LiveVariables.cpp revision a018540807775703d630e9c92f9d8013d545599e
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Config/alloca.h"
38#include <algorithm>
39using namespace llvm;
40
41char LiveVariables::ID = 0;
42static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
43
44void LiveVariables::VarInfo::dump() const {
45  cerr << "Register Defined by: ";
46  if (DefInst)
47    cerr << *DefInst;
48  else
49    cerr << "<null>\n";
50  cerr << "  Alive in blocks: ";
51  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
52    if (AliveBlocks[i]) cerr << i << ", ";
53  cerr << "  Used in blocks: ";
54  for (unsigned i = 0, e = UsedBlocks.size(); i != e; ++i)
55    if (UsedBlocks[i]) cerr << i << ", ";
56  cerr << "\n  Killed by:";
57  if (Kills.empty())
58    cerr << " No instructions.\n";
59  else {
60    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
61      cerr << "\n    #" << i << ": " << *Kills[i];
62    cerr << "\n";
63  }
64}
65
66LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
67  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
68         "getVarInfo: not a virtual register!");
69  RegIdx -= MRegisterInfo::FirstVirtualRegister;
70  if (RegIdx >= VirtRegInfo.size()) {
71    if (RegIdx >= 2*VirtRegInfo.size())
72      VirtRegInfo.resize(RegIdx*2);
73    else
74      VirtRegInfo.resize(2*VirtRegInfo.size());
75  }
76  VarInfo &VI = VirtRegInfo[RegIdx];
77  VI.AliveBlocks.resize(MF->getNumBlockIDs());
78  VI.UsedBlocks.resize(MF->getNumBlockIDs());
79  return VI;
80}
81
82bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
83  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
84    MachineOperand &MO = MI->getOperand(i);
85    if (MO.isRegister() && MO.isKill()) {
86      if ((MO.getReg() == Reg) ||
87          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
88           MRegisterInfo::isPhysicalRegister(Reg) &&
89           RegInfo->isSubRegister(MO.getReg(), Reg)))
90        return true;
91    }
92  }
93  return false;
94}
95
96bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
97  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
98    MachineOperand &MO = MI->getOperand(i);
99    if (MO.isRegister() && MO.isDead()) {
100      if ((MO.getReg() == Reg) ||
101          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
102           MRegisterInfo::isPhysicalRegister(Reg) &&
103           RegInfo->isSubRegister(MO.getReg(), Reg)))
104        return true;
105    }
106  }
107  return false;
108}
109
110bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
111  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
112    MachineOperand &MO = MI->getOperand(i);
113    if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg)
114      return true;
115  }
116  return false;
117}
118
119void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
120                                            MachineBasicBlock *MBB,
121                                    std::vector<MachineBasicBlock*> &WorkList) {
122  unsigned BBNum = MBB->getNumber();
123
124  // Check to see if this basic block is one of the killing blocks.  If so,
125  // remove it...
126  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
127    if (VRInfo.Kills[i]->getParent() == MBB) {
128      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
129      break;
130    }
131
132  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
133
134  if (VRInfo.AliveBlocks[BBNum])
135    return;  // We already know the block is live
136
137  // Mark the variable known alive in this bb
138  VRInfo.AliveBlocks[BBNum] = true;
139
140  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
141         E = MBB->pred_rend(); PI != E; ++PI)
142    WorkList.push_back(*PI);
143}
144
145void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
146                                            MachineBasicBlock *MBB) {
147  std::vector<MachineBasicBlock*> WorkList;
148  MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
149  while (!WorkList.empty()) {
150    MachineBasicBlock *Pred = WorkList.back();
151    WorkList.pop_back();
152    MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
153  }
154}
155
156
157void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
158                                     MachineInstr *MI) {
159  assert(VRInfo.DefInst && "Register use before def!");
160
161  unsigned BBNum = MBB->getNumber();
162
163  VRInfo.UsedBlocks[BBNum] = true;
164  VRInfo.NumUses++;
165
166  // Check to see if this basic block is already a kill block...
167  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
168    // Yes, this register is killed in this basic block already.  Increase the
169    // live range by updating the kill instruction.
170    VRInfo.Kills.back() = MI;
171    return;
172  }
173
174#ifndef NDEBUG
175  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
176    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
177#endif
178
179  assert(MBB != VRInfo.DefInst->getParent() &&
180         "Should have kill for defblock!");
181
182  // Add a new kill entry for this basic block.
