromType2->isPointerType() &&
3715      ToType1->isPointerType() && ToType2->isPointerType()) {
3716    QualType FromPointee1
3717      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3718    QualType ToPointee1
3719      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3720    QualType FromPointee2
3721      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3722    QualType ToPointee2
3723      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3724
3725    //   -- conversion of C* to B* is better than conversion of C* to A*,
3726    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3727      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3728        return ImplicitConversionSequence::Better;
3729      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3730        return ImplicitConversionSequence::Worse;
3731    }
3732
3733    //   -- conversion of B* to A* is better than conversion of C* to A*,
3734    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3735      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3736        return ImplicitConversionSequence::Better;
3737      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3738        return ImplicitConversionSequence::Worse;
3739    }
3740  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3741             SCS2.Second == ICK_Pointer_Conversion) {
3742    const ObjCObjectPointerType *FromPtr1
3743      = FromType1->getAs<ObjCObjectPointerType>();
3744    const ObjCObjectPointerType *FromPtr2
3745      = FromType2->getAs<ObjCObjectPointerType>();
3746    const ObjCObjectPointerType *ToPtr1
3747      = ToType1->getAs<ObjCObjectPointerType>();
3748    const ObjCObjectPointerType *ToPtr2
3749      = ToType2->getAs<ObjCObjectPointerType>();
3750
3751    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3752      // Apply the same conversion ranking rules for Objective-C pointer types
3753      // that we do for C++ pointers to class types. However, we employ the
3754      // Objective-C pseudo-subtyping relationship used for assignment of
3755      // Objective-C pointer types.
3756      bool FromAssignLeft
3757        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3758      bool FromAssignRight
3759        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3760      bool ToAssignLeft
3761        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3762      bool ToAssignRight
3763        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3764
3765      // A conversion to an a non-id object pointer type or qualified 'id'
3766      // type is better than a conversion to 'id'.
3767      if (ToPtr1->isObjCIdType() &&
3768          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3769        return ImplicitConversionSequence::Worse;
3770      if (ToPtr2->isObjCIdType() &&
3771          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3772        return ImplicitConversionSequence::Better;
3773
3774      // A conversion to a non-id object pointer type is better than a
3775      // conversion to a qualified 'id' type
3776      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3777        return ImplicitConversionSequence::Worse;
3778      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3779        return ImplicitConversionSequence::Better;
3780
3781      // A conversion to an a non-Class object pointer type or qualified 'Class'
3782      // type is better than a conversion to 'Class'.
3783      if (ToPtr1->isObjCClassType() &&
3784          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3785        return ImplicitConversionSequence::Worse;
3786      if (ToPtr2->isObjCClassType() &&
3787          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3788        return ImplicitConversionSequence::Better;
3789
3790      // A conversion to a non-Class object pointer type is better than a
3791      // conversion to a qualified 'Class' type.
3792      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3793        return ImplicitConversionSequence::Worse;
3794      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3795        return ImplicitConversionSequence::Better;
3796
3797      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3798      if (S.Context.hasSameType(FromType1, FromType2) &&
3799          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3800          (ToAssignLeft != ToAssignRight))
3801        return ToAssignLeft? ImplicitConversionSequence::Worse
3802                           : ImplicitConversionSequence::Better;
3803
3804      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3805      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3806          (FromAssignLeft != FromAssignRight))
3807        return FromAssignLeft? ImplicitConversionSequence::Better
3808        : ImplicitConversionSequence::Worse;
3809    }
3810  }
3811
3812  // Ranking of member-pointer types.
3813  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3814      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3815      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3816    const MemberPointerType * FromMemPointer1 =
3817                                        FromType1->getAs<MemberPointerType>();
3818    const MemberPointerType * ToMemPointer1 =
3819                                          ToType1->getAs<MemberPointerType>();
3820    const MemberPointerType * FromMemPointer2 =
3821                                          FromType2->getAs<MemberPointerType>();
3822    const MemberPointerType * ToMemPointer2 =
3823                                          ToType2->getAs<MemberPointerType>();
3824    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3825    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3826    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3827    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3828    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3829    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3830    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3831    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3832    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3833    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3834      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3835        return ImplicitConversionSequence::Worse;
3836      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3837        return ImplicitConversionSequence::Better;
3838    }
3839    // conversion of B::* to C::* is better than conversion of A::* to C::*
3840    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3841      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3842        return ImplicitConversionSequence::Better;
3843      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3844        return ImplicitConversionSequence::Worse;
3845    }
3846  }
3847
3848  if (SCS1.Second == ICK_Derived_To_Base) {
3849    //   -- conversion of C to B is better than conversion of C to A,
3850    //   -- binding of an expression of type C to a reference of type
3851    //      B& is better than binding an expression of type C to a
3852    //      reference of type A&,
3853    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3854        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3855      if (S.IsDerivedFrom(ToType1, ToType2))
3856        return ImplicitConversionSequence::Better;
3857      else if (S.IsDerivedFrom(ToType2, ToType1))
3858        return ImplicitConversionSequence::Worse;
3859    }
3860
3861    //   -- conversion of B to A is better than conversion of C to A.
3862    //   -- binding of an expression of type B to a reference of type
3863    //      A& is better than binding an expression of type C to a
3864    //      reference of type A&,
3865    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3866        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3867      if (S.IsDerivedFrom(FromType2, FromType1))
3868        return ImplicitConversionSequence::Better;
3869      else if (S.IsDerivedFrom(FromType1, FromType2))
3870        return ImplicitConversionSequence::Worse;
3871    }
3872  }
3873
3874  return ImplicitConversionSequence::Indistinguishable;
3875}
3876
3877/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3878/// determine whether they are reference-related,
3879/// reference-compatible, reference-compatible with added
3880/// qualification, or incompatible, for use in C++ initialization by
3881/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3882/// type, and the first type (T1) is the pointee type of the reference
3883/// type being initialized.
3884Sema::ReferenceCompareResult
3885Sema::CompareReferenceRelationship(SourceLocation Loc,
3886                                   QualType OrigT1, QualType OrigT2,
3887                                   bool &DerivedToBase,
3888                                   bool &ObjCConversion,
3889                                   bool &ObjCLifetimeConversion) {
3890  assert(!OrigT1->isReferenceType() &&
3891    "T1 must be the pointee type of the reference type");
3892  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3893
3894  QualType T1 = Context.getCanonicalType(OrigT1);
3895  QualType T2 = Context.getCanonicalType(OrigT2);
3896  Qualifiers T1Quals, T2Quals;
3897  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3898  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3899
3900  // C++ [dcl.init.ref]p4:
3901  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3902  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3903  //   T1 is a base class of T2.
3904  DerivedToBase = false;
3905  ObjCConversion = false;
3906  ObjCLifetimeConversion = false;
3907  if (UnqualT1 == UnqualT2) {
3908    // Nothing to do.
3909  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3910           IsDerivedFrom(UnqualT2, UnqualT1))
3911    DerivedToBase = true;
3912  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3913           UnqualT2->isObjCObjectOrInterfaceType() &&
3914           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3915    ObjCConversion = true;
3916  else
3917    return Ref_Incompatible;
3918
3919  // At this point, we know that T1 and T2 are reference-related (at
3920  // least).
3921
3922  // If the type is an array type, promote the element qualifiers to the type
3923  // for comparison.
3924  if (isa<ArrayType>(T1) && T1Quals)
3925    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3926  if (isa<ArrayType>(T2) && T2Quals)
3927    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3928
3929  // C++ [dcl.init.ref]p4:
3930  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3931  //   reference-related to T2 and cv1 is the same cv-qualification
3932  //   as, or greater cv-qualification than, cv2. For purposes of
3933  //   overload resolution, cases for which cv1 is greater
3934  //   cv-qualification than cv2 are identified as
3935  //   reference-compatible with added qualification (see 13.3.3.2).
3936  //
3937  // Note that we also require equivalence of Objective-C GC and address-space
3938  // qualifiers when performing these computations, so that e.g., an int in
3939  // address space 1 is not reference-compatible with an int in address
3940  // space 2.
3941  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3942      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3943    T1Quals.removeObjCLifetime();
3944    T2Quals.removeObjCLifetime();
3945    ObjCLifetimeConversion = true;
3946  }
3947
3948  if (T1Quals == T2Quals)
3949    return Ref_Compatible;
3950  else if (T1Quals.compatiblyIncludes(T2Quals))
3951    return Ref_Compatible_With_Added_Qualification;
3952  else
3953    return Ref_Related;
3954}
3955
3956/// \brief Look for a user-defined conversion to an value reference-compatible
3957///        with DeclType. Return true if something definite is found.
3958static bool
3959FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3960                         QualType DeclType, SourceLocation DeclLoc,
3961                         Expr *Init, QualType T2, bool AllowRvalues,
3962                         bool AllowExplicit) {
3963  assert(T2->isRecordType() && "Can only find conversions of record types.");
3964  CXXRecordDecl *T2RecordDecl
3965    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3966
3967  OverloadCandidateSet CandidateSet(DeclLoc);
3968  const UnresolvedSetImpl *Conversions
3969    = T2RecordDecl->getVisibleConversionFunctions();
3970  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3971         E = Conversions->end(); I != E; ++I) {
3972    NamedDecl *D = *I;
3973    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3974    if (isa<UsingShadowDecl>(D))
3975      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3976
3977    FunctionTemplateDecl *ConvTemplate
3978      = dyn_cast<FunctionTemplateDecl>(D);
3979    CXXConversionDecl *Conv;
3980    if (ConvTemplate)
3981      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3982    else
3983      Conv = cast<CXXConversionDecl>(D);
3984
3985    // If this is an explicit conversion, and we're not allowed to consider
3986    // explicit conversions, skip it.
3987    if (!AllowExplicit && Conv->isExplicit())
3988      continue;
3989
3990    if (AllowRvalues) {
3991      bool DerivedToBase = false;
3992      bool ObjCConversion = false;
3993      bool ObjCLifetimeConversion = false;
3994
3995      // If we are initializing an rvalue reference, don't permit conversion
3996      // functions that return lvalues.
3997      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3998        const ReferenceType *RefType
3999          = Conv->getConversionType()->getAs<LValueReferenceType>();
4000        if (RefType && !RefType->getPointeeType()->isFunctionType())
4001          continue;
4002      }
4003
4004      if (!ConvTemplate &&
4005          S.CompareReferenceRelationship(
4006            DeclLoc,
4007            Conv->getConversionType().getNonReferenceType()
4008              .getUnqualifiedType(),
4009            DeclType.getNonReferenceType().getUnqualifiedType(),
4010            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4011          Sema::Ref_Incompatible)
4012        continue;
4013    } else {
4014      // If the conversion function doesn't return a reference type,
4015      // it can't be considered for this conversion. An rvalue reference
4016      // is only acceptable if its referencee is a function type.
4017
4018      const ReferenceType *RefType =
4019        Conv->getConversionType()->getAs<ReferenceType>();
4020      if (!RefType ||
4021          (!RefType->isLValueReferenceType() &&
4022           !RefType->getPointeeType()->isFunctionType()))
4023        continue;
4024    }
4025
4026    if (ConvTemplate)
4027      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4028                                       Init, DeclType, CandidateSet);
4029    else
4030      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4031                               DeclType, CandidateSet);
4032  }
4033
4034  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4035
4036  OverloadCandidateSet::iterator Best;
4037  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4038  case OR_Success:
4039    // C++ [over.ics.ref]p1:
4040    //
4041    //   [...] If the parameter binds directly to the result of
4042    //   applying a conversion function to the argument
4043    //   expression, the implicit conversion sequence is a
4044    //   user-defined conversion sequence (13.3.3.1.2), with the
4045    //   second standard conversion sequence either an identity
4046    //   conversion or, if the conversion function returns an
4047    //   entity of a type that is a derived class of the parameter
4048    //   type, a derived-to-base Conversion.
4049    if (!Best->FinalConversion.DirectBinding)
4050      return false;
4051
4052    if (Best->Function)
4053      S.MarkFunctionReferenced(DeclLoc, Best->Function);
4054    ICS.setUserDefined();
4055    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4056    ICS.UserDefined.After = Best->FinalConversion;
4057    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4058    ICS.UserDefined.ConversionFunction = Best->Function;
4059    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4060    ICS.UserDefined.EllipsisConversion = false;
4061    assert(ICS.UserDefined.After.ReferenceBinding &&
4062           ICS.UserDefined.After.DirectBinding &&
4063           "Expected a direct reference binding!");
4064    return true;
4065
4066  case OR_Ambiguous:
4067    ICS.setAmbiguous();
4068    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4069         Cand != CandidateSet.end(); ++Cand)
4070      if (Cand->Viable)
4071        ICS.Ambiguous.addConversion(Cand->Function);
4072    return true;
4073
4074  case OR_No_Viable_Function:
4075  case OR_Deleted:
4076    // There was no suitable conversion, or we found a deleted
4077    // conversion; continue with other checks.
4078    return false;
4079  }
4080
4081  llvm_unreachable("Invalid OverloadResult!");
4082}
4083
4084/// \brief Compute an implicit conversion sequence for reference
4085/// initialization.
4086static ImplicitConversionSequence
4087TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4088                 SourceLocation DeclLoc,
4089                 bool SuppressUserConversions,
4090                 bool AllowExplicit) {
4091  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4092
4093  // Most paths end in a failed conversion.
4094  ImplicitConversionSequence ICS;
4095  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4096
4097  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4098  QualType T2 = Init->getType();
4099
4100  // If the initializer is the address of an overloaded function, try
4101  // to resolve the overloaded function. If all goes well, T2 is the
4102  // type of the resulting function.
4103  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4104    DeclAccessPair Found;
4105    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4106                                                                false, Found))
4107      T2 = Fn->getType();
4108  }
4109
4110  // Compute some basic properties of the types and the initializer.
4111  bool isRValRef = DeclType->isRValueReferenceType();
4112  bool DerivedToBase = false;
4113  bool ObjCConversion = false;
4114  bool ObjCLifetimeConversion = false;
4115  Expr::Classification InitCategory = Init->Classify(S.Context);
4116  Sema::ReferenceCompareResult RefRelationship
4117    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4118                                     ObjCConversion, ObjCLifetimeConversion);
4119
4120
4121  // C++0x [dcl.init.ref]p5:
4122  //   A reference to type "cv1 T1" is initialized by an expression
4123  //   of type "cv2 T2" as follows:
4124
4125  //     -- If reference is an lvalue reference and the initializer expression
4126  if (!isRValRef) {
4127    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4128    //        reference-compatible with "cv2 T2," or
4129    //
4130    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4131    if (InitCategory.isLValue() &&
4132        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4133      // C++ [over.ics.ref]p1:
4134      //   When a parameter of reference type binds directly (8.5.3)
4135      //   to an argument expression, the implicit conversion sequence
4136      //   is the identity conversion, unless the argument expression
4137      //   has a type that is a derived class of the parameter type,
4138      //   in which case the implicit conversion sequence is a
4139      //   derived-to-base Conversion (13.3.3.1).
4140      ICS.setStandard();
4141      ICS.Standard.First = ICK_Identity;
4142      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4143                         : ObjCConversion? ICK_Compatible_Conversion
4144                         : ICK_Identity;
4145      ICS.Standard.Third = ICK_Identity;
4146      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4147      ICS.Standard.setToType(0, T2);
4148      ICS.Standard.setToType(1, T1);
4149      ICS.Standard.setToType(2, T1);
4150      ICS.Standard.ReferenceBinding = true;
4151      ICS.Standard.DirectBinding = true;
4152      ICS.Standard.IsLvalueReference = !isRValRef;
4153      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4154      ICS.Standard.BindsToRvalue = false;
4155      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4156      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4157      ICS.Standard.CopyConstructor = 0;
4158
4159      // Nothing more to do: the inaccessibility/ambiguity check for
4160      // derived-to-base conversions is suppressed when we're
4161      // computing the implicit conversion sequence (C++
4162      // [over.best.ics]p2).
4163      return ICS;
4164    }
4165
4166    //       -- has a class type (i.e., T2 is a class type), where T1 is
4167    //          not reference-related to T2, and can be implicitly
4168    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4169    //          is reference-compatible with "cv3 T3" 92) (this
4170    //          conversion is selected by enumerating the applicable
4171    //          conversion functions (13.3.1.6) and choosing the best
4172    //          one through overload resolution (13.3)),
4173    if (!SuppressUserConversions && T2->isRecordType() &&
4174        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4175        RefRelationship == Sema::Ref_Incompatible) {
4176      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4177                                   Init, T2, /*AllowRvalues=*/false,
4178                                   AllowExplicit))
4179        return ICS;
4180    }
4181  }
4182
4183  //     -- Otherwise, the reference shall be an lvalue reference to a
4184  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4185  //        shall be an rvalue reference.
4186  //
4187  // We actually handle one oddity of C++ [over.ics.ref] at this
4188  // point, which is that, due to p2 (which short-circuits reference
4189  // binding by only attempting a simple conversion for non-direct
4190  // bindings) and p3's strange wording, we allow a const volatile
4191  // reference to bind to an rvalue. Hence the check for the presence
4192  // of "const" rather than checking for "const" being the only
4193  // qualifier.
4194  // This is also the point where rvalue references and lvalue inits no longer
4195  // go together.
4196  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4197    return ICS;
4198
4199  //       -- If the initializer expression
4200  //
4201  //            -- is an xvalue, class prvalue, array prvalue or function
4202  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4203  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4204      (InitCategory.isXValue() ||
4205      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4206      (InitCategory.isLValue() && T2->isFunctionType()))) {
4207    ICS.setStandard();
4208    ICS.Standard.First = ICK_Identity;
4209    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4210                      : ObjCConversion? ICK_Compatible_Conversion
4211                      : ICK_Identity;
4212    ICS.Standard.Third = ICK_Identity;
4213    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4214    ICS.Standard.setToType(0, T2);
4215    ICS.Standard.setToType(1, T1);
4216    ICS.Standard.setToType(2, T1);
4217    ICS.Standard.ReferenceBinding = true;
4218    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4219    // binding unless we're binding to a class prvalue.
4220    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4221    // allow the use of rvalue references in C++98/03 for the benefit of
4222    // standard library implementors; therefore, we need the xvalue check here.
4223    ICS.Standard.DirectBinding =
4224      S.getLangOpts().CPlusPlus0x ||
4225      (InitCategory.isPRValue() && !T2->isRecordType());
4226    ICS.Standard.IsLvalueReference = !isRValRef;
4227    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4228    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4229    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4230    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4231    ICS.Standard.CopyConstructor = 0;
4232    return ICS;
4233  }
4234
4235  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4236  //               reference-related to T2, and can be implicitly converted to
4237  //               an xvalue, class prvalue, or function lvalue of type
4238  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4239  //               "cv3 T3",
4240  //
4241  //          then the reference is bound to the value of the initializer
4242  //          expression in the first case and to the result of the conversion
4243  //          in the second case (or, in either case, to an appropriate base
4244  //          class subobject).
4245  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4246      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4247      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4248                               Init, T2, /*AllowRvalues=*/true,
4249                               AllowExplicit)) {
4250    // In the second case, if the reference is an rvalue reference
4251    // and the second standard conversion sequence of the
4252    // user-defined conversion sequence includes an lvalue-to-rvalue
4253    // conversion, the program is ill-formed.
4254    if (ICS.isUserDefined() && isRValRef &&
4255        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4256      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4257
4258    return ICS;
4259  }
4260
4261  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4262  //          initialized from the initializer expression using the
4263  //          rules for a non-reference copy initialization (8.5). The
4264  //          reference is then bound to the temporary. If T1 is
4265  //          reference-related to T2, cv1 must be the same
4266  //          cv-qualification as, or greater cv-qualification than,
4267  //          cv2; otherwise, the program is ill-formed.
4268  if (RefRelationship == Sema::Ref_Related) {
4269    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4270    // we would be reference-compatible or reference-compatible with
4271    // added qualification. But that wasn't the case, so the reference
4272    // initialization fails.
4273    //
4274    // Note that we only want to check address spaces and cvr-qualifiers here.
4275    // ObjC GC and lifetime qualifiers aren't important.
4276    Qualifiers T1Quals = T1.getQualifiers();
4277    Qualifiers T2Quals = T2.getQualifiers();
4278    T1Quals.removeObjCGCAttr();
4279    T1Quals.removeObjCLifetime();
4280    T2Quals.removeObjCGCAttr();
4281    T2Quals.removeObjCLifetime();
4282    if (!T1Quals.compatiblyIncludes(T2Quals))
4283      return ICS;
4284  }
4285
4286  // If at least one of the types is a class type, the types are not
4287  // related, and we aren't allowed any user conversions, the
4288  // reference binding fails. This case is important for breaking
4289  // recursion, since TryImplicitConversion below will attempt to
4290  // create a temporary through the use of a copy constructor.
4291  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4292      (T1->isRecordType() || T2->isRecordType()))
4293    return ICS;
4294
4295  // If T1 is reference-related to T2 and the reference is an rvalue
4296  // reference, the initializer expression shall not be an lvalue.
4297  if (RefRelationship >= Sema::Ref_Related &&
4298      isRValRef && Init->Classify(S.Context).isLValue())
4299    return ICS;
4300
4301  // C++ [over.ics.ref]p2:
4302  //   When a parameter of reference type is not bound directly to
4303  //   an argument expression, the conversion sequence is the one
4304  //   required to convert the argument expression to the
4305  //   underlying type of the reference according to
4306  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4307  //   to copy-initializing a temporary of the underlying type with
4308  //   the argument expression. Any difference in top-level
4309  //   cv-qualification is subsumed by the initialization itself
4310  //   and does not constitute a conversion.
4311  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4312                              /*AllowExplicit=*/false,
4313                              /*InOverloadResolution=*/false,
4314                              /*CStyle=*/false,
4315                              /*AllowObjCWritebackConversion=*/false);
4316
4317  // Of course, that's still a reference binding.
4318  if (ICS.isStandard()) {
4319    ICS.Standard.ReferenceBinding = true;
4320    ICS.Standard.IsLvalueReference = !isRValRef;
4321    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4322    ICS.Standard.BindsToRvalue = true;
4323    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4324    ICS.Standard.ObjCLifetimeConversionBinding = false;
4325  } else if (ICS.isUserDefined()) {
4326    // Don't allow rvalue references to bind to lvalues.
4327    if (DeclType->isRValueReferenceType()) {
4328      if (const ReferenceType *RefType
4329            = ICS.UserDefined.ConversionFunction->getResultType()
4330                ->getAs<LValueReferenceType>()) {
4331        if (!RefType->getPointeeType()->isFunctionType()) {
4332          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4333                     DeclType);
4334          return ICS;
4335        }
4336      }
4337    }
4338
4339    ICS.UserDefined.After.ReferenceBinding = true;
4340    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4341    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4342    ICS.UserDefined.After.BindsToRvalue = true;
4343    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4344    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4345  }
4346
4347  return ICS;
4348}
4349
4350static ImplicitConversionSequence
4351TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4352                      bool SuppressUserConversions,
4353                      bool InOverloadResolution,
4354                      bool AllowObjCWritebackConversion,
4355                      bool AllowExplicit = false);
4356
4357/// TryListConversion - Try to copy-initialize a value of type ToType from the
4358/// initializer list From.
4359static ImplicitConversionSequence
4360TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4361                  bool SuppressUserConversions,
4362                  bool InOverloadResolution,
4363                  bool AllowObjCWritebackConversion) {
4364  // C++11 [over.ics.list]p1:
4365  //   When an argument is an initializer list, it is not an expression and
4366  //   special rules apply for converting it to a parameter type.
4367
4368  ImplicitConversionSequence Result;
4369  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4370  Result.setListInitializationSequence();
4371
4372  // We need a complete type for what follows. Incomplete types can never be
4373  // initialized from init lists.
4374  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4375    return Result;
4376
4377  // C++11 [over.ics.list]p2:
4378  //   If the parameter type is std::initializer_list<X> or "array of X" and
4379  //   all the elements can be implicitly converted to X, the implicit
4380  //   conversion sequence is the worst conversion necessary to convert an
4381  //   element of the list to X.
4382  bool toStdInitializerList = false;
4383  QualType X;
4384  if (ToType->isArrayType())
4385    X = S.Context.getBaseElementType(ToType);
4386  else
4387    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4388  if (!X.isNull()) {
4389    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4390      Expr *Init = From->getInit(i);
4391      ImplicitConversionSequence ICS =
4392          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4393                                InOverloadResolution,
4394                                AllowObjCWritebackConversion);
4395      // If a single element isn't convertible, fail.
4396      if (ICS.isBad()) {
4397        Result = ICS;
4398        break;
4399      }
4400      // Otherwise, look for the worst conversion.
4401      if (Result.isBad() ||
4402          CompareImplicitConversionSequences(S, ICS, Result) ==
4403              ImplicitConversionSequence::Worse)
4404        Result = ICS;
4405    }
4406
4407    // For an empty list, we won't have computed any conversion sequence.
4408    // Introduce the identity conversion sequence.
4409    if (From->getNumInits() == 0) {
4410      Result.setStandard();
4411      Result.Standard.setAsIdentityConversion();
4412      Result.Standard.setFromType(ToType);
4413      Result.Standard.setAllToTypes(ToType);
4414    }
4415
4416    Result.setListInitializationSequence();
4417    Result.setStdInitializerListElement(toStdInitializerList);
4418    return Result;
4419  }
4420
4421  // C++11 [over.ics.list]p3:
4422  //   Otherwise, if the parameter is a non-aggregate class X and overload
4423  //   resolution chooses a single best constructor [...] the implicit
4424  //   conversion sequence is a user-defined conversion sequence. If multiple
4425  //   constructors are viable but none is better than the others, the
4426  //   implicit conversion sequence is a user-defined conversion sequence.
4427  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4428    // This function can deal with initializer lists.
4429    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4430                                      /*AllowExplicit=*/false,
4431                                      InOverloadResolution, /*CStyle=*/false,
4432                                      AllowObjCWritebackConversion);
4433    Result.setListInitializationSequence();
4434    return Result;
4435  }
4436
4437  // C++11 [over.ics.list]p4:
4438  //   Otherwise, if the parameter has an aggregate type which can be
4439  //   initialized from the initializer list [...] the implicit conversion
4440  //   sequence is a user-defined conversion sequence.
4441  if (ToType->isAggregateType()) {
4442    // Type is an aggregate, argument is an init list. At this point it comes
4443    // down to checking whether the initialization works.
4444    // FIXME: Find out whether this parameter is consumed or not.
4445    InitializedEntity Entity =
4446        InitializedEntity::InitializeParameter(S.Context, ToType,
4447                                               /*Consumed=*/false);
4448    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4449      Result.setUserDefined();
4450      Result.UserDefined.Before.setAsIdentityConversion();
4451      // Initializer lists don't have a type.
4452      Result.UserDefined.Before.setFromType(QualType());
4453      Result.UserDefined.Before.setAllToTypes(QualType());
4454
4455      Result.UserDefined.After.setAsIdentityConversion();
4456      Result.UserDefined.After.setFromType(ToType);
4457      Result.UserDefined.After.setAllToTypes(ToType);
4458      Result.UserDefined.ConversionFunction = 0;
4459    }
4460    return Result;
4461  }
4462
4463  // C++11 [over.ics.list]p5:
4464  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4465  if (ToType->isReferenceType()) {
4466    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4467    // mention initializer lists in any way. So we go by what list-
4468    // initialization would do and try to extrapolate from that.
4469
4470    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4471
4472    // If the initializer list has a single element that is reference-related
4473    // to the parameter type, we initialize the reference from that.
4474    if (From->getNumInits() == 1) {
4475      Expr *Init = From->getInit(0);
4476
4477      QualType T2 = Init->getType();
4478
4479      // If the initializer is the address of an overloaded function, try
4480      // to resolve the overloaded function. If all goes well, T2 is the
4481      // type of the resulting function.
4482      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4483        DeclAccessPair Found;
4484        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4485                                   Init, ToType, false, Found))
4486          T2 = Fn->getType();
4487      }
4488
4489      // Compute some basic properties of the types and the initializer.
4490      bool dummy1 = false;
4491      bool dummy2 = false;
4492      bool dummy3 = false;
4493      Sema::ReferenceCompareResult RefRelationship
4494        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4495                                         dummy2, dummy3);
4496
4497      if (RefRelationship >= Sema::Ref_Related)
4498        return TryReferenceInit(S, Init, ToType,
4499                                /*FIXME:*/From->getLocStart(),
4500                                SuppressUserConversions,
4501                                /*AllowExplicit=*/false);
4502    }
4503
4504    // Otherwise, we bind the reference to a temporary created from the
4505    // initializer list.
4506    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4507                               InOverloadResolution,
4508                               AllowObjCWritebackConversion);
4509    if (Result.isFailure())
4510      return Result;
4511    assert(!Result.isEllipsis() &&
4512           "Sub-initialization cannot result in ellipsis conversion.");
4513
4514    // Can we even bind to a temporary?
4515    if (ToType->isRValueReferenceType() ||
4516        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4517      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4518                                            Result.UserDefined.After;
4519      SCS.ReferenceBinding = true;
4520      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4521      SCS.BindsToRvalue = true;
4522      SCS.BindsToFunctionLvalue = false;
4523      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4524      SCS.ObjCLifetimeConversionBinding = false;
4525    } else
4526      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4527                    From, ToType);
4528    return Result;
4529  }
4530
4531  // C++11 [over.ics.list]p6:
4532  //   Otherwise, if the parameter type is not a class:
4533  if (!ToType->isRecordType()) {
4534    //    - if the initializer list has one element, the implicit conversion
4535    //      sequence is the one required to convert the element to the
4536    //      parameter type.
4537    unsigned NumInits = From->getNumInits();
4538    if (NumInits == 1)
4539      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4540                                     SuppressUserConversions,
4541                                     InOverloadResolution,
4542                                     AllowObjCWritebackConversion);
4543    //    - if the initializer list has no elements, the implicit conversion
4544    //      sequence is the identity conversion.
4545    else if (NumInits == 0) {
4546      Result.setStandard();
4547      Result.Standard.setAsIdentityConversion();
4548      Result.Standard.setFromType(ToType);
4549      Result.Standard.setAllToTypes(ToType);
4550    }
4551    Result.setListInitializationSequence();
4552    return Result;
4553  }
4554
4555  // C++11 [over.ics.list]p7:
4556  //   In all cases other than those enumerated above, no conversion is possible
4557  return Result;
4558}
4559
4560/// TryCopyInitialization - Try to copy-initialize a value of type
4561/// ToType from the expression From. Return the implicit conversion
4562/// sequence required to pass this argument, which may be a bad
4563/// conversion sequence (meaning that the argument cannot be passed to
4564/// a parameter of this type). If @p SuppressUserConversions, then we
4565/// do not permit any user-defined conversion sequences.
4566static ImplicitConversionSequence
4567TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4568                      bool SuppressUserConversions,
4569                      bool InOverloadResolution,
4570                      bool AllowObjCWritebackConversion,
4571                      bool AllowExplicit) {
4572  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4573    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4574                             InOverloadResolution,AllowObjCWritebackConversion);
4575
4576  if (ToType->isReferenceType())
4577    return TryReferenceInit(S, From, ToType,
4578                            /*FIXME:*/From->getLocStart(),
4579                            SuppressUserConversions,
4580                            AllowExplicit);
4581
4582  return TryImplicitConversion(S, From, ToType,
4583                               SuppressUserConversions,
4584                               /*AllowExplicit=*/false,
4585                               InOverloadResolution,
4586                               /*CStyle=*/false,
4587                               AllowObjCWritebackConversion);
4588}
4589
4590static bool TryCopyInitialization(const CanQualType FromQTy,
4591                                  const CanQualType ToQTy,
4592                                  Sema &S,
4593                                  SourceLocation Loc,
4594                                  ExprValueKind FromVK) {
4595  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4596  ImplicitConversionSequence ICS =
4597    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4598
4599  return !ICS.isBad();
4600}
4601
4602/// TryObjectArgumentInitialization - Try to initialize the object
4603/// parameter of the given member function (@c Method) from the
4604/// expression @p From.
4605static ImplicitConversionSequence
4606TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4607                                Expr::Classification FromClassification,
4608                                CXXMethodDecl *Method,
4609                                CXXRecordDecl *ActingContext) {
4610  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4611  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4612  //                 const volatile object.
4613  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4614    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4615  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4616
4617  // Set up the conversion sequence as a "bad" conversion, to allow us
4618  // to exit early.
4619  ImplicitConversionSequence ICS;
4620
4621  // We need to have an object of class type.
