ValueEnumerator.cpp revision a279bc3da55691784064cb47200a1c584408b8ab
1//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ValueEnumerator class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ValueEnumerator.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Metadata.h"
18#include "llvm/Module.h"
19#include "llvm/TypeSymbolTable.h"
20#include "llvm/ValueSymbolTable.h"
21#include "llvm/Instructions.h"
22#include <algorithm>
23using namespace llvm;
24
25static bool isSingleValueType(const std::pair<const llvm::Type*,
26                              unsigned int> &P) {
27  return P.first->isSingleValueType();
28}
29
30static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
31  return isa<IntegerType>(V.first->getType());
32}
33
34static bool CompareByFrequency(const std::pair<const llvm::Type*,
35                               unsigned int> &P1,
36                               const std::pair<const llvm::Type*,
37                               unsigned int> &P2) {
38  return P1.second > P2.second;
39}
40
41/// ValueEnumerator - Enumerate module-level information.
42ValueEnumerator::ValueEnumerator(const Module *M) {
43  InstructionCount = 0;
44
45  // Enumerate the global variables.
46  for (Module::const_global_iterator I = M->global_begin(),
47         E = M->global_end(); I != E; ++I)
48    EnumerateValue(I);
49
50  // Enumerate the functions.
51  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
52    EnumerateValue(I);
53    EnumerateAttributes(cast<Function>(I)->getAttributes());
54  }
55
56  // Enumerate the aliases.
57  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
58       I != E; ++I)
59    EnumerateValue(I);
60
61  // Remember what is the cutoff between globalvalue's and other constants.
62  unsigned FirstConstant = Values.size();
63
64  // Enumerate the global variable initializers.
65  for (Module::const_global_iterator I = M->global_begin(),
66         E = M->global_end(); I != E; ++I)
67    if (I->hasInitializer())
68      EnumerateValue(I->getInitializer());
69
70  // Enumerate the aliasees.
71  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
72       I != E; ++I)
73    EnumerateValue(I->getAliasee());
74
75  // Enumerate types used by the type symbol table.
76  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
77
78  // Insert constants that are named at module level into the slot pool so that
79  // the module symbol table can refer to them...
80  EnumerateValueSymbolTable(M->getValueSymbolTable());
81
82  // Enumerate types used by function bodies and argument lists.
83  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
84
85    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
86         I != E; ++I)
87      EnumerateType(I->getType());
88
89    Metadata &TheMetadata = F->getContext().getMetadata();
90    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
91      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
92        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
93             OI != E; ++OI)
94          EnumerateOperandType(*OI);
95        EnumerateType(I->getType());
96        if (const CallInst *CI = dyn_cast<CallInst>(I))
97          EnumerateAttributes(CI->getAttributes());
98        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
99          EnumerateAttributes(II->getAttributes());
100
101        // Enumerate metadata attached with this instruction.
102        const Metadata::MDMapTy *MDs = TheMetadata.getMDs(I);
103        if (MDs)
104          for (Metadata::MDMapTy::const_iterator MI = MDs->begin(),
105                 ME = MDs->end(); MI != ME; ++MI)
106            if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
107              EnumerateMetadata(MDN);
108      }
109  }
110
111  // Optimize constant ordering.
112  OptimizeConstants(FirstConstant, Values.size());
113
114  // Sort the type table by frequency so that most commonly used types are early
115  // in the table (have low bit-width).
116  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
117
118  // Partition the Type ID's so that the single-value types occur before the
119  // aggregate types.  This allows the aggregate types to be dropped from the
120  // type table after parsing the global variable initializers.
121  std::partition(Types.begin(), Types.end(), isSingleValueType);
122
123  // Now that we rearranged the type table, rebuild TypeMap.
