1//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines SVal, Loc, and NonLoc, classes that represent 11// abstract r-values for use with path-sensitive value tracking. 12// 13//===----------------------------------------------------------------------===// 14 15#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 16#include "clang/AST/ExprObjC.h" 17#include "clang/Basic/IdentifierTable.h" 18#include "llvm/Support/raw_ostream.h" 19using namespace clang; 20using namespace ento; 21using llvm::APSInt; 22 23//===----------------------------------------------------------------------===// 24// Symbol iteration within an SVal. 25//===----------------------------------------------------------------------===// 26 27 28//===----------------------------------------------------------------------===// 29// Utility methods. 30//===----------------------------------------------------------------------===// 31 32bool SVal::hasConjuredSymbol() const { 33 if (Optional<nonloc::SymbolVal> SV = getAs<nonloc::SymbolVal>()) { 34 SymbolRef sym = SV->getSymbol(); 35 if (isa<SymbolConjured>(sym)) 36 return true; 37 } 38 39 if (Optional<loc::MemRegionVal> RV = getAs<loc::MemRegionVal>()) { 40 const MemRegion *R = RV->getRegion(); 41 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { 42 SymbolRef sym = SR->getSymbol(); 43 if (isa<SymbolConjured>(sym)) 44 return true; 45 } 46 } 47 48 return false; 49} 50 51const FunctionDecl *SVal::getAsFunctionDecl() const { 52 if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) { 53 const MemRegion* R = X->getRegion(); 54 if (const FunctionTextRegion *CTR = R->getAs<FunctionTextRegion>()) 55 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CTR->getDecl())) 56 return FD; 57 } 58 59 return 0; 60} 61 62/// \brief If this SVal is a location (subclasses Loc) and wraps a symbol, 63/// return that SymbolRef. Otherwise return 0. 64/// 65/// Implicit casts (ex: void* -> char*) can turn Symbolic region into Element 66/// region. If that is the case, gets the underlining region. 67SymbolRef SVal::getAsLocSymbol() const { 68 // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? 69 if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>()) 70 return X->getLoc().getAsLocSymbol(); 71 72 if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) { 73 const MemRegion *R = X->stripCasts(); 74 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R)) 75 return SymR->getSymbol(); 76 } 77 return 0; 78} 79 80/// Get the symbol in the SVal or its base region. 81SymbolRef SVal::getLocSymbolInBase() const { 82 Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>(); 83 84 if (!X) 85 return 0; 86 87 const MemRegion *R = X->getRegion(); 88 89 while (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 90 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR)) 91 return SymR->getSymbol(); 92 else 93 R = SR->getSuperRegion(); 94 } 95 96 return 0; 97} 98 99// TODO: The next 3 functions have to be simplified. 100 101/// \brief If this SVal wraps a symbol return that SymbolRef. 102/// Otherwise return 0. 103SymbolRef SVal::getAsSymbol() const { 104 // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? 105 if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>()) 106 return X->getSymbol(); 107 108 return getAsLocSymbol(); 109} 110 111/// getAsSymbolicExpression - If this Sval wraps a symbolic expression then 112/// return that expression. Otherwise return NULL. 113const SymExpr *SVal::getAsSymbolicExpression() const { 114 if (Optional<nonloc::SymbolVal> X = getAs<nonloc::SymbolVal>()) 115 return X->getSymbol(); 116 117 return getAsSymbol(); 118} 119 120const SymExpr* SVal::getAsSymExpr() const { 121 const SymExpr* Sym = getAsSymbol(); 122 if (!Sym) 123 Sym = getAsSymbolicExpression(); 124 return Sym; 125} 126 127const MemRegion *SVal::getAsRegion() const { 128 if (Optional<loc::MemRegionVal> X = getAs<loc::MemRegionVal>()) 129 return X->getRegion(); 130 131 if (Optional<nonloc::LocAsInteger> X = getAs<nonloc::LocAsInteger>()) 132 return X->getLoc().getAsRegion(); 133 134 return 0; 135} 136 137const MemRegion *loc::MemRegionVal::stripCasts(bool StripBaseCasts) const { 138 const MemRegion *R = getRegion(); 139 return R ? R->StripCasts(StripBaseCasts) : NULL; 140} 141 142const void *nonloc::LazyCompoundVal::getStore() const { 143 return static_cast<const LazyCompoundValData*>(Data)->getStore(); 144} 145 146const TypedValueRegion *nonloc::LazyCompoundVal::getRegion() const { 147 return static_cast<const LazyCompoundValData*>(Data)->getRegion(); 148} 149 150//===----------------------------------------------------------------------===// 151// Other Iterators. 