1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16d04a8d4b33ff316ca4cf961e06c9e312eff8e64fChandler Carruth#include "llvm/ADT/SmallPtrSet.h"
17243712720ad1da144d4376bdd854d81260c1beaaDan Gohman#include "llvm/Analysis/InstructionSimplify.h"
180b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/Constants.h"
190b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/DataLayout.h"
200b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/GlobalAlias.h"
210b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/GlobalVariable.h"
220b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/Instructions.h"
230b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/IntrinsicInst.h"
240b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/LLVMContext.h"
250b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/Metadata.h"
260b8c9a80f20772c3793201ab5b251d3520b9cea3Chandler Carruth#include "llvm/IR/Operator.h"
277c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola#include "llvm/Support/ConstantRange.h"
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
30d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands#include "llvm/Support/PatternMatch.h"
3132a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
33d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsusing namespace llvm::PatternMatch;
34d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
35d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsconst unsigned MaxDepth = 6;
36d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
37d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// unknown returns 0).  For vector types, returns the element type's bitwidth.
393574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmowstatic unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
40d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (unsigned BitWidth = Ty->getScalarSizeInBits())
41d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return BitWidth;
42d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43426c2bf5cdd2173e4a33aea8cb92cf684a724f4bChandler Carruth  return TD ? TD->getPointerSizeInBits() : 0;
44d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
45173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
4600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewyckystatic void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
4700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky                                    APInt &KnownZero, APInt &KnownOne,
4800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky                                    APInt &KnownZero2, APInt &KnownOne2,
493574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                                    const DataLayout *TD, unsigned Depth) {
5000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  if (!Add) {
5100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
5200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      // We know that the top bits of C-X are clear if X contains less bits
5300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      // than C (i.e. no wrap-around can happen).  For example, 20-X is
5400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      // positive if we can prove that X is >= 0 and < 16.
5500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      if (!CLHS->getValue().isNegative()) {
5626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        unsigned BitWidth = KnownZero.getBitWidth();
5700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
5800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // NLZ can't be BitWidth with no sign bit
5900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
6026c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
6200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // If all of the MaskV bits are known to be zero, then we know the
6300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // output top bits are zero, because we now know that the output is
6400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // from [0-C].
6500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        if ((KnownZero2 & MaskV) == MaskV) {
6600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
6700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          // Top bits known zero.
6826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
6900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        }
7000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      }
7100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    }
7200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  }
7300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky
7426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  unsigned BitWidth = KnownZero.getBitWidth();
7500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky
7600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // If one of the operands has trailing zeros, then the bits that the
7700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // other operand has in those bit positions will be preserved in the
7800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // result. For an add, this works with either operand. For a subtract,
7900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // this only works if the known zeros are in the right operand.
8000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
8126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
8200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  assert((LHSKnownZero & LHSKnownOne) == 0 &&
8300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky         "Bits known to be one AND zero?");
8400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
8500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky
8626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
8800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
8900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky
9000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // Determine which operand has more trailing zeros, and use that
9100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // many bits from the other operand.
9200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  if (LHSKnownZeroOut > RHSKnownZeroOut) {
9300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    if (Add) {
9400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
9500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      KnownZero |= KnownZero2 & Mask;
9600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      KnownOne  |= KnownOne2 & Mask;
9700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    } else {
9800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      // If the known zeros are in the left operand for a subtract,
9900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      // fall back to the minimum known zeros in both operands.
10000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      KnownZero |= APInt::getLowBitsSet(BitWidth,
10100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky                                        std::min(LHSKnownZeroOut,
10200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky                                                 RHSKnownZeroOut));
10300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    }
10400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
10500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
10600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    KnownZero |= LHSKnownZero & Mask;
10700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    KnownOne  |= LHSKnownOne & Mask;
10800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  }
10900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky
11000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  // Are we still trying to solve for the sign bit?
11126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
11200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    if (NSW) {
11300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      if (Add) {
11400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // Adding two positive numbers can't wrap into negative
11500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
11600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          KnownZero |= APInt::getSignBit(BitWidth);
11700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // and adding two negative numbers can't wrap into positive.
11800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
11900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          KnownOne |= APInt::getSignBit(BitWidth);
12000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      } else {
12100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // Subtracting a negative number from a positive one can't wrap
12200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
12300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          KnownZero |= APInt::getSignBit(BitWidth);
12400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        // neither can subtracting a positive number from a negative one.
12500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
12600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          KnownOne |= APInt::getSignBit(BitWidth);
12700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      }
12800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    }
12900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  }
13000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky}
13100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky
132f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewyckystatic void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                                 APInt &KnownZero, APInt &KnownOne,
134f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                                 APInt &KnownZero2, APInt &KnownOne2,
1353574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                                 const DataLayout *TD, unsigned Depth) {
13626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  unsigned BitWidth = KnownZero.getBitWidth();
13726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
13826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky
142f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  bool isKnownNegative = false;
143f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  bool isKnownNonNegative = false;
144f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // If the multiplication is known not to overflow, compute the sign bit.
14526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  if (NSW) {
146f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    if (Op0 == Op1) {
147f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      // The product of a number with itself is non-negative.
148f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      isKnownNonNegative = true;
149f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    } else {
150f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      bool isKnownNegativeOp1 = KnownOne.isNegative();
153f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      bool isKnownNegativeOp0 = KnownOne2.isNegative();
154f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      // The product of two numbers with the same sign is non-negative.
155f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      // The product of a negative number and a non-negative number is either
158f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      // negative or zero.
159f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky      if (!isKnownNonNegative)
160f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                           isKnownNonZero(Op0, TD, Depth)) ||
162f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                           isKnownNonZero(Op1, TD, Depth));
164f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    }
165f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  }
166f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky
167f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // If low bits are zero in either operand, output low known-0 bits.
168f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // Also compute a conserative estimate for high known-0 bits.
169f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // More trickiness is possible, but this is sufficient for the
170f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // interesting case of alignment computation.
171f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  KnownOne.clearAllBits();
172f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  unsigned TrailZ = KnownZero.countTrailingOnes() +
173f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                    KnownZero2.countTrailingOnes();
174f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
175f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                             KnownZero2.countLeadingOnes(),
176f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                             BitWidth) - BitWidth;
177f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky
178f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  TrailZ = std::min(TrailZ, BitWidth);
179f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  LeadZ = std::min(LeadZ, BitWidth);
180f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky              APInt::getHighBitsSet(BitWidth, LeadZ);
182f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky
183f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // Only make use of no-wrap flags if we failed to compute the sign bit
184f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // directly.  This matters if the multiplication always overflows, in
185f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // which case we prefer to follow the result of the direct computation,
186f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // though as the program is invoking undefined behaviour we can choose
187f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  // whatever we like here.
188f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  if (isKnownNonNegative && !KnownOne.isNegative())
189f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    KnownZero.setBit(BitWidth - 1);
190f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky  else if (isKnownNegative && !KnownZero.isNegative())
191f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    KnownOne.setBit(BitWidth - 1);
192f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky}
193f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky
19426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindolavoid llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
19526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  unsigned BitWidth = KnownZero.getBitWidth();
1967c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  unsigned NumRanges = Ranges.getNumOperands() / 2;
1977c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  assert(NumRanges >= 1);
1987c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola
1997c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  // Use the high end of the ranges to find leading zeros.
