1//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCASSEMBLER_H
11#define LLVM_MC_MCASSEMBLER_H
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/ilist_node.h"
18#include "llvm/MC/MCFixup.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/Support/Casting.h"
21#include "llvm/Support/DataTypes.h"
22#include <vector> // FIXME: Shouldn't be needed.
23
24namespace mcld {
25class Layout;
26}
27
28namespace llvm {
29class raw_ostream;
30class MCAsmLayout;
31class MCAssembler;
32class MCContext;
33class MCCodeEmitter;
34class MCExpr;
35class MCFragment;
36class MCObjectWriter;
37class MCSection;
38class MCSectionData;
39class MCSymbol;
40class MCSymbolData;
41class MCValue;
42class MCAsmBackend;
43
44class MCFragment : public ilist_node<MCFragment> {
45  friend class MCAsmLayout;
46  friend class mcld::Layout;
47
48  MCFragment(const MCFragment&) LLVM_DELETED_FUNCTION;
49  void operator=(const MCFragment&) LLVM_DELETED_FUNCTION;
50
51public:
52  enum FragmentType {
53    FT_Align,
54    FT_Data,
55    FT_CompactEncodedInst,
56    FT_Fill,
57    FT_Relaxable,
58    FT_Org,
59    FT_Dwarf,
60    FT_DwarfFrame,
61    FT_LEB,
62    FT_Region,
63    FT_Reloc,
64    FT_Target
65  };
66
67private:
68  FragmentType Kind;
69
70  /// Parent - The data for the section this fragment is in.
71  MCSectionData *Parent;
72
73  /// Atom - The atom this fragment is in, as represented by it's defining
74  /// symbol. Atom's are only used by backends which set
75  /// \see MCAsmBackend::hasReliableSymbolDifference().
76  MCSymbolData *Atom;
77
78  /// @name Assembler Backend Data
79  /// @{
80  //
81  // FIXME: This could all be kept private to the assembler implementation.
82
83  /// Offset - The offset of this fragment in its section. This is ~0 until
84  /// initialized.
85  uint64_t Offset;
86
87  /// LayoutOrder - The layout order of this fragment.
88  unsigned LayoutOrder;
89
90  /// @}
91
92protected:
93  MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
94
95public:
96  // Only for sentinel.
97  MCFragment();
98  virtual ~MCFragment();
99
100  FragmentType getKind() const { return Kind; }
101
102  MCSectionData *getParent() const { return Parent; }
103  void setParent(MCSectionData *Value) { Parent = Value; }
104
105  MCSymbolData *getAtom() const { return Atom; }
106  void setAtom(MCSymbolData *Value) { Atom = Value; }
107
108  unsigned getLayoutOrder() const { return LayoutOrder; }
109  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
110
111  /// \brief Does this fragment have instructions emitted into it? By default
112  /// this is false, but specific fragment types may set it to true.
113  virtual bool hasInstructions() const { return false; }
114
115  /// \brief Should this fragment be placed at the end of an aligned bundle?
116  virtual bool alignToBundleEnd() const { return false; }
117  virtual void setAlignToBundleEnd(bool V) { }
118
119  /// \brief Get the padding size that must be inserted before this fragment.
120  /// Used for bundling. By default, no padding is inserted.
121  /// Note that padding size is restricted to 8 bits. This is an optimization
122  /// to reduce the amount of space used for each fragment. In practice, larger
123  /// padding should never be required.
124  virtual uint8_t getBundlePadding() const {
125    return 0;
126  }
127
128  /// \brief Set the padding size for this fragment. By default it's a no-op,
129  /// and only some fragments have a meaningful implementation.
130  virtual void setBundlePadding(uint8_t N) {
131  }
132
133  void dump();
134};
135
136/// Interface implemented by fragments that contain encoded instructions and/or
137/// data.
138///
139class MCEncodedFragment : public MCFragment {
140  virtual void anchor();
141
142  uint8_t BundlePadding;
143public:
144  MCEncodedFragment(MCFragment::FragmentType FType, MCSectionData *SD = 0)
145    : MCFragment(FType, SD), BundlePadding(0)
146  {
147  }
148  virtual ~MCEncodedFragment();
149
150  virtual SmallVectorImpl<char> &getContents() = 0;
151  virtual const SmallVectorImpl<char> &getContents() const = 0;
152
153  virtual uint8_t getBundlePadding() const {
154    return BundlePadding;
155  }
156
157  virtual void setBundlePadding(uint8_t N) {
158    BundlePadding = N;
159  }
160
161  static bool classof(const MCFragment *F) {
162    MCFragment::FragmentType Kind = F->getKind();
163    switch (Kind) {
164      default:
165        return false;
166      case MCFragment::FT_Relaxable:
167      case MCFragment::FT_CompactEncodedInst:
168      case MCFragment::FT_Data:
169        return true;
170    }
171  }
172};
173
174/// Interface implemented by fragments that contain encoded instructions and/or
175/// data and also have fixups registered.