4622  QualType FromType = OrigFromType;
4623  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4624    FromType = PT->getPointeeType();
4625
4626    // When we had a pointer, it's implicitly dereferenced, so we
4627    // better have an lvalue.
4628    assert(FromClassification.isLValue());
4629  }
4630
4631  assert(FromType->isRecordType());
4632
4633  // C++0x [over.match.funcs]p4:
4634  //   For non-static member functions, the type of the implicit object
4635  //   parameter is
4636  //
4637  //     - "lvalue reference to cv X" for functions declared without a
4638  //        ref-qualifier or with the & ref-qualifier
4639  //     - "rvalue reference to cv X" for functions declared with the &&
4640  //        ref-qualifier
4641  //
4642  // where X is the class of which the function is a member and cv is the
4643  // cv-qualification on the member function declaration.
4644  //
4645  // However, when finding an implicit conversion sequence for the argument, we
4646  // are not allowed to create temporaries or perform user-defined conversions
4647  // (C++ [over.match.funcs]p5). We perform a simplified version of
4648  // reference binding here, that allows class rvalues to bind to
4649  // non-constant references.
4650
4651  // First check the qualifiers.
4652  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4653  if (ImplicitParamType.getCVRQualifiers()
4654                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4655      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4656    ICS.setBad(BadConversionSequence::bad_qualifiers,
4657               OrigFromType, ImplicitParamType);
4658    return ICS;
4659  }
4660
4661  // Check that we have either the same type or a derived type. It
4662  // affects the conversion rank.
4663  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4664  ImplicitConversionKind SecondKind;
4665  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4666    SecondKind = ICK_Identity;
4667  } else if (S.IsDerivedFrom(FromType, ClassType))
4668    SecondKind = ICK_Derived_To_Base;
4669  else {
4670    ICS.setBad(BadConversionSequence::unrelated_class,
4671               FromType, ImplicitParamType);
4672    return ICS;
4673  }
4674
4675  // Check the ref-qualifier.
4676  switch (Method->getRefQualifier()) {
4677  case RQ_None:
4678    // Do nothing; we don't care about lvalueness or rvalueness.
4679    break;
4680
4681  case RQ_LValue:
4682    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4683      // non-const lvalue reference cannot bind to an rvalue
4684      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4685                 ImplicitParamType);
4686      return ICS;
4687    }
4688    break;
4689
4690  case RQ_RValue:
4691    if (!FromClassification.isRValue()) {
4692      // rvalue reference cannot bind to an lvalue
4693      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4694                 ImplicitParamType);
4695      return ICS;
4696    }
4697    break;
4698  }
4699
4700  // Success. Mark this as a reference binding.
4701  ICS.setStandard();
4702  ICS.Standard.setAsIdentityConversion();
4703  ICS.Standard.Second = SecondKind;
4704  ICS.Standard.setFromType(FromType);
4705  ICS.Standard.setAllToTypes(ImplicitParamType);
4706  ICS.Standard.ReferenceBinding = true;
4707  ICS.Standard.DirectBinding = true;
4708  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4709  ICS.Standard.BindsToFunctionLvalue = false;
4710  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4711  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4712    = (Method->getRefQualifier() == RQ_None);
4713  return ICS;
4714}
4715
4716/// PerformObjectArgumentInitialization - Perform initialization of
4717/// the implicit object parameter for the given Method with the given
4718/// expression.
4719ExprResult
4720Sema::PerformObjectArgumentInitialization(Expr *From,
4721                                          NestedNameSpecifier *Qualifier,
4722                                          NamedDecl *FoundDecl,
4723                                          CXXMethodDecl *Method) {
4724  QualType FromRecordType, DestType;
4725  QualType ImplicitParamRecordType  =
4726    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4727
4728  Expr::Classification FromClassification;
4729  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4730    FromRecordType = PT->getPointeeType();
4731    DestType = Method->getThisType(Context);
4732    FromClassification = Expr::Classification::makeSimpleLValue();
4733  } else {
4734    FromRecordType = From->getType();
4735    DestType = ImplicitParamRecordType;
4736    FromClassification = From->Classify(Context);
4737  }
4738
4739  // Note that we always use the true parent context when performing
4740  // the actual argument initialization.
4741  ImplicitConversionSequence ICS
4742    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4743                                      Method, Method->getParent());
4744  if (ICS.isBad()) {
4745    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4746      Qualifiers FromQs = FromRecordType.getQualifiers();
4747      Qualifiers ToQs = DestType.getQualifiers();
4748      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4749      if (CVR) {
4750        Diag(From->getLocStart(),
4751             diag::err_member_function_call_bad_cvr)
4752          << Method->getDeclName() << FromRecordType << (CVR - 1)
4753          << From->getSourceRange();
4754        Diag(Method->getLocation(), diag::note_previous_decl)
4755          << Method->getDeclName();
4756        return ExprError();
4757      }
4758    }
4759
4760    return Diag(From->getLocStart(),
4761                diag::err_implicit_object_parameter_init)
4762       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4763  }
4764
4765  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4766    ExprResult FromRes =
4767      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4768    if (FromRes.isInvalid())
4769      return ExprError();
4770    From = FromRes.take();
4771  }
4772
4773  if (!Context.hasSameType(From->getType(), DestType))
4774    From = ImpCastExprToType(From, DestType, CK_NoOp,
4775                             From->getValueKind()).take();
4776  return Owned(From);
4777}
4778
4779/// TryContextuallyConvertToBool - Attempt to contextually convert the
4780/// expression From to bool (C++0x [conv]p3).
4781static ImplicitConversionSequence
4782TryContextuallyConvertToBool(Sema &S, Expr *From) {
4783  // FIXME: This is pretty broken.
4784  return TryImplicitConversion(S, From, S.Context.BoolTy,
4785                               // FIXME: Are these flags correct?
4786                               /*SuppressUserConversions=*/false,
4787                               /*AllowExplicit=*/true,
4788                               /*InOverloadResolution=*/false,
4789                               /*CStyle=*/false,
4790                               /*AllowObjCWritebackConversion=*/false);
4791}
4792
4793/// PerformContextuallyConvertToBool - Perform a contextual conversion
4794/// of the expression From to bool (C++0x [conv]p3).
4795ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4796  if (checkPlaceholderForOverload(*this, From))
4797    return ExprError();
4798
4799  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4800  if (!ICS.isBad())
4801    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4802
4803  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4804    return Diag(From->getLocStart(),
4805                diag::err_typecheck_bool_condition)
4806                  << From->getType() << From->getSourceRange();
4807  return ExprError();
4808}
4809
4810/// Check that the specified conversion is permitted in a converted constant
4811/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4812/// is acceptable.
4813static bool CheckConvertedConstantConversions(Sema &S,
4814                                              StandardConversionSequence &SCS) {
4815  // Since we know that the target type is an integral or unscoped enumeration
4816  // type, most conversion kinds are impossible. All possible First and Third
4817  // conversions are fine.
4818  switch (SCS.Second) {
4819  case ICK_Identity:
4820  case ICK_Integral_Promotion:
4821  case ICK_Integral_Conversion:
4822    return true;
4823
4824  case ICK_Boolean_Conversion:
4825    // Conversion from an integral or unscoped enumeration type to bool is
4826    // classified as ICK_Boolean_Conversion, but it's also an integral
4827    // conversion, so it's permitted in a converted constant expression.
4828    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4829           SCS.getToType(2)->isBooleanType();
4830
4831  case ICK_Floating_Integral:
4832  case ICK_Complex_Real:
4833    return false;
4834
4835  case ICK_Lvalue_To_Rvalue:
4836  case ICK_Array_To_Pointer:
4837  case ICK_Function_To_Pointer:
4838  case ICK_NoReturn_Adjustment:
4839  case ICK_Qualification:
4840  case ICK_Compatible_Conversion:
4841  case ICK_Vector_Conversion:
4842  case ICK_Vector_Splat:
4843  case ICK_Derived_To_Base:
4844  case ICK_Pointer_Conversion:
4845  case ICK_Pointer_Member:
4846  case ICK_Block_Pointer_Conversion:
4847  case ICK_Writeback_Conversion:
4848  case ICK_Floating_Promotion:
4849  case ICK_Complex_Promotion:
4850  case ICK_Complex_Conversion:
4851  case ICK_Floating_Conversion:
4852  case ICK_TransparentUnionConversion:
4853    llvm_unreachable("unexpected second conversion kind");
4854
4855  case ICK_Num_Conversion_Kinds:
4856    break;
4857  }
4858
4859  llvm_unreachable("unknown conversion kind");
4860}
4861
4862/// CheckConvertedConstantExpression - Check that the expression From is a
4863/// converted constant expression of type T, perform the conversion and produce
4864/// the converted expression, per C++11 [expr.const]p3.
4865ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4866                                                  llvm::APSInt &Value,
4867                                                  CCEKind CCE) {
4868  assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4869  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4870
4871  if (checkPlaceholderForOverload(*this, From))
4872    return ExprError();
4873
4874  // C++11 [expr.const]p3 with proposed wording fixes:
4875  //  A converted constant expression of type T is a core constant expression,
4876  //  implicitly converted to a prvalue of type T, where the converted
4877  //  expression is a literal constant expression and the implicit conversion
4878  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4879  //  conversions, integral promotions, and integral conversions other than
4880  //  narrowing conversions.
4881  ImplicitConversionSequence ICS =
4882    TryImplicitConversion(From, T,
4883                          /*SuppressUserConversions=*/false,
4884                          /*AllowExplicit=*/false,
4885                          /*InOverloadResolution=*/false,
4886                          /*CStyle=*/false,
4887                          /*AllowObjcWritebackConversion=*/false);
4888  StandardConversionSequence *SCS = 0;
4889  switch (ICS.getKind()) {
4890  case ImplicitConversionSequence::StandardConversion:
4891    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4892      return Diag(From->getLocStart(),
4893                  diag::err_typecheck_converted_constant_expression_disallowed)
4894               << From->getType() << From->getSourceRange() << T;
4895    SCS = &ICS.Standard;
4896    break;
4897  case ImplicitConversionSequence::UserDefinedConversion:
4898    // We are converting from class type to an integral or enumeration type, so
4899    // the Before sequence must be trivial.
4900    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4901      return Diag(From->getLocStart(),
4902                  diag::err_typecheck_converted_constant_expression_disallowed)
4903               << From->getType() << From->getSourceRange() << T;
4904    SCS = &ICS.UserDefined.After;
4905    break;
4906  case ImplicitConversionSequence::AmbiguousConversion:
4907  case ImplicitConversionSequence::BadConversion:
4908    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4909      return Diag(From->getLocStart(),
4910                  diag::err_typecheck_converted_constant_expression)
4911                    << From->getType() << From->getSourceRange() << T;
4912    return ExprError();
4913
4914  case ImplicitConversionSequence::EllipsisConversion:
4915    llvm_unreachable("ellipsis conversion in converted constant expression");
4916  }
4917
4918  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4919  if (Result.isInvalid())
4920    return Result;
4921
4922  // Check for a narrowing implicit conversion.
4923  APValue PreNarrowingValue;
4924  QualType PreNarrowingType;
4925  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4926                                PreNarrowingType)) {
4927  case NK_Variable_Narrowing:
4928    // Implicit conversion to a narrower type, and the value is not a constant
4929    // expression. We'll diagnose this in a moment.
4930  case NK_Not_Narrowing:
4931    break;
4932
4933  case NK_Constant_Narrowing:
4934    Diag(From->getLocStart(),
4935         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4936                             diag::err_cce_narrowing)
4937      << CCE << /*Constant*/1
4938      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4939    break;
4940
4941  case NK_Type_Narrowing:
4942    Diag(From->getLocStart(),
4943         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4944                             diag::err_cce_narrowing)
4945      << CCE << /*Constant*/0 << From->getType() << T;
4946    break;
4947  }
4948
4949  // Check the expression is a constant expression.
4950  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4951  Expr::EvalResult Eval;
4952  Eval.Diag = &Notes;
4953
4954  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4955    // The expression can't be folded, so we can't keep it at this position in
4956    // the AST.
4957    Result = ExprError();
4958  } else {
4959    Value = Eval.Val.getInt();
4960
4961    if (Notes.empty()) {
4962      // It's a constant expression.
4963      return Result;
4964    }
4965  }
4966
4967  // It's not a constant expression. Produce an appropriate diagnostic.
4968  if (Notes.size() == 1 &&
4969      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4970    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4971  else {
4972    Diag(From->getLocStart(), diag::err_expr_not_cce)
4973      << CCE << From->getSourceRange();
4974    for (unsigned I = 0; I < Notes.size(); ++I)
4975      Diag(Notes[I].first, Notes[I].second);
4976  }
4977  return Result;
4978}
4979
4980/// dropPointerConversions - If the given standard conversion sequence
4981/// involves any pointer conversions, remove them.  This may change
4982/// the result type of the conversion sequence.
4983static void dropPointerConversion(StandardConversionSequence &SCS) {
4984  if (SCS.Second == ICK_Pointer_Conversion) {
4985    SCS.Second = ICK_Identity;
4986    SCS.Third = ICK_Identity;
4987    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4988  }
4989}
4990
4991/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4992/// convert the expression From to an Objective-C pointer type.
4993static ImplicitConversionSequence
4994TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4995  // Do an implicit conversion to 'id'.
4996  QualType Ty = S.Context.getObjCIdType();
4997  ImplicitConversionSequence ICS
4998    = TryImplicitConversion(S, From, Ty,
4999                            // FIXME: Are these flags correct?
5000                            /*SuppressUserConversions=*/false,
5001                            /*AllowExplicit=*/true,
5002                            /*InOverloadResolution=*/false,
5003                            /*CStyle=*/false,
5004                            /*AllowObjCWritebackConversion=*/false);
5005
5006  // Strip off any final conversions to 'id'.
5007  switch (ICS.getKind()) {
5008  case ImplicitConversionSequence::BadConversion:
5009  case ImplicitConversionSequence::AmbiguousConversion:
5010  case ImplicitConversionSequence::EllipsisConversion:
5011    break;
5012
5013  case ImplicitConversionSequence::UserDefinedConversion:
5014    dropPointerConversion(ICS.UserDefined.After);
5015    break;
5016
5017  case ImplicitConversionSequence::StandardConversion:
5018    dropPointerConversion(ICS.Standard);
5019    break;
5020  }
5021
5022  return ICS;
5023}
5024
5025/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5026/// conversion of the expression From to an Objective-C pointer type.
5027ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5028  if (checkPlaceholderForOverload(*this, From))
5029    return ExprError();
5030
5031  QualType Ty = Context.getObjCIdType();
5032  ImplicitConversionSequence ICS =
5033    TryContextuallyConvertToObjCPointer(*this, From);
5034  if (!ICS.isBad())
5035    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5036  return ExprError();
5037}
5038
5039/// Determine whether the provided type is an integral type, or an enumeration
5040/// type of a permitted flavor.
5041static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
5042  return AllowScopedEnum ? T->isIntegralOrEnumerationType()
5043                         : T->isIntegralOrUnscopedEnumerationType();
5044}
5045
5046/// \brief Attempt to convert the given expression to an integral or
5047/// enumeration type.
5048///
5049/// This routine will attempt to convert an expression of class type to an
5050/// integral or enumeration type, if that class type only has a single
5051/// conversion to an integral or enumeration type.
5052///
5053/// \param Loc The source location of the construct that requires the
5054/// conversion.
5055///
5056/// \param From The expression we're converting from.
5057///
5058/// \param Diagnoser Used to output any diagnostics.
5059///
5060/// \param AllowScopedEnumerations Specifies whether conversions to scoped
5061/// enumerations should be considered.
5062///
5063/// \returns The expression, converted to an integral or enumeration type if
5064/// successful.
5065ExprResult
5066Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
5067                                         ICEConvertDiagnoser &Diagnoser,
5068                                         bool AllowScopedEnumerations) {
5069  // We can't perform any more checking for type-dependent expressions.
5070  if (From->isTypeDependent())
5071    return Owned(From);
5072
5073  // Process placeholders immediately.
5074  if (From->hasPlaceholderType()) {
5075    ExprResult result = CheckPlaceholderExpr(From);
5076    if (result.isInvalid()) return result;
5077    From = result.take();
5078  }
5079
5080  // If the expression already has integral or enumeration type, we're golden.
5081  QualType T = From->getType();
5082  if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
5083    return DefaultLvalueConversion(From);
5084
5085  // FIXME: Check for missing '()' if T is a function type?
5086
5087  // If we don't have a class type in C++, there's no way we can get an
5088  // expression of integral or enumeration type.
5089  const RecordType *RecordTy = T->getAs<RecordType>();
5090  if (!RecordTy || !getLangOpts().CPlusPlus) {
5091    if (!Diagnoser.Suppress)
5092      Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange();
5093    return Owned(From);
5094  }
5095
5096  // We must have a complete class type.
5097  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5098    ICEConvertDiagnoser &Diagnoser;
5099    Expr *From;
5100
5101    TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From)
5102      : TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {}
5103
5104    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5105      Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5106    }
5107  } IncompleteDiagnoser(Diagnoser, From);
5108
5109  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5110    return Owned(From);
5111
5112  // Look for a conversion to an integral or enumeration type.
5113  UnresolvedSet<4> ViableConversions;
5114  UnresolvedSet<4> ExplicitConversions;
5115  const UnresolvedSetImpl *Conversions
5116    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5117
5118  bool HadMultipleCandidates = (Conversions->size() > 1);
5119
5120  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5121                                   E = Conversions->end();
5122       I != E;
5123       ++I) {
5124    if (CXXConversionDecl *Conversion
5125          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
5126      if (isIntegralOrEnumerationType(
5127            Conversion->getConversionType().getNonReferenceType(),
5128            AllowScopedEnumerations)) {
5129        if (Conversion->isExplicit())
5130          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5131        else
5132          ViableConversions.addDecl(I.getDecl(), I.getAccess());
5133      }
5134    }
5135  }
5136
5137  switch (ViableConversions.size()) {
5138  case 0:
5139    if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) {
5140      DeclAccessPair Found = ExplicitConversions[0];
5141      CXXConversionDecl *Conversion
5142        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5143
5144      // The user probably meant to invoke the given explicit
5145      // conversion; use it.
5146      QualType ConvTy
5147        = Conversion->getConversionType().getNonReferenceType();
5148      std::string TypeStr;
5149      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
5150
5151      Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy)
5152        << FixItHint::CreateInsertion(From->getLocStart(),
5153                                      "static_cast<" + TypeStr + ">(")
5154        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
5155                                      ")");
5156      Diagnoser.noteExplicitConv(*this, Conversion, ConvTy);
5157
5158      // If we aren't in a SFINAE context, build a call to the
5159      // explicit conversion function.
5160      if (isSFINAEContext())
5161        return ExprError();
5162
5163      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5164      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5165                                                 HadMultipleCandidates);
5166      if (Result.isInvalid())
5167        return ExprError();
5168      // Record usage of conversion in an implicit cast.
5169      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5170                                      CK_UserDefinedConversion,
5171                                      Result.get(), 0,
5172                                      Result.get()->getValueKind());
5173    }
5174
5175    // We'll complain below about a non-integral condition type.
5176    break;
5177
5178  case 1: {
5179    // Apply this conversion.
5180    DeclAccessPair Found = ViableConversions[0];
5181    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5182
5183    CXXConversionDecl *Conversion
5184      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5185    QualType ConvTy
5186      = Conversion->getConversionType().getNonReferenceType();
5187    if (!Diagnoser.SuppressConversion) {
5188      if (isSFINAEContext())
5189        return ExprError();
5190
5191      Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy)
5192        << From->getSourceRange();
5193    }
5194
5195    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5196                                               HadMultipleCandidates);
5197    if (Result.isInvalid())
5198      return ExprError();
5199    // Record usage of conversion in an implicit cast.
5200    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5201                                    CK_UserDefinedConversion,
5202                                    Result.get(), 0,
5203                                    Result.get()->getValueKind());
5204    break;
5205  }
5206
5207  default:
5208    if (Diagnoser.Suppress)
5209      return ExprError();
5210
5211    Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange();
5212    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5213      CXXConversionDecl *Conv
5214        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5215      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5216      Diagnoser.noteAmbiguous(*this, Conv, ConvTy);
5217    }
5218    return Owned(From);
5219  }
5220
5221  if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
5222      !Diagnoser.Suppress) {
5223    Diagnoser.diagnoseNotInt(*this, Loc, From->getType())
5224      << From->getSourceRange();
5225  }
5226
5227  return DefaultLvalueConversion(From);
5228}
5229
5230/// AddOverloadCandidate - Adds the given function to the set of
5231/// candidate functions, using the given function call arguments.  If
5232/// @p SuppressUserConversions, then don't allow user-defined
5233/// conversions via constructors or conversion operators.
5234///
5235/// \param PartialOverloading true if we are performing "partial" overloading
5236/// based on an incomplete set of function arguments. This feature is used by
5237/// code completion.
5238void
5239Sema::AddOverloadCandidate(FunctionDecl *Function,
5240                           DeclAccessPair FoundDecl,
5241                           llvm::ArrayRef<Expr *> Args,
5242                           OverloadCandidateSet& CandidateSet,
5243                           bool SuppressUserConversions,
5244                           bool PartialOverloading,
5245                           bool AllowExplicit) {
5246  const FunctionProtoType* Proto
5247    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5248  assert(Proto && "Functions without a prototype cannot be overloaded");
5249  assert(!Function->getDescribedFunctionTemplate() &&
5250         "Use AddTemplateOverloadCandidate for function templates");
5251
5252  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5253    if (!isa<CXXConstructorDecl>(Method)) {
5254      // If we get here, it's because we're calling a member function
5255      // that is named without a member access expression (e.g.,
5256      // "this->f") that was either written explicitly or created
5257      // implicitly. This can happen with a qualified call to a member
5258      // function, e.g., X::f(). We use an empty type for the implied
5259      // object argument (C++ [over.call.func]p3), and the acting context
5260      // is irrelevant.
5261      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5262                         QualType(), Expr::Classification::makeSimpleLValue(),
5263                         Args, CandidateSet, SuppressUserConversions);
5264      return;
5265    }
5266    // We treat a constructor like a non-member function, since its object
5267    // argument doesn't participate in overload resolution.
5268  }
5269
5270  if (!CandidateSet.isNewCandidate(Function))
5271    return;
5272
5273  // Overload resolution is always an unevaluated context.
5274  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5275
5276  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5277    // C++ [class.copy]p3:
5278    //   A member function template is never instantiated to perform the copy
5279    //   of a class object to an object of its class type.
5280    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5281    if (Args.size() == 1 &&
5282        Constructor->isSpecializationCopyingObject() &&
5283        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5284         IsDerivedFrom(Args[0]->getType(), ClassType)))
5285      return;
5286  }
5287
5288  // Add this candidate
5289  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5290  Candidate.FoundDecl = FoundDecl;
5291  Candidate.Function = Function;
5292  Candidate.Viable = true;
5293  Candidate.IsSurrogate = false;
5294  Candidate.IgnoreObjectArgument = false;
5295  Candidate.ExplicitCallArguments = Args.size();
5296
5297  unsigned NumArgsInProto = Proto->getNumArgs();
5298
5299  // (C++ 13.3.2p2): A candidate function having fewer than m
5300  // parameters is viable only if it has an ellipsis in its parameter
5301  // list (8.3.5).
5302  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5303      !Proto->isVariadic()) {
5304    Candidate.Viable = false;
5305    Candidate.FailureKind = ovl_fail_too_many_arguments;
5306    return;
5307  }
5308
5309  // (C++ 13.3.2p2): A candidate function having more than m parameters
5310  // is viable only if the (m+1)st parameter has a default argument
5311  // (8.3.6). For the purposes of overload resolution, the
5312  // parameter list is truncated on the right, so that there are
5313  // exactly m parameters.
5314  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5315  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5316    // Not enough arguments.
5317    Candidate.Viable = false;
5318    Candidate.FailureKind = ovl_fail_too_few_arguments;
5319    return;
5320  }
5321
5322  // (CUDA B.1): Check for invalid calls between targets.
5323  if (getLangOpts().CUDA)
5324    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5325      if (CheckCUDATarget(Caller, Function)) {
5326        Candidate.Viable = false;
5327        Candidate.FailureKind = ovl_fail_bad_target;
5328        return;
5329      }
5330
5331  // Determine the implicit conversion sequences for each of the
5332  // arguments.
5333  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5334    if (ArgIdx < NumArgsInProto) {
5335      // (C++ 13.3.2p3): for F to be a viable function, there shall
5336      // exist for each argument an implicit conversion sequence
5337      // (13.3.3.1) that converts that argument to the corresponding
5338      // parameter of F.
5339      QualType ParamType = Proto->getArgType(ArgIdx);
5340      Candidate.Conversions[ArgIdx]
5341        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5342                                SuppressUserConversions,
5343                                /*InOverloadResolution=*/true,
5344                                /*AllowObjCWritebackConversion=*/
5345                                  getLangOpts().ObjCAutoRefCount,
5346                                AllowExplicit);
5347      if (Candidate.Conversions[ArgIdx].isBad()) {
5348        Candidate.Viable = false;
5349        Candidate.FailureKind = ovl_fail_bad_conversion;
5350        break;
5351      }
5352    } else {
5353      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5354      // argument for which there is no corresponding parameter is
5355      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5356      Candidate.Conversions[ArgIdx].setEllipsis();
5357    }
5358  }
5359}
5360
5361/// \brief Add all of the function declarations in the given function set to
5362/// the overload canddiate set.
5363void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5364                                 llvm::ArrayRef<Expr *> Args,
5365                                 OverloadCandidateSet& CandidateSet,
5366                                 bool SuppressUserConversions,
5367                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5368  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5369    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5370    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5371      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5372        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5373                           cast<CXXMethodDecl>(FD)->getParent(),
5374                           Args[0]->getType(), Args[0]->Classify(Context),
5375                           Args.slice(1), CandidateSet,
5376                           SuppressUserConversions);
5377      else
5378        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5379                             SuppressUserConversions);
5380    } else {
5381      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5382      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5383          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5384        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5385                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5386                                   ExplicitTemplateArgs,
5387                                   Args[0]->getType(),
5388                                   Args[0]->Classify(Context), Args.slice(1),
5389                                   CandidateSet, SuppressUserConversions);
5390      else
5391        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5392                                     ExplicitTemplateArgs, Args,
5393                                     CandidateSet, SuppressUserConversions);
5394    }
5395  }
5396}
5397
5398/// AddMethodCandidate - Adds a named decl (which is some kind of
5399/// method) as a method candidate to the given overload set.
5400void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5401                              QualType ObjectType,
5402                              Expr::Classification ObjectClassification,
5403                              Expr **Args, unsigned NumArgs,
5404                              OverloadCandidateSet& CandidateSet,
5405                              bool SuppressUserConversions) {
5406  NamedDecl *Decl = FoundDecl.getDecl();
5407  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5408
5409  if (isa<UsingShadowDecl>(Decl))
5410    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5411
5412  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5413    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5414           "Expected a member function template");
5415    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5416                               /*ExplicitArgs*/ 0,
5417                               ObjectType, ObjectClassification,
5418                               llvm::makeArrayRef(Args, NumArgs), CandidateSet,
5419                               SuppressUserConversions);
5420  } else {
5421    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5422                       ObjectType, ObjectClassification,
5423                       llvm::makeArrayRef(Args, NumArgs),
5424                       CandidateSet, SuppressUserConversions);
5425  }
5426}
5427
5428/// AddMethodCandidate - Adds the given C++ member function to the set
5429/// of candidate functions, using the given function call arguments
5430/// and the object argument (@c Object). For example, in a call
5431/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5432/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5433/// allow user-defined conversions via constructors or conversion
5434/// operators.
5435void
5436Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5437                         CXXRecordDecl *ActingContext, QualType ObjectType,
5438                         Expr::Classification ObjectClassification,
5439                         llvm::ArrayRef<Expr *> Args,
5440                         OverloadCandidateSet& CandidateSet,
5441                         bool SuppressUserConversions) {
5442  const FunctionProtoType* Proto
5443    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5444  assert(Proto && "Methods without a prototype cannot be overloaded");
5445  assert(!isa<CXXConstructorDecl>(Method) &&
5446         "Use AddOverloadCandidate for constructors");
5447
5448  if (!CandidateSet.isNewCandidate(Method))
5449    return;
5450
5451  // Overload resolution is always an unevaluated context.
5452  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5453
5454  // Add this candidate
5455  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5456  Candidate.FoundDecl = FoundDecl;
5457  Candidate.Function = Method;
5458  Candidate.IsSurrogate = false;
5459  Candidate.IgnoreObjectArgument = false;
5460  Candidate.ExplicitCallArguments = Args.size();
5461
5462  unsigned NumArgsInProto = Proto->getNumArgs();
5463
5464  // (C++ 13.3.2p2): A candidate function having fewer than m
5465  // parameters is viable only if it has an ellipsis in its parameter
5466  // list (8.3.5).
5467  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5468    Candidate.Viable = false;
5469    Candidate.FailureKind = ovl_fail_too_many_arguments;
5470    return;
5471  }
5472
5473  // (C++ 13.3.2p2): A candidate function having more than m parameters
5474  // is viable only if the (m+1)st parameter has a default argument
5475  // (8.3.6). For the purposes of overload resolution, the
5476  // parameter list is truncated on the right, so that there are
5477  // exactly m parameters.
5478  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5479  if (Args.size() < MinRequiredArgs) {
5480    // Not enough arguments.
5481    Candidate.Viable = false;
5482    Candidate.FailureKind = ovl_fail_too_few_arguments;
5483    return;
5484  }
5485
5486  Candidate.Viable = true;
5487
5488  if (Method->isStatic() || ObjectType.isNull())
5489    // The implicit object argument is ignored.
5490    Candidate.IgnoreObjectArgument = true;
5491  else {
5492    // Determine the implicit conversion sequence for the object
5493    // parameter.
5494    Candidate.Conversions[0]
5495      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5496                                        Method, ActingContext);
5497    if (Candidate.Conversions[0].isBad()) {
5498      Candidate.Viable = false;
5499      Candidate.FailureKind = ovl_fail_bad_conversion;
5500      return;
5501    }
5502  }
5503
5504  // Determine the implicit conversion sequences for each of the
5505  // arguments.
5506  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5507    if (ArgIdx < NumArgsInProto) {
5508      // (C++ 13.3.2p3): for F to be a viable function, there shall
5509      // exist for each argument an implicit conversion sequence
5510      // (13.3.3.1) that converts that argument to the corresponding
5511      // parameter of F.
5512      QualType ParamType = Proto->getArgType(ArgIdx);
5513      Candidate.Conversions[ArgIdx + 1]
5514        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5515                                SuppressUserConversions,
5516                                /*InOverloadResolution=*/true,
5517                                /*AllowObjCWritebackConversion=*/
5518                                  getLangOpts().ObjCAutoRefCount);
5519      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5520        Candidate.Viable = false;
5521        Candidate.FailureKind = ovl_fail_bad_conversion;
5522        break;
5523      }
5524    } else {
5525      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5526      // argument for which there is no corresponding parameter is
5527      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5528      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5529    }
5530  }
5531}
5532
5533/// \brief Add a C++ member function template as a candidate to the candidate
5534/// set, using template argument deduction to produce an appropriate member
5535/// function template specialization.
5536void
5537Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5538                                 DeclAccessPair FoundDecl,
5539                                 CXXRecordDecl *ActingContext,
5540                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5541                                 QualType ObjectType,
5542                                 Expr::Classification ObjectClassification,
5543                                 llvm::ArrayRef<Expr *> Args,
5544                                 OverloadCandidateSet& CandidateSet,
5545                                 bool SuppressUserConversions) {
5546  if (!CandidateSet.isNewCandidate(MethodTmpl))
5547    return;
5548
5549  // C++ [over.match.funcs]p7:
5550  //   In each case where a candidate is a function template, candidate
5551  //   function template specializations are generated using template argument
5552  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5553  //   candidate functions in the usual way.113) A given name can refer to one
5554  //   or more function templates and also to a set of overloaded non-template
5555  //   functions. In such a case, the candidate functions generated from each
5556  //   function template are combined with the set of non-template candidate
5557  //   functions.
