LiveVariables.cpp revision 7a3abdc63c0cc4e5d5411c3add0e909c6ac49e79
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Config/alloca.h"
37#include <algorithm>
38#include <iostream>
39using namespace llvm;
40
41static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
42
43void LiveVariables::VarInfo::dump() const {
44  std::cerr << "Register Defined by: ";
45  if (DefInst)
46    std::cerr << *DefInst;
47  else
48    std::cerr << "<null>\n";
49  std::cerr << "  Alive in blocks: ";
50  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
51    if (AliveBlocks[i]) std::cerr << i << ", ";
52  std::cerr << "\n  Killed by:";
53  if (Kills.empty())
54    std::cerr << " No instructions.\n";
55  else {
56    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
57      std::cerr << "\n    #" << i << ": " << *Kills[i];
58    std::cerr << "\n";
59  }
60}
61
62LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
63  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
64         "getVarInfo: not a virtual register!");
65  RegIdx -= MRegisterInfo::FirstVirtualRegister;
66  if (RegIdx >= VirtRegInfo.size()) {
67    if (RegIdx >= 2*VirtRegInfo.size())
68      VirtRegInfo.resize(RegIdx*2);
69    else
70      VirtRegInfo.resize(2*VirtRegInfo.size());
71  }
72  return VirtRegInfo[RegIdx];
73}
74
75bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
76  std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
77  RegistersKilled.find(MI);
78  if (I == RegistersKilled.end()) return false;
79
80  // Do a binary search, as these lists can grow pretty big, particularly for
81  // call instructions on targets with lots of call-clobbered registers.
82  return std::binary_search(I->second.begin(), I->second.end(), Reg);
83}
84
85bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
86  std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
87  RegistersDead.find(MI);
88  if (I == RegistersDead.end()) return false;
89
90  // Do a binary search, as these lists can grow pretty big, particularly for
91  // call instructions on targets with lots of call-clobbered registers.
92  return std::binary_search(I->second.begin(), I->second.end(), Reg);
93}
94
95
96void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
97                                            MachineBasicBlock *MBB) {
98  unsigned BBNum = MBB->getNumber();
99
100  // Check to see if this basic block is one of the killing blocks.  If so,
101  // remove it...
102  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
103    if (VRInfo.Kills[i]->getParent() == MBB) {
104      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
105      break;
106    }
107
108  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
109
110  if (VRInfo.AliveBlocks.size() <= BBNum)
111    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
112
113  if (VRInfo.AliveBlocks[BBNum])
114    return;  // We already know the block is live
115
116  // Mark the variable known alive in this bb
117  VRInfo.AliveBlocks[BBNum] = true;
118
119  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
120         E = MBB->pred_end(); PI != E; ++PI)
121    MarkVirtRegAliveInBlock(VRInfo, *PI);
122}
123
124void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
125                                     MachineInstr *MI) {
126  assert(VRInfo.DefInst && "Register use before def!");
127
128  // Check to see if this basic block is already a kill block...
129  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
130    // Yes, this register is killed in this basic block already.  Increase the
131    // live range by updating the kill instruction.
132    VRInfo.Kills.back() = MI;
133    return;
134  }
135
136#ifndef NDEBUG
137  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
138    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
139#endif
140
141  assert(MBB != VRInfo.DefInst->getParent() &&
142         "Should have kill for defblock!");
143
144  // Add a new kill entry for this basic block.
145  VRInfo.Kills.push_back(MI);
146
147  // Update all dominating blocks to mark them known live.
148  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
149         E = MBB->pred_end(); PI != E; ++PI)
150    MarkVirtRegAliveInBlock(VRInfo, *PI);
151}
152
153void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
154  PhysRegInfo[Reg] = MI;
155  PhysRegUsed[Reg] = true;
156
157  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
158       unsigned Alias = *AliasSet; ++AliasSet) {
159    PhysRegInfo[Alias] = MI;
160    PhysRegUsed[Alias] = true;
161  }
162}
163
164void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
165  // Does this kill a previous version of this register?
166  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
167    if (PhysRegUsed[Reg])
168      RegistersKilled[LastUse].push_back(Reg);
169    else
170      RegistersDead[LastUse].push_back(Reg);
171  }
172  PhysRegInfo[Reg] = MI;
173  PhysRegUsed[Reg] = false;
174
175  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
176       unsigned Alias = *AliasSet; ++AliasSet) {
177    if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
178      if (PhysRegUsed[Alias])
179        RegistersKilled[LastUse].push_back(Alias);
180      else
181        RegistersDead[LastUse].push_back(Alias);
182    }
183    PhysRegInfo[Alias] = MI;
184    PhysRegUsed[Alias] = false;
185  }
186}
187
188bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
189  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
190  RegInfo = MF.getTarget().getRegisterInfo();
191  assert(RegInfo && "Target doesn't have register information?");
192
193  AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);
194
195  // PhysRegInfo - Keep track of which instruction was the last use of a
196  // physical register.  This is a purely local property, because all physical
197  // register references as presumed dead across basic blocks.