176///
177class MCEncodedFragmentWithFixups : public MCEncodedFragment {
178  virtual void anchor();
179
180public:
181  MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
182                              MCSectionData *SD = 0)
183    : MCEncodedFragment(FType, SD)
184  {
185  }
186
187  virtual ~MCEncodedFragmentWithFixups();
188
189  typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
190  typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
191
192  virtual SmallVectorImpl<MCFixup> &getFixups() = 0;
193  virtual const SmallVectorImpl<MCFixup> &getFixups() const = 0;
194
195  virtual fixup_iterator fixup_begin() = 0;
196  virtual const_fixup_iterator fixup_begin() const  = 0;
197  virtual fixup_iterator fixup_end() = 0;
198  virtual const_fixup_iterator fixup_end() const = 0;
199
200  static bool classof(const MCFragment *F) {
201    MCFragment::FragmentType Kind = F->getKind();
202    return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
203  }
204};
205
206/// Fragment for data and encoded instructions.
207///
208class MCDataFragment : public MCEncodedFragmentWithFixups {
209  virtual void anchor();
210
211  /// \brief Does this fragment contain encoded instructions anywhere in it?
212  bool HasInstructions;
213
214  /// \brief Should this fragment be aligned to the end of a bundle?
215  bool AlignToBundleEnd;
216
217  SmallVector<char, 32> Contents;
218
219  /// Fixups - The list of fixups in this fragment.
220  SmallVector<MCFixup, 4> Fixups;
221public:
222  MCDataFragment(MCSectionData *SD = 0)
223    : MCEncodedFragmentWithFixups(FT_Data, SD),
224      HasInstructions(false), AlignToBundleEnd(false)
225  {
226  }
227
228  virtual SmallVectorImpl<char> &getContents() { return Contents; }
229  virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
230
231  SmallVectorImpl<MCFixup> &getFixups() {
232    return Fixups;
233  }
234
235  const SmallVectorImpl<MCFixup> &getFixups() const {
236    return Fixups;
237  }
238
239  virtual bool hasInstructions() const { return HasInstructions; }
240  virtual void setHasInstructions(bool V) { HasInstructions = V; }
241
242  virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
243  virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
244
245  fixup_iterator fixup_begin() { return Fixups.begin(); }
246  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
247
248  fixup_iterator fixup_end() {return Fixups.end();}
249  const_fixup_iterator fixup_end() const {return Fixups.end();}
250
251  static bool classof(const MCFragment *F) {
252    return F->getKind() == MCFragment::FT_Data;
253  }
254};
255
256/// This is a compact (memory-size-wise) fragment for holding an encoded
257/// instruction (non-relaxable) that has no fixups registered. When applicable,
258/// it can be used instead of MCDataFragment and lead to lower memory
259/// consumption.
260///
261class MCCompactEncodedInstFragment : public MCEncodedFragment {
262  virtual void anchor();
263
264  /// \brief Should this fragment be aligned to the end of a bundle?
265  bool AlignToBundleEnd;
266
267  SmallVector<char, 4> Contents;
268public:
269  MCCompactEncodedInstFragment(MCSectionData *SD = 0)
270    : MCEncodedFragment(FT_CompactEncodedInst, SD), AlignToBundleEnd(false)
271  {
272  }
273
274  virtual bool hasInstructions() const {
275    return true;
276  }
277
278  virtual SmallVectorImpl<char> &getContents() { return Contents; }
279  virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
280
281  virtual bool alignToBundleEnd() const { return AlignToBundleEnd; }
282  virtual void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
283
284  static bool classof(const MCFragment *F) {
285    return F->getKind() == MCFragment::FT_CompactEncodedInst;
286  }
287};
288
289/// A relaxable fragment holds on to its MCInst, since it may need to be
290/// relaxed during the assembler layout and relaxation stage.
291///
292class MCRelaxableFragment : public MCEncodedFragmentWithFixups {
293  virtual void anchor();
294
295  /// Inst - The instruction this is a fragment for.
296  MCInst Inst;
297
298  /// Contents - Binary data for the currently encoded instruction.
299  SmallVector<char, 8> Contents;
300
301  /// Fixups - The list of fixups in this fragment.