5558  TemplateDeductionInfo Info(CandidateSet.getLocation());
5559  FunctionDecl *Specialization = 0;
5560  if (TemplateDeductionResult Result
5561      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5562                                Specialization, Info)) {
5563    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5564    Candidate.FoundDecl = FoundDecl;
5565    Candidate.Function = MethodTmpl->getTemplatedDecl();
5566    Candidate.Viable = false;
5567    Candidate.FailureKind = ovl_fail_bad_deduction;
5568    Candidate.IsSurrogate = false;
5569    Candidate.IgnoreObjectArgument = false;
5570    Candidate.ExplicitCallArguments = Args.size();
5571    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5572                                                          Info);
5573    return;
5574  }
5575
5576  // Add the function template specialization produced by template argument
5577  // deduction as a candidate.
5578  assert(Specialization && "Missing member function template specialization?");
5579  assert(isa<CXXMethodDecl>(Specialization) &&
5580         "Specialization is not a member function?");
5581  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5582                     ActingContext, ObjectType, ObjectClassification, Args,
5583                     CandidateSet, SuppressUserConversions);
5584}
5585
5586/// \brief Add a C++ function template specialization as a candidate
5587/// in the candidate set, using template argument deduction to produce
5588/// an appropriate function template specialization.
5589void
5590Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5591                                   DeclAccessPair FoundDecl,
5592                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5593                                   llvm::ArrayRef<Expr *> Args,
5594                                   OverloadCandidateSet& CandidateSet,
5595                                   bool SuppressUserConversions) {
5596  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5597    return;
5598
5599  // C++ [over.match.funcs]p7:
5600  //   In each case where a candidate is a function template, candidate
5601  //   function template specializations are generated using template argument
5602  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5603  //   candidate functions in the usual way.113) A given name can refer to one
5604  //   or more function templates and also to a set of overloaded non-template
5605  //   functions. In such a case, the candidate functions generated from each
5606  //   function template are combined with the set of non-template candidate
5607  //   functions.
5608  TemplateDeductionInfo Info(CandidateSet.getLocation());
5609  FunctionDecl *Specialization = 0;
5610  if (TemplateDeductionResult Result
5611        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5612                                  Specialization, Info)) {
5613    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5614    Candidate.FoundDecl = FoundDecl;
5615    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5616    Candidate.Viable = false;
5617    Candidate.FailureKind = ovl_fail_bad_deduction;
5618    Candidate.IsSurrogate = false;
5619    Candidate.IgnoreObjectArgument = false;
5620    Candidate.ExplicitCallArguments = Args.size();
5621    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5622                                                          Info);
5623    return;
5624  }
5625
5626  // Add the function template specialization produced by template argument
5627  // deduction as a candidate.
5628  assert(Specialization && "Missing function template specialization?");
5629  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5630                       SuppressUserConversions);
5631}
5632
5633/// AddConversionCandidate - Add a C++ conversion function as a
5634/// candidate in the candidate set (C++ [over.match.conv],
5635/// C++ [over.match.copy]). From is the expression we're converting from,
5636/// and ToType is the type that we're eventually trying to convert to
5637/// (which may or may not be the same type as the type that the
5638/// conversion function produces).
5639void
5640Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5641                             DeclAccessPair FoundDecl,
5642                             CXXRecordDecl *ActingContext,
5643                             Expr *From, QualType ToType,
5644                             OverloadCandidateSet& CandidateSet) {
5645  assert(!Conversion->getDescribedFunctionTemplate() &&
5646         "Conversion function templates use AddTemplateConversionCandidate");
5647  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5648  if (!CandidateSet.isNewCandidate(Conversion))
5649    return;
5650
5651  // Overload resolution is always an unevaluated context.
5652  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5653
5654  // Add this candidate
5655  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5656  Candidate.FoundDecl = FoundDecl;
5657  Candidate.Function = Conversion;
5658  Candidate.IsSurrogate = false;
5659  Candidate.IgnoreObjectArgument = false;
5660  Candidate.FinalConversion.setAsIdentityConversion();
5661  Candidate.FinalConversion.setFromType(ConvType);
5662  Candidate.FinalConversion.setAllToTypes(ToType);
5663  Candidate.Viable = true;
5664  Candidate.ExplicitCallArguments = 1;
5665
5666  // C++ [over.match.funcs]p4:
5667  //   For conversion functions, the function is considered to be a member of
5668  //   the class of the implicit implied object argument for the purpose of
5669  //   defining the type of the implicit object parameter.
5670  //
5671  // Determine the implicit conversion sequence for the implicit
5672  // object parameter.
5673  QualType ImplicitParamType = From->getType();
5674  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5675    ImplicitParamType = FromPtrType->getPointeeType();
5676  CXXRecordDecl *ConversionContext
5677    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5678
5679  Candidate.Conversions[0]
5680    = TryObjectArgumentInitialization(*this, From->getType(),
5681                                      From->Classify(Context),
5682                                      Conversion, ConversionContext);
5683
5684  if (Candidate.Conversions[0].isBad()) {
5685    Candidate.Viable = false;
5686    Candidate.FailureKind = ovl_fail_bad_conversion;
5687    return;
5688  }
5689
5690  // We won't go through a user-define type conversion function to convert a
5691  // derived to base as such conversions are given Conversion Rank. They only
5692  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5693  QualType FromCanon
5694    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5695  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5696  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5697    Candidate.Viable = false;
5698    Candidate.FailureKind = ovl_fail_trivial_conversion;
5699    return;
5700  }
5701
5702  // To determine what the conversion from the result of calling the
5703  // conversion function to the type we're eventually trying to
5704  // convert to (ToType), we need to synthesize a call to the
5705  // conversion function and attempt copy initialization from it. This
5706  // makes sure that we get the right semantics with respect to
5707  // lvalues/rvalues and the type. Fortunately, we can allocate this
5708  // call on the stack and we don't need its arguments to be
5709  // well-formed.
5710  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5711                            VK_LValue, From->getLocStart());
5712  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5713                                Context.getPointerType(Conversion->getType()),
5714                                CK_FunctionToPointerDecay,
5715                                &ConversionRef, VK_RValue);
5716
5717  QualType ConversionType = Conversion->getConversionType();
5718  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5719    Candidate.Viable = false;
5720    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5721    return;
5722  }
5723
5724  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5725
5726  // Note that it is safe to allocate CallExpr on the stack here because
5727  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5728  // allocator).
5729  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5730  CallExpr Call(Context, &ConversionFn, MultiExprArg(), CallResultType, VK,
5731                From->getLocStart());
5732  ImplicitConversionSequence ICS =
5733    TryCopyInitialization(*this, &Call, ToType,
5734                          /*SuppressUserConversions=*/true,
5735                          /*InOverloadResolution=*/false,
5736                          /*AllowObjCWritebackConversion=*/false);
5737
5738  switch (ICS.getKind()) {
5739  case ImplicitConversionSequence::StandardConversion:
5740    Candidate.FinalConversion = ICS.Standard;
5741
5742    // C++ [over.ics.user]p3:
5743    //   If the user-defined conversion is specified by a specialization of a
5744    //   conversion function template, the second standard conversion sequence
5745    //   shall have exact match rank.
5746    if (Conversion->getPrimaryTemplate() &&
5747        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5748      Candidate.Viable = false;
5749      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5750    }
5751
5752    // C++0x [dcl.init.ref]p5:
5753    //    In the second case, if the reference is an rvalue reference and
5754    //    the second standard conversion sequence of the user-defined
5755    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5756    //    program is ill-formed.
5757    if (ToType->isRValueReferenceType() &&
5758        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5759      Candidate.Viable = false;
5760      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5761    }
5762    break;
5763
5764  case ImplicitConversionSequence::BadConversion:
5765    Candidate.Viable = false;
5766    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5767    break;
5768
5769  default:
5770    llvm_unreachable(
5771           "Can only end up with a standard conversion sequence or failure");
5772  }
5773}
5774
5775/// \brief Adds a conversion function template specialization
5776/// candidate to the overload set, using template argument deduction
5777/// to deduce the template arguments of the conversion function
5778/// template from the type that we are converting to (C++
5779/// [temp.deduct.conv]).
5780void
5781Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5782                                     DeclAccessPair FoundDecl,
5783                                     CXXRecordDecl *ActingDC,
5784                                     Expr *From, QualType ToType,
5785                                     OverloadCandidateSet &CandidateSet) {
5786  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5787         "Only conversion function templates permitted here");
5788
5789  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5790    return;
5791
5792  TemplateDeductionInfo Info(CandidateSet.getLocation());
5793  CXXConversionDecl *Specialization = 0;
5794  if (TemplateDeductionResult Result
5795        = DeduceTemplateArguments(FunctionTemplate, ToType,
5796                                  Specialization, Info)) {
5797    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5798    Candidate.FoundDecl = FoundDecl;
5799    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5800    Candidate.Viable = false;
5801    Candidate.FailureKind = ovl_fail_bad_deduction;
5802    Candidate.IsSurrogate = false;
5803    Candidate.IgnoreObjectArgument = false;
5804    Candidate.ExplicitCallArguments = 1;
5805    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5806                                                          Info);
5807    return;
5808  }
5809
5810  // Add the conversion function template specialization produced by
5811  // template argument deduction as a candidate.
5812  assert(Specialization && "Missing function template specialization?");
5813  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5814                         CandidateSet);
5815}
5816
5817/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5818/// converts the given @c Object to a function pointer via the
5819/// conversion function @c Conversion, and then attempts to call it
5820/// with the given arguments (C++ [over.call.object]p2-4). Proto is
5821/// the type of function that we'll eventually be calling.
5822void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5823                                 DeclAccessPair FoundDecl,
5824                                 CXXRecordDecl *ActingContext,
5825                                 const FunctionProtoType *Proto,
5826                                 Expr *Object,
5827                                 llvm::ArrayRef<Expr *> Args,
5828                                 OverloadCandidateSet& CandidateSet) {
5829  if (!CandidateSet.isNewCandidate(Conversion))
5830    return;
5831
5832  // Overload resolution is always an unevaluated context.
5833  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5834
5835  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5836  Candidate.FoundDecl = FoundDecl;
5837  Candidate.Function = 0;
5838  Candidate.Surrogate = Conversion;
5839  Candidate.Viable = true;
5840  Candidate.IsSurrogate = true;
5841  Candidate.IgnoreObjectArgument = false;
5842  Candidate.ExplicitCallArguments = Args.size();
5843
5844  // Determine the implicit conversion sequence for the implicit
5845  // object parameter.
5846  ImplicitConversionSequence ObjectInit
5847    = TryObjectArgumentInitialization(*this, Object->getType(),
5848                                      Object->Classify(Context),
5849                                      Conversion, ActingContext);
5850  if (ObjectInit.isBad()) {
5851    Candidate.Viable = false;
5852    Candidate.FailureKind = ovl_fail_bad_conversion;
5853    Candidate.Conversions[0] = ObjectInit;
5854    return;
5855  }
5856
5857  // The first conversion is actually a user-defined conversion whose
5858  // first conversion is ObjectInit's standard conversion (which is
5859  // effectively a reference binding). Record it as such.
5860  Candidate.Conversions[0].setUserDefined();
5861  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5862  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5863  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5864  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5865  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5866  Candidate.Conversions[0].UserDefined.After
5867    = Candidate.Conversions[0].UserDefined.Before;
5868  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5869
5870  // Find the
5871  unsigned NumArgsInProto = Proto->getNumArgs();
5872
5873  // (C++ 13.3.2p2): A candidate function having fewer than m
5874  // parameters is viable only if it has an ellipsis in its parameter
5875  // list (8.3.5).
5876  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5877    Candidate.Viable = false;
5878    Candidate.FailureKind = ovl_fail_too_many_arguments;
5879    return;
5880  }
5881
5882  // Function types don't have any default arguments, so just check if
5883  // we have enough arguments.
5884  if (Args.size() < NumArgsInProto) {
5885    // Not enough arguments.
5886    Candidate.Viable = false;
5887    Candidate.FailureKind = ovl_fail_too_few_arguments;
5888    return;
5889  }
5890
5891  // Determine the implicit conversion sequences for each of the
5892  // arguments.
5893  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5894    if (ArgIdx < NumArgsInProto) {
5895      // (C++ 13.3.2p3): for F to be a viable function, there shall
5896      // exist for each argument an implicit conversion sequence
5897      // (13.3.3.1) that converts that argument to the corresponding
5898      // parameter of F.
5899      QualType ParamType = Proto->getArgType(ArgIdx);
5900      Candidate.Conversions[ArgIdx + 1]
5901        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5902                                /*SuppressUserConversions=*/false,
5903                                /*InOverloadResolution=*/false,
5904                                /*AllowObjCWritebackConversion=*/
5905                                  getLangOpts().ObjCAutoRefCount);
5906      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5907        Candidate.Viable = false;
5908        Candidate.FailureKind = ovl_fail_bad_conversion;
5909        break;
5910      }
5911    } else {
5912      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5913      // argument for which there is no corresponding parameter is
5914      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5915      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5916    }
5917  }
5918}
5919
5920/// \brief Add overload candidates for overloaded operators that are
5921/// member functions.
5922///
5923/// Add the overloaded operator candidates that are member functions
5924/// for the operator Op that was used in an operator expression such
5925/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5926/// CandidateSet will store the added overload candidates. (C++
5927/// [over.match.oper]).
5928void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5929                                       SourceLocation OpLoc,
5930                                       Expr **Args, unsigned NumArgs,
5931                                       OverloadCandidateSet& CandidateSet,
5932                                       SourceRange OpRange) {
5933  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5934
5935  // C++ [over.match.oper]p3:
5936  //   For a unary operator @ with an operand of a type whose
5937  //   cv-unqualified version is T1, and for a binary operator @ with
5938  //   a left operand of a type whose cv-unqualified version is T1 and
5939  //   a right operand of a type whose cv-unqualified version is T2,
5940  //   three sets of candidate functions, designated member
5941  //   candidates, non-member candidates and built-in candidates, are
5942  //   constructed as follows:
5943  QualType T1 = Args[0]->getType();
5944
5945  //     -- If T1 is a class type, the set of member candidates is the
5946  //        result of the qualified lookup of T1::operator@
5947  //        (13.3.1.1.1); otherwise, the set of member candidates is
5948  //        empty.
5949  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5950    // Complete the type if it can be completed. Otherwise, we're done.
5951    if (RequireCompleteType(OpLoc, T1, 0))
5952      return;
5953
5954    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5955    LookupQualifiedName(Operators, T1Rec->getDecl());
5956    Operators.suppressDiagnostics();
5957
5958    for (LookupResult::iterator Oper = Operators.begin(),
5959                             OperEnd = Operators.end();
5960         Oper != OperEnd;
5961         ++Oper)
5962      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5963                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5964                         CandidateSet,
5965                         /* SuppressUserConversions = */ false);
5966  }
5967}
5968
5969/// AddBuiltinCandidate - Add a candidate for a built-in
5970/// operator. ResultTy and ParamTys are the result and parameter types
5971/// of the built-in candidate, respectively. Args and NumArgs are the
5972/// arguments being passed to the candidate. IsAssignmentOperator
5973/// should be true when this built-in candidate is an assignment
5974/// operator. NumContextualBoolArguments is the number of arguments
5975/// (at the beginning of the argument list) that will be contextually
5976/// converted to bool.
5977void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5978                               Expr **Args, unsigned NumArgs,
5979                               OverloadCandidateSet& CandidateSet,
5980                               bool IsAssignmentOperator,
5981                               unsigned NumContextualBoolArguments) {
5982  // Overload resolution is always an unevaluated context.
5983  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5984
5985  // Add this candidate
5986  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5987  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5988  Candidate.Function = 0;
5989  Candidate.IsSurrogate = false;
5990  Candidate.IgnoreObjectArgument = false;
5991  Candidate.BuiltinTypes.ResultTy = ResultTy;
5992  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5993    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5994
5995  // Determine the implicit conversion sequences for each of the
5996  // arguments.
5997  Candidate.Viable = true;
5998  Candidate.ExplicitCallArguments = NumArgs;
5999  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6000    // C++ [over.match.oper]p4:
6001    //   For the built-in assignment operators, conversions of the
6002    //   left operand are restricted as follows:
6003    //     -- no temporaries are introduced to hold the left operand, and
6004    //     -- no user-defined conversions are applied to the left
6005    //        operand to achieve a type match with the left-most
6006    //        parameter of a built-in candidate.
6007    //
6008    // We block these conversions by turning off user-defined
6009    // conversions, since that is the only way that initialization of
6010    // a reference to a non-class type can occur from something that
6011    // is not of the same type.
6012    if (ArgIdx < NumContextualBoolArguments) {
6013      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6014             "Contextual conversion to bool requires bool type");
6015      Candidate.Conversions[ArgIdx]
6016        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6017    } else {
6018      Candidate.Conversions[ArgIdx]
6019        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6020                                ArgIdx == 0 && IsAssignmentOperator,
6021                                /*InOverloadResolution=*/false,
6022                                /*AllowObjCWritebackConversion=*/
6023                                  getLangOpts().ObjCAutoRefCount);
6024    }
6025    if (Candidate.Conversions[ArgIdx].isBad()) {
6026      Candidate.Viable = false;
6027      Candidate.FailureKind = ovl_fail_bad_conversion;
6028      break;
6029    }
6030  }
6031}
6032
6033/// BuiltinCandidateTypeSet - A set of types that will be used for the
6034/// candidate operator functions for built-in operators (C++
6035/// [over.built]). The types are separated into pointer types and
6036/// enumeration types.
6037class BuiltinCandidateTypeSet  {
6038  /// TypeSet - A set of types.
6039  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6040
6041  /// PointerTypes - The set of pointer types that will be used in the
6042  /// built-in candidates.
6043  TypeSet PointerTypes;
6044
6045  /// MemberPointerTypes - The set of member pointer types that will be
6046  /// used in the built-in candidates.
6047  TypeSet MemberPointerTypes;
6048
6049  /// EnumerationTypes - The set of enumeration types that will be
6050  /// used in the built-in candidates.
6051  TypeSet EnumerationTypes;
6052
6053  /// \brief The set of vector types that will be used in the built-in
6054  /// candidates.
6055  TypeSet VectorTypes;
6056
6057  /// \brief A flag indicating non-record types are viable candidates
6058  bool HasNonRecordTypes;
6059
6060  /// \brief A flag indicating whether either arithmetic or enumeration types
6061  /// were present in the candidate set.
6062  bool HasArithmeticOrEnumeralTypes;
6063
6064  /// \brief A flag indicating whether the nullptr type was present in the
6065  /// candidate set.
6066  bool HasNullPtrType;
6067
6068  /// Sema - The semantic analysis instance where we are building the
6069  /// candidate type set.
6070  Sema &SemaRef;
6071
6072  /// Context - The AST context in which we will build the type sets.
6073  ASTContext &Context;
6074
6075  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6076                                               const Qualifiers &VisibleQuals);
6077  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6078
6079public:
6080  /// iterator - Iterates through the types that are part of the set.
6081  typedef TypeSet::iterator iterator;
6082
6083  BuiltinCandidateTypeSet(Sema &SemaRef)
6084    : HasNonRecordTypes(false),
6085      HasArithmeticOrEnumeralTypes(false),
6086      HasNullPtrType(false),
6087      SemaRef(SemaRef),
6088      Context(SemaRef.Context) { }
6089
6090  void AddTypesConvertedFrom(QualType Ty,
6091                             SourceLocation Loc,
6092                             bool AllowUserConversions,
6093                             bool AllowExplicitConversions,
6094                             const Qualifiers &VisibleTypeConversionsQuals);
6095
6096  /// pointer_begin - First pointer type found;
6097  iterator pointer_begin() { return PointerTypes.begin(); }
6098
6099  /// pointer_end - Past the last pointer type found;
6100  iterator pointer_end() { return PointerTypes.end(); }
6101
6102  /// member_pointer_begin - First member pointer type found;
6103  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6104
6105  /// member_pointer_end - Past the last member pointer type found;
6106  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6107
6108  /// enumeration_begin - First enumeration type found;
6109  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6110
6111  /// enumeration_end - Past the last enumeration type found;
6112  iterator enumeration_end() { return EnumerationTypes.end(); }
6113
6114  iterator vector_begin() { return VectorTypes.begin(); }
6115  iterator vector_end() { return VectorTypes.end(); }
6116
6117  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6118  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6119  bool hasNullPtrType() const { return HasNullPtrType; }
6120};
6121
6122/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6123/// the set of pointer types along with any more-qualified variants of
6124/// that type. For example, if @p Ty is "int const *", this routine
6125/// will add "int const *", "int const volatile *", "int const
6126/// restrict *", and "int const volatile restrict *" to the set of
6127/// pointer types. Returns true if the add of @p Ty itself succeeded,
6128/// false otherwise.
6129///
6130/// FIXME: what to do about extended qualifiers?
6131bool
6132BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6133                                             const Qualifiers &VisibleQuals) {
6134
6135  // Insert this type.
6136  if (!PointerTypes.insert(Ty))
6137    return false;
6138
6139  QualType PointeeTy;
6140  const PointerType *PointerTy = Ty->getAs<PointerType>();
6141  bool buildObjCPtr = false;
6142  if (!PointerTy) {
6143    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6144    PointeeTy = PTy->getPointeeType();
6145    buildObjCPtr = true;
6146  } else {
6147    PointeeTy = PointerTy->getPointeeType();
6148  }
6149
6150  // Don't add qualified variants of arrays. For one, they're not allowed
6151  // (the qualifier would sink to the element type), and for another, the
6152  // only overload situation where it matters is subscript or pointer +- int,
6153  // and those shouldn't have qualifier variants anyway.
6154  if (PointeeTy->isArrayType())
6155    return true;
6156
6157  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6158  bool hasVolatile = VisibleQuals.hasVolatile();
6159  bool hasRestrict = VisibleQuals.hasRestrict();
6160
6161  // Iterate through all strict supersets of BaseCVR.
6162  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6163    if ((CVR | BaseCVR) != CVR) continue;
6164    // Skip over volatile if no volatile found anywhere in the types.
6165    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6166
6167    // Skip over restrict if no restrict found anywhere in the types, or if
6168    // the type cannot be restrict-qualified.
6169    if ((CVR & Qualifiers::Restrict) &&
6170        (!hasRestrict ||
6171         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6172      continue;
6173
6174    // Build qualified pointee type.
6175    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6176
6177    // Build qualified pointer type.
6178    QualType QPointerTy;
6179    if (!buildObjCPtr)
6180      QPointerTy = Context.getPointerType(QPointeeTy);
6181    else
6182      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6183
6184    // Insert qualified pointer type.
6185    PointerTypes.insert(QPointerTy);
6186  }
6187
6188  return true;
6189}
6190
6191/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6192/// to the set of pointer types along with any more-qualified variants of
6193/// that type. For example, if @p Ty is "int const *", this routine
6194/// will add "int const *", "int const volatile *", "int const
6195/// restrict *", and "int const volatile restrict *" to the set of
6196/// pointer types. Returns true if the add of @p Ty itself succeeded,
6197/// false otherwise.
6198///
6199/// FIXME: what to do about extended qualifiers?
6200bool
6201BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6202    QualType Ty) {
6203  // Insert this type.
6204  if (!MemberPointerTypes.insert(Ty))
6205    return false;
6206
6207  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6208  assert(PointerTy && "type was not a member pointer type!");
6209
6210  QualType PointeeTy = PointerTy->getPointeeType();
6211  // Don't add qualified variants of arrays. For one, they're not allowed
6212  // (the qualifier would sink to the element type), and for another, the
6213  // only overload situation where it matters is subscript or pointer +- int,
6214  // and those shouldn't have qualifier variants anyway.
6215  if (PointeeTy->isArrayType())
6216    return true;
6217  const Type *ClassTy = PointerTy->getClass();
6218
6219  // Iterate through all strict supersets of the pointee type's CVR
6220  // qualifiers.
6221  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6222  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6223    if ((CVR | BaseCVR) != CVR) continue;
6224
6225    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6226    MemberPointerTypes.insert(
6227      Context.getMemberPointerType(QPointeeTy, ClassTy));
6228  }
6229
6230  return true;
6231}
6232
6233/// AddTypesConvertedFrom - Add each of the types to which the type @p
6234/// Ty can be implicit converted to the given set of @p Types. We're
6235/// primarily interested in pointer types and enumeration types. We also
6236/// take member pointer types, for the conditional operator.
6237/// AllowUserConversions is true if we should look at the conversion
6238/// functions of a class type, and AllowExplicitConversions if we
6239/// should also include the explicit conversion functions of a class
6240/// type.
6241void
6242BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6243                                               SourceLocation Loc,
6244                                               bool AllowUserConversions,
6245                                               bool AllowExplicitConversions,
6246                                               const Qualifiers &VisibleQuals) {
6247  // Only deal with canonical types.
6248  Ty = Context.getCanonicalType(Ty);
6249
6250  // Look through reference types; they aren't part of the type of an
6251  // expression for the purposes of conversions.
6252  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6253    Ty = RefTy->getPointeeType();
6254
6255  // If we're dealing with an array type, decay to the pointer.
6256  if (Ty->isArrayType())
6257    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6258
6259  // Otherwise, we don't care about qualifiers on the type.
6260  Ty = Ty.getLocalUnqualifiedType();
6261
6262  // Flag if we ever add a non-record type.
6263  const RecordType *TyRec = Ty->getAs<RecordType>();
6264  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6265
6266  // Flag if we encounter an arithmetic type.
6267  HasArithmeticOrEnumeralTypes =
6268    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6269
6270  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6271    PointerTypes.insert(Ty);
6272  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6273    // Insert our type, and its more-qualified variants, into the set
6274    // of types.
6275    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6276      return;
6277  } else if (Ty->isMemberPointerType()) {
6278    // Member pointers are far easier, since the pointee can't be converted.
6279    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6280      return;
6281  } else if (Ty->isEnumeralType()) {
6282    HasArithmeticOrEnumeralTypes = true;
6283    EnumerationTypes.insert(Ty);
6284  } else if (Ty->isVectorType()) {
6285    // We treat vector types as arithmetic types in many contexts as an
6286    // extension.
6287    HasArithmeticOrEnumeralTypes = true;
6288    VectorTypes.insert(Ty);
6289  } else if (Ty->isNullPtrType()) {
6290    HasNullPtrType = true;
6291  } else if (AllowUserConversions && TyRec) {
6292    // No conversion functions in incomplete types.
6293    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6294      return;
6295
6296    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6297    const UnresolvedSetImpl *Conversions
6298      = ClassDecl->getVisibleConversionFunctions();
6299    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6300           E = Conversions->end(); I != E; ++I) {
6301      NamedDecl *D = I.getDecl();
6302      if (isa<UsingShadowDecl>(D))
6303        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6304
6305      // Skip conversion function templates; they don't tell us anything
6306      // about which builtin types we can convert to.
6307      if (isa<FunctionTemplateDecl>(D))
6308        continue;
6309
6310      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6311      if (AllowExplicitConversions || !Conv->isExplicit()) {
6312        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6313                              VisibleQuals);
6314      }
6315    }
6316  }
6317}
6318
6319/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6320/// the volatile- and non-volatile-qualified assignment operators for the
6321/// given type to the candidate set.
6322static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6323                                                   QualType T,
6324                                                   Expr **Args,
6325                                                   unsigned NumArgs,
6326                                    OverloadCandidateSet &CandidateSet) {
6327  QualType ParamTypes[2];
6328
6329  // T& operator=(T&, T)
6330  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6331  ParamTypes[1] = T;
6332  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6333                        /*IsAssignmentOperator=*/true);
6334
6335  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6336    // volatile T& operator=(volatile T&, T)
6337    ParamTypes[0]
6338      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6339    ParamTypes[1] = T;
6340    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6341                          /*IsAssignmentOperator=*/true);
6342  }
6343}
6344
6345/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6346/// if any, found in visible type conversion functions found in ArgExpr's type.
6347static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6348    Qualifiers VRQuals;
6349    const RecordType *TyRec;
6350    if (const MemberPointerType *RHSMPType =
6351        ArgExpr->getType()->getAs<MemberPointerType>())
6352      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6353    else
6354      TyRec = ArgExpr->getType()->getAs<RecordType>();
6355    if (!TyRec) {
6356      // Just to be safe, assume the worst case.
6357      VRQuals.addVolatile();
6358      VRQuals.addRestrict();
6359      return VRQuals;
6360    }
6361
6362    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6363    if (!ClassDecl->hasDefinition())
6364      return VRQuals;
6365
6366    const UnresolvedSetImpl *Conversions =
6367      ClassDecl->getVisibleConversionFunctions();
6368
6369    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6370           E = Conversions->end(); I != E; ++I) {
6371      NamedDecl *D = I.getDecl();
6372      if (isa<UsingShadowDecl>(D))
6373        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6374      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6375        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6376        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6377          CanTy = ResTypeRef->getPointeeType();
6378        // Need to go down the pointer/mempointer chain and add qualifiers
6379        // as see them.
6380        bool done = false;
6381        while (!done) {
6382          if (CanTy.isRestrictQualified())
6383            VRQuals.addRestrict();
6384          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6385            CanTy = ResTypePtr->getPointeeType();
6386          else if (const MemberPointerType *ResTypeMPtr =
6387                CanTy->getAs<MemberPointerType>())
6388            CanTy = ResTypeMPtr->getPointeeType();
6389          else
6390            done = true;
6391          if (CanTy.isVolatileQualified())
6392            VRQuals.addVolatile();
6393          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6394            return VRQuals;
6395        }
6396      }
6397    }
6398    return VRQuals;
6399}
6400
6401namespace {
6402
6403/// \brief Helper class to manage the addition of builtin operator overload
6404/// candidates. It provides shared state and utility methods used throughout
6405/// the process, as well as a helper method to add each group of builtin
6406/// operator overloads from the standard to a candidate set.
6407class BuiltinOperatorOverloadBuilder {
6408  // Common instance state available to all overload candidate addition methods.
6409  Sema &S;
6410  Expr **Args;
6411  unsigned NumArgs;
6412  Qualifiers VisibleTypeConversionsQuals;
6413  bool HasArithmeticOrEnumeralCandidateType;
6414  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6415  OverloadCandidateSet &CandidateSet;
6416
6417  // Define some constants used to index and iterate over the arithemetic types
6418  // provided via the getArithmeticType() method below.
6419  // The "promoted arithmetic types" are the arithmetic
6420  // types are that preserved by promotion (C++ [over.built]p2).
6421  static const unsigned FirstIntegralType = 3;
6422  static const unsigned LastIntegralType = 20;
6423  static const unsigned FirstPromotedIntegralType = 3,
6424                        LastPromotedIntegralType = 11;
6425  static const unsigned FirstPromotedArithmeticType = 0,
6426                        LastPromotedArithmeticType = 11;
6427  static const unsigned NumArithmeticTypes = 20;
6428
6429  /// \brief Get the canonical type for a given arithmetic type index.
6430  CanQualType getArithmeticType(unsigned index) {
6431    assert(index < NumArithmeticTypes);
6432    static CanQualType ASTContext::* const
6433      ArithmeticTypes[NumArithmeticTypes] = {
6434      // Start of promoted types.
6435      &ASTContext::FloatTy,
6436      &ASTContext::DoubleTy,
6437      &ASTContext::LongDoubleTy,
6438
6439      // Start of integral types.
6440      &ASTContext::IntTy,
6441      &ASTContext::LongTy,
6442      &ASTContext::LongLongTy,
6443      &ASTContext::Int128Ty,
6444      &ASTContext::UnsignedIntTy,
6445      &ASTContext::UnsignedLongTy,
6446      &ASTContext::UnsignedLongLongTy,
6447      &ASTContext::UnsignedInt128Ty,
6448      // End of promoted types.
6449
6450      &ASTContext::BoolTy,
6451      &ASTContext::CharTy,
6452      &ASTContext::WCharTy,
6453      &ASTContext::Char16Ty,
6454      &ASTContext::Char32Ty,
6455      &ASTContext::SignedCharTy,
6456      &ASTContext::ShortTy,
6457      &ASTContext::UnsignedCharTy,
6458      &ASTContext::UnsignedShortTy,
6459      // End of integral types.
6460      // FIXME: What about complex? What about half?
6461    };
6462    return S.Context.*ArithmeticTypes[index];
6463  }
6464
6465  /// \brief Gets the canonical type resulting from the usual arithemetic
6466  /// converions for the given arithmetic types.
6467  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6468    // Accelerator table for performing the usual arithmetic conversions.
6469    // The rules are basically:
6470    //   - if either is floating-point, use the wider floating-point
6471    //   - if same signedness, use the higher rank
6472    //   - if same size, use unsigned of the higher rank
6473    //   - use the larger type
6474    // These rules, together with the axiom that higher ranks are
6475    // never smaller, are sufficient to precompute all of these results
6476    // *except* when dealing with signed types of higher rank.
6477    // (we could precompute SLL x UI for all known platforms, but it's
6478    // better not to make any assumptions).