183  // If this virtual register is already marked as alive in this basic block,
184  // that means it is alive in at least one of the successor block, it's not
185  // a kill.
186  if (!VRInfo.AliveBlocks[BBNum])
187    VRInfo.Kills.push_back(MI);
188
189  // Update all dominating blocks to mark them known live.
190  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
191         E = MBB->pred_end(); PI != E; ++PI)
192    MarkVirtRegAliveInBlock(VRInfo, *PI);
193}
194
195bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
196                                      bool AddIfNotFound) {
197  bool Found = false;
198  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
199    MachineOperand &MO = MI->getOperand(i);
200    if (MO.isRegister() && MO.isUse()) {
201      unsigned Reg = MO.getReg();
202      if (!Reg)
203        continue;
204      if (Reg == IncomingReg) {
205        MO.setIsKill();
206        Found = true;
207        break;
208      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
209                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
210                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
211                 MO.isKill())
212        // A super-register kill already exists.
213        Found = true;
214    }
215  }
216
217  // If not found, this means an alias of one of the operand is killed. Add a
218  // new implicit operand if required.
219  if (!Found && AddIfNotFound) {
220    MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
221    return true;
222  }
223  return Found;
224}
225
226bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
227                                    bool AddIfNotFound) {
228  bool Found = false;
229  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
230    MachineOperand &MO = MI->getOperand(i);
231    if (MO.isRegister() && MO.isDef()) {
232      unsigned Reg = MO.getReg();
233      if (!Reg)
234        continue;
235      if (Reg == IncomingReg) {
236        MO.setIsDead();
237        Found = true;
238        break;
239      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
240                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
241                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
242                 MO.isDead())
243        // There exists a super-register that's marked dead.
244        return true;
245    }
246  }
247
248  // If not found, this means an alias of one of the operand is dead. Add a
249  // new implicit operand.
250  if (!Found && AddIfNotFound) {
251    MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/,
252                      true/*IsDead*/);
253    return true;
254  }
255  return Found;
256}
257
258void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
259  // Turn previous partial def's into read/mod/write.
260  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
261    MachineInstr *Def = PhysRegPartDef[Reg][i];
262    // First one is just a def. This means the use is reading some undef bits.
263    if (i != 0)
264      Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
265    Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
266  }
267  PhysRegPartDef[Reg].clear();
268
269  // There was an earlier def of a super-register. Add implicit def to that MI.
270  // A: EAX = ...
271  // B:     = AX
272  // Add implicit def to A.
273  if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
274      !PhysRegUsed[Reg]) {
275    MachineInstr *Def = PhysRegInfo[Reg];
276    if (!Def->findRegisterDefOperand(Reg))
277      Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
278  }
279
280  // There is a now a proper use, forget about the last partial use.
281  PhysRegPartUse[Reg] = NULL;
282  PhysRegInfo[Reg] = MI;
283  PhysRegUsed[Reg] = true;
284
285  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
286       unsigned SubReg = *SubRegs; ++SubRegs) {
287    PhysRegInfo[SubReg] = MI;
288    PhysRegUsed[SubReg] = true;
289  }
290
291  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
292       unsigned SuperReg = *SuperRegs; ++SuperRegs) {
293    // Remember the partial use of this superreg if it was previously defined.
294    bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
295    if (!HasPrevDef) {
296      for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
297           unsigned SSReg = *SSRegs; ++SSRegs) {
298        if (PhysRegInfo[SSReg] != NULL) {
299          HasPrevDef = true;
300          break;
301        }
302      }
303    }
304    if (HasPrevDef) {
305      PhysRegInfo[SuperReg] = MI;
306      PhysRegPartUse[SuperReg] = MI;
307    }
308  }
309}
310
311bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI,
312                                      SmallSet<unsigned, 4> &SubKills) {
313  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
314       unsigned SubReg = *SubRegs; ++SubRegs) {
315    MachineInstr *LastRef = PhysRegInfo[SubReg];
316    if (LastRef != RefMI ||
317        !HandlePhysRegKill(SubReg, RefMI, SubKills))
318      SubKills.insert(SubReg);
319  }
320
321  if (*RegInfo->getImmediateSubRegisters(Reg) == 0) {
322    // No sub-registers, just check if reg is killed by RefMI.