302  SmallVector<MCFixup, 1> Fixups;
303
304public:
305  MCRelaxableFragment(const MCInst &_Inst, MCSectionData *SD = 0)
306    : MCEncodedFragmentWithFixups(FT_Relaxable, SD), Inst(_Inst) {
307  }
308
309  virtual SmallVectorImpl<char> &getContents() { return Contents; }
310  virtual const SmallVectorImpl<char> &getContents() const { return Contents; }
311
312  const MCInst &getInst() const { return Inst; }
313  void setInst(const MCInst& Value) { Inst = Value; }
314
315  SmallVectorImpl<MCFixup> &getFixups() {
316    return Fixups;
317  }
318
319  const SmallVectorImpl<MCFixup> &getFixups() const {
320    return Fixups;
321  }
322
323  virtual bool hasInstructions() const { return true; }
324
325  fixup_iterator fixup_begin() { return Fixups.begin(); }
326  const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
327
328  fixup_iterator fixup_end() {return Fixups.end();}
329  const_fixup_iterator fixup_end() const {return Fixups.end();}
330
331  static bool classof(const MCFragment *F) {
332    return F->getKind() == MCFragment::FT_Relaxable;
333  }
334};
335
336class MCAlignFragment : public MCFragment {
337  virtual void anchor();
338
339  /// Alignment - The alignment to ensure, in bytes.
340  unsigned Alignment;
341
342  /// Value - Value to use for filling padding bytes.
343  int64_t Value;
344
345  /// ValueSize - The size of the integer (in bytes) of \p Value.
346  unsigned ValueSize;
347
348  /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
349  /// cannot be satisfied in this width then this fragment is ignored.
350  unsigned MaxBytesToEmit;
351
352  /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
353  /// of using the provided value. The exact interpretation of this flag is
354  /// target dependent.
355  bool EmitNops : 1;
356
357public:
358  MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
359                  unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
360    : MCFragment(FT_Align, SD), Alignment(_Alignment),
361      Value(_Value),ValueSize(_ValueSize),
362      MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
363
364  /// @name Accessors
365  /// @{
366
367  unsigned getAlignment() const { return Alignment; }
368
369  int64_t getValue() const { return Value; }
370
371  unsigned getValueSize() const { return ValueSize; }
372
373  unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
374
375  bool hasEmitNops() const { return EmitNops; }
376  void setEmitNops(bool Value) { EmitNops = Value; }
377
378  /// @}
379
380  static bool classof(const MCFragment *F) {
381    return F->getKind() == MCFragment::FT_Align;
382  }
383};
384
385class MCFillFragment : public MCFragment {
386  virtual void anchor();
387
388  /// Value - Value to use for filling bytes.
389  int64_t Value;
390
391  /// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
392  /// this is a virtual fill fragment.
393  unsigned ValueSize;
394
395  /// Size - The number of bytes to insert.
396  uint64_t Size;
397
398public:
399  MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
400                 MCSectionData *SD = 0)
401    : MCFragment(FT_Fill, SD),
402      Value(_Value), ValueSize(_ValueSize), Size(_Size) {
403    assert((!ValueSize || (Size % ValueSize) == 0) &&
404           "Fill size must be a multiple of the value size!");
405  }
406
407  /// @name Accessors
408  /// @{
409
410  int64_t getValue() const { return Value; }
411
412  unsigned getValueSize() const { return ValueSize; }
413
414  uint64_t getSize() const { return Size; }
415
416  /// @}
417
418  static bool classof(const MCFragment *F) {
419    return F->getKind() == MCFragment::FT_Fill;
420  }
421};
422
423class MCOrgFragment : public MCFragment {
424  virtual void anchor();
425
426  /// Offset - The offset this fragment should start at.
427  const MCExpr *Offset;
428
429  /// Value - Value to use for filling bytes.
430  int8_t Value;
431
432public:
433  MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
434    : MCFragment(FT_Org, SD),
435      Offset(&_Offset), Value(_Value) {}
436
437  /// @name Accessors
438  /// @{
439
440  const MCExpr &getOffset() const { return *Offset; }
441
442  uint8_t getValue() const { return Value; }
443
444  /// @}
445
446  static bool classof(const MCFragment *F) {
447    return F->getKind() == MCFragment::FT_Org;
448  }
449};
450
451class MCLEBFragment : public MCFragment {
452  virtual void anchor();
453
454  /// Value - The value this fragment should contain.
455  const MCExpr *Value;
456
457  /// IsSigned - True if this is a sleb128, false if uleb128.