6479    // We assume that int128 has a higher rank than long long on all platforms.
6480    enum PromotedType {
6481            Dep=-1,
6482            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6483    };
6484    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6485                                        [LastPromotedArithmeticType] = {
6486/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6487/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6488/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6489/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6490/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6491/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6492/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6493/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6494/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6495/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6496/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6497    };
6498
6499    assert(L < LastPromotedArithmeticType);
6500    assert(R < LastPromotedArithmeticType);
6501    int Idx = ConversionsTable[L][R];
6502
6503    // Fast path: the table gives us a concrete answer.
6504    if (Idx != Dep) return getArithmeticType(Idx);
6505
6506    // Slow path: we need to compare widths.
6507    // An invariant is that the signed type has higher rank.
6508    CanQualType LT = getArithmeticType(L),
6509                RT = getArithmeticType(R);
6510    unsigned LW = S.Context.getIntWidth(LT),
6511             RW = S.Context.getIntWidth(RT);
6512
6513    // If they're different widths, use the signed type.
6514    if (LW > RW) return LT;
6515    else if (LW < RW) return RT;
6516
6517    // Otherwise, use the unsigned type of the signed type's rank.
6518    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6519    assert(L == SLL || R == SLL);
6520    return S.Context.UnsignedLongLongTy;
6521  }
6522
6523  /// \brief Helper method to factor out the common pattern of adding overloads
6524  /// for '++' and '--' builtin operators.
6525  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6526                                           bool HasVolatile,
6527                                           bool HasRestrict) {
6528    QualType ParamTypes[2] = {
6529      S.Context.getLValueReferenceType(CandidateTy),
6530      S.Context.IntTy
6531    };
6532
6533    // Non-volatile version.
6534    if (NumArgs == 1)
6535      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6536    else
6537      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6538
6539    // Use a heuristic to reduce number of builtin candidates in the set:
6540    // add volatile version only if there are conversions to a volatile type.
6541    if (HasVolatile) {
6542      ParamTypes[0] =
6543        S.Context.getLValueReferenceType(
6544          S.Context.getVolatileType(CandidateTy));
6545      if (NumArgs == 1)
6546        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6547      else
6548        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6549    }
6550
6551    // Add restrict version only if there are conversions to a restrict type
6552    // and our candidate type is a non-restrict-qualified pointer.
6553    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6554        !CandidateTy.isRestrictQualified()) {
6555      ParamTypes[0]
6556        = S.Context.getLValueReferenceType(
6557            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6558      if (NumArgs == 1)
6559        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6560      else
6561        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6562
6563      if (HasVolatile) {
6564        ParamTypes[0]
6565          = S.Context.getLValueReferenceType(
6566              S.Context.getCVRQualifiedType(CandidateTy,
6567                                            (Qualifiers::Volatile |
6568                                             Qualifiers::Restrict)));
6569        if (NumArgs == 1)
6570          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1,
6571                                CandidateSet);
6572        else
6573          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6574      }
6575    }
6576
6577  }
6578
6579public:
6580  BuiltinOperatorOverloadBuilder(
6581    Sema &S, Expr **Args, unsigned NumArgs,
6582    Qualifiers VisibleTypeConversionsQuals,
6583    bool HasArithmeticOrEnumeralCandidateType,
6584    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6585    OverloadCandidateSet &CandidateSet)
6586    : S(S), Args(Args), NumArgs(NumArgs),
6587      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6588      HasArithmeticOrEnumeralCandidateType(
6589        HasArithmeticOrEnumeralCandidateType),
6590      CandidateTypes(CandidateTypes),
6591      CandidateSet(CandidateSet) {
6592    // Validate some of our static helper constants in debug builds.
6593    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6594           "Invalid first promoted integral type");
6595    assert(getArithmeticType(LastPromotedIntegralType - 1)
6596             == S.Context.UnsignedInt128Ty &&
6597           "Invalid last promoted integral type");
6598    assert(getArithmeticType(FirstPromotedArithmeticType)
6599             == S.Context.FloatTy &&
6600           "Invalid first promoted arithmetic type");
6601    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6602             == S.Context.UnsignedInt128Ty &&
6603           "Invalid last promoted arithmetic type");
6604  }
6605
6606  // C++ [over.built]p3:
6607  //
6608  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6609  //   is either volatile or empty, there exist candidate operator
6610  //   functions of the form
6611  //
6612  //       VQ T&      operator++(VQ T&);
6613  //       T          operator++(VQ T&, int);
6614  //
6615  // C++ [over.built]p4:
6616  //
6617  //   For every pair (T, VQ), where T is an arithmetic type other
6618  //   than bool, and VQ is either volatile or empty, there exist
6619  //   candidate operator functions of the form
6620  //
6621  //       VQ T&      operator--(VQ T&);
6622  //       T          operator--(VQ T&, int);
6623  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6624    if (!HasArithmeticOrEnumeralCandidateType)
6625      return;
6626
6627    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6628         Arith < NumArithmeticTypes; ++Arith) {
6629      addPlusPlusMinusMinusStyleOverloads(
6630        getArithmeticType(Arith),
6631        VisibleTypeConversionsQuals.hasVolatile(),
6632        VisibleTypeConversionsQuals.hasRestrict());
6633    }
6634  }
6635
6636  // C++ [over.built]p5:
6637  //
6638  //   For every pair (T, VQ), where T is a cv-qualified or
6639  //   cv-unqualified object type, and VQ is either volatile or
6640  //   empty, there exist candidate operator functions of the form
6641  //
6642  //       T*VQ&      operator++(T*VQ&);
6643  //       T*VQ&      operator--(T*VQ&);
6644  //       T*         operator++(T*VQ&, int);
6645  //       T*         operator--(T*VQ&, int);
6646  void addPlusPlusMinusMinusPointerOverloads() {
6647    for (BuiltinCandidateTypeSet::iterator
6648              Ptr = CandidateTypes[0].pointer_begin(),
6649           PtrEnd = CandidateTypes[0].pointer_end();
6650         Ptr != PtrEnd; ++Ptr) {
6651      // Skip pointer types that aren't pointers to object types.
6652      if (!(*Ptr)->getPointeeType()->isObjectType())
6653        continue;
6654
6655      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6656        (!(*Ptr).isVolatileQualified() &&
6657         VisibleTypeConversionsQuals.hasVolatile()),
6658        (!(*Ptr).isRestrictQualified() &&
6659         VisibleTypeConversionsQuals.hasRestrict()));
6660    }
6661  }
6662
6663  // C++ [over.built]p6:
6664  //   For every cv-qualified or cv-unqualified object type T, there
6665  //   exist candidate operator functions of the form
6666  //
6667  //       T&         operator*(T*);
6668  //
6669  // C++ [over.built]p7:
6670  //   For every function type T that does not have cv-qualifiers or a
6671  //   ref-qualifier, there exist candidate operator functions of the form
6672  //       T&         operator*(T*);
6673  void addUnaryStarPointerOverloads() {
6674    for (BuiltinCandidateTypeSet::iterator
6675              Ptr = CandidateTypes[0].pointer_begin(),
6676           PtrEnd = CandidateTypes[0].pointer_end();
6677         Ptr != PtrEnd; ++Ptr) {
6678      QualType ParamTy = *Ptr;
6679      QualType PointeeTy = ParamTy->getPointeeType();
6680      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6681        continue;
6682
6683      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6684        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6685          continue;
6686
6687      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6688                            &ParamTy, Args, 1, CandidateSet);
6689    }
6690  }
6691
6692  // C++ [over.built]p9:
6693  //  For every promoted arithmetic type T, there exist candidate
6694  //  operator functions of the form
6695  //
6696  //       T         operator+(T);
6697  //       T         operator-(T);
6698  void addUnaryPlusOrMinusArithmeticOverloads() {
6699    if (!HasArithmeticOrEnumeralCandidateType)
6700      return;
6701
6702    for (unsigned Arith = FirstPromotedArithmeticType;
6703         Arith < LastPromotedArithmeticType; ++Arith) {
6704      QualType ArithTy = getArithmeticType(Arith);
6705      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6706    }
6707
6708    // Extension: We also add these operators for vector types.
6709    for (BuiltinCandidateTypeSet::iterator
6710              Vec = CandidateTypes[0].vector_begin(),
6711           VecEnd = CandidateTypes[0].vector_end();
6712         Vec != VecEnd; ++Vec) {
6713      QualType VecTy = *Vec;
6714      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6715    }
6716  }
6717
6718  // C++ [over.built]p8:
6719  //   For every type T, there exist candidate operator functions of
6720  //   the form
6721  //
6722  //       T*         operator+(T*);
6723  void addUnaryPlusPointerOverloads() {
6724    for (BuiltinCandidateTypeSet::iterator
6725              Ptr = CandidateTypes[0].pointer_begin(),
6726           PtrEnd = CandidateTypes[0].pointer_end();
6727         Ptr != PtrEnd; ++Ptr) {
6728      QualType ParamTy = *Ptr;
6729      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6730    }
6731  }
6732
6733  // C++ [over.built]p10:
6734  //   For every promoted integral type T, there exist candidate
6735  //   operator functions of the form
6736  //
6737  //        T         operator~(T);
6738  void addUnaryTildePromotedIntegralOverloads() {
6739    if (!HasArithmeticOrEnumeralCandidateType)
6740      return;
6741
6742    for (unsigned Int = FirstPromotedIntegralType;
6743         Int < LastPromotedIntegralType; ++Int) {
6744      QualType IntTy = getArithmeticType(Int);
6745      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6746    }
6747
6748    // Extension: We also add this operator for vector types.
6749    for (BuiltinCandidateTypeSet::iterator
6750              Vec = CandidateTypes[0].vector_begin(),
6751           VecEnd = CandidateTypes[0].vector_end();
6752         Vec != VecEnd; ++Vec) {
6753      QualType VecTy = *Vec;
6754      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6755    }
6756  }
6757
6758  // C++ [over.match.oper]p16:
6759  //   For every pointer to member type T, there exist candidate operator
6760  //   functions of the form
6761  //
6762  //        bool operator==(T,T);
6763  //        bool operator!=(T,T);
6764  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6765    /// Set of (canonical) types that we've already handled.
6766    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6767
6768    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6769      for (BuiltinCandidateTypeSet::iterator
6770                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6771             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6772           MemPtr != MemPtrEnd;
6773           ++MemPtr) {
6774        // Don't add the same builtin candidate twice.
6775        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6776          continue;
6777
6778        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6779        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6780                              CandidateSet);
6781      }
6782    }
6783  }
6784
6785  // C++ [over.built]p15:
6786  //
6787  //   For every T, where T is an enumeration type, a pointer type, or
6788  //   std::nullptr_t, there exist candidate operator functions of the form
6789  //
6790  //        bool       operator<(T, T);
6791  //        bool       operator>(T, T);
6792  //        bool       operator<=(T, T);
6793  //        bool       operator>=(T, T);
6794  //        bool       operator==(T, T);
6795  //        bool       operator!=(T, T);
6796  void addRelationalPointerOrEnumeralOverloads() {
6797    // C++ [over.match.oper]p3:
6798    //   [...]the built-in candidates include all of the candidate operator
6799    //   functions defined in 13.6 that, compared to the given operator, [...]
6800    //   do not have the same parameter-type-list as any non-template non-member
6801    //   candidate.
6802    //
6803    // Note that in practice, this only affects enumeration types because there
6804    // aren't any built-in candidates of record type, and a user-defined operator
6805    // must have an operand of record or enumeration type. Also, the only other
6806    // overloaded operator with enumeration arguments, operator=,
6807    // cannot be overloaded for enumeration types, so this is the only place
6808    // where we must suppress candidates like this.
6809    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6810      UserDefinedBinaryOperators;
6811
6812    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6813      if (CandidateTypes[ArgIdx].enumeration_begin() !=
6814          CandidateTypes[ArgIdx].enumeration_end()) {
6815        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6816                                         CEnd = CandidateSet.end();
6817             C != CEnd; ++C) {
6818          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6819            continue;
6820
6821          if (C->Function->isFunctionTemplateSpecialization())
6822            continue;
6823
6824          QualType FirstParamType =
6825            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6826          QualType SecondParamType =
6827            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6828
6829          // Skip if either parameter isn't of enumeral type.
6830          if (!FirstParamType->isEnumeralType() ||
6831              !SecondParamType->isEnumeralType())
6832            continue;
6833
6834          // Add this operator to the set of known user-defined operators.
6835          UserDefinedBinaryOperators.insert(
6836            std::make_pair(S.Context.getCanonicalType(FirstParamType),
6837                           S.Context.getCanonicalType(SecondParamType)));
6838        }
6839      }
6840    }
6841
6842    /// Set of (canonical) types that we've already handled.
6843    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6844
6845    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6846      for (BuiltinCandidateTypeSet::iterator
6847                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6848             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6849           Ptr != PtrEnd; ++Ptr) {
6850        // Don't add the same builtin candidate twice.
6851        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6852          continue;
6853
6854        QualType ParamTypes[2] = { *Ptr, *Ptr };
6855        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6856                              CandidateSet);
6857      }
6858      for (BuiltinCandidateTypeSet::iterator
6859                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6860             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6861           Enum != EnumEnd; ++Enum) {
6862        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6863
6864        // Don't add the same builtin candidate twice, or if a user defined
6865        // candidate exists.
6866        if (!AddedTypes.insert(CanonType) ||
6867            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6868                                                            CanonType)))
6869          continue;
6870
6871        QualType ParamTypes[2] = { *Enum, *Enum };
6872        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6873                              CandidateSet);
6874      }
6875
6876      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6877        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6878        if (AddedTypes.insert(NullPtrTy) &&
6879            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6880                                                             NullPtrTy))) {
6881          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6882          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6883                                CandidateSet);
6884        }
6885      }
6886    }
6887  }
6888
6889  // C++ [over.built]p13:
6890  //
6891  //   For every cv-qualified or cv-unqualified object type T
6892  //   there exist candidate operator functions of the form
6893  //
6894  //      T*         operator+(T*, ptrdiff_t);
6895  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
6896  //      T*         operator-(T*, ptrdiff_t);
6897  //      T*         operator+(ptrdiff_t, T*);
6898  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
6899  //
6900  // C++ [over.built]p14:
6901  //
6902  //   For every T, where T is a pointer to object type, there
6903  //   exist candidate operator functions of the form
6904  //
6905  //      ptrdiff_t  operator-(T, T);
6906  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6907    /// Set of (canonical) types that we've already handled.
6908    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6909
6910    for (int Arg = 0; Arg < 2; ++Arg) {
6911      QualType AsymetricParamTypes[2] = {
6912        S.Context.getPointerDiffType(),
6913        S.Context.getPointerDiffType(),
6914      };
6915      for (BuiltinCandidateTypeSet::iterator
6916                Ptr = CandidateTypes[Arg].pointer_begin(),
6917             PtrEnd = CandidateTypes[Arg].pointer_end();
6918           Ptr != PtrEnd; ++Ptr) {
6919        QualType PointeeTy = (*Ptr)->getPointeeType();
6920        if (!PointeeTy->isObjectType())
6921          continue;
6922
6923        AsymetricParamTypes[Arg] = *Ptr;
6924        if (Arg == 0 || Op == OO_Plus) {
6925          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6926          // T* operator+(ptrdiff_t, T*);
6927          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6928                                CandidateSet);
6929        }
6930        if (Op == OO_Minus) {
6931          // ptrdiff_t operator-(T, T);
6932          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6933            continue;
6934
6935          QualType ParamTypes[2] = { *Ptr, *Ptr };
6936          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6937                                Args, 2, CandidateSet);
6938        }
6939      }
6940    }
6941  }
6942
6943  // C++ [over.built]p12:
6944  //
6945  //   For every pair of promoted arithmetic types L and R, there
6946  //   exist candidate operator functions of the form
6947  //
6948  //        LR         operator*(L, R);
6949  //        LR         operator/(L, R);
6950  //        LR         operator+(L, R);
6951  //        LR         operator-(L, R);
6952  //        bool       operator<(L, R);
6953  //        bool       operator>(L, R);
6954  //        bool       operator<=(L, R);
6955  //        bool       operator>=(L, R);
6956  //        bool       operator==(L, R);
6957  //        bool       operator!=(L, R);
6958  //
6959  //   where LR is the result of the usual arithmetic conversions
6960  //   between types L and R.
6961  //
6962  // C++ [over.built]p24:
6963  //
6964  //   For every pair of promoted arithmetic types L and R, there exist
6965  //   candidate operator functions of the form
6966  //
6967  //        LR       operator?(bool, L, R);
6968  //
6969  //   where LR is the result of the usual arithmetic conversions
6970  //   between types L and R.
6971  // Our candidates ignore the first parameter.
6972  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6973    if (!HasArithmeticOrEnumeralCandidateType)
6974      return;
6975
6976    for (unsigned Left = FirstPromotedArithmeticType;
6977         Left < LastPromotedArithmeticType; ++Left) {
6978      for (unsigned Right = FirstPromotedArithmeticType;
6979           Right < LastPromotedArithmeticType; ++Right) {
6980        QualType LandR[2] = { getArithmeticType(Left),
6981                              getArithmeticType(Right) };
6982        QualType Result =
6983          isComparison ? S.Context.BoolTy
6984                       : getUsualArithmeticConversions(Left, Right);
6985        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6986      }
6987    }
6988
6989    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6990    // conditional operator for vector types.
6991    for (BuiltinCandidateTypeSet::iterator
6992              Vec1 = CandidateTypes[0].vector_begin(),
6993           Vec1End = CandidateTypes[0].vector_end();
6994         Vec1 != Vec1End; ++Vec1) {
6995      for (BuiltinCandidateTypeSet::iterator
6996                Vec2 = CandidateTypes[1].vector_begin(),
6997             Vec2End = CandidateTypes[1].vector_end();
6998           Vec2 != Vec2End; ++Vec2) {
6999        QualType LandR[2] = { *Vec1, *Vec2 };
7000        QualType Result = S.Context.BoolTy;
7001        if (!isComparison) {
7002          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7003            Result = *Vec1;
7004          else
7005            Result = *Vec2;
7006        }
7007
7008        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
7009      }
7010    }
7011  }
7012
7013  // C++ [over.built]p17:
7014  //
7015  //   For every pair of promoted integral types L and R, there
7016  //   exist candidate operator functions of the form
7017  //
7018  //      LR         operator%(L, R);
7019  //      LR         operator&(L, R);
7020  //      LR         operator^(L, R);
7021  //      LR         operator|(L, R);
7022  //      L          operator<<(L, R);
7023  //      L          operator>>(L, R);
7024  //
7025  //   where LR is the result of the usual arithmetic conversions
7026  //   between types L and R.
7027  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7028    if (!HasArithmeticOrEnumeralCandidateType)
7029      return;
7030
7031    for (unsigned Left = FirstPromotedIntegralType;
7032         Left < LastPromotedIntegralType; ++Left) {
7033      for (unsigned Right = FirstPromotedIntegralType;
7034           Right < LastPromotedIntegralType; ++Right) {
7035        QualType LandR[2] = { getArithmeticType(Left),
7036                              getArithmeticType(Right) };
7037        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7038            ? LandR[0]
7039            : getUsualArithmeticConversions(Left, Right);
7040        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
7041      }
7042    }
7043  }
7044
7045  // C++ [over.built]p20:
7046  //
7047  //   For every pair (T, VQ), where T is an enumeration or
7048  //   pointer to member type and VQ is either volatile or
7049  //   empty, there exist candidate operator functions of the form
7050  //
7051  //        VQ T&      operator=(VQ T&, T);
7052  void addAssignmentMemberPointerOrEnumeralOverloads() {
7053    /// Set of (canonical) types that we've already handled.
7054    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7055
7056    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7057      for (BuiltinCandidateTypeSet::iterator
7058                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7059             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7060           Enum != EnumEnd; ++Enum) {
7061        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7062          continue;
7063
7064        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
7065                                               CandidateSet);
7066      }
7067
7068      for (BuiltinCandidateTypeSet::iterator
7069                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7070             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7071           MemPtr != MemPtrEnd; ++MemPtr) {
7072        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7073          continue;
7074
7075        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
7076                                               CandidateSet);
7077      }
7078    }
7079  }
7080
7081  // C++ [over.built]p19:
7082  //
7083  //   For every pair (T, VQ), where T is any type and VQ is either
7084  //   volatile or empty, there exist candidate operator functions
7085  //   of the form
7086  //
7087  //        T*VQ&      operator=(T*VQ&, T*);
7088  //
7089  // C++ [over.built]p21:
7090  //
7091  //   For every pair (T, VQ), where T is a cv-qualified or
7092  //   cv-unqualified object type and VQ is either volatile or
7093  //   empty, there exist candidate operator functions of the form
7094  //
7095  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7096  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7097  void addAssignmentPointerOverloads(bool isEqualOp) {
7098    /// Set of (canonical) types that we've already handled.
7099    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7100
7101    for (BuiltinCandidateTypeSet::iterator
7102              Ptr = CandidateTypes[0].pointer_begin(),
7103           PtrEnd = CandidateTypes[0].pointer_end();
7104         Ptr != PtrEnd; ++Ptr) {
7105      // If this is operator=, keep track of the builtin candidates we added.
7106      if (isEqualOp)
7107        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7108      else if (!(*Ptr)->getPointeeType()->isObjectType())
7109        continue;
7110
7111      // non-volatile version
7112      QualType ParamTypes[2] = {
7113        S.Context.getLValueReferenceType(*Ptr),
7114        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7115      };
7116      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7117                            /*IsAssigmentOperator=*/ isEqualOp);
7118
7119      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7120                          VisibleTypeConversionsQuals.hasVolatile();
7121      if (NeedVolatile) {
7122        // volatile version
7123        ParamTypes[0] =
7124          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7125        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7126                              /*IsAssigmentOperator=*/isEqualOp);
7127      }
7128
7129      if (!(*Ptr).isRestrictQualified() &&
7130          VisibleTypeConversionsQuals.hasRestrict()) {
7131        // restrict version
7132        ParamTypes[0]
7133          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7134        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7135                              /*IsAssigmentOperator=*/isEqualOp);
7136
7137        if (NeedVolatile) {
7138          // volatile restrict version
7139          ParamTypes[0]
7140            = S.Context.getLValueReferenceType(
7141                S.Context.getCVRQualifiedType(*Ptr,
7142                                              (Qualifiers::Volatile |
7143                                               Qualifiers::Restrict)));
7144          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7145                                CandidateSet,
7146                                /*IsAssigmentOperator=*/isEqualOp);
7147        }
7148      }
7149    }
7150
7151    if (isEqualOp) {
7152      for (BuiltinCandidateTypeSet::iterator
7153                Ptr = CandidateTypes[1].pointer_begin(),
7154             PtrEnd = CandidateTypes[1].pointer_end();
7155           Ptr != PtrEnd; ++Ptr) {
7156        // Make sure we don't add the same candidate twice.
7157        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7158          continue;
7159
7160        QualType ParamTypes[2] = {
7161          S.Context.getLValueReferenceType(*Ptr),
7162          *Ptr,
7163        };
7164
7165        // non-volatile version
7166        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7167                              /*IsAssigmentOperator=*/true);
7168
7169        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7170                           VisibleTypeConversionsQuals.hasVolatile();
7171        if (NeedVolatile) {
7172          // volatile version
7173          ParamTypes[0] =
7174            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7175          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7176                                CandidateSet, /*IsAssigmentOperator=*/true);
7177        }
7178
7179        if (!(*Ptr).isRestrictQualified() &&
7180            VisibleTypeConversionsQuals.hasRestrict()) {
7181          // restrict version
7182          ParamTypes[0]
7183            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7184          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7185                                CandidateSet, /*IsAssigmentOperator=*/true);
7186
7187          if (NeedVolatile) {
7188            // volatile restrict version
7189            ParamTypes[0]
7190              = S.Context.getLValueReferenceType(
7191                  S.Context.getCVRQualifiedType(*Ptr,
7192                                                (Qualifiers::Volatile |
7193                                                 Qualifiers::Restrict)));
7194            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7195                                  CandidateSet, /*IsAssigmentOperator=*/true);
7196
7197          }
7198        }
7199      }
7200    }
7201  }
7202
7203  // C++ [over.built]p18:
7204  //
7205  //   For every triple (L, VQ, R), where L is an arithmetic type,
7206  //   VQ is either volatile or empty, and R is a promoted
7207  //   arithmetic type, there exist candidate operator functions of
7208  //   the form
7209  //
7210  //        VQ L&      operator=(VQ L&, R);
7211  //        VQ L&      operator*=(VQ L&, R);
7212  //        VQ L&      operator/=(VQ L&, R);
7213  //        VQ L&      operator+=(VQ L&, R);
7214  //        VQ L&      operator-=(VQ L&, R);
7215  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7216    if (!HasArithmeticOrEnumeralCandidateType)
7217      return;
7218
7219    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7220      for (unsigned Right = FirstPromotedArithmeticType;
7221           Right < LastPromotedArithmeticType; ++Right) {
7222        QualType ParamTypes[2];
7223        ParamTypes[1] = getArithmeticType(Right);
7224
7225        // Add this built-in operator as a candidate (VQ is empty).
7226        ParamTypes[0] =
7227          S.Context.getLValueReferenceType(getArithmeticType(Left));
7228        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7229                              /*IsAssigmentOperator=*/isEqualOp);
7230
7231        // Add this built-in operator as a candidate (VQ is 'volatile').
7232        if (VisibleTypeConversionsQuals.hasVolatile()) {
7233          ParamTypes[0] =
7234            S.Context.getVolatileType(getArithmeticType(Left));
7235          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7236          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7237                                CandidateSet,
7238                                /*IsAssigmentOperator=*/isEqualOp);
7239        }
7240      }
7241    }
7242
7243    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7244    for (BuiltinCandidateTypeSet::iterator
7245              Vec1 = CandidateTypes[0].vector_begin(),
7246           Vec1End = CandidateTypes[0].vector_end();
7247         Vec1 != Vec1End; ++Vec1) {
7248      for (BuiltinCandidateTypeSet::iterator
7249                Vec2 = CandidateTypes[1].vector_begin(),
7250             Vec2End = CandidateTypes[1].vector_end();
7251           Vec2 != Vec2End; ++Vec2) {
7252        QualType ParamTypes[2];
7253        ParamTypes[1] = *Vec2;
7254        // Add this built-in operator as a candidate (VQ is empty).
7255        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7256        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7257                              /*IsAssigmentOperator=*/isEqualOp);
7258
7259        // Add this built-in operator as a candidate (VQ is 'volatile').
7260        if (VisibleTypeConversionsQuals.hasVolatile()) {
7261          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7262          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7263          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7264                                CandidateSet,
7265                                /*IsAssigmentOperator=*/isEqualOp);
7266        }
7267      }
7268    }
7269  }
7270
7271  // C++ [over.built]p22:
7272  //
7273  //   For every triple (L, VQ, R), where L is an integral type, VQ
7274  //   is either volatile or empty, and R is a promoted integral
7275  //   type, there exist candidate operator functions of the form
7276  //
7277  //        VQ L&       operator%=(VQ L&, R);
7278  //        VQ L&       operator<<=(VQ L&, R);
7279  //        VQ L&       operator>>=(VQ L&, R);
7280  //        VQ L&       operator&=(VQ L&, R);
7281  //        VQ L&       operator^=(VQ L&, R);
7282  //        VQ L&       operator|=(VQ L&, R);
7283  void addAssignmentIntegralOverloads() {
7284    if (!HasArithmeticOrEnumeralCandidateType)
7285      return;
7286
7287    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7288      for (unsigned Right = FirstPromotedIntegralType;
7289           Right < LastPromotedIntegralType; ++Right) {
7290        QualType ParamTypes[2];
7291        ParamTypes[1] = getArithmeticType(Right);
7292
7293        // Add this built-in operator as a candidate (VQ is empty).
7294        ParamTypes[0] =
7295          S.Context.getLValueReferenceType(getArithmeticType(Left));
7296        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
7297        if (VisibleTypeConversionsQuals.hasVolatile()) {
7298          // Add this built-in operator as a candidate (VQ is 'volatile').
7299          ParamTypes[0] = getArithmeticType(Left);
7300          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7301          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7302          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7303                                CandidateSet);
7304        }
7305      }
7306    }
7307  }
7308
7309  // C++ [over.operator]p23:
7310  //
7311  //   There also exist candidate operator functions of the form
7312  //
7313  //        bool        operator!(bool);
7314  //        bool        operator&&(bool, bool);
7315  //        bool        operator||(bool, bool);
7316  void addExclaimOverload() {
7317    QualType ParamTy = S.Context.BoolTy;
7318    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
7319                          /*IsAssignmentOperator=*/false,
7320                          /*NumContextualBoolArguments=*/1);
7321  }
7322  void addAmpAmpOrPipePipeOverload() {
7323    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7324    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
7325                          /*IsAssignmentOperator=*/false,
7326                          /*NumContextualBoolArguments=*/2);
7327  }
7328
7329  // C++ [over.built]p13:
7330  //
7331  //   For every cv-qualified or cv-unqualified object type T there
7332  //   exist candidate operator functions of the form
7333  //
7334  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7335  //        T&         operator[](T*, ptrdiff_t);
7336  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7337  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7338  //        T&         operator[](ptrdiff_t, T*);
7339  void addSubscriptOverloads() {
7340    for (BuiltinCandidateTypeSet::iterator
7341              Ptr = CandidateTypes[0].pointer_begin(),
7342           PtrEnd = CandidateTypes[0].pointer_end();
7343         Ptr != PtrEnd; ++Ptr) {
7344      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7345      QualType PointeeType = (*Ptr)->getPointeeType();
7346      if (!PointeeType->isObjectType())
7347        continue;
7348
7349      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7350
7351      // T& operator[](T*, ptrdiff_t)
7352      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7353    }
7354
7355    for (BuiltinCandidateTypeSet::iterator
7356              Ptr = CandidateTypes[1].pointer_begin(),
7357           PtrEnd = CandidateTypes[1].pointer_end();
7358         Ptr != PtrEnd; ++Ptr) {
7359      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7360      QualType PointeeType = (*Ptr)->getPointeeType();
7361      if (!PointeeType->isObjectType())
7362        continue;
7363
7364      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7365
7366      // T& operator[](ptrdiff_t, T*)
7367      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7368    }
7369  }
7370
7371  // C++ [over.built]p11:
7372  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7373  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7374  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7375  //    there exist candidate operator functions of the form
7376  //
7377  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7378  //
7379  //    where CV12 is the union of CV1 and CV2.
7380  void addArrowStarOverloads() {
7381    for (BuiltinCandidateTypeSet::iterator
7382             Ptr = CandidateTypes[0].pointer_begin(),
7383           PtrEnd = CandidateTypes[0].pointer_end();
7384         Ptr != PtrEnd; ++Ptr) {
7385      QualType C1Ty = (*Ptr);
7386      QualType C1;
7387      QualifierCollector Q1;
7388      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7389      if (!isa<RecordType>(C1))
7390        continue;
7391      // heuristic to reduce number of builtin candidates in the set.
7392      // Add volatile/restrict version only if there are conversions to a
7393      // volatile/restrict type.
7394      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7395        continue;
7396      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7397        continue;
7398      for (BuiltinCandidateTypeSet::iterator
7399                MemPtr = CandidateTypes[1].member_pointer_begin(),
7400             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7401           MemPtr != MemPtrEnd; ++MemPtr) {
7402        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7403        QualType C2 = QualType(mptr->getClass(), 0);
7404        C2 = C2.getUnqualifiedType();
7405        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7406          break;
7407        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7408        // build CV12 T&
7409        QualType T = mptr->getPointeeType();
7410        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7411            T.isVolatileQualified())
7412          continue;
7413        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7414            T.isRestrictQualified())
7415          continue;
7416        T = Q1.apply(S.Context, T);
7417        QualType ResultTy = S.Context.getLValueReferenceType(T);
7418        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7419      }
7420    }
7421  }
7422
7423  // Note that we don't consider the first argument, since it has been
7424  // contextually converted to bool long ago. The candidates below are
7425  // therefore added as binary.
7426  //
7427  // C++ [over.built]p25:
7428  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7429  //   enumeration type, there exist candidate operator functions of the form
7430  //
7431  //        T        operator?(bool, T, T);
7432  //
7433  void addConditionalOperatorOverloads() {
7434    /// Set of (canonical) types that we've already handled.
