1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#ifndef EIGEN_TRIDIAGONALIZATION_H
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define EIGEN_TRIDIAGONALIZATION_H
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace Eigen {
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace internal {
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::PlainObject ReturnType;
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, typename CoeffVectorType>
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \eigenvalues_module \ingroup Eigenvalues_Module
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \class Tridiagonalization
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \brief Tridiagonal decomposition of a selfadjoint matrix
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \tparam _MatrixType the type of the matrix of which we are computing the
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * tridiagonal decomposition; this is expected to be an instantiation of the
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Matrix class template.
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * A tridiagonal matrix is a matrix which has nonzero elements only on the
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * main diagonal and the first diagonal below and above it. The Hessenberg
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * decomposition of a selfadjoint matrix is in fact a tridiagonal
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * decomposition. This class is used in SelfAdjointEigenSolver to compute the
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * eigenvalues and eigenvectors of a selfadjoint matrix.
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Call the function compute() to compute the tridiagonal decomposition of a
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * constructor which computes the tridiagonal Schur decomposition at
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * construction time. Once the decomposition is computed, you can use the
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * decomposition.
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The documentation of Tridiagonalization(const MatrixType&) contains an
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * example of the typical use of this class.
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename _MatrixType> class Tridiagonalization
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  public:
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Synonym for the template parameter \p _MatrixType. */
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef _MatrixType MatrixType;
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Scalar Scalar;
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename NumTraits<Scalar>::Real RealScalar;
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Index Index;
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    enum {
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Size = MatrixType::RowsAtCompileTime,
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Options = MatrixType::Options,
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      MaxSize = MatrixType::MaxRowsAtCompileTime,
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    };
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType;
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType;
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              const Diagonal<const MatrixType>
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            >::type DiagonalReturnType;
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              typename internal::add_const_on_value_type<typename Diagonal<
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type,
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              const Diagonal<
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                Block<const MatrixType,SizeMinusOne,SizeMinusOne> >
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            >::type SubDiagonalReturnType;
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Return type of matrixQ() */
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename HouseholderSequence<MatrixType,CoeffVectorType>::ConjugateReturnType HouseholderSequenceType;
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Default constructor.
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param [in]  size  Positive integer, size of the matrix whose tridiagonal
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * decomposition will be computed.
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The default constructor is useful in cases in which the user intends to
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * perform decompositions via compute().  The \p size parameter is only
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * used as a hint. It is not an error to give a wrong \p size, but it may
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * impair performance.
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa compute() for an example.
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      : m_matrix(size,size),
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_hCoeffs(size > 1 ? size-1 : 1),
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_isInitialized(false)
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {}
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Constructor; computes tridiagonal decomposition of given matrix.
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * is to be computed.
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This constructor calls compute() to compute the tridiagonal decomposition.
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Tridiagonalization(const MatrixType& matrix)
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      : m_matrix(matrix),
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_isInitialized(false)
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_isInitialized = true;
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Computes tridiagonal decomposition of given matrix.
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  matrix  Selfadjoint matrix whose tridiagonal decomposition
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * is to be computed.
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns    Reference to \c *this
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The tridiagonal decomposition is computed by bringing the columns of
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the matrix successively in the required form using Householder
146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the size of the given matrix.
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This method reuses of the allocated data in the Tridiagonalization
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * object, if the size of the matrix does not change.
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include Tridiagonalization_compute.cpp
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude Tridiagonalization_compute.out
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Tridiagonalization& compute(const MatrixType& matrix)
156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_matrix = matrix;
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_hCoeffs.resize(matrix.rows()-1, 1);
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_isInitialized = true;
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return *this;
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the Householder coefficients.
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns a const reference to the vector of Householder coefficients
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the member function compute(const MatrixType&) has been called before
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the tridiagonal decomposition of a matrix.