458  bool IsSigned;
459
460  SmallString<8> Contents;
461public:
462  MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
463    : MCFragment(FT_LEB, SD),
464      Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
465
466  /// @name Accessors
467  /// @{
468
469  const MCExpr &getValue() const { return *Value; }
470
471  bool isSigned() const { return IsSigned; }
472
473  SmallString<8> &getContents() { return Contents; }
474  const SmallString<8> &getContents() const { return Contents; }
475
476  /// @}
477
478  static bool classof(const MCFragment *F) {
479    return F->getKind() == MCFragment::FT_LEB;
480  }
481};
482
483class MCDwarfLineAddrFragment : public MCFragment {
484  virtual void anchor();
485
486  /// LineDelta - the value of the difference between the two line numbers
487  /// between two .loc dwarf directives.
488  int64_t LineDelta;
489
490  /// AddrDelta - The expression for the difference of the two symbols that
491  /// make up the address delta between two .loc dwarf directives.
492  const MCExpr *AddrDelta;
493
494  SmallString<8> Contents;
495
496public:
497  MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
498                      MCSectionData *SD)
499    : MCFragment(FT_Dwarf, SD),
500      LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
501
502  /// @name Accessors
503  /// @{
504
505  int64_t getLineDelta() const { return LineDelta; }
506
507  const MCExpr &getAddrDelta() const { return *AddrDelta; }
508
509  SmallString<8> &getContents() { return Contents; }
510  const SmallString<8> &getContents() const { return Contents; }
511
512  /// @}
513
514  static bool classof(const MCFragment *F) {
515    return F->getKind() == MCFragment::FT_Dwarf;
516  }
517};
518
519class MCDwarfCallFrameFragment : public MCFragment {
520  virtual void anchor();
521
522  /// AddrDelta - The expression for the difference of the two symbols that
523  /// make up the address delta between two .cfi_* dwarf directives.
524  const MCExpr *AddrDelta;
525
526  SmallString<8> Contents;
527
528public:
529  MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,  MCSectionData *SD)
530    : MCFragment(FT_DwarfFrame, SD),
531      AddrDelta(&_AddrDelta) { Contents.push_back(0); }
532
533  /// @name Accessors
534  /// @{
535
536  const MCExpr &getAddrDelta() const { return *AddrDelta; }
537
538  SmallString<8> &getContents() { return Contents; }
539  const SmallString<8> &getContents() const { return Contents; }
540
541  /// @}
542
543  static bool classof(const MCFragment *F) {
544    return F->getKind() == MCFragment::FT_DwarfFrame;
545  }
546};
547
548// FIXME: Should this be a separate class, or just merged into MCSection? Since
549// we anticipate the fast path being through an MCAssembler, the only reason to
550// keep it out is for API abstraction.
551class MCSectionData : public ilist_node<MCSectionData> {
552  friend class MCAsmLayout;
553
554  MCSectionData(const MCSectionData&) LLVM_DELETED_FUNCTION;
555  void operator=(const MCSectionData&) LLVM_DELETED_FUNCTION;
556
557public:
558  typedef iplist<MCFragment> FragmentListType;
559
560  typedef FragmentListType::const_iterator const_iterator;
561  typedef FragmentListType::iterator iterator;
562
563  typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
564  typedef FragmentListType::reverse_iterator reverse_iterator;
565
566  /// \brief Express the state of bundle locked groups while emitting code.
567  enum BundleLockStateType {
568    NotBundleLocked,
569    BundleLocked,
570    BundleLockedAlignToEnd
571  };
572private:
573  FragmentListType Fragments;
574  const MCSection *Section;
575
576  /// Ordinal - The section index in the assemblers section list.
577  unsigned Ordinal;
578
579  /// LayoutOrder - The index of this section in the layout order.
580  unsigned LayoutOrder;
581
582  /// Alignment - The maximum alignment seen in this section.
583  unsigned Alignment;
584
585  /// \brief Keeping track of bundle-locked state.
586  BundleLockStateType BundleLockState;
587
588  /// \brief We've seen a bundle_lock directive but not its first instruction
589  /// yet.
590  bool BundleGroupBeforeFirstInst;
591
592  /// @name Assembler Backend Data
593  /// @{
594  //
595  // FIXME: This could all be kept private to the assembler implementation.
596
597  /// HasInstructions - Whether this section has had instructions emitted into
598  /// it.
599  unsigned HasInstructions : 1;
600
601  /// @}
602
603public:
604  // Only for use as sentinel.