7435    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7436
7437    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7438      for (BuiltinCandidateTypeSet::iterator
7439                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7440             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7441           Ptr != PtrEnd; ++Ptr) {
7442        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7443          continue;
7444
7445        QualType ParamTypes[2] = { *Ptr, *Ptr };
7446        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7447      }
7448
7449      for (BuiltinCandidateTypeSet::iterator
7450                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7451             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7452           MemPtr != MemPtrEnd; ++MemPtr) {
7453        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7454          continue;
7455
7456        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7457        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7458      }
7459
7460      if (S.getLangOpts().CPlusPlus0x) {
7461        for (BuiltinCandidateTypeSet::iterator
7462                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7463               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7464             Enum != EnumEnd; ++Enum) {
7465          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7466            continue;
7467
7468          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7469            continue;
7470
7471          QualType ParamTypes[2] = { *Enum, *Enum };
7472          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7473        }
7474      }
7475    }
7476  }
7477};
7478
7479} // end anonymous namespace
7480
7481/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7482/// operator overloads to the candidate set (C++ [over.built]), based
7483/// on the operator @p Op and the arguments given. For example, if the
7484/// operator is a binary '+', this routine might add "int
7485/// operator+(int, int)" to cover integer addition.
7486void
7487Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7488                                   SourceLocation OpLoc,
7489                                   Expr **Args, unsigned NumArgs,
7490                                   OverloadCandidateSet& CandidateSet) {
7491  // Find all of the types that the arguments can convert to, but only
7492  // if the operator we're looking at has built-in operator candidates
7493  // that make use of these types. Also record whether we encounter non-record
7494  // candidate types or either arithmetic or enumeral candidate types.
7495  Qualifiers VisibleTypeConversionsQuals;
7496  VisibleTypeConversionsQuals.addConst();
7497  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7498    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7499
7500  bool HasNonRecordCandidateType = false;
7501  bool HasArithmeticOrEnumeralCandidateType = false;
7502  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7503  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7504    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7505    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7506                                                 OpLoc,
7507                                                 true,
7508                                                 (Op == OO_Exclaim ||
7509                                                  Op == OO_AmpAmp ||
7510                                                  Op == OO_PipePipe),
7511                                                 VisibleTypeConversionsQuals);
7512    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7513        CandidateTypes[ArgIdx].hasNonRecordTypes();
7514    HasArithmeticOrEnumeralCandidateType =
7515        HasArithmeticOrEnumeralCandidateType ||
7516        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7517  }
7518
7519  // Exit early when no non-record types have been added to the candidate set
7520  // for any of the arguments to the operator.
7521  //
7522  // We can't exit early for !, ||, or &&, since there we have always have
7523  // 'bool' overloads.
7524  if (!HasNonRecordCandidateType &&
7525      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7526    return;
7527
7528  // Setup an object to manage the common state for building overloads.
7529  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7530                                           VisibleTypeConversionsQuals,
7531                                           HasArithmeticOrEnumeralCandidateType,
7532                                           CandidateTypes, CandidateSet);
7533
7534  // Dispatch over the operation to add in only those overloads which apply.
7535  switch (Op) {
7536  case OO_None:
7537  case NUM_OVERLOADED_OPERATORS:
7538    llvm_unreachable("Expected an overloaded operator");
7539
7540  case OO_New:
7541  case OO_Delete:
7542  case OO_Array_New:
7543  case OO_Array_Delete:
7544  case OO_Call:
7545    llvm_unreachable(
7546                    "Special operators don't use AddBuiltinOperatorCandidates");
7547
7548  case OO_Comma:
7549  case OO_Arrow:
7550    // C++ [over.match.oper]p3:
7551    //   -- For the operator ',', the unary operator '&', or the
7552    //      operator '->', the built-in candidates set is empty.
7553    break;
7554
7555  case OO_Plus: // '+' is either unary or binary
7556    if (NumArgs == 1)
7557      OpBuilder.addUnaryPlusPointerOverloads();
7558    // Fall through.
7559
7560  case OO_Minus: // '-' is either unary or binary
7561    if (NumArgs == 1) {
7562      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7563    } else {
7564      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7565      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7566    }
7567    break;
7568
7569  case OO_Star: // '*' is either unary or binary
7570    if (NumArgs == 1)
7571      OpBuilder.addUnaryStarPointerOverloads();
7572    else
7573      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7574    break;
7575
7576  case OO_Slash:
7577    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7578    break;
7579
7580  case OO_PlusPlus:
7581  case OO_MinusMinus:
7582    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7583    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7584    break;
7585
7586  case OO_EqualEqual:
7587  case OO_ExclaimEqual:
7588    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7589    // Fall through.
7590
7591  case OO_Less:
7592  case OO_Greater:
7593  case OO_LessEqual:
7594  case OO_GreaterEqual:
7595    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7596    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7597    break;
7598
7599  case OO_Percent:
7600  case OO_Caret:
7601  case OO_Pipe:
7602  case OO_LessLess:
7603  case OO_GreaterGreater:
7604    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7605    break;
7606
7607  case OO_Amp: // '&' is either unary or binary
7608    if (NumArgs == 1)
7609      // C++ [over.match.oper]p3:
7610      //   -- For the operator ',', the unary operator '&', or the
7611      //      operator '->', the built-in candidates set is empty.
7612      break;
7613
7614    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7615    break;
7616
7617  case OO_Tilde:
7618    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7619    break;
7620
7621  case OO_Equal:
7622    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7623    // Fall through.
7624
7625  case OO_PlusEqual:
7626  case OO_MinusEqual:
7627    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7628    // Fall through.
7629
7630  case OO_StarEqual:
7631  case OO_SlashEqual:
7632    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7633    break;
7634
7635  case OO_PercentEqual:
7636  case OO_LessLessEqual:
7637  case OO_GreaterGreaterEqual:
7638  case OO_AmpEqual:
7639  case OO_CaretEqual:
7640  case OO_PipeEqual:
7641    OpBuilder.addAssignmentIntegralOverloads();
7642    break;
7643
7644  case OO_Exclaim:
7645    OpBuilder.addExclaimOverload();
7646    break;
7647
7648  case OO_AmpAmp:
7649  case OO_PipePipe:
7650    OpBuilder.addAmpAmpOrPipePipeOverload();
7651    break;
7652
7653  case OO_Subscript:
7654    OpBuilder.addSubscriptOverloads();
7655    break;
7656
7657  case OO_ArrowStar:
7658    OpBuilder.addArrowStarOverloads();
7659    break;
7660
7661  case OO_Conditional:
7662    OpBuilder.addConditionalOperatorOverloads();
7663    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7664    break;
7665  }
7666}
7667
7668/// \brief Add function candidates found via argument-dependent lookup
7669/// to the set of overloading candidates.
7670///
7671/// This routine performs argument-dependent name lookup based on the
7672/// given function name (which may also be an operator name) and adds
7673/// all of the overload candidates found by ADL to the overload
7674/// candidate set (C++ [basic.lookup.argdep]).
7675void
7676Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7677                                           bool Operator, SourceLocation Loc,
7678                                           llvm::ArrayRef<Expr *> Args,
7679                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7680                                           OverloadCandidateSet& CandidateSet,
7681                                           bool PartialOverloading) {
7682  ADLResult Fns;
7683
7684  // FIXME: This approach for uniquing ADL results (and removing
7685  // redundant candidates from the set) relies on pointer-equality,
7686  // which means we need to key off the canonical decl.  However,
7687  // always going back to the canonical decl might not get us the
7688  // right set of default arguments.  What default arguments are
7689  // we supposed to consider on ADL candidates, anyway?
7690
7691  // FIXME: Pass in the explicit template arguments?
7692  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
7693
7694  // Erase all of the candidates we already knew about.
7695  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7696                                   CandEnd = CandidateSet.end();
7697       Cand != CandEnd; ++Cand)
7698    if (Cand->Function) {
7699      Fns.erase(Cand->Function);
7700      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7701        Fns.erase(FunTmpl);
7702    }
7703
7704  // For each of the ADL candidates we found, add it to the overload
7705  // set.
7706  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7707    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7708    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7709      if (ExplicitTemplateArgs)
7710        continue;
7711
7712      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7713                           PartialOverloading);
7714    } else
7715      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7716                                   FoundDecl, ExplicitTemplateArgs,
7717                                   Args, CandidateSet);
7718  }
7719}
7720
7721/// isBetterOverloadCandidate - Determines whether the first overload
7722/// candidate is a better candidate than the second (C++ 13.3.3p1).
7723bool
7724isBetterOverloadCandidate(Sema &S,
7725                          const OverloadCandidate &Cand1,
7726                          const OverloadCandidate &Cand2,
7727                          SourceLocation Loc,
7728                          bool UserDefinedConversion) {
7729  // Define viable functions to be better candidates than non-viable
7730  // functions.
7731  if (!Cand2.Viable)
7732    return Cand1.Viable;
7733  else if (!Cand1.Viable)
7734    return false;
7735
7736  // C++ [over.match.best]p1:
7737  //
7738  //   -- if F is a static member function, ICS1(F) is defined such
7739  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7740  //      any function G, and, symmetrically, ICS1(G) is neither
7741  //      better nor worse than ICS1(F).
7742  unsigned StartArg = 0;
7743  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7744    StartArg = 1;
7745
7746  // C++ [over.match.best]p1:
7747  //   A viable function F1 is defined to be a better function than another
7748  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7749  //   conversion sequence than ICSi(F2), and then...
7750  unsigned NumArgs = Cand1.NumConversions;
7751  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7752  bool HasBetterConversion = false;
7753  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7754    switch (CompareImplicitConversionSequences(S,
7755                                               Cand1.Conversions[ArgIdx],
7756                                               Cand2.Conversions[ArgIdx])) {
7757    case ImplicitConversionSequence::Better:
7758      // Cand1 has a better conversion sequence.
7759      HasBetterConversion = true;
7760      break;
7761
7762    case ImplicitConversionSequence::Worse:
7763      // Cand1 can't be better than Cand2.
7764      return false;
7765
7766    case ImplicitConversionSequence::Indistinguishable:
7767      // Do nothing.
7768      break;
7769    }
7770  }
7771
7772  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7773  //       ICSj(F2), or, if not that,
7774  if (HasBetterConversion)
7775    return true;
7776
7777  //     - F1 is a non-template function and F2 is a function template
7778  //       specialization, or, if not that,
7779  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7780      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7781    return true;
7782
7783  //   -- F1 and F2 are function template specializations, and the function
7784  //      template for F1 is more specialized than the template for F2
7785  //      according to the partial ordering rules described in 14.5.5.2, or,
7786  //      if not that,
7787  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7788      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7789    if (FunctionTemplateDecl *BetterTemplate
7790          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7791                                         Cand2.Function->getPrimaryTemplate(),
7792                                         Loc,
7793                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7794                                                             : TPOC_Call,
7795                                         Cand1.ExplicitCallArguments))
7796      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7797  }
7798
7799  //   -- the context is an initialization by user-defined conversion
7800  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7801  //      from the return type of F1 to the destination type (i.e.,
7802  //      the type of the entity being initialized) is a better
7803  //      conversion sequence than the standard conversion sequence
7804  //      from the return type of F2 to the destination type.
7805  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7806      isa<CXXConversionDecl>(Cand1.Function) &&
7807      isa<CXXConversionDecl>(Cand2.Function)) {
7808    // First check whether we prefer one of the conversion functions over the
7809    // other. This only distinguishes the results in non-standard, extension
7810    // cases such as the conversion from a lambda closure type to a function
7811    // pointer or block.
7812    ImplicitConversionSequence::CompareKind FuncResult
7813      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7814    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7815      return FuncResult;
7816
7817    switch (CompareStandardConversionSequences(S,
7818                                               Cand1.FinalConversion,
7819                                               Cand2.FinalConversion)) {
7820    case ImplicitConversionSequence::Better:
7821      // Cand1 has a better conversion sequence.
7822      return true;
7823
7824    case ImplicitConversionSequence::Worse:
7825      // Cand1 can't be better than Cand2.
7826      return false;
7827
7828    case ImplicitConversionSequence::Indistinguishable:
7829      // Do nothing
7830      break;
7831    }
7832  }
7833
7834  return false;
7835}
7836
7837/// \brief Computes the best viable function (C++ 13.3.3)
7838/// within an overload candidate set.
7839///
7840/// \param Loc The location of the function name (or operator symbol) for
7841/// which overload resolution occurs.
7842///
7843/// \param Best If overload resolution was successful or found a deleted
7844/// function, \p Best points to the candidate function found.
7845///
7846/// \returns The result of overload resolution.
7847OverloadingResult
7848OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7849                                         iterator &Best,
7850                                         bool UserDefinedConversion) {
7851  // Find the best viable function.
7852  Best = end();
7853  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7854    if (Cand->Viable)
7855      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7856                                                     UserDefinedConversion))
7857        Best = Cand;
7858  }
7859
7860  // If we didn't find any viable functions, abort.
7861  if (Best == end())
7862    return OR_No_Viable_Function;
7863
7864  // Make sure that this function is better than every other viable
7865  // function. If not, we have an ambiguity.
7866  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7867    if (Cand->Viable &&
7868        Cand != Best &&
7869        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7870                                   UserDefinedConversion)) {
7871      Best = end();
7872      return OR_Ambiguous;
7873    }
7874  }
7875
7876  // Best is the best viable function.
7877  if (Best->Function &&
7878      (Best->Function->isDeleted() ||
7879       S.isFunctionConsideredUnavailable(Best->Function)))
7880    return OR_Deleted;
7881
7882  return OR_Success;
7883}
7884
7885namespace {
7886
7887enum OverloadCandidateKind {
7888  oc_function,
7889  oc_method,
7890  oc_constructor,
7891  oc_function_template,
7892  oc_method_template,
7893  oc_constructor_template,
7894  oc_implicit_default_constructor,
7895  oc_implicit_copy_constructor,
7896  oc_implicit_move_constructor,
7897  oc_implicit_copy_assignment,
7898  oc_implicit_move_assignment,
7899  oc_implicit_inherited_constructor
7900};
7901
7902OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7903                                                FunctionDecl *Fn,
7904                                                std::string &Description) {
7905  bool isTemplate = false;
7906
7907  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7908    isTemplate = true;
7909    Description = S.getTemplateArgumentBindingsText(
7910      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7911  }
7912
7913  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7914    if (!Ctor->isImplicit())
7915      return isTemplate ? oc_constructor_template : oc_constructor;
7916
7917    if (Ctor->getInheritedConstructor())
7918      return oc_implicit_inherited_constructor;
7919
7920    if (Ctor->isDefaultConstructor())
7921      return oc_implicit_default_constructor;
7922
7923    if (Ctor->isMoveConstructor())
7924      return oc_implicit_move_constructor;
7925
7926    assert(Ctor->isCopyConstructor() &&
7927           "unexpected sort of implicit constructor");
7928    return oc_implicit_copy_constructor;
7929  }
7930
7931  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7932    // This actually gets spelled 'candidate function' for now, but
7933    // it doesn't hurt to split it out.
7934    if (!Meth->isImplicit())
7935      return isTemplate ? oc_method_template : oc_method;
7936
7937    if (Meth->isMoveAssignmentOperator())
7938      return oc_implicit_move_assignment;
7939
7940    if (Meth->isCopyAssignmentOperator())
7941      return oc_implicit_copy_assignment;
7942
7943    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
7944    return oc_method;
7945  }
7946
7947  return isTemplate ? oc_function_template : oc_function;
7948}
7949
7950void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7951  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7952  if (!Ctor) return;
7953
7954  Ctor = Ctor->getInheritedConstructor();
7955  if (!Ctor) return;
7956
7957  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7958}
7959
7960} // end anonymous namespace
7961
7962// Notes the location of an overload candidate.
7963void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7964  std::string FnDesc;
7965  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7966  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7967                             << (unsigned) K << FnDesc;
7968  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7969  Diag(Fn->getLocation(), PD);
7970  MaybeEmitInheritedConstructorNote(*this, Fn);
7971}
7972
7973//Notes the location of all overload candidates designated through
7974// OverloadedExpr
7975void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7976  assert(OverloadedExpr->getType() == Context.OverloadTy);
7977
7978  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7979  OverloadExpr *OvlExpr = Ovl.Expression;
7980
7981  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7982                            IEnd = OvlExpr->decls_end();
7983       I != IEnd; ++I) {
7984    if (FunctionTemplateDecl *FunTmpl =
7985                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7986      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7987    } else if (FunctionDecl *Fun
7988                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7989      NoteOverloadCandidate(Fun, DestType);
7990    }
7991  }
7992}
7993
7994/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7995/// "lead" diagnostic; it will be given two arguments, the source and
7996/// target types of the conversion.
7997void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7998                                 Sema &S,
7999                                 SourceLocation CaretLoc,
8000                                 const PartialDiagnostic &PDiag) const {
8001  S.Diag(CaretLoc, PDiag)
8002    << Ambiguous.getFromType() << Ambiguous.getToType();
8003  for (AmbiguousConversionSequence::const_iterator
8004         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8005    S.NoteOverloadCandidate(*I);
8006  }
8007}
8008
8009namespace {
8010
8011void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8012  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8013  assert(Conv.isBad());
8014  assert(Cand->Function && "for now, candidate must be a function");
8015  FunctionDecl *Fn = Cand->Function;
8016
8017  // There's a conversion slot for the object argument if this is a
8018  // non-constructor method.  Note that 'I' corresponds the
8019  // conversion-slot index.
8020  bool isObjectArgument = false;
8021  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8022    if (I == 0)
8023      isObjectArgument = true;
8024    else
8025      I--;
8026  }
8027
8028  std::string FnDesc;
8029  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8030
8031  Expr *FromExpr = Conv.Bad.FromExpr;
8032  QualType FromTy = Conv.Bad.getFromType();
8033  QualType ToTy = Conv.Bad.getToType();
8034
8035  if (FromTy == S.Context.OverloadTy) {
8036    assert(FromExpr && "overload set argument came from implicit argument?");
8037    Expr *E = FromExpr->IgnoreParens();
8038    if (isa<UnaryOperator>(E))
8039      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8040    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8041
8042    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8043      << (unsigned) FnKind << FnDesc
8044      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8045      << ToTy << Name << I+1;
8046    MaybeEmitInheritedConstructorNote(S, Fn);
8047    return;
8048  }
8049
8050  // Do some hand-waving analysis to see if the non-viability is due
8051  // to a qualifier mismatch.
8052  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8053  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8054  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8055    CToTy = RT->getPointeeType();
8056  else {
8057    // TODO: detect and diagnose the full richness of const mismatches.
8058    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8059      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8060        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8061  }
8062
8063  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8064      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8065    Qualifiers FromQs = CFromTy.getQualifiers();
8066    Qualifiers ToQs = CToTy.getQualifiers();
8067
8068    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8069      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8070        << (unsigned) FnKind << FnDesc
8071        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8072        << FromTy
8073        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8074        << (unsigned) isObjectArgument << I+1;
8075      MaybeEmitInheritedConstructorNote(S, Fn);
8076      return;
8077    }
8078
8079    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8080      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8081        << (unsigned) FnKind << FnDesc
8082        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8083        << FromTy
8084        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8085        << (unsigned) isObjectArgument << I+1;
8086      MaybeEmitInheritedConstructorNote(S, Fn);
8087      return;
8088    }
8089
8090    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8091      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8092      << (unsigned) FnKind << FnDesc
8093      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8094      << FromTy
8095      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8096      << (unsigned) isObjectArgument << I+1;
8097      MaybeEmitInheritedConstructorNote(S, Fn);
8098      return;
8099    }
8100
8101    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8102    assert(CVR && "unexpected qualifiers mismatch");
8103
8104    if (isObjectArgument) {
8105      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8106        << (unsigned) FnKind << FnDesc
8107        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8108        << FromTy << (CVR - 1);
8109    } else {
8110      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8111        << (unsigned) FnKind << FnDesc
8112        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8113        << FromTy << (CVR - 1) << I+1;
8114    }
8115    MaybeEmitInheritedConstructorNote(S, Fn);
8116    return;
8117  }
8118
8119  // Special diagnostic for failure to convert an initializer list, since
8120  // telling the user that it has type void is not useful.
8121  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8122    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8123      << (unsigned) FnKind << FnDesc
8124      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8125      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8126    MaybeEmitInheritedConstructorNote(S, Fn);
8127    return;
8128  }
8129
8130  // Diagnose references or pointers to incomplete types differently,
8131  // since it's far from impossible that the incompleteness triggered
8132  // the failure.
8133  QualType TempFromTy = FromTy.getNonReferenceType();
8134  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8135    TempFromTy = PTy->getPointeeType();
8136  if (TempFromTy->isIncompleteType()) {
8137    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8138      << (unsigned) FnKind << FnDesc
8139      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8140      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8141    MaybeEmitInheritedConstructorNote(S, Fn);
8142    return;
8143  }
8144
8145  // Diagnose base -> derived pointer conversions.
8146  unsigned BaseToDerivedConversion = 0;
8147  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8148    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8149      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8150                                               FromPtrTy->getPointeeType()) &&
8151          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8152          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8153          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8154                          FromPtrTy->getPointeeType()))
8155        BaseToDerivedConversion = 1;
8156    }
8157  } else if (const ObjCObjectPointerType *FromPtrTy
8158                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8159    if (const ObjCObjectPointerType *ToPtrTy
8160                                        = ToTy->getAs<ObjCObjectPointerType>())
8161      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8162        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8163          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8164                                                FromPtrTy->getPointeeType()) &&
8165              FromIface->isSuperClassOf(ToIface))
8166            BaseToDerivedConversion = 2;
8167  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8168    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8169        !FromTy->isIncompleteType() &&
8170        !ToRefTy->getPointeeType()->isIncompleteType() &&
8171        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8172      BaseToDerivedConversion = 3;
8173    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8174               ToTy.getNonReferenceType().getCanonicalType() ==
8175               FromTy.getNonReferenceType().getCanonicalType()) {
8176      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8177        << (unsigned) FnKind << FnDesc
8178        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8179        << (unsigned) isObjectArgument << I + 1;
8180      MaybeEmitInheritedConstructorNote(S, Fn);
8181      return;
8182    }
8183  }
8184
8185  if (BaseToDerivedConversion) {
8186    S.Diag(Fn->getLocation(),
8187           diag::note_ovl_candidate_bad_base_to_derived_conv)
8188      << (unsigned) FnKind << FnDesc
8189      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8190      << (BaseToDerivedConversion - 1)
8191      << FromTy << ToTy << I+1;
8192    MaybeEmitInheritedConstructorNote(S, Fn);
8193    return;
8194  }
8195
8196  if (isa<ObjCObjectPointerType>(CFromTy) &&
8197      isa<PointerType>(CToTy)) {
8198      Qualifiers FromQs = CFromTy.getQualifiers();
8199      Qualifiers ToQs = CToTy.getQualifiers();
8200      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8201        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8202        << (unsigned) FnKind << FnDesc
8203        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8204        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8205        MaybeEmitInheritedConstructorNote(S, Fn);
8206        return;
8207      }
8208  }
8209
8210  // Emit the generic diagnostic and, optionally, add the hints to it.
8211  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8212  FDiag << (unsigned) FnKind << FnDesc
8213    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8214    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8215    << (unsigned) (Cand->Fix.Kind);
8216
8217  // If we can fix the conversion, suggest the FixIts.
8218  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8219       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8220    FDiag << *HI;
8221  S.Diag(Fn->getLocation(), FDiag);
8222
8223  MaybeEmitInheritedConstructorNote(S, Fn);
8224}
8225
8226void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8227                           unsigned NumFormalArgs) {
8228  // TODO: treat calls to a missing default constructor as a special case
8229
8230  FunctionDecl *Fn = Cand->Function;
8231  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8232
8233  unsigned MinParams = Fn->getMinRequiredArguments();
8234
8235  // With invalid overloaded operators, it's possible that we think we
8236  // have an arity mismatch when it fact it looks like we have the
8237  // right number of arguments, because only overloaded operators have
8238  // the weird behavior of overloading member and non-member functions.
8239  // Just don't report anything.
8240  if (Fn->isInvalidDecl() &&
8241      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8242    return;
8243
8244  // at least / at most / exactly
8245  unsigned mode, modeCount;
8246  if (NumFormalArgs < MinParams) {
8247    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8248           (Cand->FailureKind == ovl_fail_bad_deduction &&
8249            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8250    if (MinParams != FnTy->getNumArgs() ||
8251        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8252      mode = 0; // "at least"
8253    else
8254      mode = 2; // "exactly"
8255    modeCount = MinParams;
8256  } else {
8257    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8258           (Cand->FailureKind == ovl_fail_bad_deduction &&
8259            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8260    if (MinParams != FnTy->getNumArgs())
8261      mode = 1; // "at most"
8262    else
8263      mode = 2; // "exactly"
8264    modeCount = FnTy->getNumArgs();
8265  }
8266
8267  std::string Description;
8268  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8269
8270  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8271    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8272      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8273      << Fn->getParamDecl(0) << NumFormalArgs;
8274  else
8275    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8276      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8277      << modeCount << NumFormalArgs;
8278  MaybeEmitInheritedConstructorNote(S, Fn);
8279}
8280
8281/// Diagnose a failed template-argument deduction.
8282void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8283                          unsigned NumArgs) {
8284  FunctionDecl *Fn = Cand->Function; // pattern
8285
8286  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8287  NamedDecl *ParamD;
8288  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8289  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8290  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8291  switch (Cand->DeductionFailure.Result) {
8292  case Sema::TDK_Success:
8293    llvm_unreachable("TDK_success while diagnosing bad deduction");
8294
8295  case Sema::TDK_Incomplete: {
8296    assert(ParamD && "no parameter found for incomplete deduction result");
8297    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8298      << ParamD->getDeclName();
8299    MaybeEmitInheritedConstructorNote(S, Fn);
8300    return;
8301  }
8302
8303  case Sema::TDK_Underqualified: {
8304    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8305    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8306
8307    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8308
8309    // Param will have been canonicalized, but it should just be a
8310    // qualified version of ParamD, so move the qualifiers to that.
8311    QualifierCollector Qs;
8312    Qs.strip(Param);
8313    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8314    assert(S.Context.hasSameType(Param, NonCanonParam));
8315
8316    // Arg has also been canonicalized, but there's nothing we can do
8317    // about that.  It also doesn't matter as much, because it won't
8318    // have any template parameters in it (because deduction isn't
8319    // done on dependent types).
8320    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8321
8322    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8323      << ParamD->getDeclName() << Arg << NonCanonParam;
8324    MaybeEmitInheritedConstructorNote(S, Fn);
8325    return;
8326  }
8327
8328  case Sema::TDK_Inconsistent: {
8329    assert(ParamD && "no parameter found for inconsistent deduction result");
8330    int which = 0;
8331    if (isa<TemplateTypeParmDecl>(ParamD))
8332      which = 0;
8333    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8334      which = 1;
8335    else {
8336      which = 2;
8337    }
8338
8339    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8340      << which << ParamD->getDeclName()
8341      << *Cand->DeductionFailure.getFirstArg()
8342      << *Cand->DeductionFailure.getSecondArg();
8343    MaybeEmitInheritedConstructorNote(S, Fn);
8344    return;
8345  }
8346
8347  case Sema::TDK_InvalidExplicitArguments:
8348    assert(ParamD && "no parameter found for invalid explicit arguments");
8349    if (ParamD->getDeclName())
8350      S.Diag(Fn->getLocation(),
8351             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8352        << ParamD->getDeclName();
8353    else {
8354      int index = 0;
8355      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8356        index = TTP->getIndex();
8357      else if (NonTypeTemplateParmDecl *NTTP
8358                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8359        index = NTTP->getIndex();
8360      else
8361        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8362      S.Diag(Fn->getLocation(),
8363             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8364        << (index + 1);
8365    }
8366    MaybeEmitInheritedConstructorNote(S, Fn);
8367    return;
8368
8369  case Sema::TDK_TooManyArguments:
8370  case Sema::TDK_TooFewArguments:
8371    DiagnoseArityMismatch(S, Cand, NumArgs);
8372    return;
8373
8374  case Sema::TDK_InstantiationDepth:
8375    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8376    MaybeEmitInheritedConstructorNote(S, Fn);
8377    return;
8378
8379  case Sema::TDK_SubstitutionFailure: {
8380    // Format the template argument list into the argument string.
8381    llvm::SmallString<128> TemplateArgString;
8382    if (TemplateArgumentList *Args =
8383          Cand->DeductionFailure.getTemplateArgumentList()) {
8384      TemplateArgString = " ";
8385      TemplateArgString += S.getTemplateArgumentBindingsText(
8386          Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
8387    }
8388
8389    // If this candidate was disabled by enable_if, say so.
8390    PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
8391    if (PDiag && PDiag->second.getDiagID() ==
8392          diag::err_typename_nested_not_found_enable_if) {
8393      // FIXME: Use the source range of the condition, and the fully-qualified
8394      //        name of the enable_if template. These are both present in PDiag.
8395      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8396        << "'enable_if'" << TemplateArgString;
8397      return;
8398    }
8399
8400    // Format the SFINAE diagnostic into the argument string.
8401    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8402    //        formatted message in another diagnostic.
8403    llvm::SmallString<128> SFINAEArgString;
8404    SourceRange R;
8405    if (PDiag) {
8406      SFINAEArgString = ": ";
8407      R = SourceRange(PDiag->first, PDiag->first);
8408      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8409    }
8410
8411    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8412      << TemplateArgString << SFINAEArgString << R;
8413    MaybeEmitInheritedConstructorNote(S, Fn);
8414    return;
8415  }
8416
8417  // TODO: diagnose these individually, then kill off
8418  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8419  case Sema::TDK_NonDeducedMismatch:
8420  case Sema::TDK_FailedOverloadResolution:
8421    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8422    MaybeEmitInheritedConstructorNote(S, Fn);
8423    return;
8424  }
8425}
8426
8427/// CUDA: diagnose an invalid call across targets.
8428void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8429  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8430  FunctionDecl *Callee = Cand->Function;
8431
8432  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8433                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8434
8435  std::string FnDesc;
8436  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8437
8438  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8439      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8440}
8441
8442/// Generates a 'note' diagnostic for an overload candidate.  We've
8443/// already generated a primary error at the call site.
8444///
8445/// It really does need to be a single diagnostic with its caret
8446/// pointed at the candidate declaration.  Yes, this creates some
8447/// major challenges of technical writing.  Yes, this makes pointing
8448/// out problems with specific arguments quite awkward.  It's still
8449/// better than generating twenty screens of text for every failed
8450/// overload.
8451///
8452/// It would be great to be able to express per-candidate problems
8453/// more richly for those diagnostic clients that cared, but we'd
8454/// still have to be just as careful with the default diagnostics.
8455void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8456                           unsigned NumArgs) {
8457  FunctionDecl *Fn = Cand->Function;
8458
8459  // Note deleted candidates, but only if they're viable.
8460  if (Cand->Viable && (Fn->isDeleted() ||
8461      S.isFunctionConsideredUnavailable(Fn))) {
8462    std::string FnDesc;
8463    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8464
8465    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8466      << FnKind << FnDesc
8467      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8468    MaybeEmitInheritedConstructorNote(S, Fn);
8469    return;
8470  }
8471
8472  // We don't really have anything else to say about viable candidates.
8473  if (Cand->Viable) {
8474    S.NoteOverloadCandidate(Fn);
8475    return;
8476  }
8477
8478  switch (Cand->FailureKind) {
8479  case ovl_fail_too_many_arguments:
8480  case ovl_fail_too_few_arguments:
8481    return DiagnoseArityMismatch(S, Cand, NumArgs);
8482
8483  case ovl_fail_bad_deduction:
8484    return DiagnoseBadDeduction(S, Cand, NumArgs);
8485
8486  case ovl_fail_trivial_conversion:
8487  case ovl_fail_bad_final_conversion:
8488  case ovl_fail_final_conversion_not_exact:
8489    return S.NoteOverloadCandidate(Fn);
8490
8491  case ovl_fail_bad_conversion: {
8492    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8493    for (unsigned N = Cand->NumConversions; I != N; ++I)
8494      if (Cand->Conversions[I].isBad())
8495        return DiagnoseBadConversion(S, Cand, I);
8496
8497    // FIXME: this currently happens when we're called from SemaInit
8498    // when user-conversion overload fails.  Figure out how to handle
8499    // those conditions and diagnose them well.
8500    return S.NoteOverloadCandidate(Fn);
8501  }
8502
8503  case ovl_fail_bad_target:
8504    return DiagnoseBadTarget(S, Cand);
8505  }
8506}
8507
8508void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8509  // Desugar the type of the surrogate down to a function type,
8510  // retaining as many typedefs as possible while still showing
8511  // the function type (and, therefore, its parameter types).