124  for (unsigned i = 0, e = Types.size(); i != e; ++i)
125    TypeMap[Types[i].first] = i+1;
126}
127
128unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
129  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
130  assert (I != InstructionMap.end() && "Instruction is not mapped!");
131    return I->second;
132}
133
134void ValueEnumerator::setInstructionID(const Instruction *I) {
135  InstructionMap[I] = InstructionCount++;
136}
137
138unsigned ValueEnumerator::getValueID(const Value *V) const {
139  if (isa<MetadataBase>(V)) {
140    ValueMapType::const_iterator I = MDValueMap.find(V);
141    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
142    return I->second-1;
143  }
144
145  ValueMapType::const_iterator I = ValueMap.find(V);
146  assert(I != ValueMap.end() && "Value not in slotcalculator!");
147  return I->second-1;
148}
149
150// Optimize constant ordering.
151namespace {
152  struct CstSortPredicate {
153    ValueEnumerator &VE;
154    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
155    bool operator()(const std::pair<const Value*, unsigned> &LHS,
156                    const std::pair<const Value*, unsigned> &RHS) {
157      // Sort by plane.
158      if (LHS.first->getType() != RHS.first->getType())
159        return VE.getTypeID(LHS.first->getType()) <
160               VE.getTypeID(RHS.first->getType());
161      // Then by frequency.
162      return LHS.second > RHS.second;
163    }
164  };
165}
166
167/// OptimizeConstants - Reorder constant pool for denser encoding.
168void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
169  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
170
171  CstSortPredicate P(*this);
172  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
173
174  // Ensure that integer constants are at the start of the constant pool.  This
175  // is important so that GEP structure indices come before gep constant exprs.
176  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
177                 isIntegerValue);
178
179  // Rebuild the modified portion of ValueMap.
180  for (; CstStart != CstEnd; ++CstStart)
181    ValueMap[Values[CstStart].first] = CstStart+1;
182}
183
184
185/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
186/// table.
187void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
188  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
189       TI != TE; ++TI)
190    EnumerateType(TI->second);
191}
192
193/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
194/// table into the values table.
195void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
196  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
197       VI != VE; ++VI)
198    EnumerateValue(VI->getValue());
199}
200
201void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
202  // Check to see if it's already in!
203  unsigned &MDValueID = MDValueMap[MD];
204  if (MDValueID) {
205    // Increment use count.
206    MDValues[MDValueID-1].second++;
207    return;
208  }
209
210  // Enumerate the type of this value.
211  EnumerateType(MD->getType());
212
213  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
214    MDValues.push_back(std::make_pair(MD, 1U));
215    MDValueMap[MD] = MDValues.size();
216    MDValueID = MDValues.size();
217    for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
218         I != E; ++I) {
219      if (*I)
220        EnumerateValue(*I);
221      else
222        EnumerateType(Type::getVoidTy(MD->getContext()));
223    }
224    return;
225  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(MD)) {
226    for(NamedMDNode::const_elem_iterator I = N->elem_begin(),
227          E = N->elem_end(); I != E; ++I) {
228      MetadataBase *M = *I;
229      EnumerateValue(M);
230    }
231    MDValues.push_back(std::make_pair(MD, 1U));
232    MDValueMap[MD] = Values.size();
233    return;
234  }
235
236  // Add the value.
237  MDValues.push_back(std::make_pair(MD, 1U));
238  MDValueID = MDValues.size();
239}
240
241void ValueEnumerator::EnumerateValue(const Value *V) {
242  assert(V->getType() != Type::getVoidTy(V->getContext()) &&
243         "Can't insert void values!");
244  if (const MetadataBase *MB = dyn_cast<MetadataBase>(V))
245    return EnumerateMetadata(MB);
246
247  // Check to see if it's already in!
248  unsigned &ValueID = ValueMap[V];
249  if (ValueID) {
250    // Increment use count.
251    Values[ValueID-1].second++;
252    return;
253  }
254
255  // Enumerate the type of this value.
256  EnumerateType(V->getType());
257
258  if (const Constant *C = dyn_cast<Constant>(V)) {
259    if (isa<GlobalValue>(C)) {
260      // Initializers for globals are handled explicitly elsewhere.
261    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
262      // Do not enumerate the initializers for an array of simple characters.
263      // The initializers just polute the value table, and we emit the strings
264      // specially.