605  MCSectionData();
606  MCSectionData(const MCSection &Section, MCAssembler *A = 0);
607
608  const MCSection &getSection() const { return *Section; }
609
610  unsigned getAlignment() const { return Alignment; }
611  void setAlignment(unsigned Value) { Alignment = Value; }
612
613  bool hasInstructions() const { return HasInstructions; }
614  void setHasInstructions(bool Value) { HasInstructions = Value; }
615
616  unsigned getOrdinal() const { return Ordinal; }
617  void setOrdinal(unsigned Value) { Ordinal = Value; }
618
619  unsigned getLayoutOrder() const { return LayoutOrder; }
620  void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
621
622  /// @name Fragment Access
623  /// @{
624
625  const FragmentListType &getFragmentList() const { return Fragments; }
626  FragmentListType &getFragmentList() { return Fragments; }
627
628  iterator begin() { return Fragments.begin(); }
629  const_iterator begin() const { return Fragments.begin(); }
630
631  iterator end() { return Fragments.end(); }
632  const_iterator end() const { return Fragments.end(); }
633
634  reverse_iterator rbegin() { return Fragments.rbegin(); }
635  const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
636
637  reverse_iterator rend() { return Fragments.rend(); }
638  const_reverse_iterator rend() const { return Fragments.rend(); }
639
640  size_t size() const { return Fragments.size(); }
641
642  bool empty() const { return Fragments.empty(); }
643
644  bool isBundleLocked() const {
645    return BundleLockState != NotBundleLocked;
646  }
647
648  BundleLockStateType getBundleLockState() const {
649    return BundleLockState;
650  }
651
652  void setBundleLockState(BundleLockStateType NewState) {
653    BundleLockState = NewState;
654  }
655
656  bool isBundleGroupBeforeFirstInst() const {
657    return BundleGroupBeforeFirstInst;
658  }
659
660  void setBundleGroupBeforeFirstInst(bool IsFirst) {
661    BundleGroupBeforeFirstInst = IsFirst;
662  }
663
664  void dump();
665
666  /// @}
667};
668
669// FIXME: Same concerns as with SectionData.
670class MCSymbolData : public ilist_node<MCSymbolData> {
671public:
672  const MCSymbol *Symbol;
673
674  /// Fragment - The fragment this symbol's value is relative to, if any.
675  MCFragment *Fragment;
676
677  /// Offset - The offset to apply to the fragment address to form this symbol's
678  /// value.
679  uint64_t Offset;
680
681  /// IsExternal - True if this symbol is visible outside this translation
682  /// unit.
683  unsigned IsExternal : 1;
684
685  /// IsPrivateExtern - True if this symbol is private extern.
686  unsigned IsPrivateExtern : 1;
687
688  /// CommonSize - The size of the symbol, if it is 'common', or 0.
689  //
690  // FIXME: Pack this in with other fields? We could put it in offset, since a
691  // common symbol can never get a definition.
692  uint64_t CommonSize;
693
694  /// SymbolSize - An expression describing how to calculate the size of
695  /// a symbol. If a symbol has no size this field will be NULL.
696  const MCExpr *SymbolSize;
697
698  /// CommonAlign - The alignment of the symbol, if it is 'common'.
699  //
700  // FIXME: Pack this in with other fields?
701  unsigned CommonAlign;
702
703  /// Flags - The Flags field is used by object file implementations to store
704  /// additional per symbol information which is not easily classified.
705  uint32_t Flags;
706
707  /// Index - Index field, for use by the object file implementation.
708  uint64_t Index;
709
710public:
711  // Only for use as sentinel.
712  MCSymbolData();
713  MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
714               MCAssembler *A = 0);
715
716  /// @name Accessors
717  /// @{
718
719  const MCSymbol &getSymbol() const { return *Symbol; }
720
721  MCFragment *getFragment() const { return Fragment; }
722  void setFragment(MCFragment *Value) { Fragment = Value; }
723
724  uint64_t getOffset() const { return Offset; }
725  void setOffset(uint64_t Value) { Offset = Value; }
726
727  /// @}
728  /// @name Symbol Attributes
729  /// @{
730
731  bool isExternal() const { return IsExternal; }
732  void setExternal(bool Value) { IsExternal = Value; }
733
734  bool isPrivateExtern() const { return IsPrivateExtern; }
735  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
736
737  /// isCommon - Is this a 'common' symbol.
738  bool isCommon() const { return CommonSize != 0; }
739
740  /// setCommon - Mark this symbol as being 'common'.
741  ///
742  /// \param Size - The size of the symbol.
743  /// \param Align - The alignment of the symbol.
744  void setCommon(uint64_t Size, unsigned Align) {
745    CommonSize = Size;
746    CommonAlign = Align;
747  }
748
749  /// getCommonSize - Return the size of a 'common' symbol.