8512  QualType FnType = Cand->Surrogate->getConversionType();
8513  bool isLValueReference = false;
8514  bool isRValueReference = false;
8515  bool isPointer = false;
8516  if (const LValueReferenceType *FnTypeRef =
8517        FnType->getAs<LValueReferenceType>()) {
8518    FnType = FnTypeRef->getPointeeType();
8519    isLValueReference = true;
8520  } else if (const RValueReferenceType *FnTypeRef =
8521               FnType->getAs<RValueReferenceType>()) {
8522    FnType = FnTypeRef->getPointeeType();
8523    isRValueReference = true;
8524  }
8525  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8526    FnType = FnTypePtr->getPointeeType();
8527    isPointer = true;
8528  }
8529  // Desugar down to a function type.
8530  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8531  // Reconstruct the pointer/reference as appropriate.
8532  if (isPointer) FnType = S.Context.getPointerType(FnType);
8533  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8534  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8535
8536  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8537    << FnType;
8538  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8539}
8540
8541void NoteBuiltinOperatorCandidate(Sema &S,
8542                                  StringRef Opc,
8543                                  SourceLocation OpLoc,
8544                                  OverloadCandidate *Cand) {
8545  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8546  std::string TypeStr("operator");
8547  TypeStr += Opc;
8548  TypeStr += "(";
8549  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8550  if (Cand->NumConversions == 1) {
8551    TypeStr += ")";
8552    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8553  } else {
8554    TypeStr += ", ";
8555    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8556    TypeStr += ")";
8557    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8558  }
8559}
8560
8561void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8562                                  OverloadCandidate *Cand) {
8563  unsigned NoOperands = Cand->NumConversions;
8564  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8565    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8566    if (ICS.isBad()) break; // all meaningless after first invalid
8567    if (!ICS.isAmbiguous()) continue;
8568
8569    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8570                              S.PDiag(diag::note_ambiguous_type_conversion));
8571  }
8572}
8573
8574SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8575  if (Cand->Function)
8576    return Cand->Function->getLocation();
8577  if (Cand->IsSurrogate)
8578    return Cand->Surrogate->getLocation();
8579  return SourceLocation();
8580}
8581
8582static unsigned
8583RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8584  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8585  case Sema::TDK_Success:
8586    llvm_unreachable("TDK_success while diagnosing bad deduction");
8587
8588  case Sema::TDK_Invalid:
8589  case Sema::TDK_Incomplete:
8590    return 1;
8591
8592  case Sema::TDK_Underqualified:
8593  case Sema::TDK_Inconsistent:
8594    return 2;
8595
8596  case Sema::TDK_SubstitutionFailure:
8597  case Sema::TDK_NonDeducedMismatch:
8598    return 3;
8599
8600  case Sema::TDK_InstantiationDepth:
8601  case Sema::TDK_FailedOverloadResolution:
8602    return 4;
8603
8604  case Sema::TDK_InvalidExplicitArguments:
8605    return 5;
8606
8607  case Sema::TDK_TooManyArguments:
8608  case Sema::TDK_TooFewArguments:
8609    return 6;
8610  }
8611  llvm_unreachable("Unhandled deduction result");
8612}
8613
8614struct CompareOverloadCandidatesForDisplay {
8615  Sema &S;
8616  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8617
8618  bool operator()(const OverloadCandidate *L,
8619                  const OverloadCandidate *R) {
8620    // Fast-path this check.
8621    if (L == R) return false;
8622
8623    // Order first by viability.
8624    if (L->Viable) {
8625      if (!R->Viable) return true;
8626
8627      // TODO: introduce a tri-valued comparison for overload
8628      // candidates.  Would be more worthwhile if we had a sort
8629      // that could exploit it.
8630      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8631      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8632    } else if (R->Viable)
8633      return false;
8634
8635    assert(L->Viable == R->Viable);
8636
8637    // Criteria by which we can sort non-viable candidates:
8638    if (!L->Viable) {
8639      // 1. Arity mismatches come after other candidates.
8640      if (L->FailureKind == ovl_fail_too_many_arguments ||
8641          L->FailureKind == ovl_fail_too_few_arguments)
8642        return false;
8643      if (R->FailureKind == ovl_fail_too_many_arguments ||
8644          R->FailureKind == ovl_fail_too_few_arguments)
8645        return true;
8646
8647      // 2. Bad conversions come first and are ordered by the number
8648      // of bad conversions and quality of good conversions.
8649      if (L->FailureKind == ovl_fail_bad_conversion) {
8650        if (R->FailureKind != ovl_fail_bad_conversion)
8651          return true;
8652
8653        // The conversion that can be fixed with a smaller number of changes,
8654        // comes first.
8655        unsigned numLFixes = L->Fix.NumConversionsFixed;
8656        unsigned numRFixes = R->Fix.NumConversionsFixed;
8657        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8658        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8659        if (numLFixes != numRFixes) {
8660          if (numLFixes < numRFixes)
8661            return true;
8662          else
8663            return false;
8664        }
8665
8666        // If there's any ordering between the defined conversions...
8667        // FIXME: this might not be transitive.
8668        assert(L->NumConversions == R->NumConversions);
8669
8670        int leftBetter = 0;
8671        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8672        for (unsigned E = L->NumConversions; I != E; ++I) {
8673          switch (CompareImplicitConversionSequences(S,
8674                                                     L->Conversions[I],
8675                                                     R->Conversions[I])) {
8676          case ImplicitConversionSequence::Better:
8677            leftBetter++;
8678            break;
8679
8680          case ImplicitConversionSequence::Worse:
8681            leftBetter--;
8682            break;
8683
8684          case ImplicitConversionSequence::Indistinguishable:
8685            break;
8686          }
8687        }
8688        if (leftBetter > 0) return true;
8689        if (leftBetter < 0) return false;
8690
8691      } else if (R->FailureKind == ovl_fail_bad_conversion)
8692        return false;
8693
8694      if (L->FailureKind == ovl_fail_bad_deduction) {
8695        if (R->FailureKind != ovl_fail_bad_deduction)
8696          return true;
8697
8698        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8699          return RankDeductionFailure(L->DeductionFailure)
8700               < RankDeductionFailure(R->DeductionFailure);
8701      } else if (R->FailureKind == ovl_fail_bad_deduction)
8702        return false;
8703
8704      // TODO: others?
8705    }
8706
8707    // Sort everything else by location.
8708    SourceLocation LLoc = GetLocationForCandidate(L);
8709    SourceLocation RLoc = GetLocationForCandidate(R);
8710
8711    // Put candidates without locations (e.g. builtins) at the end.
8712    if (LLoc.isInvalid()) return false;
8713    if (RLoc.isInvalid()) return true;
8714
8715    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8716  }
8717};
8718
8719/// CompleteNonViableCandidate - Normally, overload resolution only
8720/// computes up to the first. Produces the FixIt set if possible.
8721void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8722                                llvm::ArrayRef<Expr *> Args) {
8723  assert(!Cand->Viable);
8724
8725  // Don't do anything on failures other than bad conversion.
8726  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8727
8728  // We only want the FixIts if all the arguments can be corrected.
8729  bool Unfixable = false;
8730  // Use a implicit copy initialization to check conversion fixes.
8731  Cand->Fix.setConversionChecker(TryCopyInitialization);
8732
8733  // Skip forward to the first bad conversion.
8734  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8735  unsigned ConvCount = Cand->NumConversions;
8736  while (true) {
8737    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8738    ConvIdx++;
8739    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8740      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8741      break;
8742    }
8743  }
8744
8745  if (ConvIdx == ConvCount)
8746    return;
8747
8748  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8749         "remaining conversion is initialized?");
8750
8751  // FIXME: this should probably be preserved from the overload
8752  // operation somehow.
8753  bool SuppressUserConversions = false;
8754
8755  const FunctionProtoType* Proto;
8756  unsigned ArgIdx = ConvIdx;
8757
8758  if (Cand->IsSurrogate) {
8759    QualType ConvType
8760      = Cand->Surrogate->getConversionType().getNonReferenceType();
8761    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8762      ConvType = ConvPtrType->getPointeeType();
8763    Proto = ConvType->getAs<FunctionProtoType>();
8764    ArgIdx--;
8765  } else if (Cand->Function) {
8766    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8767    if (isa<CXXMethodDecl>(Cand->Function) &&
8768        !isa<CXXConstructorDecl>(Cand->Function))
8769      ArgIdx--;
8770  } else {
8771    // Builtin binary operator with a bad first conversion.
8772    assert(ConvCount <= 3);
8773    for (; ConvIdx != ConvCount; ++ConvIdx)
8774      Cand->Conversions[ConvIdx]
8775        = TryCopyInitialization(S, Args[ConvIdx],
8776                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
8777                                SuppressUserConversions,
8778                                /*InOverloadResolution*/ true,
8779                                /*AllowObjCWritebackConversion=*/
8780                                  S.getLangOpts().ObjCAutoRefCount);
8781    return;
8782  }
8783
8784  // Fill in the rest of the conversions.
8785  unsigned NumArgsInProto = Proto->getNumArgs();
8786  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8787    if (ArgIdx < NumArgsInProto) {
8788      Cand->Conversions[ConvIdx]
8789        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8790                                SuppressUserConversions,
8791                                /*InOverloadResolution=*/true,
8792                                /*AllowObjCWritebackConversion=*/
8793                                  S.getLangOpts().ObjCAutoRefCount);
8794      // Store the FixIt in the candidate if it exists.
8795      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8796        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8797    }
8798    else
8799      Cand->Conversions[ConvIdx].setEllipsis();
8800  }
8801}
8802
8803} // end anonymous namespace
8804
8805/// PrintOverloadCandidates - When overload resolution fails, prints
8806/// diagnostic messages containing the candidates in the candidate
8807/// set.
8808void OverloadCandidateSet::NoteCandidates(Sema &S,
8809                                          OverloadCandidateDisplayKind OCD,
8810                                          llvm::ArrayRef<Expr *> Args,
8811                                          StringRef Opc,
8812                                          SourceLocation OpLoc) {
8813  // Sort the candidates by viability and position.  Sorting directly would
8814  // be prohibitive, so we make a set of pointers and sort those.
8815  SmallVector<OverloadCandidate*, 32> Cands;
8816  if (OCD == OCD_AllCandidates) Cands.reserve(size());
8817  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8818    if (Cand->Viable)
8819      Cands.push_back(Cand);
8820    else if (OCD == OCD_AllCandidates) {
8821      CompleteNonViableCandidate(S, Cand, Args);
8822      if (Cand->Function || Cand->IsSurrogate)
8823        Cands.push_back(Cand);
8824      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
8825      // want to list every possible builtin candidate.
8826    }
8827  }
8828
8829  std::sort(Cands.begin(), Cands.end(),
8830            CompareOverloadCandidatesForDisplay(S));
8831
8832  bool ReportedAmbiguousConversions = false;
8833
8834  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8835  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8836  unsigned CandsShown = 0;
8837  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8838    OverloadCandidate *Cand = *I;
8839
8840    // Set an arbitrary limit on the number of candidate functions we'll spam
8841    // the user with.  FIXME: This limit should depend on details of the
8842    // candidate list.
8843    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
8844      break;
8845    }
8846    ++CandsShown;
8847
8848    if (Cand->Function)
8849      NoteFunctionCandidate(S, Cand, Args.size());
8850    else if (Cand->IsSurrogate)
8851      NoteSurrogateCandidate(S, Cand);
8852    else {
8853      assert(Cand->Viable &&
8854             "Non-viable built-in candidates are not added to Cands.");
8855      // Generally we only see ambiguities including viable builtin
8856      // operators if overload resolution got screwed up by an
8857      // ambiguous user-defined conversion.
8858      //
8859      // FIXME: It's quite possible for different conversions to see
8860      // different ambiguities, though.
8861      if (!ReportedAmbiguousConversions) {
8862        NoteAmbiguousUserConversions(S, OpLoc, Cand);
8863        ReportedAmbiguousConversions = true;
8864      }
8865
8866      // If this is a viable builtin, print it.
8867      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8868    }
8869  }
8870
8871  if (I != E)
8872    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8873}
8874
8875// [PossiblyAFunctionType]  -->   [Return]
8876// NonFunctionType --> NonFunctionType
8877// R (A) --> R(A)
8878// R (*)(A) --> R (A)
8879// R (&)(A) --> R (A)
8880// R (S::*)(A) --> R (A)
8881QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8882  QualType Ret = PossiblyAFunctionType;
8883  if (const PointerType *ToTypePtr =
8884    PossiblyAFunctionType->getAs<PointerType>())
8885    Ret = ToTypePtr->getPointeeType();
8886  else if (const ReferenceType *ToTypeRef =
8887    PossiblyAFunctionType->getAs<ReferenceType>())
8888    Ret = ToTypeRef->getPointeeType();
8889  else if (const MemberPointerType *MemTypePtr =
8890    PossiblyAFunctionType->getAs<MemberPointerType>())
8891    Ret = MemTypePtr->getPointeeType();
8892  Ret =
8893    Context.getCanonicalType(Ret).getUnqualifiedType();
8894  return Ret;
8895}
8896
8897// A helper class to help with address of function resolution
8898// - allows us to avoid passing around all those ugly parameters
8899class AddressOfFunctionResolver
8900{
8901  Sema& S;
8902  Expr* SourceExpr;
8903  const QualType& TargetType;
8904  QualType TargetFunctionType; // Extracted function type from target type
8905
8906  bool Complain;
8907  //DeclAccessPair& ResultFunctionAccessPair;
8908  ASTContext& Context;
8909
8910  bool TargetTypeIsNonStaticMemberFunction;
8911  bool FoundNonTemplateFunction;
8912
8913  OverloadExpr::FindResult OvlExprInfo;
8914  OverloadExpr *OvlExpr;
8915  TemplateArgumentListInfo OvlExplicitTemplateArgs;
8916  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8917
8918public:
8919  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8920                            const QualType& TargetType, bool Complain)
8921    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8922      Complain(Complain), Context(S.getASTContext()),
8923      TargetTypeIsNonStaticMemberFunction(
8924                                    !!TargetType->getAs<MemberPointerType>()),
8925      FoundNonTemplateFunction(false),
8926      OvlExprInfo(OverloadExpr::find(SourceExpr)),
8927      OvlExpr(OvlExprInfo.Expression)
8928  {
8929    ExtractUnqualifiedFunctionTypeFromTargetType();
8930
8931    if (!TargetFunctionType->isFunctionType()) {
8932      if (OvlExpr->hasExplicitTemplateArgs()) {
8933        DeclAccessPair dap;
8934        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8935                                            OvlExpr, false, &dap) ) {
8936
8937          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8938            if (!Method->isStatic()) {
8939              // If the target type is a non-function type and the function
8940              // found is a non-static member function, pretend as if that was
8941              // the target, it's the only possible type to end up with.
8942              TargetTypeIsNonStaticMemberFunction = true;
8943
8944              // And skip adding the function if its not in the proper form.
8945              // We'll diagnose this due to an empty set of functions.
8946              if (!OvlExprInfo.HasFormOfMemberPointer)
8947                return;
8948            }
8949          }
8950
8951          Matches.push_back(std::make_pair(dap,Fn));
8952        }
8953      }
8954      return;
8955    }
8956
8957    if (OvlExpr->hasExplicitTemplateArgs())
8958      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8959
8960    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8961      // C++ [over.over]p4:
8962      //   If more than one function is selected, [...]
8963      if (Matches.size() > 1) {
8964        if (FoundNonTemplateFunction)
8965          EliminateAllTemplateMatches();
8966        else
8967          EliminateAllExceptMostSpecializedTemplate();
8968      }
8969    }
8970  }
8971
8972private:
8973  bool isTargetTypeAFunction() const {
8974    return TargetFunctionType->isFunctionType();
8975  }
8976
8977  // [ToType]     [Return]
8978
8979  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8980  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8981  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
8982  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8983    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8984  }
8985
8986  // return true if any matching specializations were found
8987  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8988                                   const DeclAccessPair& CurAccessFunPair) {
8989    if (CXXMethodDecl *Method
8990              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8991      // Skip non-static function templates when converting to pointer, and
8992      // static when converting to member pointer.
8993      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8994        return false;
8995    }
8996    else if (TargetTypeIsNonStaticMemberFunction)
8997      return false;
8998
8999    // C++ [over.over]p2:
9000    //   If the name is a function template, template argument deduction is
9001    //   done (14.8.2.2), and if the argument deduction succeeds, the
9002    //   resulting template argument list is used to generate a single
9003    //   function template specialization, which is added to the set of
9004    //   overloaded functions considered.
9005    FunctionDecl *Specialization = 0;
9006    TemplateDeductionInfo Info(OvlExpr->getNameLoc());
9007    if (Sema::TemplateDeductionResult Result
9008          = S.DeduceTemplateArguments(FunctionTemplate,
9009                                      &OvlExplicitTemplateArgs,
9010                                      TargetFunctionType, Specialization,
9011                                      Info)) {
9012      // FIXME: make a note of the failed deduction for diagnostics.
9013      (void)Result;
9014      return false;
9015    }
9016
9017    // Template argument deduction ensures that we have an exact match.
9018    // This function template specicalization works.
9019    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9020    assert(TargetFunctionType
9021                      == Context.getCanonicalType(Specialization->getType()));
9022    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9023    return true;
9024  }
9025
9026  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9027                                      const DeclAccessPair& CurAccessFunPair) {
9028    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9029      // Skip non-static functions when converting to pointer, and static
9030      // when converting to member pointer.
9031      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9032        return false;
9033    }
9034    else if (TargetTypeIsNonStaticMemberFunction)
9035      return false;
9036
9037    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9038      if (S.getLangOpts().CUDA)
9039        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9040          if (S.CheckCUDATarget(Caller, FunDecl))
9041            return false;
9042
9043      QualType ResultTy;
9044      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9045                                         FunDecl->getType()) ||
9046          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9047                                 ResultTy)) {
9048        Matches.push_back(std::make_pair(CurAccessFunPair,
9049          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9050        FoundNonTemplateFunction = true;
9051        return true;
9052      }
9053    }
9054
9055    return false;
9056  }
9057
9058  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9059    bool Ret = false;
9060
9061    // If the overload expression doesn't have the form of a pointer to
9062    // member, don't try to convert it to a pointer-to-member type.
9063    if (IsInvalidFormOfPointerToMemberFunction())
9064      return false;
9065
9066    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9067                               E = OvlExpr->decls_end();
9068         I != E; ++I) {
9069      // Look through any using declarations to find the underlying function.
9070      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9071
9072      // C++ [over.over]p3:
9073      //   Non-member functions and static member functions match
9074      //   targets of type "pointer-to-function" or "reference-to-function."
9075      //   Nonstatic member functions match targets of
9076      //   type "pointer-to-member-function."
9077      // Note that according to DR 247, the containing class does not matter.
9078      if (FunctionTemplateDecl *FunctionTemplate
9079                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9080        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9081          Ret = true;
9082      }
9083      // If we have explicit template arguments supplied, skip non-templates.
9084      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9085               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9086        Ret = true;
9087    }
9088    assert(Ret || Matches.empty());
9089    return Ret;
9090  }
9091
9092  void EliminateAllExceptMostSpecializedTemplate() {
9093    //   [...] and any given function template specialization F1 is
9094    //   eliminated if the set contains a second function template
9095    //   specialization whose function template is more specialized
9096    //   than the function template of F1 according to the partial
9097    //   ordering rules of 14.5.5.2.
9098
9099    // The algorithm specified above is quadratic. We instead use a
9100    // two-pass algorithm (similar to the one used to identify the
9101    // best viable function in an overload set) that identifies the
9102    // best function template (if it exists).
9103
9104    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9105    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9106      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9107
9108    UnresolvedSetIterator Result =
9109      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
9110                           TPOC_Other, 0, SourceExpr->getLocStart(),
9111                           S.PDiag(),
9112                           S.PDiag(diag::err_addr_ovl_ambiguous)
9113                             << Matches[0].second->getDeclName(),
9114                           S.PDiag(diag::note_ovl_candidate)
9115                             << (unsigned) oc_function_template,
9116                           Complain, TargetFunctionType);
9117
9118    if (Result != MatchesCopy.end()) {
9119      // Make it the first and only element
9120      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9121      Matches[0].second = cast<FunctionDecl>(*Result);
9122      Matches.resize(1);
9123    }
9124  }
9125
9126  void EliminateAllTemplateMatches() {
9127    //   [...] any function template specializations in the set are
9128    //   eliminated if the set also contains a non-template function, [...]
9129    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9130      if (Matches[I].second->getPrimaryTemplate() == 0)
9131        ++I;
9132      else {
9133        Matches[I] = Matches[--N];
9134        Matches.set_size(N);
9135      }
9136    }
9137  }
9138
9139public:
9140  void ComplainNoMatchesFound() const {
9141    assert(Matches.empty());
9142    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9143        << OvlExpr->getName() << TargetFunctionType
9144        << OvlExpr->getSourceRange();
9145    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9146  }
9147
9148  bool IsInvalidFormOfPointerToMemberFunction() const {
9149    return TargetTypeIsNonStaticMemberFunction &&
9150      !OvlExprInfo.HasFormOfMemberPointer;
9151  }
9152
9153  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9154      // TODO: Should we condition this on whether any functions might
9155      // have matched, or is it more appropriate to do that in callers?
9156      // TODO: a fixit wouldn't hurt.
9157      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9158        << TargetType << OvlExpr->getSourceRange();
9159  }
9160
9161  void ComplainOfInvalidConversion() const {
9162    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9163      << OvlExpr->getName() << TargetType;
9164  }
9165
9166  void ComplainMultipleMatchesFound() const {
9167    assert(Matches.size() > 1);
9168    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9169      << OvlExpr->getName()
9170      << OvlExpr->getSourceRange();
9171    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9172  }
9173
9174  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9175
9176  int getNumMatches() const { return Matches.size(); }
9177
9178  FunctionDecl* getMatchingFunctionDecl() const {
9179    if (Matches.size() != 1) return 0;
9180    return Matches[0].second;
9181  }
9182
9183  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9184    if (Matches.size() != 1) return 0;
9185    return &Matches[0].first;
9186  }
9187};
9188
9189/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9190/// an overloaded function (C++ [over.over]), where @p From is an
9191/// expression with overloaded function type and @p ToType is the type
9192/// we're trying to resolve to. For example:
9193///
9194/// @code
9195/// int f(double);
9196/// int f(int);
9197///
9198/// int (*pfd)(double) = f; // selects f(double)
9199/// @endcode
9200///
9201/// This routine returns the resulting FunctionDecl if it could be
9202/// resolved, and NULL otherwise. When @p Complain is true, this
9203/// routine will emit diagnostics if there is an error.
9204FunctionDecl *
9205Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9206                                         QualType TargetType,
9207                                         bool Complain,
9208                                         DeclAccessPair &FoundResult,
9209                                         bool *pHadMultipleCandidates) {
9210  assert(AddressOfExpr->getType() == Context.OverloadTy);
9211
9212  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9213                                     Complain);
9214  int NumMatches = Resolver.getNumMatches();
9215  FunctionDecl* Fn = 0;
9216  if (NumMatches == 0 && Complain) {
9217    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9218      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9219    else
9220      Resolver.ComplainNoMatchesFound();
9221  }
9222  else if (NumMatches > 1 && Complain)
9223    Resolver.ComplainMultipleMatchesFound();
9224  else if (NumMatches == 1) {
9225    Fn = Resolver.getMatchingFunctionDecl();
9226    assert(Fn);
9227    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9228    MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
9229    if (Complain)
9230      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9231  }
9232
9233  if (pHadMultipleCandidates)
9234    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9235  return Fn;
9236}
9237
9238/// \brief Given an expression that refers to an overloaded function, try to
9239/// resolve that overloaded function expression down to a single function.
9240///
9241/// This routine can only resolve template-ids that refer to a single function
9242/// template, where that template-id refers to a single template whose template
9243/// arguments are either provided by the template-id or have defaults,
9244/// as described in C++0x [temp.arg.explicit]p3.
9245FunctionDecl *
9246Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9247                                                  bool Complain,
9248                                                  DeclAccessPair *FoundResult) {
9249  // C++ [over.over]p1:
9250  //   [...] [Note: any redundant set of parentheses surrounding the
9251  //   overloaded function name is ignored (5.1). ]
9252  // C++ [over.over]p1:
9253  //   [...] The overloaded function name can be preceded by the &
9254  //   operator.
9255
9256  // If we didn't actually find any template-ids, we're done.
9257  if (!ovl->hasExplicitTemplateArgs())
9258    return 0;
9259
9260  TemplateArgumentListInfo ExplicitTemplateArgs;
9261  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9262
9263  // Look through all of the overloaded functions, searching for one
9264  // whose type matches exactly.
9265  FunctionDecl *Matched = 0;
9266  for (UnresolvedSetIterator I = ovl->decls_begin(),
9267         E = ovl->decls_end(); I != E; ++I) {
9268    // C++0x [temp.arg.explicit]p3:
9269    //   [...] In contexts where deduction is done and fails, or in contexts
9270    //   where deduction is not done, if a template argument list is
9271    //   specified and it, along with any default template arguments,
9272    //   identifies a single function template specialization, then the
9273    //   template-id is an lvalue for the function template specialization.
9274    FunctionTemplateDecl *FunctionTemplate
9275      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9276
9277    // C++ [over.over]p2:
9278    //   If the name is a function template, template argument deduction is
9279    //   done (14.8.2.2), and if the argument deduction succeeds, the
9280    //   resulting template argument list is used to generate a single
9281    //   function template specialization, which is added to the set of
9282    //   overloaded functions considered.
9283    FunctionDecl *Specialization = 0;
9284    TemplateDeductionInfo Info(ovl->getNameLoc());
9285    if (TemplateDeductionResult Result
9286          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9287                                    Specialization, Info)) {
9288      // FIXME: make a note of the failed deduction for diagnostics.
9289      (void)Result;
9290      continue;
9291    }
9292
9293    assert(Specialization && "no specialization and no error?");
9294
9295    // Multiple matches; we can't resolve to a single declaration.
9296    if (Matched) {
9297      if (Complain) {
9298        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9299          << ovl->getName();
9300        NoteAllOverloadCandidates(ovl);
9301      }
9302      return 0;
9303    }
9304
9305    Matched = Specialization;
9306    if (FoundResult) *FoundResult = I.getPair();
9307  }
9308
9309  return Matched;
9310}
9311
9312
9313
9314
9315// Resolve and fix an overloaded expression that can be resolved
9316// because it identifies a single function template specialization.
9317//
9318// Last three arguments should only be supplied if Complain = true
9319//
9320// Return true if it was logically possible to so resolve the
9321// expression, regardless of whether or not it succeeded.  Always
9322// returns true if 'complain' is set.
9323bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9324                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9325                   bool complain, const SourceRange& OpRangeForComplaining,
9326                                           QualType DestTypeForComplaining,
9327                                            unsigned DiagIDForComplaining) {
9328  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9329
9330  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9331
9332  DeclAccessPair found;
9333  ExprResult SingleFunctionExpression;
9334  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9335                           ovl.Expression, /*complain*/ false, &found)) {
9336    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9337      SrcExpr = ExprError();
9338      return true;
9339    }
9340
9341    // It is only correct to resolve to an instance method if we're
9342    // resolving a form that's permitted to be a pointer to member.
9343    // Otherwise we'll end up making a bound member expression, which
9344    // is illegal in all the contexts we resolve like this.
9345    if (!ovl.HasFormOfMemberPointer &&
9346        isa<CXXMethodDecl>(fn) &&
9347        cast<CXXMethodDecl>(fn)->isInstance()) {
9348      if (!complain) return false;
9349
9350      Diag(ovl.Expression->getExprLoc(),
9351           diag::err_bound_member_function)
9352        << 0 << ovl.Expression->getSourceRange();
9353
9354      // TODO: I believe we only end up here if there's a mix of
9355      // static and non-static candidates (otherwise the expression
9356      // would have 'bound member' type, not 'overload' type).
9357      // Ideally we would note which candidate was chosen and why
9358      // the static candidates were rejected.
9359      SrcExpr = ExprError();
9360      return true;
9361    }
9362
9363    // Fix the expression to refer to 'fn'.
9364    SingleFunctionExpression =
9365      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9366
9367    // If desired, do function-to-pointer decay.
9368    if (doFunctionPointerConverion) {
9369      SingleFunctionExpression =
9370        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9371      if (SingleFunctionExpression.isInvalid()) {
9372        SrcExpr = ExprError();
9373        return true;
9374      }
9375    }
9376  }
9377
9378  if (!SingleFunctionExpression.isUsable()) {
9379    if (complain) {
9380      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9381        << ovl.Expression->getName()
9382        << DestTypeForComplaining
9383        << OpRangeForComplaining
9384        << ovl.Expression->getQualifierLoc().getSourceRange();
9385      NoteAllOverloadCandidates(SrcExpr.get());
9386
9387      SrcExpr = ExprError();
9388      return true;
9389    }
9390
9391    return false;
9392  }
9393
9394  SrcExpr = SingleFunctionExpression;
9395  return true;
9396}
9397
9398/// \brief Add a single candidate to the overload set.
9399static void AddOverloadedCallCandidate(Sema &S,
9400                                       DeclAccessPair FoundDecl,
9401                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9402                                       llvm::ArrayRef<Expr *> Args,
9403                                       OverloadCandidateSet &CandidateSet,
9404                                       bool PartialOverloading,
9405                                       bool KnownValid) {
9406  NamedDecl *Callee = FoundDecl.getDecl();
9407  if (isa<UsingShadowDecl>(Callee))
9408    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9409
9410  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9411    if (ExplicitTemplateArgs) {
9412      assert(!KnownValid && "Explicit template arguments?");
9413      return;
9414    }
9415    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9416                           PartialOverloading);
9417    return;
9418  }
9419
9420  if (FunctionTemplateDecl *FuncTemplate
9421      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9422    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9423                                   ExplicitTemplateArgs, Args, CandidateSet);
9424    return;
9425  }
9426
9427  assert(!KnownValid && "unhandled case in overloaded call candidate");
9428}
9429
9430/// \brief Add the overload candidates named by callee and/or found by argument
9431/// dependent lookup to the given overload set.
9432void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9433                                       llvm::ArrayRef<Expr *> Args,
9434                                       OverloadCandidateSet &CandidateSet,
9435                                       bool PartialOverloading) {
9436
9437#ifndef NDEBUG
9438  // Verify that ArgumentDependentLookup is consistent with the rules
9439  // in C++0x [basic.lookup.argdep]p3:
9440  //
9441  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9442  //   and let Y be the lookup set produced by argument dependent
9443  //   lookup (defined as follows). If X contains
9444  //
9445  //     -- a declaration of a class member, or
9446  //
9447  //     -- a block-scope function declaration that is not a
9448  //        using-declaration, or
9449  //
9450  //     -- a declaration that is neither a function or a function
9451  //        template
9452  //
9453  //   then Y is empty.
9454
9455  if (ULE->requiresADL()) {
9456    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9457           E = ULE->decls_end(); I != E; ++I) {
9458      assert(!(*I)->getDeclContext()->isRecord());
9459      assert(isa<UsingShadowDecl>(*I) ||
9460             !(*I)->getDeclContext()->isFunctionOrMethod());
9461      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9462    }
9463  }
9464#endif
9465
9466  // It would be nice to avoid this copy.
9467  TemplateArgumentListInfo TABuffer;
9468  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9469  if (ULE->hasExplicitTemplateArgs()) {
9470    ULE->copyTemplateArgumentsInto(TABuffer);
9471    ExplicitTemplateArgs = &TABuffer;
9472  }
9473
9474  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9475         E = ULE->decls_end(); I != E; ++I)
9476    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9477                               CandidateSet, PartialOverloading,
9478                               /*KnownValid*/ true);
9479
9480  if (ULE->requiresADL())
9481    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9482                                         ULE->getExprLoc(),
9483                                         Args, ExplicitTemplateArgs,
9484                                         CandidateSet, PartialOverloading);
9485}
9486
9487/// Attempt to recover from an ill-formed use of a non-dependent name in a
9488/// template, where the non-dependent name was declared after the template
9489/// was defined. This is common in code written for a compilers which do not
9490/// correctly implement two-stage name lookup.
9491///
9492/// Returns true if a viable candidate was found and a diagnostic was issued.