152//===----------------------------------------------------------------------===// 153 154nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const { 155 return getValue()->begin(); 156} 157 158nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const { 159 return getValue()->end(); 160} 161 162//===----------------------------------------------------------------------===// 163// Useful predicates. 164//===----------------------------------------------------------------------===// 165 166bool SVal::isConstant() const { 167 return getAs<nonloc::ConcreteInt>() || getAs<loc::ConcreteInt>(); 168} 169 170bool SVal::isConstant(int I) const { 171 if (Optional<loc::ConcreteInt> LV = getAs<loc::ConcreteInt>()) 172 return LV->getValue() == I; 173 if (Optional<nonloc::ConcreteInt> NV = getAs<nonloc::ConcreteInt>()) 174 return NV->getValue() == I; 175 return false; 176} 177 178bool SVal::isZeroConstant() const { 179 return isConstant(0); 180} 181 182 183//===----------------------------------------------------------------------===// 184// Transfer function dispatch for Non-Locs. 185//===----------------------------------------------------------------------===// 186 187SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder, 188 BinaryOperator::Opcode Op, 189 const nonloc::ConcreteInt& R) const { 190 const llvm::APSInt* X = 191 svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue()); 192 193 if (X) 194 return nonloc::ConcreteInt(*X); 195 else 196 return UndefinedVal(); 197} 198 199nonloc::ConcreteInt 200nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const { 201 return svalBuilder.makeIntVal(~getValue()); 202} 203 204nonloc::ConcreteInt 205nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const { 206 return svalBuilder.makeIntVal(-getValue()); 207} 208 209//===----------------------------------------------------------------------===// 210// Transfer function dispatch for Locs. 211//===----------------------------------------------------------------------===// 212 213SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals, 214 BinaryOperator::Opcode Op, 215 const loc::ConcreteInt& R) const { 216 217 assert (Op == BO_Add || Op == BO_Sub || 218 (Op >= BO_LT && Op <= BO_NE)); 219 220 const llvm::APSInt* X = BasicVals.evalAPSInt(Op, getValue(), R.getValue()); 221 222 if (X) 223 return loc::ConcreteInt(*X); 224 else 225 return UndefinedVal(); 226} 227 228//===----------------------------------------------------------------------===// 229// Pretty-Printing. 230//===----------------------------------------------------------------------===// 231 232void SVal::dump() const { dumpToStream(llvm::errs()); } 233 234void SVal::dumpToStream(raw_ostream &os) const { 235 switch (getBaseKind()) { 236 case UnknownKind: 237 os << "Unknown"; 238 break; 239 case NonLocKind: 240 castAs<NonLoc>().dumpToStream(os); 241 break; 242 case LocKind: 243 castAs<Loc>().dumpToStream(os); 244 break; 245 case UndefinedKind: 246 os << "Undefined"; 247 break; 248 } 249} 250 251void NonLoc::dumpToStream(raw_ostream &os) const { 252 switch (getSubKind()) { 253 case nonloc::ConcreteIntKind: { 254 const nonloc::ConcreteInt& C = castAs<nonloc::ConcreteInt>(); 255 if (C.getValue().isUnsigned()) 256 os << C.getValue().getZExtValue(); 257 else 258 os << C.getValue().getSExtValue(); 259 os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S') 260 << C.getValue().getBitWidth() << 'b'; 261 break; 262 } 263 case nonloc::SymbolValKind: { 264 os << castAs<nonloc::SymbolVal>().getSymbol(); 265 break; 266 } 267 case nonloc::LocAsIntegerKind: { 268 const nonloc::LocAsInteger& C = castAs<nonloc::LocAsInteger>(); 269 os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]"; 270 break; 271 } 272 case nonloc::CompoundValKind: { 273 const nonloc::CompoundVal& C = castAs<nonloc::CompoundVal>(); 274 os << "compoundVal{"; 275 bool first = true; 276 for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) { 277 if (first) { 278 os << ' '; first = false; 279 } 280 else 281 os << ", "; 282 283 (*I).dumpToStream(os); 284 } 285 os << "}"; 286 break; 287 } 288 case nonloc::LazyCompoundValKind: { 289 const nonloc::LazyCompoundVal &C = castAs<nonloc::LazyCompoundVal>(); 290 os << "lazyCompoundVal{" << const_cast<void *>(C.getStore()) 291 << ',' << C.getRegion() 292 << '}'; 293 break; 294 } 295 default: 296 assert (false && "Pretty-printed not implemented for this NonLoc."); 297 break; 298 } 299} 300 301void Loc::dumpToStream(raw_ostream &os) const { 302 switch (getSubKind()) { 303 case loc::ConcreteIntKind: 304 os << castAs<loc::ConcreteInt>().getValue().getZExtValue() << " (Loc)"; 305 break; 306 case loc::GotoLabelKind: 307 os << "&&" << castAs<loc::GotoLabel>().getLabel()->getName(); 308 break; 309 case loc::MemRegionKind: 310 os << '&' << castAs<loc::MemRegionVal>().getRegion()->getString(); 311 break; 312 default: 313 llvm_unreachable("Pretty-printing not implemented for this Loc."); 314 } 315} 316