750  uint64_t getCommonSize() const {
751    assert(isCommon() && "Not a 'common' symbol!");
752    return CommonSize;
753  }
754
755  void setSize(const MCExpr *SS) {
756    SymbolSize = SS;
757  }
758
759  const MCExpr *getSize() const {
760    return SymbolSize;
761  }
762
763
764  /// getCommonAlignment - Return the alignment of a 'common' symbol.
765  unsigned getCommonAlignment() const {
766    assert(isCommon() && "Not a 'common' symbol!");
767    return CommonAlign;
768  }
769
770  /// getFlags - Get the (implementation defined) symbol flags.
771  uint32_t getFlags() const { return Flags; }
772
773  /// setFlags - Set the (implementation defined) symbol flags.
774  void setFlags(uint32_t Value) { Flags = Value; }
775
776  /// modifyFlags - Modify the flags via a mask
777  void modifyFlags(uint32_t Value, uint32_t Mask) {
778    Flags = (Flags & ~Mask) | Value;
779  }
780
781  /// getIndex - Get the (implementation defined) index.
782  uint64_t getIndex() const { return Index; }
783
784  /// setIndex - Set the (implementation defined) index.
785  void setIndex(uint64_t Value) { Index = Value; }
786
787  /// @}
788
789  void dump();
790};
791
792// FIXME: This really doesn't belong here. See comments below.
793struct IndirectSymbolData {
794  MCSymbol *Symbol;
795  MCSectionData *SectionData;
796};
797
798// FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
799// to one another.
800struct DataRegionData {
801  // This enum should be kept in sync w/ the mach-o definition in
802  // llvm/Object/MachOFormat.h.
803  enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
804  MCSymbol *Start;
805  MCSymbol *End;
806};
807
808class MCAssembler {
809  friend class MCAsmLayout;
810
811public:
812  typedef iplist<MCSectionData> SectionDataListType;
813  typedef iplist<MCSymbolData> SymbolDataListType;
814
815  typedef SectionDataListType::const_iterator const_iterator;
816  typedef SectionDataListType::iterator iterator;
817
818  typedef SymbolDataListType::const_iterator const_symbol_iterator;
819  typedef SymbolDataListType::iterator symbol_iterator;
820
821  typedef std::vector<IndirectSymbolData>::const_iterator
822    const_indirect_symbol_iterator;
823  typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
824
825  typedef std::vector<DataRegionData>::const_iterator
826    const_data_region_iterator;
827  typedef std::vector<DataRegionData>::iterator data_region_iterator;
828
829private:
830  MCAssembler(const MCAssembler&) LLVM_DELETED_FUNCTION;
831  void operator=(const MCAssembler&) LLVM_DELETED_FUNCTION;
832
833  MCContext &Context;
834
835  MCAsmBackend &Backend;
836
837  MCCodeEmitter &Emitter;
838
839  MCObjectWriter *Writer;
840
841  raw_ostream &OS;
842
843  iplist<MCSectionData> Sections;
844
845  iplist<MCSymbolData> Symbols;
846
847  /// The map of sections to their associated assembler backend data.
848  //
849  // FIXME: Avoid this indirection?
850  DenseMap<const MCSection*, MCSectionData*> SectionMap;
851
852  /// The map of symbols to their associated assembler backend data.
853  //
854  // FIXME: Avoid this indirection?
855  DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
856
857  std::vector<IndirectSymbolData> IndirectSymbols;
858
859  std::vector<DataRegionData> DataRegions;
860
861  /// The list of linker options to propagate into the object file.
862  std::vector<std::vector<std::string> > LinkerOptions;
863
864  /// The set of function symbols for which a .thumb_func directive has
865  /// been seen.
866  //
867  // FIXME: We really would like this in target specific code rather than
868  // here. Maybe when the relocation stuff moves to target specific,
869  // this can go with it? The streamer would need some target specific
870  // refactoring too.
871  SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
872
873  /// \brief The bundle alignment size currently set in the assembler.
874  ///
875  /// By default it's 0, which means bundling is disabled.
876  unsigned BundleAlignSize;
877
878  unsigned RelaxAll : 1;
879  unsigned NoExecStack : 1;
880  unsigned SubsectionsViaSymbols : 1;
881
882  /// ELF specific e_header flags
883  // It would be good if there were an MCELFAssembler class to hold this.
884  // ELF header flags are used both by the integrated and standalone assemblers.
885  // Access to the flags is necessary in cases where assembler directives affect
886  // which flags to be set.
887  unsigned ELFHeaderEFlags;
888private:
889  /// Evaluate a fixup to a relocatable expression and the value which should be
890  /// placed into the fixup.
891  ///
892  /// \param Layout The layout to use for evaluation.