9493static bool
9494DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9495                       const CXXScopeSpec &SS, LookupResult &R,
9496                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9497                       llvm::ArrayRef<Expr *> Args) {
9498  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9499    return false;
9500
9501  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9502    if (DC->isTransparentContext())
9503      continue;
9504
9505    SemaRef.LookupQualifiedName(R, DC);
9506
9507    if (!R.empty()) {
9508      R.suppressDiagnostics();
9509
9510      if (isa<CXXRecordDecl>(DC)) {
9511        // Don't diagnose names we find in classes; we get much better
9512        // diagnostics for these from DiagnoseEmptyLookup.
9513        R.clear();
9514        return false;
9515      }
9516
9517      OverloadCandidateSet Candidates(FnLoc);
9518      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9519        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9520                                   ExplicitTemplateArgs, Args,
9521                                   Candidates, false, /*KnownValid*/ false);
9522
9523      OverloadCandidateSet::iterator Best;
9524      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9525        // No viable functions. Don't bother the user with notes for functions
9526        // which don't work and shouldn't be found anyway.
9527        R.clear();
9528        return false;
9529      }
9530
9531      // Find the namespaces where ADL would have looked, and suggest
9532      // declaring the function there instead.
9533      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9534      Sema::AssociatedClassSet AssociatedClasses;
9535      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
9536                                                 AssociatedNamespaces,
9537                                                 AssociatedClasses);
9538      // Never suggest declaring a function within namespace 'std'.
9539      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9540      if (DeclContext *Std = SemaRef.getStdNamespace()) {
9541        for (Sema::AssociatedNamespaceSet::iterator
9542               it = AssociatedNamespaces.begin(),
9543               end = AssociatedNamespaces.end(); it != end; ++it) {
9544          if (!Std->Encloses(*it))
9545            SuggestedNamespaces.insert(*it);
9546        }
9547      } else {
9548        // Lacking the 'std::' namespace, use all of the associated namespaces.
9549        SuggestedNamespaces = AssociatedNamespaces;
9550      }
9551
9552      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9553        << R.getLookupName();
9554      if (SuggestedNamespaces.empty()) {
9555        SemaRef.Diag(Best->Function->getLocation(),
9556                     diag::note_not_found_by_two_phase_lookup)
9557          << R.getLookupName() << 0;
9558      } else if (SuggestedNamespaces.size() == 1) {
9559        SemaRef.Diag(Best->Function->getLocation(),
9560                     diag::note_not_found_by_two_phase_lookup)
9561          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9562      } else {
9563        // FIXME: It would be useful to list the associated namespaces here,
9564        // but the diagnostics infrastructure doesn't provide a way to produce
9565        // a localized representation of a list of items.
9566        SemaRef.Diag(Best->Function->getLocation(),
9567                     diag::note_not_found_by_two_phase_lookup)
9568          << R.getLookupName() << 2;
9569      }
9570
9571      // Try to recover by calling this function.
9572      return true;
9573    }
9574
9575    R.clear();
9576  }
9577
9578  return false;
9579}
9580
9581/// Attempt to recover from ill-formed use of a non-dependent operator in a
9582/// template, where the non-dependent operator was declared after the template
9583/// was defined.
9584///
9585/// Returns true if a viable candidate was found and a diagnostic was issued.
9586static bool
9587DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9588                               SourceLocation OpLoc,
9589                               llvm::ArrayRef<Expr *> Args) {
9590  DeclarationName OpName =
9591    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9592  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9593  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9594                                /*ExplicitTemplateArgs=*/0, Args);
9595}
9596
9597namespace {
9598// Callback to limit the allowed keywords and to only accept typo corrections
9599// that are keywords or whose decls refer to functions (or template functions)
9600// that accept the given number of arguments.
9601class RecoveryCallCCC : public CorrectionCandidateCallback {
9602 public:
9603  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9604      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9605    WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
9606    WantRemainingKeywords = false;
9607  }
9608
9609  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9610    if (!candidate.getCorrectionDecl())
9611      return candidate.isKeyword();
9612
9613    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9614           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9615      FunctionDecl *FD = 0;
9616      NamedDecl *ND = (*DI)->getUnderlyingDecl();
9617      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9618        FD = FTD->getTemplatedDecl();
9619      if (!HasExplicitTemplateArgs && !FD) {
9620        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9621          // If the Decl is neither a function nor a template function,
9622          // determine if it is a pointer or reference to a function. If so,
9623          // check against the number of arguments expected for the pointee.
9624          QualType ValType = cast<ValueDecl>(ND)->getType();
9625          if (ValType->isAnyPointerType() || ValType->isReferenceType())
9626            ValType = ValType->getPointeeType();
9627          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9628            if (FPT->getNumArgs() == NumArgs)
9629              return true;
9630        }
9631      }
9632      if (FD && FD->getNumParams() >= NumArgs &&
9633          FD->getMinRequiredArguments() <= NumArgs)
9634        return true;
9635    }
9636    return false;
9637  }
9638
9639 private:
9640  unsigned NumArgs;
9641  bool HasExplicitTemplateArgs;
9642};
9643
9644// Callback that effectively disabled typo correction
9645class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9646 public:
9647  NoTypoCorrectionCCC() {
9648    WantTypeSpecifiers = false;
9649    WantExpressionKeywords = false;
9650    WantCXXNamedCasts = false;
9651    WantRemainingKeywords = false;
9652  }
9653
9654  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9655    return false;
9656  }
9657};
9658
9659class BuildRecoveryCallExprRAII {
9660  Sema &SemaRef;
9661public:
9662  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
9663    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
9664    SemaRef.IsBuildingRecoveryCallExpr = true;
9665  }
9666
9667  ~BuildRecoveryCallExprRAII() {
9668    SemaRef.IsBuildingRecoveryCallExpr = false;
9669  }
9670};
9671
9672}
9673
9674/// Attempts to recover from a call where no functions were found.
9675///
9676/// Returns true if new candidates were found.
9677static ExprResult
9678BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9679                      UnresolvedLookupExpr *ULE,
9680                      SourceLocation LParenLoc,
9681                      llvm::MutableArrayRef<Expr *> Args,
9682                      SourceLocation RParenLoc,
9683                      bool EmptyLookup, bool AllowTypoCorrection) {
9684  // Do not try to recover if it is already building a recovery call.
9685  // This stops infinite loops for template instantiations like
9686  //
9687  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
9688  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
9689  //
9690  if (SemaRef.IsBuildingRecoveryCallExpr)
9691    return ExprError();
9692  BuildRecoveryCallExprRAII RCE(SemaRef);
9693
9694  CXXScopeSpec SS;
9695  SS.Adopt(ULE->getQualifierLoc());
9696  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9697
9698  TemplateArgumentListInfo TABuffer;
9699  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9700  if (ULE->hasExplicitTemplateArgs()) {
9701    ULE->copyTemplateArgumentsInto(TABuffer);
9702    ExplicitTemplateArgs = &TABuffer;
9703  }
9704
9705  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9706                 Sema::LookupOrdinaryName);
9707  RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
9708  NoTypoCorrectionCCC RejectAll;
9709  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9710      (CorrectionCandidateCallback*)&Validator :
9711      (CorrectionCandidateCallback*)&RejectAll;
9712  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9713                              ExplicitTemplateArgs, Args) &&
9714      (!EmptyLookup ||
9715       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9716                                   ExplicitTemplateArgs, Args)))
9717    return ExprError();
9718
9719  assert(!R.empty() && "lookup results empty despite recovery");
9720
9721  // Build an implicit member call if appropriate.  Just drop the
9722  // casts and such from the call, we don't really care.
9723  ExprResult NewFn = ExprError();
9724  if ((*R.begin())->isCXXClassMember())
9725    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9726                                                    R, ExplicitTemplateArgs);
9727  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9728    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9729                                        ExplicitTemplateArgs);
9730  else
9731    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9732
9733  if (NewFn.isInvalid())
9734    return ExprError();
9735
9736  // This shouldn't cause an infinite loop because we're giving it
9737  // an expression with viable lookup results, which should never
9738  // end up here.
9739  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9740                               MultiExprArg(Args.data(), Args.size()),
9741                               RParenLoc);
9742}
9743
9744/// \brief Constructs and populates an OverloadedCandidateSet from
9745/// the given function.
9746/// \returns true when an the ExprResult output parameter has been set.
9747bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
9748                                  UnresolvedLookupExpr *ULE,
9749                                  Expr **Args, unsigned NumArgs,
9750                                  SourceLocation RParenLoc,
9751                                  OverloadCandidateSet *CandidateSet,
9752                                  ExprResult *Result) {
9753#ifndef NDEBUG
9754  if (ULE->requiresADL()) {
9755    // To do ADL, we must have found an unqualified name.
9756    assert(!ULE->getQualifier() && "qualified name with ADL");
9757
9758    // We don't perform ADL for implicit declarations of builtins.
9759    // Verify that this was correctly set up.
9760    FunctionDecl *F;
9761    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9762        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9763        F->getBuiltinID() && F->isImplicit())
9764      llvm_unreachable("performing ADL for builtin");
9765
9766    // We don't perform ADL in C.
9767    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9768  }
9769#endif
9770
9771  UnbridgedCastsSet UnbridgedCasts;
9772  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) {
9773    *Result = ExprError();
9774    return true;
9775  }
9776
9777  // Add the functions denoted by the callee to the set of candidate
9778  // functions, including those from argument-dependent lookup.
9779  AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
9780                              *CandidateSet);
9781
9782  // If we found nothing, try to recover.
9783  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9784  // out if it fails.
9785  if (CandidateSet->empty()) {
9786    // In Microsoft mode, if we are inside a template class member function then
9787    // create a type dependent CallExpr. The goal is to postpone name lookup
9788    // to instantiation time to be able to search into type dependent base
9789    // classes.
9790    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9791        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9792      CallExpr *CE = new (Context) CallExpr(Context, Fn,
9793                                            llvm::makeArrayRef(Args, NumArgs),
9794                                            Context.DependentTy, VK_RValue,
9795                                            RParenLoc);
9796      CE->setTypeDependent(true);
9797      *Result = Owned(CE);
9798      return true;
9799    }
9800    return false;
9801  }
9802
9803  UnbridgedCasts.restore();
9804  return false;
9805}
9806
9807/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
9808/// the completed call expression. If overload resolution fails, emits
9809/// diagnostics and returns ExprError()
9810static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9811                                           UnresolvedLookupExpr *ULE,
9812                                           SourceLocation LParenLoc,
9813                                           Expr **Args, unsigned NumArgs,
9814                                           SourceLocation RParenLoc,
9815                                           Expr *ExecConfig,
9816                                           OverloadCandidateSet *CandidateSet,
9817                                           OverloadCandidateSet::iterator *Best,
9818                                           OverloadingResult OverloadResult,
9819                                           bool AllowTypoCorrection) {
9820  if (CandidateSet->empty())
9821    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
9822                                 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9823                                 RParenLoc, /*EmptyLookup=*/true,
9824                                 AllowTypoCorrection);
9825
9826  switch (OverloadResult) {
9827  case OR_Success: {
9828    FunctionDecl *FDecl = (*Best)->Function;
9829    SemaRef.MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9830    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
9831    SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9832    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
9833    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9834                                         RParenLoc, ExecConfig);
9835  }
9836
9837  case OR_No_Viable_Function: {
9838    // Try to recover by looking for viable functions which the user might
9839    // have meant to call.
9840    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
9841                                  llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9842                                                RParenLoc,
9843                                                /*EmptyLookup=*/false,
9844                                                AllowTypoCorrection);
9845    if (!Recovery.isInvalid())
9846      return Recovery;
9847
9848    SemaRef.Diag(Fn->getLocStart(),
9849         diag::err_ovl_no_viable_function_in_call)
9850      << ULE->getName() << Fn->getSourceRange();
9851    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
9852                                 llvm::makeArrayRef(Args, NumArgs));
9853    break;
9854  }
9855
9856  case OR_Ambiguous:
9857    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
9858      << ULE->getName() << Fn->getSourceRange();
9859    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates,
9860                                 llvm::makeArrayRef(Args, NumArgs));
9861    break;
9862
9863  case OR_Deleted: {
9864    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
9865      << (*Best)->Function->isDeleted()
9866      << ULE->getName()
9867      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
9868      << Fn->getSourceRange();
9869    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
9870                                 llvm::makeArrayRef(Args, NumArgs));
9871
9872    // We emitted an error for the unvailable/deleted function call but keep
9873    // the call in the AST.
9874    FunctionDecl *FDecl = (*Best)->Function;
9875    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
9876    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9877                                 RParenLoc, ExecConfig);
9878  }
9879  }
9880
9881  // Overload resolution failed.
9882  return ExprError();
9883}
9884
9885/// BuildOverloadedCallExpr - Given the call expression that calls Fn
9886/// (which eventually refers to the declaration Func) and the call
9887/// arguments Args/NumArgs, attempt to resolve the function call down
9888/// to a specific function. If overload resolution succeeds, returns
9889/// the call expression produced by overload resolution.
9890/// Otherwise, emits diagnostics and returns ExprError.
9891ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
9892                                         UnresolvedLookupExpr *ULE,
9893                                         SourceLocation LParenLoc,
9894                                         Expr **Args, unsigned NumArgs,
9895                                         SourceLocation RParenLoc,
9896                                         Expr *ExecConfig,
9897                                         bool AllowTypoCorrection) {
9898  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9899  ExprResult result;
9900
9901  if (buildOverloadedCallSet(S, Fn, ULE, Args, NumArgs, LParenLoc,
9902                             &CandidateSet, &result))
9903    return result;
9904
9905  OverloadCandidateSet::iterator Best;
9906  OverloadingResult OverloadResult =
9907      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
9908
9909  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
9910                                  RParenLoc, ExecConfig, &CandidateSet,
9911                                  &Best, OverloadResult,
9912                                  AllowTypoCorrection);
9913}
9914
9915static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9916  return Functions.size() > 1 ||
9917    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9918}
9919
9920/// \brief Create a unary operation that may resolve to an overloaded
9921/// operator.
9922///
9923/// \param OpLoc The location of the operator itself (e.g., '*').
9924///
9925/// \param OpcIn The UnaryOperator::Opcode that describes this
9926/// operator.
9927///
9928/// \param Fns The set of non-member functions that will be
9929/// considered by overload resolution. The caller needs to build this
9930/// set based on the context using, e.g.,
9931/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9932/// set should not contain any member functions; those will be added
9933/// by CreateOverloadedUnaryOp().
9934///
9935/// \param Input The input argument.
9936ExprResult
9937Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9938                              const UnresolvedSetImpl &Fns,
9939                              Expr *Input) {
9940  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9941
9942  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9943  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9944  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9945  // TODO: provide better source location info.
9946  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9947
9948  if (checkPlaceholderForOverload(*this, Input))
9949    return ExprError();
9950
9951  Expr *Args[2] = { Input, 0 };
9952  unsigned NumArgs = 1;
9953
9954  // For post-increment and post-decrement, add the implicit '0' as
9955  // the second argument, so that we know this is a post-increment or
9956  // post-decrement.
9957  if (Opc == UO_PostInc || Opc == UO_PostDec) {
9958    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9959    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9960                                     SourceLocation());
9961    NumArgs = 2;
9962  }
9963
9964  if (Input->isTypeDependent()) {
9965    if (Fns.empty())
9966      return Owned(new (Context) UnaryOperator(Input,
9967                                               Opc,
9968                                               Context.DependentTy,
9969                                               VK_RValue, OK_Ordinary,
9970                                               OpLoc));
9971
9972    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9973    UnresolvedLookupExpr *Fn
9974      = UnresolvedLookupExpr::Create(Context, NamingClass,
9975                                     NestedNameSpecifierLoc(), OpNameInfo,
9976                                     /*ADL*/ true, IsOverloaded(Fns),
9977                                     Fns.begin(), Fns.end());
9978    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9979                                              llvm::makeArrayRef(Args, NumArgs),
9980                                                   Context.DependentTy,
9981                                                   VK_RValue,
9982                                                   OpLoc, false));
9983  }
9984
9985  // Build an empty overload set.
9986  OverloadCandidateSet CandidateSet(OpLoc);
9987
9988  // Add the candidates from the given function set.
9989  AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
9990                        false);
9991
9992  // Add operator candidates that are member functions.
9993  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9994
9995  // Add candidates from ADL.
9996  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9997                                       OpLoc, llvm::makeArrayRef(Args, NumArgs),
9998                                       /*ExplicitTemplateArgs*/ 0,
9999                                       CandidateSet);
10000
10001  // Add builtin operator candidates.
10002  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
10003
10004  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10005
10006  // Perform overload resolution.
10007  OverloadCandidateSet::iterator Best;
10008  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10009  case OR_Success: {
10010    // We found a built-in operator or an overloaded operator.
10011    FunctionDecl *FnDecl = Best->Function;
10012
10013    if (FnDecl) {
10014      // We matched an overloaded operator. Build a call to that
10015      // operator.
10016
10017      MarkFunctionReferenced(OpLoc, FnDecl);
10018
10019      // Convert the arguments.
10020      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10021        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
10022
10023        ExprResult InputRes =
10024          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
10025                                              Best->FoundDecl, Method);
10026        if (InputRes.isInvalid())
10027          return ExprError();
10028        Input = InputRes.take();
10029      } else {
10030        // Convert the arguments.
10031        ExprResult InputInit
10032          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10033                                                      Context,
10034                                                      FnDecl->getParamDecl(0)),
10035                                      SourceLocation(),
10036                                      Input);
10037        if (InputInit.isInvalid())
10038          return ExprError();
10039        Input = InputInit.take();
10040      }
10041
10042      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10043
10044      // Determine the result type.
10045      QualType ResultTy = FnDecl->getResultType();
10046      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10047      ResultTy = ResultTy.getNonLValueExprType(Context);
10048
10049      // Build the actual expression node.
10050      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10051                                                HadMultipleCandidates, OpLoc);
10052      if (FnExpr.isInvalid())
10053        return ExprError();
10054
10055      Args[0] = Input;
10056      CallExpr *TheCall =
10057        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10058                                          llvm::makeArrayRef(Args, NumArgs),
10059                                          ResultTy, VK, OpLoc, false);
10060
10061      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10062                              FnDecl))
10063        return ExprError();
10064
10065      return MaybeBindToTemporary(TheCall);
10066    } else {
10067      // We matched a built-in operator. Convert the arguments, then
10068      // break out so that we will build the appropriate built-in
10069      // operator node.
10070      ExprResult InputRes =
10071        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10072                                  Best->Conversions[0], AA_Passing);
10073      if (InputRes.isInvalid())
10074        return ExprError();
10075      Input = InputRes.take();
10076      break;
10077    }
10078  }
10079
10080  case OR_No_Viable_Function:
10081    // This is an erroneous use of an operator which can be overloaded by
10082    // a non-member function. Check for non-member operators which were
10083    // defined too late to be candidates.
10084    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
10085                                       llvm::makeArrayRef(Args, NumArgs)))
10086      // FIXME: Recover by calling the found function.
10087      return ExprError();
10088
10089    // No viable function; fall through to handling this as a
10090    // built-in operator, which will produce an error message for us.
10091    break;
10092
10093  case OR_Ambiguous:
10094    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10095        << UnaryOperator::getOpcodeStr(Opc)
10096        << Input->getType()
10097        << Input->getSourceRange();
10098    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10099                                llvm::makeArrayRef(Args, NumArgs),
10100                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10101    return ExprError();
10102
10103  case OR_Deleted:
10104    Diag(OpLoc, diag::err_ovl_deleted_oper)
10105      << Best->Function->isDeleted()
10106      << UnaryOperator::getOpcodeStr(Opc)
10107      << getDeletedOrUnavailableSuffix(Best->Function)
10108      << Input->getSourceRange();
10109    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10110                                llvm::makeArrayRef(Args, NumArgs),
10111                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10112    return ExprError();
10113  }
10114
10115  // Either we found no viable overloaded operator or we matched a
10116  // built-in operator. In either case, fall through to trying to
10117  // build a built-in operation.
10118  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10119}
10120
10121/// \brief Create a binary operation that may resolve to an overloaded
10122/// operator.
10123///
10124/// \param OpLoc The location of the operator itself (e.g., '+').
10125///
10126/// \param OpcIn The BinaryOperator::Opcode that describes this
10127/// operator.
10128///
10129/// \param Fns The set of non-member functions that will be
10130/// considered by overload resolution. The caller needs to build this
10131/// set based on the context using, e.g.,
10132/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10133/// set should not contain any member functions; those will be added
10134/// by CreateOverloadedBinOp().
10135///
10136/// \param LHS Left-hand argument.
10137/// \param RHS Right-hand argument.
10138ExprResult
10139Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10140                            unsigned OpcIn,
10141                            const UnresolvedSetImpl &Fns,
10142                            Expr *LHS, Expr *RHS) {
10143  Expr *Args[2] = { LHS, RHS };
10144  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10145
10146  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10147  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10148  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10149
10150  // If either side is type-dependent, create an appropriate dependent
10151  // expression.
10152  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10153    if (Fns.empty()) {
10154      // If there are no functions to store, just build a dependent
10155      // BinaryOperator or CompoundAssignment.
10156      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10157        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10158                                                  Context.DependentTy,
10159                                                  VK_RValue, OK_Ordinary,
10160                                                  OpLoc,
10161                                                  FPFeatures.fp_contract));
10162
10163      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10164                                                        Context.DependentTy,
10165                                                        VK_LValue,
10166                                                        OK_Ordinary,
10167                                                        Context.DependentTy,
10168                                                        Context.DependentTy,
10169                                                        OpLoc,
10170                                                        FPFeatures.fp_contract));
10171    }
10172
10173    // FIXME: save results of ADL from here?
10174    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10175    // TODO: provide better source location info in DNLoc component.
10176    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10177    UnresolvedLookupExpr *Fn
10178      = UnresolvedLookupExpr::Create(Context, NamingClass,
10179                                     NestedNameSpecifierLoc(), OpNameInfo,
10180                                     /*ADL*/ true, IsOverloaded(Fns),
10181                                     Fns.begin(), Fns.end());
10182    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
10183                                                Context.DependentTy, VK_RValue,
10184                                                OpLoc, FPFeatures.fp_contract));
10185  }
10186
10187  // Always do placeholder-like conversions on the RHS.
10188  if (checkPlaceholderForOverload(*this, Args[1]))
10189    return ExprError();
10190
10191  // Do placeholder-like conversion on the LHS; note that we should
10192  // not get here with a PseudoObject LHS.
10193  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10194  if (checkPlaceholderForOverload(*this, Args[0]))
10195    return ExprError();
10196
10197  // If this is the assignment operator, we only perform overload resolution
10198  // if the left-hand side is a class or enumeration type. This is actually
10199  // a hack. The standard requires that we do overload resolution between the
10200  // various built-in candidates, but as DR507 points out, this can lead to
10201  // problems. So we do it this way, which pretty much follows what GCC does.
10202  // Note that we go the traditional code path for compound assignment forms.
10203  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10204    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10205
10206  // If this is the .* operator, which is not overloadable, just
10207  // create a built-in binary operator.
10208  if (Opc == BO_PtrMemD)
10209    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10210
10211  // Build an empty overload set.
10212  OverloadCandidateSet CandidateSet(OpLoc);
10213
10214  // Add the candidates from the given function set.
10215  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10216
10217  // Add operator candidates that are member functions.
10218  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10219
10220  // Add candidates from ADL.
10221  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10222                                       OpLoc, Args,
10223                                       /*ExplicitTemplateArgs*/ 0,
10224                                       CandidateSet);
10225
10226  // Add builtin operator candidates.
10227  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10228
10229  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10230
10231  // Perform overload resolution.
10232  OverloadCandidateSet::iterator Best;
10233  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10234    case OR_Success: {
10235      // We found a built-in operator or an overloaded operator.
10236      FunctionDecl *FnDecl = Best->Function;
10237
10238      if (FnDecl) {
10239        // We matched an overloaded operator. Build a call to that
10240        // operator.
10241
10242        MarkFunctionReferenced(OpLoc, FnDecl);
10243
10244        // Convert the arguments.
10245        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10246          // Best->Access is only meaningful for class members.
10247          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10248
10249          ExprResult Arg1 =
10250            PerformCopyInitialization(
10251              InitializedEntity::InitializeParameter(Context,
10252                                                     FnDecl->getParamDecl(0)),
10253              SourceLocation(), Owned(Args[1]));
10254          if (Arg1.isInvalid())
10255            return ExprError();
10256
10257          ExprResult Arg0 =
10258            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10259                                                Best->FoundDecl, Method);
10260          if (Arg0.isInvalid())
10261            return ExprError();
10262          Args[0] = Arg0.takeAs<Expr>();
10263          Args[1] = RHS = Arg1.takeAs<Expr>();
10264        } else {
10265          // Convert the arguments.
10266          ExprResult Arg0 = PerformCopyInitialization(
10267            InitializedEntity::InitializeParameter(Context,
10268                                                   FnDecl->getParamDecl(0)),
10269            SourceLocation(), Owned(Args[0]));
10270          if (Arg0.isInvalid())
10271            return ExprError();
10272
10273          ExprResult Arg1 =
10274            PerformCopyInitialization(
10275              InitializedEntity::InitializeParameter(Context,
10276                                                     FnDecl->getParamDecl(1)),
10277              SourceLocation(), Owned(Args[1]));
10278          if (Arg1.isInvalid())
10279            return ExprError();
10280          Args[0] = LHS = Arg0.takeAs<Expr>();
10281          Args[1] = RHS = Arg1.takeAs<Expr>();
10282        }
10283
10284        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10285
10286        // Determine the result type.
10287        QualType ResultTy = FnDecl->getResultType();
10288        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10289        ResultTy = ResultTy.getNonLValueExprType(Context);
10290
10291        // Build the actual expression node.
10292        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10293                                                  HadMultipleCandidates, OpLoc);
10294        if (FnExpr.isInvalid())
10295          return ExprError();
10296
10297        CXXOperatorCallExpr *TheCall =
10298          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10299                                            Args, ResultTy, VK, OpLoc,
10300                                            FPFeatures.fp_contract);
10301
10302        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10303                                FnDecl))
10304          return ExprError();
10305
10306        return MaybeBindToTemporary(TheCall);
10307      } else {
10308        // We matched a built-in operator. Convert the arguments, then
10309        // break out so that we will build the appropriate built-in
10310        // operator node.
10311        ExprResult ArgsRes0 =
10312          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10313                                    Best->Conversions[0], AA_Passing);
10314        if (ArgsRes0.isInvalid())
10315          return ExprError();
10316        Args[0] = ArgsRes0.take();
10317
10318        ExprResult ArgsRes1 =
10319          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10320                                    Best->Conversions[1], AA_Passing);
10321        if (ArgsRes1.isInvalid())
10322          return ExprError();
10323        Args[1] = ArgsRes1.take();
10324        break;
10325      }
10326    }
10327
10328    case OR_No_Viable_Function: {
10329      // C++ [over.match.oper]p9:
10330      //   If the operator is the operator , [...] and there are no
10331      //   viable functions, then the operator is assumed to be the
10332      //   built-in operator and interpreted according to clause 5.
10333      if (Opc == BO_Comma)
10334        break;
10335
10336      // For class as left operand for assignment or compound assigment
10337      // operator do not fall through to handling in built-in, but report that
10338      // no overloaded assignment operator found
10339      ExprResult Result = ExprError();
10340      if (Args[0]->getType()->isRecordType() &&
10341          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10342        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10343             << BinaryOperator::getOpcodeStr(Opc)
10344             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10345      } else {
10346        // This is an erroneous use of an operator which can be overloaded by
10347        // a non-member function. Check for non-member operators which were
10348        // defined too late to be candidates.
10349        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10350          // FIXME: Recover by calling the found function.
10351          return ExprError();
10352
10353        // No viable function; try to create a built-in operation, which will
10354        // produce an error. Then, show the non-viable candidates.
10355        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10356      }
10357      assert(Result.isInvalid() &&
10358             "C++ binary operator overloading is missing candidates!");
10359      if (Result.isInvalid())
10360        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10361                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10362      return Result;
10363    }
10364
10365    case OR_Ambiguous:
10366      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10367          << BinaryOperator::getOpcodeStr(Opc)
10368          << Args[0]->getType() << Args[1]->getType()
10369          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10370      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10371                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10372      return ExprError();
10373
10374    case OR_Deleted:
10375      if (isImplicitlyDeleted(Best->Function)) {
10376        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10377        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10378          << getSpecialMember(Method)
10379          << BinaryOperator::getOpcodeStr(Opc)
10380          << getDeletedOrUnavailableSuffix(Best->Function);
10381
10382        if (getSpecialMember(Method) != CXXInvalid) {
10383          // The user probably meant to call this special member. Just
10384          // explain why it's deleted.
10385          NoteDeletedFunction(Method);
10386          return ExprError();
10387        }
10388      } else {
10389        Diag(OpLoc, diag::err_ovl_deleted_oper)
10390          << Best->Function->isDeleted()
10391          << BinaryOperator::getOpcodeStr(Opc)
10392          << getDeletedOrUnavailableSuffix(Best->Function)
10393          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10394      }
10395      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10396                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10397      return ExprError();
10398  }
10399
10400  // We matched a built-in operator; build it.
10401  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10402}
10403
10404ExprResult
10405Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10406                                         SourceLocation RLoc,
10407                                         Expr *Base, Expr *Idx) {
10408  Expr *Args[2] = { Base, Idx };
10409  DeclarationName OpName =
10410      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10411
10412  // If either side is type-dependent, create an appropriate dependent
10413  // expression.
10414  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10415
10416    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10417    // CHECKME: no 'operator' keyword?
10418    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10419    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10420    UnresolvedLookupExpr *Fn
10421      = UnresolvedLookupExpr::Create(Context, NamingClass,
10422                                     NestedNameSpecifierLoc(), OpNameInfo,
10423                                     /*ADL*/ true, /*Overloaded*/ false,
10424                                     UnresolvedSetIterator(),
10425                                     UnresolvedSetIterator());
10426    // Can't add any actual overloads yet
10427
10428    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10429                                                   Args,
10430                                                   Context.DependentTy,
10431                                                   VK_RValue,
10432                                                   RLoc, false));
10433  }
10434
10435  // Handle placeholders on both operands.
10436  if (checkPlaceholderForOverload(*this, Args[0]))
10437    return ExprError();
10438  if (checkPlaceholderForOverload(*this, Args[1]))
10439    return ExprError();
10440
10441  // Build an empty overload set.
10442  OverloadCandidateSet CandidateSet(LLoc);
10443
10444  // Subscript can only be overloaded as a member function.
10445
10446  // Add operator candidates that are member functions.
10447  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10448
10449  // Add builtin operator candidates.
10450  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10451
10452  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10453
10454  // Perform overload resolution.
10455  OverloadCandidateSet::iterator Best;
10456  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10457    case OR_Success: {
10458      // We found a built-in operator or an overloaded operator.
10459      FunctionDecl *FnDecl = Best->Function;
10460
10461      if (FnDecl) {
10462        // We matched an overloaded operator. Build a call to that
10463        // operator.
10464
10465        MarkFunctionReferenced(LLoc, FnDecl);
10466
10467        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10468        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
10469
10470        // Convert the arguments.
10471        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10472        ExprResult Arg0 =
10473          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10474                                              Best->FoundDecl, Method);
10475        if (Arg0.isInvalid())
10476          return ExprError();
10477        Args[0] = Arg0.take();
10478
10479        // Convert the arguments.
10480        ExprResult InputInit
10481          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10482                                                      Context,
10483                                                      FnDecl->getParamDecl(0)),
10484                                      SourceLocation(),
10485                                      Owned(Args[1]));
10486        if (InputInit.isInvalid())
10487          return ExprError();
10488
10489        Args[1] = InputInit.takeAs<Expr>();
10490
10491        // Determine the result type
10492        QualType ResultTy = FnDecl->getResultType();
10493        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10494        ResultTy = ResultTy.getNonLValueExprType(Context);
10495
10496        // Build the actual expression node.
10497        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10498        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10499        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10500                                                  HadMultipleCandidates,
10501                                                  OpLocInfo.getLoc(),
10502                                                  OpLocInfo.getInfo());
10503        if (FnExpr.isInvalid())
10504          return ExprError();
10505
10506        CXXOperatorCallExpr *TheCall =
10507          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10508                                            FnExpr.take(), Args,
10509                                            ResultTy, VK, RLoc,
10510                                            false);
10511
10512        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10513                                FnDecl))
10514          return ExprError();
10515
10516        return MaybeBindToTemporary(TheCall);
10517      } else {
10518        // We matched a built-in operator. Convert the arguments, then
10519        // break out so that we will build the appropriate built-in
10520        // operator node.