2007c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  unsigned MinLeadingZeros = BitWidth;
2017c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  for (unsigned i = 0; i < NumRanges; ++i) {
2027c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
2037c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
2047c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    ConstantRange Range(Lower->getValue(), Upper->getValue());
2057c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    if (Range.isWrappedSet())
2067c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola      MinLeadingZeros = 0; // -1 has no zeros
2077c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
2087c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
2097c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  }
2107c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola
21126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
2127c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola}
21326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola/// ComputeMaskedBits - Determine which of the bits are known to be either zero
21426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola/// or one and return them in the KnownZero/KnownOne bit sets.
21526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola///
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
222cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
223cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
224cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
22526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola/// where V is a vector, known zero, and known one values are the
226cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
227cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
22826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindolavoid llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
2293574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                             const DataLayout *TD, unsigned Depth) {
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
2319004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
23226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  unsigned BitWidth = KnownZero.getBitWidth();
23326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola
2341608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem  assert((V->getType()->isIntOrIntVectorTy() ||
2351608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem          V->getType()->getScalarType()->isPointerTy()) &&
2361608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem         "Not integer or pointer type!");
2376de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
2386de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         (!V->getType()->isIntOrIntVectorTy() ||
2406de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
2411608769abeb1430dc34f31ffac0d9850f99ae36aNadav Rotem         KnownZero.getBitWidth() == BitWidth &&
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
24726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    KnownOne = CI->getValue();
24826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    KnownZero = ~KnownOne;
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
2516de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
2526de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
2536de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
2547a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
25526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    KnownZero = APInt::getAllOnesValue(BitWidth);
256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
2586de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
2597302d80490feabfc8a01bee0fa698aab55169544Chris Lattner  // each element.  There is no real need to handle ConstantVector here, because
2607302d80490feabfc8a01bee0fa698aab55169544Chris Lattner  // we don't handle undef in any particularly useful way.
261df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262df39028607ca751f0a3f50a76144464b825ff97aChris Lattner    // We know that CDS must be a vector of integers. Take the intersection of
263df39028607ca751f0a3f50a76144464b825ff97aChris Lattner    // each element.
264df39028607ca751f0a3f50a76144464b825ff97aChris Lattner    KnownZero.setAllBits(); KnownOne.setAllBits();
265df39028607ca751f0a3f50a76144464b825ff97aChris Lattner    APInt Elt(KnownZero.getBitWidth(), 0);
2660f193b8a6846dab25323788638e760ae03b7cd87Chris Lattner    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267df39028607ca751f0a3f50a76144464b825ff97aChris Lattner      Elt = CDS->getElementAsInteger(i);
268df39028607ca751f0a3f50a76144464b825ff97aChris Lattner      KnownZero &= ~Elt;
269c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper      KnownOne &= Elt;
270df39028607ca751f0a3f50a76144464b825ff97aChris Lattner    }
271df39028607ca751f0a3f50a76144464b825ff97aChris Lattner    return;
272df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  }
273c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
277891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky    if (Align == 0 && TD) {
278c4c2a024857ca92687728f573a3017091a79eaf4Eli Friedman      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279c4c2a024857ca92687728f573a3017091a79eaf4Eli Friedman        Type *ObjectType = GVar->getType()->getElementType();
280891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky        if (ObjectType->isSized()) {
281891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky          // If the object is defined in the current Module, we'll be giving
282891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky          // it the preferred alignment. Otherwise, we have to assume that it
283891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky          // may only have the minimum ABI alignment.
284891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky            Align = TD->getPreferredAlignment(GVar);
286891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky          else
287891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky            Align = TD->getABITypeAlignment(ObjectType);
288891495e67607e7f1403bb8223fad652b8c2c1e72Nick Lewycky        }
289c4c2a024857ca92687728f573a3017091a79eaf4Eli Friedman      }
290004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    }
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
29226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      KnownZero = APInt::getLowBitsSet(BitWidth,
29326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                                       CountTrailingZeros_32(Align));
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
2957a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits();
2967a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
299307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // the bits of its aliasee.
301307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    if (GA->mayBeOverridden()) {
3037a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits(); KnownOne.clearAllBits();
304307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    } else {
30526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    }
307307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    return;
308307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  }
309c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
310b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  if (Argument *A = dyn_cast<Argument>(V)) {
311ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands    unsigned Align = 0;
312ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands
313ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands    if (A->hasByValAttr()) {
314ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands      // Get alignment information off byval arguments if specified in the IR.
315ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands      Align = A->getParamAlignment();
316ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands    } else if (TD && A->hasStructRetAttr()) {
317ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands      // An sret parameter has at least the ABI alignment of the return type.
318ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands      if (EltTy->isSized())
320ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands        Align = TD->getABITypeAlignment(EltTy);
321ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands    }
322ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands
323ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands    if (Align)
324ffcf6dffee69bd586ab8aa3e24ebbca1d5d279e7Duncan Sands      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
325b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    return;
326b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  }
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
328b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  // Start out not knowing anything.
329b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  KnownZero.clearAllBits(); KnownOne.clearAllBits();
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
33126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  if (Depth == MaxDepth)
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
334ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
3407c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola  case Instruction::Load:
3417c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
34226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      computeMaskedBitsLoad(*MD, KnownZero);
3437c7121edb9d3560cdc0b57f20212176c0697ec51Rafael Espindola    return;
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
34626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
34726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
35826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
35926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
360c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
37026c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
37126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
372c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
380173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
381173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
382173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
383f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
38526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
386f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky    break;
387173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
388173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
389173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
390173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
391173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
39226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
393173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
394173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
3957a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne2.clearAllBits();
3967a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero2.clearAllBits();
39726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
400173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
40326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
404173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
405173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
406173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
40726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
40826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
409173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
410c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
414173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
415173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
416173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
425173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
431db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    Type *SrcTy = I->getOperand(0)->getType();
43212145f0339648426af2a33ed50c11de7cfcdbdf8Nadav Rotem
433b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth;
434173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
435173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
436521396ab378ba3578cdfdda7422ba8bd79ffee40Nadav Rotem    if(TD) {
437521396ab378ba3578cdfdda7422ba8bd79ffee40Nadav Rotem      SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
438521396ab378ba3578cdfdda7422ba8bd79ffee40Nadav Rotem    } else {
439521396ab378ba3578cdfdda7422ba8bd79ffee40Nadav Rotem      SrcBitWidth = SrcTy->getScalarSizeInBits();
440521396ab378ba3578cdfdda7422ba8bd79ffee40Nadav Rotem      if (!SrcBitWidth) return;
441521396ab378ba3578cdfdda7422ba8bd79ffee40Nadav Rotem    }
44212145f0339648426af2a33ed50c11de7cfcdbdf8Nadav Rotem
44312145f0339648426af2a33ed50c11de7cfcdbdf8Nadav Rotem    assert(SrcBitWidth && "SrcBitWidth can't be zero");
44440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
44540f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
44626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
44740f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(BitWidth);
44840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(BitWidth);
449173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
453173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
455db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    Type *SrcTy = I->getOperand(0)->getType();
4561df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
4570dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
4580dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
4591df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands        !I->getType()->isVectorTy()) {
46026c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
462173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
467b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
468c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
46940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(SrcBitWidth);
47040f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(SrcBitWidth);
47126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
472c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
47340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(BitWidth);
47440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(BitWidth);
475173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
476173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
477173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
480173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
481173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
483173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
48594c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
486173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
48826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
489c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
491173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
49794c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
498173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
499173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
501c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
50326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
504c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
51394c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
515173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
51643b40a4620c155c73ac71b48472ea2411d7c35daChris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
517c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
518173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
51926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
520c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
523c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
53300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
53400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
53526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
53626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                            Depth);
53700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    break;
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
539173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
54000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
54100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
54226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
54326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                            Depth);
54400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    break;
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
548cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      APInt RA = Rem->getValue().abs();
549cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      if (RA.isPowerOf2()) {
550cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        APInt LowBits = RA - 1;
55126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
553cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // The low bits of the first operand are unchanged by the srem.
554cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero = KnownZero2 & LowBits;
555cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne = KnownOne2 & LowBits;
556cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
557cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is non-negative or has all low bits zero, then
558cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all zero.
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
560cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownZero |= ~LowBits;
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
562cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is negative and not all low bits are zero, then
563cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all one.
564cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
565cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownOne |= ~LowBits;
566cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
567c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
568173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
569173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
570c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
571c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // The sign bit is the LHS's sign bit, except when the result of the
572c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // remainder is zero.
57326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    if (KnownZero.isNonNegative()) {
574c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
57526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
576c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky                        Depth+1);
577c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      // If it's known zero, our sign bit is also zero.
578c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      if (LHSKnownZero.isNegative())
5795ff30e70f8dc4ddfdb3bd6925ccdf524130a7b95Duncan Sands        KnownZero.setBit(BitWidth - 1);
580c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    }
581c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
582173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
583173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
584173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
585173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
586173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
587173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
58826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
589173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
590ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
59126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        KnownZero |= ~LowBits;
59226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        KnownOne &= LowBits;
593173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
594173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
595173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
596173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
597173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
598173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
59926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
60026c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
601173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
60279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
6047a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
60526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
609a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez  case Instruction::Alloca: {
6107b929dad59785f62a66f7c58615082f98441e95eVictor Hernandez    AllocaInst *AI = cast<AllocaInst>(V);
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
612a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez    if (Align == 0 && TD)
613a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
614c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
61626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
620173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
62326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
62426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                      Depth+1);
625173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
627173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
628173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
629173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
630db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
632173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
640db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner        Type *IndexedTy = GTI.getIndexedType();
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
6426de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
643777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
64526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
64779abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
64879abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
649173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
650173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
651c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
65226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
653173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
654173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
655173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
656173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
657173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
661173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
662173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
663173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
664ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
666173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
667ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
686173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
68726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
688c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
689c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
690c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
69126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
692c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
69326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola          KnownZero = APInt::getLowBitsSet(BitWidth,
694c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
695c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
7009004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
7013b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky    // Unreachable blocks may have zero-operand PHI nodes.
7023b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky    if (P->getNumIncomingValues() == 0)
7033b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky      return;
7043b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky
7059004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
7069004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
7079004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
708606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands      // Skip if every incoming value references to ourself.
7090fd518beb38568e58eeec86876bb597bab06b722Nuno Lopes      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
710606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands        break;
711606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands
71226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      KnownZero = APInt::getAllOnesValue(BitWidth);
71326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      KnownOne = APInt::getAllOnesValue(BitWidth);
7149004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
7159004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
7169004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
7179004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
7189004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
7199004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
7209004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
7219004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
72226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
72326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                          MaxDepth-1);
7249004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
7259004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
7269004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
7279004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
7289004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
7299004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
7309004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
7319004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
732173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
733173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
734173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
735173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
736173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
737173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
738173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
739173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
740173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
741009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer        // If this call is undefined for 0, the result will be less than 2^n.
742009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
743009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer          LowBits -= 1;
74426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
745009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer        break;
746009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer      }
747009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer      case Intrinsic::ctpop: {
748009da05e750b7bac7e1902fcdc85394de4ea63b3Benjamin Kramer        unsigned LowBits = Log2_32(BitWidth)+1;
74926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
750173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
751173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
75262660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_8:
75362660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_64:
75426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        KnownZero = APInt::getHighBitsSet(64, 32);
755cb559c1270a773de2c97c99700dcd5456f24a732Evan Cheng        break;
756173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
757173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
758173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
75900cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky  case Instruction::ExtractValue:
76000cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
76100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
76200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      if (EVI->getNumIndices() != 1) break;
76300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      if (EVI->getIndices()[0] == 0) {
76400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        switch (II->getIntrinsicID()) {
76500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        default: break;
76600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        case Intrinsic::uadd_with_overflow:
76700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        case Intrinsic::sadd_with_overflow:
76800cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
76926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                                  II->getArgOperand(1), false, KnownZero,
77026c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
77100cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          break;
77200cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        case Intrinsic::usub_with_overflow:
77300cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        case Intrinsic::ssub_with_overflow:
77400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
77526c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                                  II->getArgOperand(1), false, KnownZero,
77626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
77700cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky          break;
778f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky        case Intrinsic::umul_with_overflow:
779f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky        case Intrinsic::smul_with_overflow:
780f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
78126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola                               false, KnownZero, KnownOne,
782f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky                               KnownZero2, KnownOne2, TD, Depth);
783f201a066625e32884c9d2b766ff48fe0b70e179aNick Lewycky          break;
78400cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky        }
78500cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky      }
78600cbccceb395899c127f2ce0ed485441fc307fa3Nick Lewycky    }
787173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
788173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
789173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
790d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// ComputeSignBit - Determine whether the sign bit is known to be zero or
791d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// one.  Convenience wrapper around ComputeMaskedBits.
792d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsvoid llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
7933574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                          const DataLayout *TD, unsigned Depth) {
794d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  unsigned BitWidth = getBitWidth(V->getType(), TD);
795d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (!BitWidth) {
796d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    KnownZero = false;
797d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    KnownOne = false;
798d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return;
799d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
800d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt ZeroBits(BitWidth, 0);
801d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt OneBits(BitWidth, 0);
80226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
803d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  KnownOne = OneBits[BitWidth - 1];
804d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  KnownZero = ZeroBits[BitWidth - 1];
805d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
806d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
807dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
808d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// bit set when defined. For vectors return true if every element is known to
809d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// be a power of two when defined.  Supports values with integer or pointer
810d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// types and vectors of integers.
811dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindolabool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
812dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  if (Constant *C = dyn_cast<Constant>(V)) {
813dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (C->isNullValue())
814dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return OrZero;
815dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
816dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return CI->getValue().isPowerOf2();
817dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    // TODO: Handle vector constants.
818dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  }
819d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
820d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
821d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // it is shifted off the end then the result is undefined.
822d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (match(V, m_Shl(m_One(), m_Value())))
823d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return true;
824d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
825d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
826d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // bottom.  If it is shifted off the bottom then the result is undefined.
82793c780288df9631d11f996b010b2212a8b44d4d3Duncan Sands  if (match(V, m_LShr(m_SignBit(), m_Value())))
828d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return true;
829d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
830d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // The remaining tests are all recursive, so bail out if we hit the limit.
831d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Depth++ == MaxDepth)
832d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
833d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
8344604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands  Value *X = 0, *Y = 0;
8354604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands  // A shift of a power of two is a power of two or zero.
8364604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
8374604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands                 match(V, m_Shr(m_Value(X), m_Value()))))
838dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
8394604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands
840d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
841dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
842d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
843d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (SelectInst *SI = dyn_cast<SelectInst>(V))
844dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
845dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola      isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
846dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands
847dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
848dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    // A power of two and'd with anything is a power of two or zero.
849dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
850dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola        isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
851dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return true;
852dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    // X & (-X) is always a power of two or zero.
853dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
854dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return true;
855dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    return false;
856dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  }
857d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
8583dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  // An exact divide or right shift can only shift off zero bits, so the result
8591f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  // is a power of two only if the first operand is a power of two and not
8601f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  // copying a sign bit (sdiv int_min, 2).
86155c6d57734cd2f141dc2d6912fc22746d5eeae54Benjamin Kramer  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
86255c6d57734cd2f141dc2d6912fc22746d5eeae54Benjamin Kramer      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
863dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
8643dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  }
8653dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
866d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return false;
867d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
868d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
86970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth/// \brief Test whether a GEP's result is known to be non-null.
87070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth///
87170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth/// Uses properties inherent in a GEP to try to determine whether it is known
87270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth/// to be non-null.
87370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth///
87470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth/// Currently this routine does not support vector GEPs.
87570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruthstatic bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
87670d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth                              unsigned Depth) {
87770d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
87870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    return false;
87970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
88070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // FIXME: Support vector-GEPs.
88170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
88270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
88370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // If the base pointer is non-null, we cannot walk to a null address with an
88470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // inbounds GEP in address space zero.
88570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
88670d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    return true;
88770d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
88870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // Past this, if we don't have DataLayout, we can't do much.
88970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  if (!DL)
89070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    return false;
89170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
89270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // Walk the GEP operands and see if any operand introduces a non-zero offset.
89370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // If so, then the GEP cannot produce a null pointer, as doing so would
89470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // inherently violate the inbounds contract within address space zero.
89570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
89670d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth       GTI != GTE; ++GTI) {
89770d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // Struct types are easy -- they must always be indexed by a constant.
89870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
89970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
90070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      unsigned ElementIdx = OpC->getZExtValue();
90170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      const StructLayout *SL = DL->getStructLayout(STy);
90270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
90370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      if (ElementOffset > 0)
90470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth        return true;
90570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      continue;
90670d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    }
90770d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
90870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // If we have a zero-sized type, the index doesn't matter. Keep looping.
90970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
91070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      continue;
91170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
91270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // Fast path the constant operand case both for efficiency and so we don't
91370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // increment Depth when just zipping down an all-constant GEP.
91470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
91570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      if (!OpC->isZero())
91670d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth        return true;
91770d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      continue;
91870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    }
91970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
92070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // We post-increment Depth here because while isKnownNonZero increments it
92170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // as well, when we pop back up that increment won't persist. We don't want
92270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // to recurse 10k times just because we have 10k GEP operands. We don't
92370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // bail completely out because we want to handle constant GEPs regardless
92470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    // of depth.
92570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    if (Depth++ >= MaxDepth)
92670d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      continue;
92770d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
92870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    if (isKnownNonZero(GTI.getOperand(), DL, Depth))
92970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      return true;
93070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  }
93170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
93270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  return false;
93370d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth}
93470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
935d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// isKnownNonZero - Return true if the given value is known to be non-zero
936d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// when defined.  For vectors return true if every element is known to be
937d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// non-zero when defined.  Supports values with integer or pointer type and
938d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// vectors of integers.
9393574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmowbool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
940d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Constant *C = dyn_cast<Constant>(V)) {
941d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (C->isNullValue())
942d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return false;
943d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (isa<ConstantInt>(C))
944d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // Must be non-zero due to null test above.
945d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
946d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // TODO: Handle vectors
947d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
948d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
949d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
950d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // The remaining tests are all recursive, so bail out if we hit the limit.
95132a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  if (Depth++ >= MaxDepth)
952d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
953d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
95470d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  // Check for pointer simplifications.
95570d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  if (V->getType()->isPointerTy()) {
95690842427b2f6ab5c0aab6049fd9177033101847fManman Ren    if (isKnownNonNull(V))
95790842427b2f6ab5c0aab6049fd9177033101847fManman Ren      return true;
95870d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
95970d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth      if (isGEPKnownNonNull(GEP, TD, Depth))
96070d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth        return true;
96170d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth  }
96270d3bebc8bc857fcf3d7fac44bda884d5e2a7040Chandler Carruth
963fd360c3e242e6317b241107a1db2b7d4a6276476Nadav Rotem  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
964d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
965d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // X | Y != 0 if X != 0 or Y != 0.
966d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  Value *X = 0, *Y = 0;
967d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (match(V, m_Or(m_Value(X), m_Value(Y))))
968d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
969d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
970d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // ext X != 0 if X != 0.
971d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
972d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
973d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
9749136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
975d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // if the lowest bit is shifted off the end.
976d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
9773dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    // shl nuw can't remove any non-zero bits.
97832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
9793dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->hasNoUnsignedWrap())
9803dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
9813dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
982d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    APInt KnownZero(BitWidth, 0);
983d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    APInt KnownOne(BitWidth, 0);
98426c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
985d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (KnownOne[0])
986d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
987d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
9889136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
989d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // defined if the sign bit is shifted off the end.
990d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
9913dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    // shr exact can only shift out zero bits.
99232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
9933dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->isExact())
9943dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
9953dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
996d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool XKnownNonNegative, XKnownNegative;
997d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
998d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNegative)
999d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
1000d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
10013dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  // div exact can only produce a zero if the dividend is zero.
100255c6d57734cd2f141dc2d6912fc22746d5eeae54Benjamin Kramer  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
100355c6d57734cd2f141dc2d6912fc22746d5eeae54Benjamin Kramer    return isKnownNonZero(X, TD, Depth);
10043dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  }
1005d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // X + Y.
1006d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1007d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool XKnownNonNegative, XKnownNegative;
1008d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool YKnownNonNegative, YKnownNegative;
1009d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1010d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1011d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
1012d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // If X and Y are both non-negative (as signed values) then their sum is not
1013227fba11ca168225d913d1cea94a05b883092e76Duncan Sands    // zero unless both X and Y are zero.
1014d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNonNegative && YKnownNonNegative)
1015227fba11ca168225d913d1cea94a05b883092e76Duncan Sands      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1016227fba11ca168225d913d1cea94a05b883092e76Duncan Sands        return true;
1017d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
1018d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // If X and Y are both negative (as signed values) then their sum is not
1019d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // zero unless both X and Y equal INT_MIN.
1020d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (BitWidth && XKnownNegative && YKnownNegative) {
1021d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt KnownZero(BitWidth, 0);
1022d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt KnownOne(BitWidth, 0);
1023d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt Mask = APInt::getSignedMaxValue(BitWidth);
1024d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // The sign bit of X is set.  If some other bit is set then X is not equal
1025d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // to INT_MIN.
102626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1027d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      if ((KnownOne & Mask) != 0)
1028d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        return true;
1029d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // The sign bit of Y is set.  If some other bit is set then Y is not equal
1030d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // to INT_MIN.
103126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1032d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      if ((KnownOne & Mask) != 0)
1033d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        return true;
1034d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    }
1035d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
1036d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // The sum of a non-negative number and a power of two is not zero.
1037dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1038d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
1039dbaa2376f7b3c027e895ff4bee3ae08351f3ea88Rafael Espindola    if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1040d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
1041d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
104232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  // X * Y.
104332a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
104432a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
104532a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    // If X and Y are non-zero then so is X * Y as long as the multiplication
104632a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    // does not overflow.