198  //
199  PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
200                                       RegInfo->getNumRegs());
201  PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
202  std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
203
204  /// Get some space for a respectable number of registers...
205  VirtRegInfo.resize(64);
206
207  // Mark live-in registers as live-in.
208  for (MachineFunction::livein_iterator I = MF.livein_begin(),
209         E = MF.livein_end(); I != E; ++I) {
210    assert(MRegisterInfo::isPhysicalRegister(I->first) &&
211           "Cannot have a live-in virtual register!");
212    HandlePhysRegDef(I->first, 0);
213  }
214
215  // Calculate live variable information in depth first order on the CFG of the
216  // function.  This guarantees that we will see the definition of a virtual
217  // register before its uses due to dominance properties of SSA (except for PHI
218  // nodes, which are treated as a special case).
219  //
220  MachineBasicBlock *Entry = MF.begin();
221  std::set<MachineBasicBlock*> Visited;
222  for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
223         E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
224    MachineBasicBlock *MBB = *DFI;
225    unsigned BBNum = MBB->getNumber();
226
227    // Loop over all of the instructions, processing them.
228    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
229         I != E; ++I) {
230      MachineInstr *MI = I;
231      const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
232
233      // Process all of the operands of the instruction...
234      unsigned NumOperandsToProcess = MI->getNumOperands();
235
236      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
237      // of the uses.  They will be handled in other basic blocks.
238      if (MI->getOpcode() == TargetInstrInfo::PHI)
239        NumOperandsToProcess = 1;
240
241      // Loop over implicit uses, using them.
242      if (MID.ImplicitUses) {
243        for (const unsigned *ImplicitUses = MID.ImplicitUses;
244             *ImplicitUses; ++ImplicitUses)
245          HandlePhysRegUse(*ImplicitUses, MI);
246      }
247
248      // Process all explicit uses...
249      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
250        MachineOperand &MO = MI->getOperand(i);
251        if (MO.isUse() && MO.isRegister() && MO.getReg()) {
252          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
253            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
254          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
255                     AllocatablePhysicalRegisters[MO.getReg()]) {
256            HandlePhysRegUse(MO.getReg(), MI);
257          }
258        }
259      }
260
261      // Loop over implicit defs, defining them.
262      if (MID.ImplicitDefs) {
263        for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
264             *ImplicitDefs; ++ImplicitDefs)
265          HandlePhysRegDef(*ImplicitDefs, MI);
266      }
267
268      // Process all explicit defs...
269      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
270        MachineOperand &MO = MI->getOperand(i);
271        if (MO.isDef() && MO.isRegister() && MO.getReg()) {
272          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
273            VarInfo &VRInfo = getVarInfo(MO.getReg());
274
275            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
276            VRInfo.DefInst = MI;
277            // Defaults to dead
278            VRInfo.Kills.push_back(MI);
279          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
280                     AllocatablePhysicalRegisters[MO.getReg()]) {
281            HandlePhysRegDef(MO.getReg(), MI);
282          }
283        }
284      }
285    }
286
287    // Handle any virtual assignments from PHI nodes which might be at the
288    // bottom of this basic block.  We check all of our successor blocks to see
289    // if they have PHI nodes, and if so, we simulate an assignment at the end
290    // of the current block.
291    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
292           E = MBB->succ_end(); SI != E; ++SI) {
293      MachineBasicBlock *Succ = *SI;
294
295      // PHI nodes are guaranteed to be at the top of the block...
296      for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
297           MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
298        for (unsigned i = 1; ; i += 2) {
299          assert(MI->getNumOperands() > i+1 &&
300                 "Didn't find an entry for our predecessor??");
301          if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
302            MachineOperand &MO = MI->getOperand(i);
303            VarInfo &VRInfo = getVarInfo(MO.getReg());
304            assert(VRInfo.DefInst && "Register use before def (or no def)!");
305
306            // Only mark it alive only in the block we are representing.
307            MarkVirtRegAliveInBlock(VRInfo, MBB);
308            break;   // Found the PHI entry for this block.
309          }
310        }
311      }
312    }
313
314    // Finally, if the last block in the function is a return, make sure to mark
315    // it as using all of the live-out values in the function.