265    } else if (C->getNumOperands()) {
266      // If a constant has operands, enumerate them.  This makes sure that if a
267      // constant has uses (for example an array of const ints), that they are
268      // inserted also.
269
270      // We prefer to enumerate them with values before we enumerate the user
271      // itself.  This makes it more likely that we can avoid forward references
272      // in the reader.  We know that there can be no cycles in the constants
273      // graph that don't go through a global variable.
274      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
275           I != E; ++I)
276        EnumerateValue(*I);
277
278      // Finally, add the value.  Doing this could make the ValueID reference be
279      // dangling, don't reuse it.
280      Values.push_back(std::make_pair(V, 1U));
281      ValueMap[V] = Values.size();
282      return;
283    }
284  }
285
286  // Add the value.
287  Values.push_back(std::make_pair(V, 1U));
288  ValueID = Values.size();
289}
290
291
292void ValueEnumerator::EnumerateType(const Type *Ty) {
293  unsigned &TypeID = TypeMap[Ty];
294
295  if (TypeID) {
296    // If we've already seen this type, just increase its occurrence count.
297    Types[TypeID-1].second++;
298    return;
299  }
300
301  // First time we saw this type, add it.
302  Types.push_back(std::make_pair(Ty, 1U));
303  TypeID = Types.size();
304
305  // Enumerate subtypes.
306  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
307       I != E; ++I)
308    EnumerateType(*I);
309}
310
311// Enumerate the types for the specified value.  If the value is a constant,
312// walk through it, enumerating the types of the constant.
313void ValueEnumerator::EnumerateOperandType(const Value *V) {
314  EnumerateType(V->getType());
315  if (const Constant *C = dyn_cast<Constant>(V)) {
316    // If this constant is already enumerated, ignore it, we know its type must
317    // be enumerated.
318    if (ValueMap.count(V)) return;
319
320    // This constant may have operands, make sure to enumerate the types in
321    // them.
322    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
323      EnumerateOperandType(C->getOperand(i));
324
325    if (const MDNode *N = dyn_cast<MDNode>(V)) {
326      for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
327        Value *Elem = N->getElement(i);
328        if (Elem)
329          EnumerateOperandType(Elem);
330      }
331    }
332  } else if (isa<MDString>(V) || isa<MDNode>(V))
333    EnumerateValue(V);
334}
335
336void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
337  if (PAL.isEmpty()) return;  // null is always 0.
338  // Do a lookup.
339  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
340  if (Entry == 0) {
341    // Never saw this before, add it.
342    Attributes.push_back(PAL);
343    Entry = Attributes.size();
344  }
345}
346
347
348void ValueEnumerator::incorporateFunction(const Function &F) {
349  NumModuleValues = Values.size();
350
351  // Adding function arguments to the value table.
352  for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
353      I != E; ++I)
354    EnumerateValue(I);
355
356  FirstFuncConstantID = Values.size();
357
358  // Add all function-level constants to the value table.
359  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
360    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
361      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
362           OI != E; ++OI) {
363        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
364            isa<InlineAsm>(*OI))
365          EnumerateValue(*OI);
366      }
367    BasicBlocks.push_back(BB);
368    ValueMap[BB] = BasicBlocks.size();
369  }
370
371  // Optimize the constant layout.
372  OptimizeConstants(FirstFuncConstantID, Values.size());
373
374  // Add the function's parameter attributes so they are available for use in
375  // the function's instruction.
376  EnumerateAttributes(F.getAttributes());
377
378  FirstInstID = Values.size();
379
380  // Add all of the instructions.
381  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
382    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
383      if (I->getType() != Type::getVoidTy(F.getContext()))
384        EnumerateValue(I);
385    }
386  }
387}
388
389void ValueEnumerator::purgeFunction() {
390  /// Remove purged values from the ValueMap.
391  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
392    ValueMap.erase(Values[i].first);
393  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
394    ValueMap.erase(BasicBlocks[i]);
395
396  Values.resize(NumModuleValues);
397  BasicBlocks.clear();
398}
399