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The Householder coefficients allow the reconstruction of the matrix
173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include Tridiagonalization_householderCoefficients.cpp
176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude Tridiagonalization_householderCoefficients.out
177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa packedMatrix(), \ref Householder_Module "Householder module"
179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    inline CoeffVectorType householderCoefficients() const
181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_hCoeffs;
184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the internal representation of the decomposition
187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *	\returns a const reference to a matrix with the internal representation
189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *	         of the decomposition.
190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the member function compute(const MatrixType&) has been called before
193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the tridiagonal decomposition of a matrix.
194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The returned matrix contains the following information:
196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *  - the strict upper triangular part is equal to the input matrix A.
197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *  - the diagonal and lower sub-diagonal represent the real tridiagonal
198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    symmetric matrix T.
199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *  - the rest of the lower part contains the Householder vectors that,
200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    combined with Householder coefficients returned by
201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    householderCoefficients(), allows to reconstruct the matrix Q as
202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    Here, the matrices \f$ H_i \f$ are the Householder transformations
204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *       \f$ H_i = (I - h_i v_i v_i^T) \f$
205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    \f$ v_i \f$ is the Householder vector defined by
207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    with M the matrix returned by this function.
209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * See LAPACK for further details on this packed storage.
211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include Tridiagonalization_packedMatrix.cpp
213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude Tridiagonalization_packedMatrix.out
214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa householderCoefficients()
216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    inline const MatrixType& packedMatrix() const
218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_matrix;
221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the unitary matrix Q in the decomposition
224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns object representing the matrix Q
226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the member function compute(const MatrixType&) has been called before
229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the tridiagonal decomposition of a matrix.
230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This function returns a light-weight object of template class
232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * HouseholderSequence. You can either apply it directly to a matrix or
233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * you can convert it to a matrix of type #MatrixType.
234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa Tridiagonalization(const MatrixType&) for an example,
236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *     matrixT(), class HouseholderSequence
237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    HouseholderSequenceType matrixQ() const
239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             .setLength(m_matrix.rows() - 1)
243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath             .setShift(1);
244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns an expression of the tridiagonal matrix T in the decomposition
247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns expression object representing the matrix T
249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the member function compute(const MatrixType&) has been called before
252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the tridiagonal decomposition of a matrix.
253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Currently, this function can be used to extract the matrix T from internal
255c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * data and copy it to a dense matrix object. In most cases, it may be
256c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * sufficient to directly use the packed matrix or the vector expressions
257c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * returned by diagonal() and subDiagonal() instead of creating a new
258c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * dense copy matrix with this function.
259c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
260c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa Tridiagonalization(const MatrixType&) for an example,
261c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
262c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
263c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MatrixTReturnType matrixT() const
264c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
265c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
266c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return MatrixTReturnType(m_matrix.real());
267c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
268c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
269c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
270c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
271c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns expression representing the diagonal of T
272c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
273c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
274c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the member function compute(const MatrixType&) has been called before
275c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the tridiagonal decomposition of a matrix.
276c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
277c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include Tridiagonalization_diagonal.cpp
278c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude Tridiagonalization_diagonal.out
279c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
280c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa matrixT(), subDiagonal()
281c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
282c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    DiagonalReturnType diagonal() const;
283c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
284c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
285c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
286c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns expression representing the subdiagonal of T
287c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
288c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor Tridiagonalization(const MatrixType&) or
289c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * the member function compute(const MatrixType&) has been called before
290c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the tridiagonal decomposition of a matrix.
