1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#ifndef EIGEN_UMEYAMA_H
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define EIGEN_UMEYAMA_H
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file requires the user to include
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// * Eigen/Core
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// * Eigen/LU
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// * Eigen/SVD
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// * Eigen/Array
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace Eigen {
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#ifndef EIGEN_PARSED_BY_DOXYGEN
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// These helpers are required since it allows to use mixed types as parameters
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for the Umeyama. The problem with mixed parameters is that the return type
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// cannot trivially be deduced when float and double types are mixed.
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace internal {
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Compile time return type deduction for different MatrixBase types.
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Different means here different alignment and parameters but the same underlying
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// real scalar type.
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, typename OtherMatrixType>
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathstruct umeyama_transform_matrix_type
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum {
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // When possible we want to choose some small fixed size value since the result
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<typename traits<MatrixType>::Scalar,
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    HomogeneousDimension,
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    HomogeneousDimension,
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    HomogeneousDimension,
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    HomogeneousDimension
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  > type;
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/**
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \geometry_module \ingroup Geometry_Module
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \brief Returns the transformation between two point sets.
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* The algorithm is based on:
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* "Least-squares estimation of transformation parameters between two point patterns",
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \f{align*}
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*   \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \f}
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* is minimized.
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* The algorithm is based on the analysis of the covariance matrix
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \f$d\f$ is corresponding to the dimension (which is typically small).
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* though the actual computational effort lies in the covariance
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* the input point sets have dimension \f$d \times m\f$.
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* Currently the method is working only for floating point matrices.
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \todo Should the return type of umeyama() become a Transform?
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \return The homogeneous transformation
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \f{align*}
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*   T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* \f}
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* minimizing the resudiual above. This transformation is always returned as an
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath* Eigen::Matrix.
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath*/
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate <typename Derived, typename OtherDerived>
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtypename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathumeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename NumTraits<Scalar>::Real RealScalar;
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename Derived::Index Index;
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, Dimension, 1> VectorType;
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Index m = src.rows(); // dimension
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Index n = src.cols(); // number of measurements
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // required for demeaning ...
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // computation of mean
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const VectorType src_mean = src.rowwise().sum() * one_over_n;
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // demeaning of src and dst points
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const RowMajorMatrixType src_demean = src.colwise() - src_mean;
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Eq. (36)-(37)
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Eq. (38)
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Initialize the resulting transformation with an identity matrix...
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Eq. (39)
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VectorType S = VectorType::Ones(m);
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (sigma.determinant()<0) S(m-1) = -1;
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Eq. (40) and (43)
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const VectorType& d = svd.singularValues();
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (rank == m-1) {
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    } else {
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      const Scalar s = S(m-1); S(m-1) = -1;
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      S(m-1) = s;
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  } else {
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Eq. (42)
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Scalar c = 1/src_var * svd.singularValues().dot(S);
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Eq. (41)
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Note that we first assign dst_mean to the destination so that there no need
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // for a temporary.
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Rt.col(m).head(m) = dst_mean;
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (with_scaling) Rt.block(0,0,m,m) *= c;
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return Rt;
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace Eigen
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif // EIGEN_UMEYAMA_H
173