893  /// \param Fixup The fixup to evaluate.
894  /// \param DF The fragment the fixup is inside.
895  /// \param Target [out] On return, the relocatable expression the fixup
896  /// evaluates to.
897  /// \param Value [out] On return, the value of the fixup as currently laid
898  /// out.
899  /// \return Whether the fixup value was fully resolved. This is true if the
900  /// \p Value result is fixed, otherwise the value may change due to
901  /// relocation.
902  bool evaluateFixup(const MCAsmLayout &Layout,
903                     const MCFixup &Fixup, const MCFragment *DF,
904                     MCValue &Target, uint64_t &Value) const;
905
906  /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
907  /// (increased in size, in order to hold its value correctly).
908  bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
909                            const MCAsmLayout &Layout) const;
910
911  /// Check whether the given fragment needs relaxation.
912  bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
913                               const MCAsmLayout &Layout) const;
914
915  /// \brief Perform one layout iteration and return true if any offsets
916  /// were adjusted.
917  bool layoutOnce(MCAsmLayout &Layout);
918
919  /// \brief Perform one layout iteration of the given section and return true
920  /// if any offsets were adjusted.
921  bool layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
922
923  bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
924
925  bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
926
927  bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
928  bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
929                                   MCDwarfCallFrameFragment &DF);
930
931  /// finishLayout - Finalize a layout, including fragment lowering.
932  void finishLayout(MCAsmLayout &Layout);
933
934  uint64_t handleFixup(const MCAsmLayout &Layout,
935                       MCFragment &F, const MCFixup &Fixup);
936
937public:
938  /// Compute the effective fragment size assuming it is laid out at the given
939  /// \p SectionAddress and \p FragmentOffset.
940  uint64_t computeFragmentSize(const MCAsmLayout &Layout,
941                               const MCFragment &F) const;
942
943  /// Find the symbol which defines the atom containing the given symbol, or
944  /// null if there is no such symbol.
945  const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
946
947  /// Check whether a particular symbol is visible to the linker and is required
948  /// in the symbol table, or whether it can be discarded by the assembler. This
949  /// also effects whether the assembler treats the label as potentially
950  /// defining a separate atom.
951  bool isSymbolLinkerVisible(const MCSymbol &SD) const;
952
953  /// Emit the section contents using the given object writer.
954  void writeSectionData(const MCSectionData *Section,
955                        const MCAsmLayout &Layout) const;
956
957  /// Check whether a given symbol has been flagged with .thumb_func.
958  bool isThumbFunc(const MCSymbol *Func) const {
959    return ThumbFuncs.count(Func);
960  }
961
962  /// Flag a function symbol as the target of a .thumb_func directive.
963  void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
964
965  /// ELF e_header flags
966  unsigned getELFHeaderEFlags() const {return ELFHeaderEFlags;}
967  void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags;}
968
969public:
970  /// Construct a new assembler instance.
971  ///
972  /// \param OS The stream to output to.
973  //
974  // FIXME: How are we going to parameterize this? Two obvious options are stay
975  // concrete and require clients to pass in a target like object. The other
976  // option is to make this abstract, and have targets provide concrete
977  // implementations as we do with AsmParser.
978  MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
979              MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
980              raw_ostream &OS);
981  ~MCAssembler();
982
983  /// Reuse an assembler instance
984  ///
985  void reset();
986
987  MCContext &getContext() const { return Context; }
988
989  MCAsmBackend &getBackend() const { return Backend; }
990
991  MCCodeEmitter &getEmitter() const { return Emitter; }
992
993  MCObjectWriter &getWriter() const { return *Writer; }
994
995  void setWriter(MCObjectWriter &ObjectWriter);
996
997  /// Finish - Do final processing and write the object to the output stream.
998  /// \p Writer is used for custom object writer (as the MCJIT does),
999  /// if not specified it is automatically created from backend.
1000  void Finish();
1001
1002  // FIXME: This does not belong here.