291c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
292c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa diagonal() for an example, matrixT()
293c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
294c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    SubDiagonalReturnType subDiagonal() const;
295c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
296c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  protected:
297c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
298c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MatrixType m_matrix;
299c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CoeffVectorType m_hCoeffs;
300c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    bool m_isInitialized;
301c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
302c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
303c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
304c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypename Tridiagonalization<MatrixType>::DiagonalReturnType
305c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathTridiagonalization<MatrixType>::diagonal() const
306c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
307c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
308c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return m_matrix.diagonal();
309c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
310c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
311c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
312c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypename Tridiagonalization<MatrixType>::SubDiagonalReturnType
313c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathTridiagonalization<MatrixType>::subDiagonal() const
314c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
315c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
316c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index n = m_matrix.rows();
317c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
318c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
319c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
320c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace internal {
321c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
322c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \internal
323c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
324c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
325c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
326c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *                     On output, the strict upper part is left unchanged, and the lower triangular part
327c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *                     represents the T and Q matrices in packed format has detailed below.
328c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param[out]    hCoeffs returned Householder coefficients (see below)
329c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
330c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
331c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * and lower sub-diagonal of the matrix \a matA.
332c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The unitary matrix Q is represented in a compact way as a product of
333c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Householder reflectors \f$ H_i \f$ such that:
334c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
335c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The Householder reflectors are defined as
336c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *       \f$ H_i = (I - h_i v_i v_i^T) \f$
337c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
338c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ v_i \f$ is the Householder vector defined by
339c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *       \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
340c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
341c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
342c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
343c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa Tridiagonalization::packedMatrix()
344c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
345c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, typename CoeffVectorType>
346c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
347c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
348c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
349c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
350c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::RealScalar RealScalar;
351c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index n = matA.rows();
352c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(n==matA.cols());
353c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(n==hCoeffs.size()+1 || n==1);
354c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
355c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index i = 0; i<n-1; ++i)
356c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
357c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Index remainingSize = n-i-1;
358c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    RealScalar beta;
359c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Scalar h;
360c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
361c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
362c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Apply similarity transformation to remaining columns,
363c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
364c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    matA.col(i).coeffRef(i+1) = 1;
365c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
366c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
367c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                                  * (conj(h) * matA.col(i).tail(remainingSize)));
368c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
369c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
370c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
371c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
372c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
373c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
374c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    matA.col(i).coeffRef(i+1) = beta;
375c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    hCoeffs.coeffRef(i) = h;
376c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
377c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
378c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
379c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// forward declaration, implementation at the end of this file
380c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType,
381c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         int Size=MatrixType::ColsAtCompileTime,
382c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
383c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct tridiagonalization_inplace_selector;
384c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
385c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \brief Performs a full tridiagonalization in place
386c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
387c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param[in,out]  mat  On input, the selfadjoint matrix whose tridiagonal
388c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    decomposition is to be computed. Only the lower triangular part referenced.
389c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    The rest is left unchanged. On output, the orthogonal matrix Q
390c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    in the decomposition if \p extractQ is true.
391c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param[out]  diag  The diagonal of the tridiagonal matrix T in the
392c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    decomposition.
393c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param[out]  subdiag  The subdiagonal of the tridiagonal matrix T in
394c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    the decomposition.
395c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \param[in]  extractQ  If true, the orthogonal matrix Q in the
396c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    decomposition is computed and stored in \p mat.
397c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
398c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
399c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
400c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * symmetric tridiagonal matrix.
401c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
402c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
403c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
404c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * part of the matrix \p mat is destroyed.
405c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
406c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The vectors \p diag and \p subdiag are not resized. The function
407c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * assumes that they are already of the correct size. The length of the
408c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * vector \p diag should equal the number of rows in \p mat, and the
409c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * length of the vector \p subdiag should be one left.
410c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
411c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * This implementation contains an optimized path for 3-by-3 matrices
412c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * which is especially useful for plane fitting.
413c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
414c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \note Currently, it requires two temporary vectors to hold the intermediate
415c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Householder coefficients, and to reconstruct the matrix Q from the Householder
416c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * reflectors.
