1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// discard stack allocation as that too bypasses malloc
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define EIGEN_STACK_ALLOCATION_LIMIT 0
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define EIGEN_RUNTIME_NO_MALLOC
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "main.h"
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include <Eigen/SVD>
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, int QRPreconditioner>
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index rows = m.rows();
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index cols = m.cols();
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum {
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ColsAtCompileTime = MatrixType::ColsAtCompileTime
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename NumTraits<Scalar>::Real RealScalar;
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType sigma = MatrixType::Zero(rows,cols);
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  sigma.diagonal() = svd.singularValues().template cast<Scalar>();
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixUType u = svd.matrixU();
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixVType v = svd.matrixV();
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_UNITARY(u);
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_UNITARY(v);
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, int QRPreconditioner>
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_compare_to_full(const MatrixType& m,
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                               unsigned int computationOptions,
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                               const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index rows = m.rows();
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index cols = m.cols();
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index diagSize = (std::min)(rows, cols);
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if(computationOptions & ComputeFullU)
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if(computationOptions & ComputeThinU)
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if(computationOptions & ComputeFullV)
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if(computationOptions & ComputeThinV)
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, int QRPreconditioner>
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index rows = m.rows();
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index cols = m.cols();
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum {
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ColsAtCompileTime = MatrixType::ColsAtCompileTime
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  SolutionType x = svd.solve(rhs);
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // evaluate normal equation which works also for least-squares solutions
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType, int QRPreconditioner>
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_test_all_computation_options(const MatrixType& m)
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return;
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_check_full(m, fullSvd);
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    return;
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_compare_to_full(m, 0, fullSvd);
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (MatrixType::ColsAtCompileTime == Dynamic) {
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // thin U/V are only available with dynamic number of columns
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_compare_to_full(m,              ComputeThinV, fullSvd);
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_compare_to_full(m, ComputeThinU             , fullSvd);
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // test reconstruction
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Index Index;
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Index diagSize = (std::min)(m.rows(), m.cols());
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Index Index;
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index rows = m.rows();
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Index cols = m.cols();
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum {
147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ColsAtCompileTime = MatrixType::ColsAtCompileTime
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  };
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  RhsType rhs(rows);
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixType> svd;
156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.matrixU())
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.singularValues())
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.matrixV())
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.solve(rhs))
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType a = MatrixType::Zero(rows, cols);
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  a.setZero();
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(a, 0);
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.matrixU())
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.matrixV())
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.singularValues();
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd.solve(rhs))
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if (ColsAtCompileTime == Dynamic)
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    svd.compute(a, ComputeThinU);
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    svd.matrixU();
173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd.matrixV())
174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd.solve(rhs))
175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    svd.compute(a, ComputeThinV);
177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    svd.matrixV();
178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd.matrixU())
179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd.solve(rhs))
180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  else
187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_method()
195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  enum { Size = MatrixType::RowsAtCompileTime };
197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::RealScalar RealScalar;
198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef Matrix<RealScalar, Size, 1> RealVecType;
199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType m = MatrixType::Identity();
200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// work around stupid msvc error when constructing at compile time an expression that involves
207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// a division by zero, even if the numeric type has floating point
208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename Scalar>
209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathEIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// workaround aggressive optimization in ICC
212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_inf_nan()
216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // all this function does is verify we don't iterate infinitely on nan/inf values
218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixType> svd;
220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  typedef typename MatrixType::Scalar Scalar;
221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar some_inf = Scalar(1) / zero<Scalar>();
222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Scalar some_nan = zero<Scalar>() / zero<Scalar>();
226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY(some_nan != some_nan);
227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixType m = MatrixType::Zero(10,10);
230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(m, ComputeFullU | ComputeFullV);
232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m = MatrixType::Zero(10,10);
234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(m, ComputeFullU | ComputeFullV);
236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Regression test for bug 286: JacobiSVD loops indefinitely with some
239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// matrices containing denormal numbers.
240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_bug286()
241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#if defined __INTEL_COMPILER
243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// shut up warning #239: floating point underflow
244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#pragma warning push
245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#pragma warning disable 239
246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif
247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Matrix2d M;
248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  M << -7.90884e-313, -4.94e-324,
249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath                 0, 5.60844e-313;
250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#if defined __INTEL_COMPILER
251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#pragma warning pop
252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif
253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<Matrix2d> svd;
254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(M); // just check we don't loop indefinitely
255c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
256c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
257c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid jacobisvd_preallocate()
258c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
259c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  Vector3f v(3.f, 2.f, 1.f);
260c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  MatrixXf m = v.asDiagonal();
261c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
262c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(false);
263c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(VectorXf v(10);)
264c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixXf> svd;
265c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(true);
266c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd.compute(m);
267c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd.singularValues(), v);
268c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
269c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixXf> svd2(3,3);
270c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(false);
271c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd2.compute(m);
272c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(true);
273c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd2.singularValues(), v);
274c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd2.matrixU());
275c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_RAISES_ASSERT(svd2.matrixV());
276c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd2.compute(m, ComputeFullU | ComputeFullV);
277c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
278c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
279c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(false);
280c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd2.compute(m);
281c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(true);
282c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
283c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
284c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(false);
285c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd2.compute(m);
286c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(true);
287c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd2.singularValues(), v);
288c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
289c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
290c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(false);
291c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  svd2.compute(m, ComputeFullU|ComputeFullV);
292c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  internal::set_is_malloc_allowed(true);
293c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
294c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
295c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid test_jacobisvd()
296c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
297c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
298c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
299c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
300c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
301c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
302c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for(int i = 0; i < g_repeat; i++) {
303c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Matrix2cd m;
304c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m << 0, 1,
305c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         0, 1;
306c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_1(( jacobisvd(m, false) ));
307c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m << 1, 0,
308c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         1, 0;
309c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_1(( jacobisvd(m, false) ));
310c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
311c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Matrix2d n;
312c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    n << 0, 0,
313c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         0, 0;
314c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_2(( jacobisvd(n, false) ));
315c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    n << 0, 0,
316c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath         0, 1;
317c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_2(( jacobisvd(n, false) ));
318c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
319c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
320c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
321c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
322c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
323c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
324c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    int r = internal::random<int>(1, 30),
325c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        c = internal::random<int>(1, 30);
326c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
327c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
328c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    (void) r;
329c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    (void) c;
330c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
331c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Test on inf/nan matrix
332c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
333c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
334c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
335c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
336c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
337c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
338c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // test matrixbase method
339c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
340c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
341c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
342c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Test problem size constructors
343c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
344c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
345c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Check that preallocation avoids subsequent mallocs
346c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_9( jacobisvd_preallocate() );
347c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
348c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Regression check for bug 286
349c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  CALL_SUBTEST_2( jacobisvd_bug286() );
350c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
351