1003  bool getSubsectionsViaSymbols() const {
1004    return SubsectionsViaSymbols;
1005  }
1006  void setSubsectionsViaSymbols(bool Value) {
1007    SubsectionsViaSymbols = Value;
1008  }
1009
1010  bool getRelaxAll() const { return RelaxAll; }
1011  void setRelaxAll(bool Value) { RelaxAll = Value; }
1012
1013  bool getNoExecStack() const { return NoExecStack; }
1014  void setNoExecStack(bool Value) { NoExecStack = Value; }
1015
1016  bool isBundlingEnabled() const {
1017    return BundleAlignSize != 0;
1018  }
1019
1020  unsigned getBundleAlignSize() const {
1021    return BundleAlignSize;
1022  }
1023
1024  void setBundleAlignSize(unsigned Size) {
1025    assert((Size == 0 || !(Size & (Size - 1))) &&
1026           "Expect a power-of-two bundle align size");
1027    BundleAlignSize = Size;
1028  }
1029
1030  /// @name Section List Access
1031  /// @{
1032
1033  const SectionDataListType &getSectionList() const { return Sections; }
1034  SectionDataListType &getSectionList() { return Sections; }
1035
1036  iterator begin() { return Sections.begin(); }
1037  const_iterator begin() const { return Sections.begin(); }
1038
1039  iterator end() { return Sections.end(); }
1040  const_iterator end() const { return Sections.end(); }
1041
1042  size_t size() const { return Sections.size(); }
1043
1044  /// @}
1045  /// @name Symbol List Access
1046  /// @{
1047
1048  const SymbolDataListType &getSymbolList() const { return Symbols; }
1049  SymbolDataListType &getSymbolList() { return Symbols; }
1050
1051  symbol_iterator symbol_begin() { return Symbols.begin(); }
1052  const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
1053
1054  symbol_iterator symbol_end() { return Symbols.end(); }
1055  const_symbol_iterator symbol_end() const { return Symbols.end(); }
1056
1057  size_t symbol_size() const { return Symbols.size(); }
1058
1059  /// @}
1060  /// @name Indirect Symbol List Access
1061  /// @{
1062
1063  // FIXME: This is a total hack, this should not be here. Once things are
1064  // factored so that the streamer has direct access to the .o writer, it can
1065  // disappear.
1066  std::vector<IndirectSymbolData> &getIndirectSymbols() {
1067    return IndirectSymbols;
1068  }
1069
1070  indirect_symbol_iterator indirect_symbol_begin() {
1071    return IndirectSymbols.begin();
1072  }
1073  const_indirect_symbol_iterator indirect_symbol_begin() const {
1074    return IndirectSymbols.begin();
1075  }
1076
1077  indirect_symbol_iterator indirect_symbol_end() {
1078    return IndirectSymbols.end();
1079  }
1080  const_indirect_symbol_iterator indirect_symbol_end() const {
1081    return IndirectSymbols.end();
1082  }
1083
1084  size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
1085
1086  /// @}
1087  /// @name Linker Option List Access
1088  /// @{
1089
1090  std::vector<std::vector<std::string> > &getLinkerOptions() {
1091    return LinkerOptions;
1092  }
1093
1094  /// @}
1095  /// @name Data Region List Access
1096  /// @{
1097
1098  // FIXME: This is a total hack, this should not be here. Once things are
1099  // factored so that the streamer has direct access to the .o writer, it can
1100  // disappear.
1101  std::vector<DataRegionData> &getDataRegions() {
1102    return DataRegions;
1103  }
1104
1105  data_region_iterator data_region_begin() {
1106    return DataRegions.begin();
1107  }
1108  const_data_region_iterator data_region_begin() const {
1109    return DataRegions.begin();
1110  }
1111
1112  data_region_iterator data_region_end() {
1113    return DataRegions.end();
1114  }
1115  const_data_region_iterator data_region_end() const {
1116    return DataRegions.end();
1117  }
1118
1119  size_t data_region_size() const { return DataRegions.size(); }
1120
1121  /// @}
1122  /// @name Backend Data Access
1123  /// @{
1124
1125  MCSectionData &getSectionData(const MCSection &Section) const {
1126    MCSectionData *Entry = SectionMap.lookup(&Section);
1127    assert(Entry && "Missing section data!");
1128    return *Entry;
1129  }
1130
1131  MCSectionData &getOrCreateSectionData(const MCSection &Section,
1132                                        bool *Created = 0) {
1133    MCSectionData *&Entry = SectionMap[&Section];
1134
1135    if (Created) *Created = !Entry;
1136    if (!Entry)
1137      Entry = new MCSectionData(Section, this);
1138
1139    return *Entry;
1140  }
1141
1142  MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
1143    MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
1144    assert(Entry && "Missing symbol data!");
1145    return *Entry;
1146  }
1147
1148  MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
1149                                      bool *Created = 0) {
1150    MCSymbolData *&Entry = SymbolMap[&Symbol];
1151
1152    if (Created) *Created = !Entry;
1153    if (!Entry)
1154      Entry = new MCSymbolData(Symbol, 0, 0, this);
1155
1156    return *Entry;
1157  }
1158
1159  /// @}
1160
1161  void dump();
1162};
1163
1164} // end namespace llvm
1165
1166#endif
1167