417c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
418c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Example (this uses the same matrix as the example in
419c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    Tridiagonalization::Tridiagonalization(const MatrixType&)):
420c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *    \include Tridiagonalization_decomposeInPlace.cpp
421c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
422c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
423c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa class Tridiagonalization
424c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
425c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
426c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
427c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
428c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
429c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  //Index n = mat.rows();
430c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
431c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
432c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
433c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
434c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \internal
435c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * General full tridiagonalization
436c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
437c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, int Size, bool IsComplex>
438c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct tridiagonalization_inplace_selector
439c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
440c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
441c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
442c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
443c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename DiagonalType, typename SubDiagonalType>
444c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
445c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
446c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CoeffVectorType hCoeffs(mat.cols()-1);
447c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    tridiagonalization_inplace(mat,hCoeffs);
448c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    diag = mat.diagonal().real();
449c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    subdiag = mat.template diagonal<-1>().real();
450c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if(extractQ)
451c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
452c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            .setLength(mat.rows() - 1)
453c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            .setShift(1);
454c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
455c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
456c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
457c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \internal
458c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Specialization for 3x3 real matrices.
459c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Especially useful for plane fitting.
460c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
461c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
462c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct tridiagonalization_inplace_selector<MatrixType,3,false>
463c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
464c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
465c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::RealScalar RealScalar;
466c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
467c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename DiagonalType, typename SubDiagonalType>
468c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
469c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
470c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    diag[0] = mat(0,0);
471c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    RealScalar v1norm2 = abs2(mat(2,0));
472c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if(v1norm2 == RealScalar(0))
473c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
474c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      diag[1] = mat(1,1);
475c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      diag[2] = mat(2,2);
476c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      subdiag[0] = mat(1,0);
477c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      subdiag[1] = mat(2,1);
478c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if (extractQ)
479c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        mat.setIdentity();
480c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
481c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    else
482c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
483c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      RealScalar beta = sqrt(abs2(mat(1,0)) + v1norm2);
484c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      RealScalar invBeta = RealScalar(1)/beta;
485c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Scalar m01 = mat(1,0) * invBeta;
486c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Scalar m02 = mat(2,0) * invBeta;
487c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
488c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      diag[1] = mat(1,1) + m02*q;
489c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      diag[2] = mat(2,2) - m02*q;
490c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      subdiag[0] = beta;
491c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      subdiag[1] = mat(2,1) - m01 * q;
492c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if (extractQ)
493c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
494c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        mat << 1,   0,    0,
495c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath               0, m01,  m02,
496c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath               0, m02, -m01;
497c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
498c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
499c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
500c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
501c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
502c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \internal
503c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * Trivial specialization for 1x1 matrices
504c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
505c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, bool IsComplex>
506c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
507c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
508c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
509c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
510c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  template<typename DiagonalType, typename SubDiagonalType>
511c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
512c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
513c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    diag(0,0) = real(mat(0,0));
514c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if(extractQ)
515c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      mat(0,0) = Scalar(1);
516c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
517c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
518c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
519c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \internal
520c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \eigenvalues_module \ingroup Eigenvalues_Module
521c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
522c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \brief Expression type for return value of Tridiagonalization::matrixT()
523c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
524c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \tparam MatrixType type of underlying dense matrix
525c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
526c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType> struct TridiagonalizationMatrixTReturnType
527c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
528c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
529c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Index Index;
530c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  public:
531c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Constructor.
532c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
533c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in] mat The underlying dense matrix
534c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
535c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
536c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
537c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    template <typename ResultType>
538c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    inline void evalTo(ResultType& result) const
539c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
540c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      result.setZero();
541c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
542c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      result.diagonal() = m_matrix.diagonal();
543c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
544c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
545c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
546c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Index rows() const { return m_matrix.rows(); }
547c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Index cols() const { return m_matrix.cols(); }
548c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
549c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  protected:
550c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typename MatrixType::Nested m_matrix;
551c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
552c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
553c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace internal
554c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
555c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace Eigen
556c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
557c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif // EIGEN_TRIDIAGONALIZATION_H
558