104732a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
104832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
104932a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      return true;
105032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  }
1051d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // (C ? X : Y) != 0 if X != 0 and Y != 0.
1052d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1053d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1054d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        isKnownNonZero(SI->getFalseValue(), TD, Depth))
1055d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
1056d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
1057d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
1058d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (!BitWidth) return false;
1059d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt KnownZero(BitWidth, 0);
1060d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt KnownOne(BitWidth, 0);
106126c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1062d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return KnownOne != 0;
1063d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
1064d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
1065173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1066173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
1067173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
1068cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
1069cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
1070cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
1071cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
1072cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
1073cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
1074173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
10753574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                             const DataLayout *TD, unsigned Depth) {
1076173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
107726c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1078c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1079173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
1080173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
1081173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1082173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1083173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1084173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
1085173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
1086173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
1087173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
1088173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
1089173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
1090173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
1091173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
10923574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmowunsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1093846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                                  unsigned Depth) {
1094b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
10953574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow         "ComputeNumSignBits requires a DataLayout object to operate "
1096bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
1097db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *Ty = V->getType();
1098bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1099bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
1100173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
1101173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
1102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1103d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1104d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
1105d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
1106173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
1107173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
1108c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1109ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
1110ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
1111173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
1112173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
111369a008075b29fbe0644ccbeecf1418ef8cca5e24Mon P Wang    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1114173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1115c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
11166b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner  case Instruction::AShr: {
1117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
11186b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner    // ashr X, C   -> adds C sign bits.  Vectors too.
11196b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner    const APInt *ShAmt;
11206b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner    if (match(U->getOperand(1), m_APInt(ShAmt))) {
11216b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner      Tmp += ShAmt->getZExtValue();
1122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
1123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
1124173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
11256b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner  }
11266b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner  case Instruction::Shl: {
11276b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner    const APInt *ShAmt;
11286b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
1130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
11316b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner      Tmp2 = ShAmt->getZExtValue();
11326b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner      if (Tmp2 >= TyBits ||      // Bad shift.
11336b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
11346b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner      return Tmp - Tmp2;
1135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
1136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
11376b0dc92043ab1f63d78b8796098575e1d777b701Chris Lattner  }
1138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
1139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
1140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
1141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
1142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
1144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
1146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
1147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
1148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
1149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
1150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
1151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
1153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
1155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
1157c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
1159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
1160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
1161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
1163c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
11650001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
1167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
116826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1169c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
117226c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
1174c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
1176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
1177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
1178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
1179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
1180c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
11838d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
1184c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
1186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
1188c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
1190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
1192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
119326c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
119626c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
1198c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
1200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
1201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
1202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
1203c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
1205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
1206c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
1208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
1209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
12118d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
1212c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
12138d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  case Instruction::PHI: {
12148d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    PHINode *PN = cast<PHINode>(U);
12158d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Don't analyze large in-degree PHIs.
12168d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    if (PN->getNumIncomingValues() > 4) break;
1217c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
12188d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Take the minimum of all incoming values.  This can't infinitely loop
12198d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // because of our depth threshold.
12208d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
12218d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
12228d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      if (Tmp == 1) return Tmp;
12238d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      Tmp = std::min(Tmp,
12240af20d847ac89f797d613a8a4fc3e7127ccb0b36Evan Cheng                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
12258d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    }
12268d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return Tmp;
12278d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  }
12288d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
1229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
1230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
1231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
1232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
1233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
1234c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
1237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
123826c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  APInt Mask;
123926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1240c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
1242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
1243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
1245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
1246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
1247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
1248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
1249c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
1252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
1253173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
1254173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
1255173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
1256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
1258833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
12592b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// ComputeMultiple - This function computes the integer multiple of Base that
12602b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// equals V.  If successful, it returns true and returns the multiple in
12613dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman/// Multiple.  If unsuccessful, it returns false. It looks
12622b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// through SExt instructions only if LookThroughSExt is true.
12632b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandezbool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
12643dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           bool LookThroughSExt, unsigned Depth) {
12652b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const unsigned MaxDepth = 6;
12662b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12673dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  assert(V && "No Value?");
12682b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  assert(Depth <= MaxDepth && "Limit Search Depth");
1269b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
12702b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1271db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *T = V->getType();
12722b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12733dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  ConstantInt *CI = dyn_cast<ConstantInt>(V);
12742b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 0)
12762b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return false;
1277c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
12782b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 1) {
12792b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = V;
12802b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
12812b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
12822b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12832b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
12842b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Constant *BaseVal = ConstantInt::get(T, Base);
12852b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CO && CO == BaseVal) {
12862b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // Multiple is 1.
12872b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, 1);
12882b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
12892b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
12902b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12912b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CI && CI->getZExtValue() % Base == 0) {
12922b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1293c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    return true;
12942b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
1295c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
12962b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Depth == MaxDepth) return false;  // Limit search depth.
1297c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
12982b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Operator *I = dyn_cast<Operator>(V);
12992b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (!I) return false;
13002b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
13012b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  switch (I->getOpcode()) {
13022b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  default: break;
130311fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::SExt:
13042b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (!LookThroughSExt) return false;
13052b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // otherwise fall through to ZExt
130611fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::ZExt:
13073dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    return ComputeMultiple(I->getOperand(0), Base, Multiple,
13083dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           LookThroughSExt, Depth+1);
13092b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Shl:
13102b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Mul: {
13112b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op0 = I->getOperand(0);
13122b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op1 = I->getOperand(1);
13132b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
13142b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (I->getOpcode() == Instruction::Shl) {
13152b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
13162b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (!Op1CI) return false;
13172b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      // Turn Op0 << Op1 into Op0 * 2^Op1
13182b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      APInt Op1Int = Op1CI->getValue();
13192b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1320a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      APInt API(Op1Int.getBitWidth(), 0);
13217a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      API.setBit(BitToSet);
1322a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      Op1 = ConstantInt::get(V->getContext(), API);
13232b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
13242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
13252b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Mul0 = NULL;
1326e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1327e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1328e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1329c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper          if (Op1C->getType()->getPrimitiveSizeInBits() <
1330e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1331e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1332c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper          if (Op1C->getType()->getPrimitiveSizeInBits() >
1333e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1334e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1335c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1336e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1337e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op1C);
1338e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
1339e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
13402b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
13412b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
13422b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul0CI->getValue() == 1) {
13432b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op1, so return Op1
13442b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op1;
13452b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
13462b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
13472b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
13482b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1349e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    Value *Mul1 = NULL;
1350e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1351e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1352e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1353c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper          if (Op0C->getType()->getPrimitiveSizeInBits() <
1354e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1355e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1356c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper          if (Op0C->getType()->getPrimitiveSizeInBits() >
1357e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1358e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1359c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1360e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1361e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op0C);
1362e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
1363e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
13642b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
13652b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
13662b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul1CI->getValue() == 1) {
13672b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op0, so return Op0
13682b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op0;
13692b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
13702b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
13712b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
13722b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
13732b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
13742b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
13752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  // We could not determine if V is a multiple of Base.