316    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
317      MachineInstr *Ret = &MBB->back();
318      for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
319             E = MF.liveout_end(); I != E; ++I) {
320        assert(MRegisterInfo::isPhysicalRegister(*I) &&
321               "Cannot have a live-in virtual register!");
322        HandlePhysRegUse(*I, Ret);
323      }
324    }
325
326    // Loop over PhysRegInfo, killing any registers that are available at the
327    // end of the basic block.  This also resets the PhysRegInfo map.
328    for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
329      if (PhysRegInfo[i])
330        HandlePhysRegDef(i, 0);
331  }
332
333  // Convert the information we have gathered into VirtRegInfo and transform it
334  // into a form usable by RegistersKilled.
335  //
336  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
337    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
338      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
339        RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
340                                    i + MRegisterInfo::FirstVirtualRegister);
341
342      else
343        RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
344                                    i + MRegisterInfo::FirstVirtualRegister);
345    }
346
347  // Walk through the RegistersKilled/Dead sets, and sort the registers killed
348  // or dead.  This allows us to use efficient binary search for membership
349  // testing.
350  for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
351       I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I)
352    std::sort(I->second.begin(), I->second.end());
353  for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
354       I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I)
355    std::sort(I->second.begin(), I->second.end());
356
357  // Check to make sure there are no unreachable blocks in the MC CFG for the
358  // function.  If so, it is due to a bug in the instruction selector or some
359  // other part of the code generator if this happens.
360#ifndef NDEBUG
361  for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
362    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
363#endif
364
365  return false;
366}
367
368/// instructionChanged - When the address of an instruction changes, this
369/// method should be called so that live variables can update its internal
370/// data structures.  This removes the records for OldMI, transfering them to
371/// the records for NewMI.
372void LiveVariables::instructionChanged(MachineInstr *OldMI,
373                                       MachineInstr *NewMI) {
374  // If the instruction defines any virtual registers, update the VarInfo for
375  // the instruction.
376  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
377    MachineOperand &MO = OldMI->getOperand(i);
378    if (MO.isRegister() && MO.getReg() &&
379        MRegisterInfo::isVirtualRegister(MO.getReg())) {
380      unsigned Reg = MO.getReg();
381      VarInfo &VI = getVarInfo(Reg);
382      if (MO.isDef()) {
383        // Update the defining instruction.
384        if (VI.DefInst == OldMI)
385          VI.DefInst = NewMI;
386      }
387      if (MO.isUse()) {
388        // If this is a kill of the value, update the VI kills list.
389        if (VI.removeKill(OldMI))
390          VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
391      }
392    }
393  }
394
395  // Move the killed information over...
396  killed_iterator I, E;
397  tie(I, E) = killed_range(OldMI);
398  if (I != E) {
399    std::vector<unsigned> &V = RegistersKilled[NewMI];
400    bool WasEmpty = V.empty();
401    V.insert(V.end(), I, E);
402    if (!WasEmpty)
403      std::sort(V.begin(), V.end());   // Keep the reg list sorted.
404    RegistersKilled.erase(OldMI);
405  }
406
407  // Move the dead information over...
408  tie(I, E) = dead_range(OldMI);
409  if (I != E) {
410    std::vector<unsigned> &V = RegistersDead[NewMI];
411    bool WasEmpty = V.empty();
412    V.insert(V.end(), I, E);
413    if (!WasEmpty)
414      std::sort(V.begin(), V.end());   // Keep the reg list sorted.
415    RegistersDead.erase(OldMI);
416  }
417}
418
419/// removeVirtualRegistersKilled - Remove all killed info for the specified
420/// instruction.
421void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
422  std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
423    RegistersKilled.find(MI);
424  if (I == RegistersKilled.end()) return;
425
426  std::vector<unsigned> &Regs = I->second;
427  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
428    if (MRegisterInfo::isVirtualRegister(Regs[i])) {
429      bool removed = getVarInfo(Regs[i]).removeKill(MI);
430      assert(removed && "kill not in register's VarInfo?");
431    }
432  }
433  RegistersKilled.erase(I);
434}
435
436/// removeVirtualRegistersDead - Remove all of the dead registers for the
437/// specified instruction from the live variable information.
438void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
439  std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
440    RegistersDead.find(MI);
441  if (I == RegistersDead.end()) return;
442
443  std::vector<unsigned> &Regs = I->second;
444  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
445    if (MRegisterInfo::isVirtualRegister(Regs[i])) {
446      bool removed = getVarInfo(Regs[i]).removeKill(MI);
447      assert(removed && "kill not in register's VarInfo?");
448    }
449  }
450  RegistersDead.erase(I);
451}
452
453
454