10521        ExprResult ArgsRes0 =
10522          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10523                                    Best->Conversions[0], AA_Passing);
10524        if (ArgsRes0.isInvalid())
10525          return ExprError();
10526        Args[0] = ArgsRes0.take();
10527
10528        ExprResult ArgsRes1 =
10529          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10530                                    Best->Conversions[1], AA_Passing);
10531        if (ArgsRes1.isInvalid())
10532          return ExprError();
10533        Args[1] = ArgsRes1.take();
10534
10535        break;
10536      }
10537    }
10538
10539    case OR_No_Viable_Function: {
10540      if (CandidateSet.empty())
10541        Diag(LLoc, diag::err_ovl_no_oper)
10542          << Args[0]->getType() << /*subscript*/ 0
10543          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10544      else
10545        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10546          << Args[0]->getType()
10547          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10548      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10549                                  "[]", LLoc);
10550      return ExprError();
10551    }
10552
10553    case OR_Ambiguous:
10554      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10555          << "[]"
10556          << Args[0]->getType() << Args[1]->getType()
10557          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10558      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10559                                  "[]", LLoc);
10560      return ExprError();
10561
10562    case OR_Deleted:
10563      Diag(LLoc, diag::err_ovl_deleted_oper)
10564        << Best->Function->isDeleted() << "[]"
10565        << getDeletedOrUnavailableSuffix(Best->Function)
10566        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10567      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10568                                  "[]", LLoc);
10569      return ExprError();
10570    }
10571
10572  // We matched a built-in operator; build it.
10573  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10574}
10575
10576/// BuildCallToMemberFunction - Build a call to a member
10577/// function. MemExpr is the expression that refers to the member
10578/// function (and includes the object parameter), Args/NumArgs are the
10579/// arguments to the function call (not including the object
10580/// parameter). The caller needs to validate that the member
10581/// expression refers to a non-static member function or an overloaded
10582/// member function.
10583ExprResult
10584Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10585                                SourceLocation LParenLoc, Expr **Args,
10586                                unsigned NumArgs, SourceLocation RParenLoc) {
10587  assert(MemExprE->getType() == Context.BoundMemberTy ||
10588         MemExprE->getType() == Context.OverloadTy);
10589
10590  // Dig out the member expression. This holds both the object
10591  // argument and the member function we're referring to.
10592  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10593
10594  // Determine whether this is a call to a pointer-to-member function.
10595  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10596    assert(op->getType() == Context.BoundMemberTy);
10597    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10598
10599    QualType fnType =
10600      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10601
10602    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10603    QualType resultType = proto->getCallResultType(Context);
10604    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10605
10606    // Check that the object type isn't more qualified than the
10607    // member function we're calling.
10608    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10609
10610    QualType objectType = op->getLHS()->getType();
10611    if (op->getOpcode() == BO_PtrMemI)
10612      objectType = objectType->castAs<PointerType>()->getPointeeType();
10613    Qualifiers objectQuals = objectType.getQualifiers();
10614
10615    Qualifiers difference = objectQuals - funcQuals;
10616    difference.removeObjCGCAttr();
10617    difference.removeAddressSpace();
10618    if (difference) {
10619      std::string qualsString = difference.getAsString();
10620      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10621        << fnType.getUnqualifiedType()
10622        << qualsString
10623        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10624    }
10625
10626    CXXMemberCallExpr *call
10627      = new (Context) CXXMemberCallExpr(Context, MemExprE,
10628                                        llvm::makeArrayRef(Args, NumArgs),
10629                                        resultType, valueKind, RParenLoc);
10630
10631    if (CheckCallReturnType(proto->getResultType(),
10632                            op->getRHS()->getLocStart(),
10633                            call, 0))
10634      return ExprError();
10635
10636    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10637      return ExprError();
10638
10639    return MaybeBindToTemporary(call);
10640  }
10641
10642  UnbridgedCastsSet UnbridgedCasts;
10643  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10644    return ExprError();
10645
10646  MemberExpr *MemExpr;
10647  CXXMethodDecl *Method = 0;
10648  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10649  NestedNameSpecifier *Qualifier = 0;
10650  if (isa<MemberExpr>(NakedMemExpr)) {
10651    MemExpr = cast<MemberExpr>(NakedMemExpr);
10652    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10653    FoundDecl = MemExpr->getFoundDecl();
10654    Qualifier = MemExpr->getQualifier();
10655    UnbridgedCasts.restore();
10656  } else {
10657    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10658    Qualifier = UnresExpr->getQualifier();
10659
10660    QualType ObjectType = UnresExpr->getBaseType();
10661    Expr::Classification ObjectClassification
10662      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10663                            : UnresExpr->getBase()->Classify(Context);
10664
10665    // Add overload candidates
10666    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10667
10668    // FIXME: avoid copy.
10669    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10670    if (UnresExpr->hasExplicitTemplateArgs()) {
10671      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10672      TemplateArgs = &TemplateArgsBuffer;
10673    }
10674
10675    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10676           E = UnresExpr->decls_end(); I != E; ++I) {
10677
10678      NamedDecl *Func = *I;
10679      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10680      if (isa<UsingShadowDecl>(Func))
10681        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10682
10683
10684      // Microsoft supports direct constructor calls.
10685      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10686        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10687                             llvm::makeArrayRef(Args, NumArgs), CandidateSet);
10688      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10689        // If explicit template arguments were provided, we can't call a
10690        // non-template member function.
10691        if (TemplateArgs)
10692          continue;
10693
10694        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10695                           ObjectClassification,
10696                           llvm::makeArrayRef(Args, NumArgs), CandidateSet,
10697                           /*SuppressUserConversions=*/false);
10698      } else {
10699        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10700                                   I.getPair(), ActingDC, TemplateArgs,
10701                                   ObjectType,  ObjectClassification,
10702                                   llvm::makeArrayRef(Args, NumArgs),
10703                                   CandidateSet,
10704                                   /*SuppressUsedConversions=*/false);
10705      }
10706    }
10707
10708    DeclarationName DeclName = UnresExpr->getMemberName();
10709
10710    UnbridgedCasts.restore();
10711
10712    OverloadCandidateSet::iterator Best;
10713    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10714                                            Best)) {
10715    case OR_Success:
10716      Method = cast<CXXMethodDecl>(Best->Function);
10717      MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10718      FoundDecl = Best->FoundDecl;
10719      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10720      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10721      break;
10722
10723    case OR_No_Viable_Function:
10724      Diag(UnresExpr->getMemberLoc(),
10725           diag::err_ovl_no_viable_member_function_in_call)
10726        << DeclName << MemExprE->getSourceRange();
10727      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10728                                  llvm::makeArrayRef(Args, NumArgs));
10729      // FIXME: Leaking incoming expressions!
10730      return ExprError();
10731
10732    case OR_Ambiguous:
10733      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10734        << DeclName << MemExprE->getSourceRange();
10735      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10736                                  llvm::makeArrayRef(Args, NumArgs));
10737      // FIXME: Leaking incoming expressions!
10738      return ExprError();
10739
10740    case OR_Deleted:
10741      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10742        << Best->Function->isDeleted()
10743        << DeclName
10744        << getDeletedOrUnavailableSuffix(Best->Function)
10745        << MemExprE->getSourceRange();
10746      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10747                                  llvm::makeArrayRef(Args, NumArgs));
10748      // FIXME: Leaking incoming expressions!
10749      return ExprError();
10750    }
10751
10752    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10753
10754    // If overload resolution picked a static member, build a
10755    // non-member call based on that function.
10756    if (Method->isStatic()) {
10757      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10758                                   Args, NumArgs, RParenLoc);
10759    }
10760
10761    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10762  }
10763
10764  QualType ResultType = Method->getResultType();
10765  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10766  ResultType = ResultType.getNonLValueExprType(Context);
10767
10768  assert(Method && "Member call to something that isn't a method?");
10769  CXXMemberCallExpr *TheCall =
10770    new (Context) CXXMemberCallExpr(Context, MemExprE,
10771                                    llvm::makeArrayRef(Args, NumArgs),
10772                                    ResultType, VK, RParenLoc);
10773
10774  // Check for a valid return type.
10775  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10776                          TheCall, Method))
10777    return ExprError();
10778
10779  // Convert the object argument (for a non-static member function call).
10780  // We only need to do this if there was actually an overload; otherwise
10781  // it was done at lookup.
10782  if (!Method->isStatic()) {
10783    ExprResult ObjectArg =
10784      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10785                                          FoundDecl, Method);
10786    if (ObjectArg.isInvalid())
10787      return ExprError();
10788    MemExpr->setBase(ObjectArg.take());
10789  }
10790
10791  // Convert the rest of the arguments
10792  const FunctionProtoType *Proto =
10793    Method->getType()->getAs<FunctionProtoType>();
10794  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10795                              RParenLoc))
10796    return ExprError();
10797
10798  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10799
10800  if (CheckFunctionCall(Method, TheCall, Proto))
10801    return ExprError();
10802
10803  if ((isa<CXXConstructorDecl>(CurContext) ||
10804       isa<CXXDestructorDecl>(CurContext)) &&
10805      TheCall->getMethodDecl()->isPure()) {
10806    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10807
10808    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10809      Diag(MemExpr->getLocStart(),
10810           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10811        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10812        << MD->getParent()->getDeclName();
10813
10814      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10815    }
10816  }
10817  return MaybeBindToTemporary(TheCall);
10818}
10819
10820/// BuildCallToObjectOfClassType - Build a call to an object of class
10821/// type (C++ [over.call.object]), which can end up invoking an
10822/// overloaded function call operator (@c operator()) or performing a
10823/// user-defined conversion on the object argument.
10824ExprResult
10825Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10826                                   SourceLocation LParenLoc,
10827                                   Expr **Args, unsigned NumArgs,
10828                                   SourceLocation RParenLoc) {
10829  if (checkPlaceholderForOverload(*this, Obj))
10830    return ExprError();
10831  ExprResult Object = Owned(Obj);
10832
10833  UnbridgedCastsSet UnbridgedCasts;
10834  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10835    return ExprError();
10836
10837  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10838  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10839
10840  // C++ [over.call.object]p1:
10841  //  If the primary-expression E in the function call syntax
10842  //  evaluates to a class object of type "cv T", then the set of
10843  //  candidate functions includes at least the function call
10844  //  operators of T. The function call operators of T are obtained by
10845  //  ordinary lookup of the name operator() in the context of
10846  //  (E).operator().
10847  OverloadCandidateSet CandidateSet(LParenLoc);
10848  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10849
10850  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10851                          diag::err_incomplete_object_call, Object.get()))
10852    return true;
10853
10854  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10855  LookupQualifiedName(R, Record->getDecl());
10856  R.suppressDiagnostics();
10857
10858  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10859       Oper != OperEnd; ++Oper) {
10860    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10861                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10862                       /*SuppressUserConversions=*/ false);
10863  }
10864
10865  // C++ [over.call.object]p2:
10866  //   In addition, for each (non-explicit in C++0x) conversion function
10867  //   declared in T of the form
10868  //
10869  //        operator conversion-type-id () cv-qualifier;
10870  //
10871  //   where cv-qualifier is the same cv-qualification as, or a
10872  //   greater cv-qualification than, cv, and where conversion-type-id
10873  //   denotes the type "pointer to function of (P1,...,Pn) returning
10874  //   R", or the type "reference to pointer to function of
10875  //   (P1,...,Pn) returning R", or the type "reference to function
10876  //   of (P1,...,Pn) returning R", a surrogate call function [...]
10877  //   is also considered as a candidate function. Similarly,
10878  //   surrogate call functions are added to the set of candidate
10879  //   functions for each conversion function declared in an
10880  //   accessible base class provided the function is not hidden
10881  //   within T by another intervening declaration.
10882  const UnresolvedSetImpl *Conversions
10883    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10884  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10885         E = Conversions->end(); I != E; ++I) {
10886    NamedDecl *D = *I;
10887    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10888    if (isa<UsingShadowDecl>(D))
10889      D = cast<UsingShadowDecl>(D)->getTargetDecl();
10890
10891    // Skip over templated conversion functions; they aren't
10892    // surrogates.
10893    if (isa<FunctionTemplateDecl>(D))
10894      continue;
10895
10896    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10897    if (!Conv->isExplicit()) {
10898      // Strip the reference type (if any) and then the pointer type (if
10899      // any) to get down to what might be a function type.
10900      QualType ConvType = Conv->getConversionType().getNonReferenceType();
10901      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10902        ConvType = ConvPtrType->getPointeeType();
10903
10904      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10905      {
10906        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10907                              Object.get(), llvm::makeArrayRef(Args, NumArgs),
10908                              CandidateSet);
10909      }
10910    }
10911  }
10912
10913  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10914
10915  // Perform overload resolution.
10916  OverloadCandidateSet::iterator Best;
10917  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10918                             Best)) {
10919  case OR_Success:
10920    // Overload resolution succeeded; we'll build the appropriate call
10921    // below.
10922    break;
10923
10924  case OR_No_Viable_Function:
10925    if (CandidateSet.empty())
10926      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
10927        << Object.get()->getType() << /*call*/ 1
10928        << Object.get()->getSourceRange();
10929    else
10930      Diag(Object.get()->getLocStart(),
10931           diag::err_ovl_no_viable_object_call)
10932        << Object.get()->getType() << Object.get()->getSourceRange();
10933    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10934                                llvm::makeArrayRef(Args, NumArgs));
10935    break;
10936
10937  case OR_Ambiguous:
10938    Diag(Object.get()->getLocStart(),
10939         diag::err_ovl_ambiguous_object_call)
10940      << Object.get()->getType() << Object.get()->getSourceRange();
10941    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10942                                llvm::makeArrayRef(Args, NumArgs));
10943    break;
10944
10945  case OR_Deleted:
10946    Diag(Object.get()->getLocStart(),
10947         diag::err_ovl_deleted_object_call)
10948      << Best->Function->isDeleted()
10949      << Object.get()->getType()
10950      << getDeletedOrUnavailableSuffix(Best->Function)
10951      << Object.get()->getSourceRange();
10952    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10953                                llvm::makeArrayRef(Args, NumArgs));
10954    break;
10955  }
10956
10957  if (Best == CandidateSet.end())
10958    return true;
10959
10960  UnbridgedCasts.restore();
10961
10962  if (Best->Function == 0) {
10963    // Since there is no function declaration, this is one of the
10964    // surrogate candidates. Dig out the conversion function.
10965    CXXConversionDecl *Conv
10966      = cast<CXXConversionDecl>(
10967                         Best->Conversions[0].UserDefined.ConversionFunction);
10968
10969    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10970    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10971
10972    // We selected one of the surrogate functions that converts the
10973    // object parameter to a function pointer. Perform the conversion
10974    // on the object argument, then let ActOnCallExpr finish the job.
10975
10976    // Create an implicit member expr to refer to the conversion operator.
10977    // and then call it.
10978    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10979                                             Conv, HadMultipleCandidates);
10980    if (Call.isInvalid())
10981      return ExprError();
10982    // Record usage of conversion in an implicit cast.
10983    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10984                                          CK_UserDefinedConversion,
10985                                          Call.get(), 0, VK_RValue));
10986
10987    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10988                         RParenLoc);
10989  }
10990
10991  MarkFunctionReferenced(LParenLoc, Best->Function);
10992  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10993  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10994
10995  // We found an overloaded operator(). Build a CXXOperatorCallExpr
10996  // that calls this method, using Object for the implicit object
10997  // parameter and passing along the remaining arguments.
10998  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10999  const FunctionProtoType *Proto =
11000    Method->getType()->getAs<FunctionProtoType>();
11001
11002  unsigned NumArgsInProto = Proto->getNumArgs();
11003  unsigned NumArgsToCheck = NumArgs;
11004
11005  // Build the full argument list for the method call (the
11006  // implicit object parameter is placed at the beginning of the
11007  // list).
11008  Expr **MethodArgs;
11009  if (NumArgs < NumArgsInProto) {
11010    NumArgsToCheck = NumArgsInProto;
11011    MethodArgs = new Expr*[NumArgsInProto + 1];
11012  } else {
11013    MethodArgs = new Expr*[NumArgs + 1];
11014  }
11015  MethodArgs[0] = Object.get();
11016  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
11017    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
11018
11019  DeclarationNameInfo OpLocInfo(
11020               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11021  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11022  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
11023                                           HadMultipleCandidates,
11024                                           OpLocInfo.getLoc(),
11025                                           OpLocInfo.getInfo());
11026  if (NewFn.isInvalid())
11027    return true;
11028
11029  // Once we've built TheCall, all of the expressions are properly
11030  // owned.
11031  QualType ResultTy = Method->getResultType();
11032  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11033  ResultTy = ResultTy.getNonLValueExprType(Context);
11034
11035  CXXOperatorCallExpr *TheCall =
11036    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
11037                                      llvm::makeArrayRef(MethodArgs, NumArgs+1),
11038                                      ResultTy, VK, RParenLoc, false);
11039  delete [] MethodArgs;
11040
11041  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
11042                          Method))
11043    return true;
11044
11045  // We may have default arguments. If so, we need to allocate more
11046  // slots in the call for them.
11047  if (NumArgs < NumArgsInProto)
11048    TheCall->setNumArgs(Context, NumArgsInProto + 1);
11049  else if (NumArgs > NumArgsInProto)
11050    NumArgsToCheck = NumArgsInProto;
11051
11052  bool IsError = false;
11053
11054  // Initialize the implicit object parameter.
11055  ExprResult ObjRes =
11056    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11057                                        Best->FoundDecl, Method);
11058  if (ObjRes.isInvalid())
11059    IsError = true;
11060  else
11061    Object = ObjRes;
11062  TheCall->setArg(0, Object.take());
11063
11064  // Check the argument types.
11065  for (unsigned i = 0; i != NumArgsToCheck; i++) {
11066    Expr *Arg;
11067    if (i < NumArgs) {
11068      Arg = Args[i];
11069
11070      // Pass the argument.
11071
11072      ExprResult InputInit
11073        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11074                                                    Context,
11075                                                    Method->getParamDecl(i)),
11076                                    SourceLocation(), Arg);
11077
11078      IsError |= InputInit.isInvalid();
11079      Arg = InputInit.takeAs<Expr>();
11080    } else {
11081      ExprResult DefArg
11082        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11083      if (DefArg.isInvalid()) {
11084        IsError = true;
11085        break;
11086      }
11087
11088      Arg = DefArg.takeAs<Expr>();
11089    }
11090
11091    TheCall->setArg(i + 1, Arg);
11092  }
11093
11094  // If this is a variadic call, handle args passed through "...".
11095  if (Proto->isVariadic()) {
11096    // Promote the arguments (C99 6.5.2.2p7).
11097    for (unsigned i = NumArgsInProto; i < NumArgs; i++) {
11098      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11099      IsError |= Arg.isInvalid();
11100      TheCall->setArg(i + 1, Arg.take());
11101    }
11102  }
11103
11104  if (IsError) return true;
11105
11106  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
11107
11108  if (CheckFunctionCall(Method, TheCall, Proto))
11109    return true;
11110
11111  return MaybeBindToTemporary(TheCall);
11112}
11113
11114/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11115///  (if one exists), where @c Base is an expression of class type and
11116/// @c Member is the name of the member we're trying to find.
11117ExprResult
11118Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
11119  assert(Base->getType()->isRecordType() &&
11120         "left-hand side must have class type");
11121
11122  if (checkPlaceholderForOverload(*this, Base))
11123    return ExprError();
11124
11125  SourceLocation Loc = Base->getExprLoc();
11126
11127  // C++ [over.ref]p1:
11128  //
11129  //   [...] An expression x->m is interpreted as (x.operator->())->m
11130  //   for a class object x of type T if T::operator->() exists and if
11131  //   the operator is selected as the best match function by the
11132  //   overload resolution mechanism (13.3).
11133  DeclarationName OpName =
11134    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11135  OverloadCandidateSet CandidateSet(Loc);
11136  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11137
11138  if (RequireCompleteType(Loc, Base->getType(),
11139                          diag::err_typecheck_incomplete_tag, Base))
11140    return ExprError();
11141
11142  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11143  LookupQualifiedName(R, BaseRecord->getDecl());
11144  R.suppressDiagnostics();
11145
11146  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11147       Oper != OperEnd; ++Oper) {
11148    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11149                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
11150  }
11151
11152  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11153
11154  // Perform overload resolution.
11155  OverloadCandidateSet::iterator Best;
11156  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11157  case OR_Success:
11158    // Overload resolution succeeded; we'll build the call below.
11159    break;
11160
11161  case OR_No_Viable_Function:
11162    if (CandidateSet.empty())
11163      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11164        << Base->getType() << Base->getSourceRange();
11165    else
11166      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11167        << "operator->" << Base->getSourceRange();
11168    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11169    return ExprError();
11170
11171  case OR_Ambiguous:
11172    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11173      << "->" << Base->getType() << Base->getSourceRange();
11174    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11175    return ExprError();
11176
11177  case OR_Deleted:
11178    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11179      << Best->Function->isDeleted()
11180      << "->"
11181      << getDeletedOrUnavailableSuffix(Best->Function)
11182      << Base->getSourceRange();
11183    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11184    return ExprError();
11185  }
11186
11187  MarkFunctionReferenced(OpLoc, Best->Function);
11188  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11189  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
11190
11191  // Convert the object parameter.
11192  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11193  ExprResult BaseResult =
11194    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11195                                        Best->FoundDecl, Method);
11196  if (BaseResult.isInvalid())
11197    return ExprError();
11198  Base = BaseResult.take();
11199
11200  // Build the operator call.
11201  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
11202                                            HadMultipleCandidates, OpLoc);
11203  if (FnExpr.isInvalid())
11204    return ExprError();
11205
11206  QualType ResultTy = Method->getResultType();
11207  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11208  ResultTy = ResultTy.getNonLValueExprType(Context);
11209  CXXOperatorCallExpr *TheCall =
11210    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11211                                      Base, ResultTy, VK, OpLoc, false);
11212
11213  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11214                          Method))
11215          return ExprError();
11216
11217  return MaybeBindToTemporary(TheCall);
11218}
11219
11220/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11221/// a literal operator described by the provided lookup results.
11222ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11223                                          DeclarationNameInfo &SuffixInfo,
11224                                          ArrayRef<Expr*> Args,
11225                                          SourceLocation LitEndLoc,
11226                                       TemplateArgumentListInfo *TemplateArgs) {
11227  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11228
11229  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11230  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11231                        TemplateArgs);
11232
11233  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11234
11235  // Perform overload resolution. This will usually be trivial, but might need
11236  // to perform substitutions for a literal operator template.
11237  OverloadCandidateSet::iterator Best;
11238  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11239  case OR_Success:
11240  case OR_Deleted:
11241    break;
11242
11243  case OR_No_Viable_Function:
11244    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11245      << R.getLookupName();
11246    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11247    return ExprError();
11248
11249  case OR_Ambiguous:
11250    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11251    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11252    return ExprError();
11253  }
11254
11255  FunctionDecl *FD = Best->Function;
11256  MarkFunctionReferenced(UDSuffixLoc, FD);
11257  DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
11258
11259  ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
11260                                        SuffixInfo.getLoc(),
11261                                        SuffixInfo.getInfo());
11262  if (Fn.isInvalid())
11263    return true;
11264
11265  // Check the argument types. This should almost always be a no-op, except
11266  // that array-to-pointer decay is applied to string literals.
11267  Expr *ConvArgs[2];
11268  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
11269    ExprResult InputInit = PerformCopyInitialization(
11270      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11271      SourceLocation(), Args[ArgIdx]);
11272    if (InputInit.isInvalid())
11273      return true;
11274    ConvArgs[ArgIdx] = InputInit.take();
11275  }
11276
11277  QualType ResultTy = FD->getResultType();
11278  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11279  ResultTy = ResultTy.getNonLValueExprType(Context);
11280
11281  UserDefinedLiteral *UDL =
11282    new (Context) UserDefinedLiteral(Context, Fn.take(),
11283                                     llvm::makeArrayRef(ConvArgs, Args.size()),
11284                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11285
11286  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11287    return ExprError();
11288
11289  if (CheckFunctionCall(FD, UDL, NULL))
11290    return ExprError();
11291
11292  return MaybeBindToTemporary(UDL);
11293}
11294
11295/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11296/// given LookupResult is non-empty, it is assumed to describe a member which
11297/// will be invoked. Otherwise, the function will be found via argument
11298/// dependent lookup.
11299/// CallExpr is set to a valid expression and FRS_Success returned on success,
11300/// otherwise CallExpr is set to ExprError() and some non-success value
11301/// is returned.
11302Sema::ForRangeStatus
11303Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11304                                SourceLocation RangeLoc, VarDecl *Decl,
11305                                BeginEndFunction BEF,
11306                                const DeclarationNameInfo &NameInfo,
11307                                LookupResult &MemberLookup,
11308                                OverloadCandidateSet *CandidateSet,
11309                                Expr *Range, ExprResult *CallExpr) {
11310  CandidateSet->clear();
11311  if (!MemberLookup.empty()) {
11312    ExprResult MemberRef =
11313        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11314                                 /*IsPtr=*/false, CXXScopeSpec(),
11315                                 /*TemplateKWLoc=*/SourceLocation(),
11316                                 /*FirstQualifierInScope=*/0,
11317                                 MemberLookup,
11318                                 /*TemplateArgs=*/0);
11319    if (MemberRef.isInvalid()) {
11320      *CallExpr = ExprError();
11321      Diag(Range->getLocStart(), diag::note_in_for_range)
11322          << RangeLoc << BEF << Range->getType();
11323      return FRS_DiagnosticIssued;
11324    }
11325    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(), Loc, 0);
11326    if (CallExpr->isInvalid()) {
11327      *CallExpr = ExprError();
11328      Diag(Range->getLocStart(), diag::note_in_for_range)
11329          << RangeLoc << BEF << Range->getType();
11330      return FRS_DiagnosticIssued;
11331    }
11332  } else {
11333    UnresolvedSet<0> FoundNames;
11334    UnresolvedLookupExpr *Fn =
11335      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11336                                   NestedNameSpecifierLoc(), NameInfo,
11337                                   /*NeedsADL=*/true, /*Overloaded=*/false,
11338                                   FoundNames.begin(), FoundNames.end());
11339
11340    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, &Range, 1, Loc,
11341                                                    CandidateSet, CallExpr);
11342    if (CandidateSet->empty() || CandidateSetError) {
11343      *CallExpr = ExprError();
11344      return FRS_NoViableFunction;
11345    }
11346    OverloadCandidateSet::iterator Best;
11347    OverloadingResult OverloadResult =
11348        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11349
11350    if (OverloadResult == OR_No_Viable_Function) {
11351      *CallExpr = ExprError();
11352      return FRS_NoViableFunction;
11353    }
11354    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, &Range, 1,
11355                                         Loc, 0, CandidateSet, &Best,
11356                                         OverloadResult,
11357                                         /*AllowTypoCorrection=*/false);
11358    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11359      *CallExpr = ExprError();
11360      Diag(Range->getLocStart(), diag::note_in_for_range)
11361          << RangeLoc << BEF << Range->getType();
11362      return FRS_DiagnosticIssued;
11363    }
11364  }
11365  return FRS_Success;
11366}
11367
11368
11369/// FixOverloadedFunctionReference - E is an expression that refers to
11370/// a C++ overloaded function (possibly with some parentheses and
11371/// perhaps a '&' around it). We have resolved the overloaded function
11372/// to the function declaration Fn, so patch up the expression E to
11373/// refer (possibly indirectly) to Fn. Returns the new expr.
11374Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11375                                           FunctionDecl *Fn) {
11376  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11377    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11378                                                   Found, Fn);
11379    if (SubExpr == PE->getSubExpr())
11380      return PE;
11381
11382    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11383  }
11384
11385  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11386    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11387                                                   Found, Fn);
11388    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11389                               SubExpr->getType()) &&
11390           "Implicit cast type cannot be determined from overload");
11391    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11392    if (SubExpr == ICE->getSubExpr())
11393      return ICE;
11394
11395    return ImplicitCastExpr::Create(Context, ICE->getType(),
11396                                    ICE->getCastKind(),
11397                                    SubExpr, 0,
11398                                    ICE->getValueKind());
11399  }
11400
11401  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11402    assert(UnOp->getOpcode() == UO_AddrOf &&
11403           "Can only take the address of an overloaded function");
11404    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11405      if (Method->isStatic()) {
11406        // Do nothing: static member functions aren't any different
11407        // from non-member functions.
11408      } else {
11409        // Fix the sub expression, which really has to be an
11410        // UnresolvedLookupExpr holding an overloaded member function
11411        // or template.
11412        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11413                                                       Found, Fn);
11414        if (SubExpr == UnOp->getSubExpr())
11415          return UnOp;
11416
11417        assert(isa<DeclRefExpr>(SubExpr)
11418               && "fixed to something other than a decl ref");
11419        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11420               && "fixed to a member ref with no nested name qualifier");
11421
11422        // We have taken the address of a pointer to member
11423        // function. Perform the computation here so that we get the
11424        // appropriate pointer to member type.
11425        QualType ClassType
11426          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11427        QualType MemPtrType
11428          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11429
11430        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11431                                           VK_RValue, OK_Ordinary,
11432                                           UnOp->getOperatorLoc());
11433      }
11434    }
11435    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11436                                                   Found, Fn);
11437    if (SubExpr == UnOp->getSubExpr())
11438      return UnOp;
11439
11440    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11441                                     Context.getPointerType(SubExpr->getType()),
11442                                       VK_RValue, OK_Ordinary,
11443                                       UnOp->getOperatorLoc());
11444  }
11445
11446  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11447    // FIXME: avoid copy.
11448    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11449    if (ULE->hasExplicitTemplateArgs()) {
11450      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11451      TemplateArgs = &TemplateArgsBuffer;
11452    }
11453
11454    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11455                                           ULE->getQualifierLoc(),
11456                                           ULE->getTemplateKeywordLoc(),
11457                                           Fn,
11458                                           /*enclosing*/ false, // FIXME?
11459                                           ULE->getNameLoc(),
11460                                           Fn->getType(),
11461                                           VK_LValue,
11462                                           Found.getDecl(),
11463                                           TemplateArgs);
11464    MarkDeclRefReferenced(DRE);
11465    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11466    return DRE;
11467  }
11468
11469  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11470    // FIXME: avoid copy.
11471    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11472    if (MemExpr->hasExplicitTemplateArgs()) {
11473      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11474      TemplateArgs = &TemplateArgsBuffer;
11475    }
11476
11477    Expr *Base;
11478
11479    // If we're filling in a static method where we used to have an
11480    // implicit member access, rewrite to a simple decl ref.
11481    if (MemExpr->isImplicitAccess()) {
11482      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11483        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11484                                               MemExpr->getQualifierLoc(),
11485                                               MemExpr->getTemplateKeywordLoc(),
11486                                               Fn,
11487                                               /*enclosing*/ false,
11488                                               MemExpr->getMemberLoc(),
11489                                               Fn->getType(),
11490                                               VK_LValue,
11491                                               Found.getDecl(),
11492                                               TemplateArgs);
11493        MarkDeclRefReferenced(DRE);
11494        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11495        return DRE;
11496      } else {
11497        SourceLocation Loc = MemExpr->getMemberLoc();
11498        if (MemExpr->getQualifier())
11499          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11500        CheckCXXThisCapture(Loc);
11501        Base = new (Context) CXXThisExpr(Loc,
11502                                         MemExpr->getBaseType(),
11503                                         /*isImplicit=*/true);
11504      }
11505    } else
11506      Base = MemExpr->getBase();
11507
11508    ExprValueKind valueKind;
11509    QualType type;
11510    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11511      valueKind = VK_LValue;
11512      type = Fn->getType();
11513    } else {
11514      valueKind = VK_RValue;
11515      type = Context.BoundMemberTy;
11516    }
11517
11518    MemberExpr *ME = MemberExpr::Create(Context, Base,
11519                                        MemExpr->isArrow(),
11520                                        MemExpr->getQualifierLoc(),
11521                                        MemExpr->getTemplateKeywordLoc(),
11522                                        Fn,
11523                                        Found,
11524                                        MemExpr->getMemberNameInfo(),
11525                                        TemplateArgs,
11526                                        type, valueKind, OK_Ordinary);
11527    ME->setHadMultipleCandidates(true);
11528    return ME;
11529  }
11530
11531  llvm_unreachable("Invalid reference to overloaded function");
11532}
11533
11534ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11535                                                DeclAccessPair Found,
11536                                                FunctionDecl *Fn) {
11537  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11538}
11539
11540} // end namespace clang
11541