13762b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  return false;
13772b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez}
13782b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1379c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1380833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
1381833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
1382833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
1383833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
1384833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
1385833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1386833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1387833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
1388c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1389833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
1390833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
1391833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1392ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
1393833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
139485893f48a6994d71414773175440c421e5341810Michael Ilseman
139585893f48a6994d71414773175440c421e5341810Michael Ilseman  // Check if the nsz fast-math flag is set
139685893f48a6994d71414773175440c421e5341810Michael Ilseman  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
139785893f48a6994d71414773175440c421e5341810Michael Ilseman    if (FPO->hasNoSignedZeros())
139885893f48a6994d71414773175440c421e5341810Michael Ilseman      return true;
139985893f48a6994d71414773175440c421e5341810Michael Ilseman
1400833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1401603e874c64c2328cf29395e328bf77c1851068d2Jakub Staszak  if (I->getOpcode() == Instruction::FAdd)
1402603e874c64c2328cf29395e328bf77c1851068d2Jakub Staszak    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1403603e874c64c2328cf29395e328bf77c1851068d2Jakub Staszak      if (CFP->isNullValue())
1404603e874c64c2328cf29395e328bf77c1851068d2Jakub Staszak        return true;
1405c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1406833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
1407833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1408833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
1409c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1410833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1411833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
1412833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
141371339c965ca6268b9bff91213364783c3d06f666Gabor Greif      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1414c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1415833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
1416833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
1417833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
1418f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
1419f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
14209d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        // fabs[lf](x) != -0.0
14219d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabs") return true;
14229d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsf") return true;
14239d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsl") return true;
14249d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
14259d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen            F->getName() == "sqrtl")
142671339c965ca6268b9bff91213364783c3d06f666Gabor Greif          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1427833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
1428833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
1429c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1430833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
1431833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
1432833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1433bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// isBytewiseValue - If the specified value can be set by repeating the same
1434bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// byte in memory, return the i8 value that it is represented with.  This is
1435bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1436bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1437bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// byte store (e.g. i16 0x1234), return null.
1438bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris LattnerValue *llvm::isBytewiseValue(Value *V) {
1439bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // All byte-wide stores are splatable, even of arbitrary variables.
1440bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (V->getType()->isIntegerTy(8)) return V;
144141bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner
144241bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner  // Handle 'null' ConstantArrayZero etc.
144341bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner  if (Constant *C = dyn_cast<Constant>(V))
144441bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner    if (C->isNullValue())
144541bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1446c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1447bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // Constant float and double values can be handled as integer values if the
1448c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper  // corresponding integer value is "byteable".  An important case is 0.0.
1449bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1450bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CFP->getType()->isFloatTy())
1451bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1452bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CFP->getType()->isDoubleTy())
1453bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1454bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    // Don't handle long double formats, which have strange constraints.
1455bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1456c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1457c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper  // We can handle constant integers that are power of two in size and a
1458bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // multiple of 8 bits.
1459bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1460bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    unsigned Width = CI->getBitWidth();
1461bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (isPowerOf2_32(Width) && Width > 8) {
1462bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      // We can handle this value if the recursive binary decomposition is the
1463bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      // same at all levels.
1464bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      APInt Val = CI->getValue();
1465bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      APInt Val2;
1466bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      while (Val.getBitWidth() != 8) {
1467bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        unsigned NextWidth = Val.getBitWidth()/2;
1468bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val2  = Val.lshr(NextWidth);
1469bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val2 = Val2.trunc(Val.getBitWidth()/2);
1470bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val = Val.trunc(Val.getBitWidth()/2);
1471c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1472bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        // If the top/bottom halves aren't the same, reject it.
1473bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        if (Val != Val2)
1474bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner          return 0;
1475bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      }
1476bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return ConstantInt::get(V->getContext(), Val);
1477bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    }
1478bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1479c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
148018c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // A ConstantDataArray/Vector is splatable if all its members are equal and
148118c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // also splatable.
148218c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
148318c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    Value *Elt = CA->getElementAsConstant(0);
148418c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    Value *Val = isBytewiseValue(Elt);
1485bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (!Val)
1486bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return 0;
1487c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
148818c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
148918c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner      if (CA->getElementAsConstant(I) != Elt)
1490bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        return 0;
1491c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1492bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    return Val;
1493bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1494dce42b75dc05befb4f43b664951c80752904bcdeChad Rosier
1495bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // Conceptually, we could handle things like:
1496bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %a = zext i8 %X to i16
1497bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %b = shl i16 %a, 8
1498bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %c = or i16 %a, %b
1499bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // but until there is an example that actually needs this, it doesn't seem
1500bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // worth worrying about.
1501bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  return 0;
1502bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner}
1503bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1504bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1505b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
1506b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
1507b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
1508b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
1509b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
1510b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
1511db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattnerstatic Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
15127db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                SmallVector<unsigned, 10> &Idxs,
15137db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                unsigned IdxSkip,
15147db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
151596f498bd9f140a98321c478f517877c4767b94faDmitri Gribenko  llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1516b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
15170a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
15180a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
1519b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
1520b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1521b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
1522b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
15230a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
1524710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1525ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1526b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
15270a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
15280a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
15290a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
15300a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
15310a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
15320a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
15330a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
15340a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
15350a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
15360a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
1537b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
15387a2bdde0a0eebcd2125055e0eacaca040f0b766cChris Lattner    // If we successfully found a value for each of our subaggregates
15390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
15400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
1541b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
15420a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
15430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
15440a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
15450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
1546c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
15470a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
1548fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  Value *V = FindInsertedValue(From, Idxs);
15490a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
15500a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
15510a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
15520a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
15530a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
155439b5abf507b43da6b92f68b86406e0015ead18e9Frits van Bommel  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1555fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                       "tmp", InsertBefore);
1556b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1557b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1558b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
1559b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
1560b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
1561b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
1562b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
1563b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
15640a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
15650a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
15660a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
15670a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
1568b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
15690a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
1570fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foadstatic Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
15717db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1572977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
1573db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1574fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                                             idx_range);
15759e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
1576fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1577b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
1578b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1579ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1580b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1581b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1582710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1583710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
1584710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
15850a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
15860a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
15870a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
1588fc6d3a49867cd38954dc40936a88f1907252c6d2Jay FoadValue *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1589fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                               Instruction *InsertBefore) {
1590b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
1591df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  // recursion).
1592fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  if (idx_range.empty())
1593b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
1594df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  // We have indices, so V should have an indexable type.
1595df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1596df39028607ca751f0a3f50a76144464b825ff97aChris Lattner         "Not looking at a struct or array?");
1597df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1598df39028607ca751f0a3f50a76144464b825ff97aChris Lattner         "Invalid indices for type?");
1599a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner
1600a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner  if (Constant *C = dyn_cast<Constant>(V)) {
1601a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    C = C->getAggregateElement(idx_range[0]);
1602a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    if (C == 0) return 0;
1603a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1604a1f00f4d488eb5daff52faaf99c62ee652fd3b85Chris Lattner  }
1605c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1606df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1607b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
1608b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
1609fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    const unsigned *req_idx = idx_range.begin();
1610710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1611710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
1612fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad      if (req_idx == idx_range.end()) {
1613df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // We can't handle this without inserting insertvalues
1614df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        if (!InsertBefore)
1615977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
1616df39028607ca751f0a3f50a76144464b825ff97aChris Lattner
1617df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // The requested index identifies a part of a nested aggregate. Handle
1618df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // this specially. For example,
1619df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1620df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1621df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1622df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // This can be changed into
1623df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1624df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1625df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // which allows the unused 0,0 element from the nested struct to be
1626df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        // removed.
1627df39028607ca751f0a3f50a76144464b825ff97aChris Lattner        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1628df39028607ca751f0a3f50a76144464b825ff97aChris Lattner                                 InsertBefore);
16299954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
1630c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1631b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
1632b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
1633b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
1634b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
1635fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1636ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                 InsertBefore);
1637b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
1638b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
1639b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
1640b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
1641fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    return FindInsertedValue(I->getInsertedValueOperand(),
164239b5abf507b43da6b92f68b86406e0015ead18e9Frits van Bommel                             makeArrayRef(req_idx, idx_range.end()),
1643ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1644df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  }
1645c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1646df39028607ca751f0a3f50a76144464b825ff97aChris Lattner  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1647b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
1648b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
1649b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
1650c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1651c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    // Calculate the number of indices required
1652fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    unsigned size = I->getNumIndices() + idx_range.size();
1653b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
16543faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
16553faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
1656b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
1657fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    Idxs.append(I->idx_begin(), I->idx_end());
1658c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1659b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
1660fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    Idxs.append(idx_range.begin(), idx_range.end());
1661b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1662c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper    assert(Idxs.size() == size
1663710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
1664c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
1665fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1666b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
1667b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
1668b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
1669b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
1670b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
16710ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
1672ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1673ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// it can be expressed as a base pointer plus a constant offset.  Return the
1674ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// base and offset to the caller.
1675ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris LattnerValue *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1676a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman                                              const DataLayout *TD) {
1677a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman  // Without DataLayout, conservatively assume 64-bit offsets, which is
1678a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman  // the widest we support.
1679a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman  unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
16805cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes  APInt ByteOffset(BitWidth, 0);
16815cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes  while (1) {
16825cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes    if (Ptr->getType()->isVectorTy())
16835cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      break;
16845cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes
16855cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
16865cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      APInt GEPOffset(BitWidth, 0);
1687a070d2a0355c4993240b5206ebc1d517c151331dDan Gohman      if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset))
16885cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes        break;
16895cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      ByteOffset += GEPOffset;
16905cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      Ptr = GEP->getPointerOperand();
16915cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
16925cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      Ptr = cast<Operator>(Ptr)->getOperand(0);
16935cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
16945cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      if (GA->mayBeOverridden())
16955cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes        break;
16965cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      Ptr = GA->getAliasee();
1697ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    } else {
16985cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes      break;
1699ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    }
1700ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  }
17015cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes  Offset = ByteOffset.getSExtValue();
17025cec34754d540faac87fc0173fce42005c76b7d9Nuno Lopes  return Ptr;
1703ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner}
1704ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1705ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
170618c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner/// getConstantStringInfo - This function computes the length of a
17070ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
17080ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
170918c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattnerbool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
171018c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner                                 uint64_t Offset, bool TrimAtNul) {
171118c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  assert(V);
171218c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner
171318c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // Look through bitcast instructions and geps.
171418c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  V = V->stripPointerCasts();
1715c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
171618c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // If the value is a GEP instructionor  constant expression, treat it as an
171718c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // offset.
171818c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
17190ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
17200582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
17210582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
1722c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
17230ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
1724db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1725db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1726b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
17270582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
1728c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
17290ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
17300ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
17310a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
17320582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
17330582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
1734c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
17350ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
17360ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
17370ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
17380ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
17390a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
17400ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
17410582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
17420582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
174318c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
17440ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
17450cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky
17460ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
17470ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
17480ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
174918c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
17508255573835970e7130ba93271972172fb335f2ecDan Gohman  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
17510582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
175218c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner
17530cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  // Handle the all-zeros case
175418c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  if (GV->getInitializer()->isNullValue()) {
17550ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
17560ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
175718c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    Str = "";
17580582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
17590582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
1760c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
17610ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
176218c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  const ConstantDataArray *Array =
176318c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    dyn_cast<ConstantDataArray>(GV->getInitializer());
176418c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  if (Array == 0 || !Array->isString())
17650582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
1766c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
17670ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
176818c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  uint64_t NumElts = Array->getType()->getArrayNumElements();
176918c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner
177018c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // Start out with the entire array in the StringRef.
177118c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  Str = Array->getAsString();
177218c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner
17730582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
17740582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
1775c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
177618c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // Skip over 'offset' bytes.
177718c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  Str = Str.substr(Offset);
1778c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
177918c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  if (TrimAtNul) {
178018c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    // Trim off the \0 and anything after it.  If the array is not nul
178118c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    // terminated, we just return the whole end of string.  The client may know
178218c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    // some other way that the string is length-bound.
178318c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner    Str = Str.substr(0, Str.find('\0'));
178418c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  }
17850582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
17860ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
178725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
178825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// These next two are very similar to the above, but also look through PHI
178925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// nodes.
179025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// TODO: See if we can integrate these two together.
179125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
179225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLengthH - If we can compute the length of the string pointed to by
179325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
179425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopherstatic uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
179525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Look through noop bitcast instructions.
179618c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  V = V->stripPointerCasts();
179725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
179825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If this is a PHI node, there are two cases: either we have already seen it
179925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // or we haven't.
180025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (PHINode *PN = dyn_cast<PHINode>(V)) {
180125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!PHIs.insert(PN))
180225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return ~0ULL;  // already in the set.
180325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
180425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // If it was new, see if all the input strings are the same length.
180525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t LenSoFar = ~0ULL;
180625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
180725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
180825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == 0) return 0; // Unknown length -> unknown.
180925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
181025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == ~0ULL) continue;
181125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
181225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len != LenSoFar && LenSoFar != ~0ULL)
181325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher        return 0;    // Disagree -> unknown.
181425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      LenSoFar = Len;
181525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    }
181625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
181725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // Success, all agree.
181825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return LenSoFar;
181925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
182025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
182125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
182225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
182325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
182425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == 0) return 0;
182525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
182625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == 0) return 0;
182725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == ~0ULL) return Len2;
182825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == ~0ULL) return Len1;
182925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 != Len2) return 0;
183025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return Len1;
183125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
1832c4265e1d68a88791a004224aac7af9e914a0d411Craig Topper
183318c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  // Otherwise, see if we can read the string.
183418c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  StringRef StrData;
183518c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  if (!getConstantStringInfo(V, StrData))
183691766fe066efe6e0969ba805a2e3726a70ed34a3Argyrios Kyrtzidis    return 0;
183725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
183818c7f80b3e83ab584bd8572695a3cde8bafd9d3cChris Lattner  return StrData.size()+1;
183925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
184025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
184125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLength - If we can compute the length of the string pointed to by
184225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
184325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopheruint64_t llvm::GetStringLength(Value *V) {
184425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!V->getType()->isPointerTy()) return 0;
184525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
184625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  SmallPtrSet<PHINode*, 32> PHIs;
184725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t Len = GetStringLengthH(V, PHIs);
184825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
184925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // an empty string as a length.
185025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return Len == ~0ULL ? 1 : Len;
185125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
18525034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman
1853bd1801b5553c8be3960255a92738464e0010b6f6Dan GohmanValue *
18543574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmowllvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
18555034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  if (!V->getType()->isPointerTy())
18565034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    return V;
18575034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
18585034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
18595034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GEP->getPointerOperand();
18605034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
18615034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = cast<Operator>(V)->getOperand(0);
18625034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
18635034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      if (GA->mayBeOverridden())
18645034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman        return V;
18655034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GA->getAliasee();
18665034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else {
1867c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman      // See if InstructionSimplify knows any relevant tricks.
1868c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman      if (Instruction *I = dyn_cast<Instruction>(V))
18697a2bdde0a0eebcd2125055e0eacaca040f0b766cChris Lattner        // TODO: Acquire a DominatorTree and use it.
1870bd1801b5553c8be3960255a92738464e0010b6f6Dan Gohman        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1871c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman          V = Simplified;
1872c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman          continue;
1873c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman        }
1874c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman
18755034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      return V;
18765034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    }
18775034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
18785034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  }
18795034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  return V;
18805034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman}
188199e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky
1882b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohmanvoid
1883b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohmanllvm::GetUnderlyingObjects(Value *V,
1884b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman                           SmallVectorImpl<Value *> &Objects,
18853574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                           const DataLayout *TD,
1886b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman                           unsigned MaxLookup) {
1887b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman  SmallPtrSet<Value *, 4> Visited;
1888b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman  SmallVector<Value *, 4> Worklist;
1889b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman  Worklist.push_back(V);
1890b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman  do {
1891b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    Value *P = Worklist.pop_back_val();
1892b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    P = GetUnderlyingObject(P, TD, MaxLookup);
1893b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman
1894b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    if (!Visited.insert(P))
1895b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman      continue;
1896b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman
1897b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1898b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman      Worklist.push_back(SI->getTrueValue());
1899b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman      Worklist.push_back(SI->getFalseValue());
1900b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman      continue;
1901b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    }
1902b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman
1903b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1904b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1905b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman        Worklist.push_back(PN->getIncomingValue(i));
1906b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman      continue;
1907b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    }
1908b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman
1909b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman    Objects.push_back(P);
1910b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman  } while (!Worklist.empty());
1911b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman}
1912b401e3bd16c3d648464606d5e5b496dd61d12afcDan Gohman
191399e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
191499e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky/// are lifetime markers.
191599e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky///
191699e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewyckybool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
191799e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
191899e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky       UI != UE; ++UI) {
191999e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
192099e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    if (!II) return false;
192199e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky
192299e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
192399e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky        II->getIntrinsicID() != Intrinsic::lifetime_end)
192499e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky      return false;
192599e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  }
192699e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  return true;
192799e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky}
1928f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman
1929febaf8401779fedf8db7b02e499c5e39848fb9f5Dan Gohmanbool llvm::isSafeToSpeculativelyExecute(const Value *V,
19303574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow                                        const DataLayout *TD) {
1931febaf8401779fedf8db7b02e499c5e39848fb9f5Dan Gohman  const Operator *Inst = dyn_cast<Operator>(V);
1932febaf8401779fedf8db7b02e499c5e39848fb9f5Dan Gohman  if (!Inst)
1933febaf8401779fedf8db7b02e499c5e39848fb9f5Dan Gohman    return false;
1934febaf8401779fedf8db7b02e499c5e39848fb9f5Dan Gohman
1935f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1936f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1937f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman      if (C->canTrap())
1938f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman        return false;
1939f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman
1940f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  switch (Inst->getOpcode()) {
1941f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  default:
1942f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    return true;
1943f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::UDiv:
1944f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::URem:
1945f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1946f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    return isKnownNonZero(Inst->getOperand(1), TD);
1947f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::SDiv:
1948f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::SRem: {
1949f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    Value *Op = Inst->getOperand(1);
1950f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    // x / y is undefined if y == 0
1951f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    if (!isKnownNonZero(Op, TD))
1952f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman      return false;
1953f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    // x / y might be undefined if y == -1
1954f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    unsigned BitWidth = getBitWidth(Op->getType(), TD);
1955f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    if (BitWidth == 0)
1956f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman      return false;
1957f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    APInt KnownZero(BitWidth, 0);
1958f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    APInt KnownOne(BitWidth, 0);
195926c8dcc692fb2addd475446cfff24d6a4e958bcaRafael Espindola    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1960f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    return !!KnownZero;
1961f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  }
1962f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Load: {
1963f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    const LoadInst *LI = cast<LoadInst>(Inst);
1964f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    if (!LI->isUnordered())
1965f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman      return false;
1966f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    return LI->getPointerOperand()->isDereferenceablePointer();
1967f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  }
19688369687576b062be74c941a4a90dbabb0828e028Nick Lewycky  case Instruction::Call: {
19698369687576b062be74c941a4a90dbabb0828e028Nick Lewycky   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
19708369687576b062be74c941a4a90dbabb0828e028Nick Lewycky     switch (II->getIntrinsicID()) {
1971c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth       // These synthetic intrinsics have no side-effects, and just mark
1972c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth       // information about their operands.
1973c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth       // FIXME: There are other no-op synthetic instructions that potentially
1974c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth       // should be considered at least *safe* to speculate...
1975c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth       case Intrinsic::dbg_declare:
1976c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth       case Intrinsic::dbg_value:
1977c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth         return true;
1978c0d18b669674d3b173e6a3eca6ada98871bb808fChandler Carruth
19798369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::bswap:
19808369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::ctlz:
19818369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::ctpop:
19828369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::cttz:
19838369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::objectsize:
19848369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::sadd_with_overflow:
19858369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::smul_with_overflow:
19868369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::ssub_with_overflow:
19878369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::uadd_with_overflow:
19888369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::umul_with_overflow:
19898369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       case Intrinsic::usub_with_overflow:
19908369687576b062be74c941a4a90dbabb0828e028Nick Lewycky         return true;
19918369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       // TODO: some fp intrinsics are marked as having the same error handling
19928369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       // as libm. They're safe to speculate when they won't error.
19938369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       // TODO: are convert_{from,to}_fp16 safe?
19948369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       // TODO: can we list target-specific intrinsics here?
19958369687576b062be74c941a4a90dbabb0828e028Nick Lewycky       default: break;
19968369687576b062be74c941a4a90dbabb0828e028Nick Lewycky     }
19978369687576b062be74c941a4a90dbabb0828e028Nick Lewycky   }
1998f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    return false; // The called function could have undefined behavior or
19998369687576b062be74c941a4a90dbabb0828e028Nick Lewycky                  // side-effects, even if marked readnone nounwind.
20008369687576b062be74c941a4a90dbabb0828e028Nick Lewycky  }
2001f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::VAArg:
2002f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Alloca:
2003f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Invoke:
2004f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::PHI:
2005f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Store:
2006f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Ret:
2007f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Br:
2008f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::IndirectBr:
2009f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Switch:
2010f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Unreachable:
2011f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Fence:
2012f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::LandingPad:
2013f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::AtomicRMW:
2014f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::AtomicCmpXchg:
2015f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  case Instruction::Resume:
2016f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman    return false; // Misc instructions which have effects
2017f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman  }
2018f0426601977c3e386d2d26c72a2cca691dc42072Dan Gohman}
2019de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman
2020de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman/// isKnownNonNull - Return true if we know that the specified value is never
2021de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman/// null.
2022de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohmanbool llvm::isKnownNonNull(const Value *V) {
2023de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  // Alloca never returns null, malloc might.
2024de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  if (isa<AllocaInst>(V)) return true;
2025de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman
2026de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  // A byval argument is never null.
2027de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  if (const Argument *A = dyn_cast<Argument>(V))
2028de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman    return A->hasByValAttr();
2029de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman
2030de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  // Global values are not null unless extern weak.
2031de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2032de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman    return !GV->hasExternalWeakLinkage();
2033de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman  return false;
2034de0eb19248f3053c07a5b1dad9c47b8435458337Dan Gohman}
2035