323    if (PhysRegInfo[Reg] == RefMI)
324      return true;
325  } else if (SubKills.empty())
326    // None of the sub-registers are killed elsewhere...
327    return true;
328  return false;
329}
330
331void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
332                                     SmallSet<unsigned, 4> &SubKills) {
333  if (SubKills.count(Reg) == 0)
334    addRegisterKilled(Reg, MI, true);
335  else {
336    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
337         unsigned SubReg = *SubRegs; ++SubRegs)
338      addRegisterKills(SubReg, MI, SubKills);
339  }
340}
341
342bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
343  SmallSet<unsigned, 4> SubKills;
344  if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
345    addRegisterKilled(Reg, RefMI, true);
346    return true;
347  } else {
348    // Some sub-registers are killed by another MI.
349    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
350         unsigned SubReg = *SubRegs; ++SubRegs)
351      addRegisterKills(SubReg, RefMI, SubKills);
352    return false;
353  }
354}
355
356void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
357  // Does this kill a previous version of this register?
358  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
359    if (PhysRegUsed[Reg]) {
360      if (!HandlePhysRegKill(Reg, LastRef)) {
361        if (PhysRegPartUse[Reg])
362          addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
363      }
364    } else if (PhysRegPartUse[Reg])
365      // Add implicit use / kill to last partial use.
366      addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
367    else if (LastRef != MI)
368      // Defined, but not used. However, watch out for cases where a super-reg
369      // is also defined on the same MI.
370      addRegisterDead(Reg, LastRef);
371  }
372
373  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
374       unsigned SubReg = *SubRegs; ++SubRegs) {
375    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
376      if (PhysRegUsed[SubReg]) {
377        if (!HandlePhysRegKill(SubReg, LastRef)) {
378          if (PhysRegPartUse[SubReg])
379            addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
380        }
381      } else if (PhysRegPartUse[SubReg])
382        // Add implicit use / kill to last use of a sub-register.
383        addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
384      else if (LastRef != MI)
385        // This must be a def of the subreg on the same MI.
386        addRegisterDead(SubReg, LastRef);
387    }
388  }
389
390  if (MI) {
391    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
392         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
393      if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
394        // The larger register is previously defined. Now a smaller part is
395        // being re-defined. Treat it as read/mod/write.
396        // EAX =
397        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
398        MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
399        MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/);
400        PhysRegInfo[SuperReg] = MI;
401        PhysRegUsed[SuperReg] = false;
402        PhysRegPartUse[SuperReg] = NULL;
403      } else {
404        // Remember this partial def.
405        PhysRegPartDef[SuperReg].push_back(MI);
406      }
407    }
408
409    PhysRegInfo[Reg] = MI;
410    PhysRegUsed[Reg] = false;
411    PhysRegPartDef[Reg].clear();
412    PhysRegPartUse[Reg] = NULL;
413    for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
414         unsigned SubReg = *SubRegs; ++SubRegs) {
415      PhysRegInfo[SubReg] = MI;
416      PhysRegUsed[SubReg] = false;
417      PhysRegPartDef[SubReg].clear();
418      PhysRegPartUse[SubReg] = NULL;
419    }
420  }
421}
422
423bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
424  MF = &mf;
425  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
426  RegInfo = MF->getTarget().getRegisterInfo();
427  assert(RegInfo && "Target doesn't have register information?");
428
429  ReservedRegisters = RegInfo->getReservedRegs(mf);
430
431  unsigned NumRegs = RegInfo->getNumRegs();
432  PhysRegInfo = new MachineInstr*[NumRegs];
433  PhysRegUsed = new bool[NumRegs];
434  PhysRegPartUse = new MachineInstr*[NumRegs];
435  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
436  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
437  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
438  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
439  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
440
441  /// Get some space for a respectable number of registers...
442  VirtRegInfo.resize(64);
443
444  analyzePHINodes(mf);
445
446  // Calculate live variable information in depth first order on the CFG of the
447  // function.  This guarantees that we will see the definition of a virtual
448  // register before its uses due to dominance properties of SSA (except for PHI
449  // nodes, which are treated as a special case).
450  //
451  MachineBasicBlock *Entry = MF->begin();
452  SmallPtrSet<MachineBasicBlock*,16> Visited;
453  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
454         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
455       DFI != E; ++DFI) {
456    MachineBasicBlock *MBB = *DFI;
457
458    // Mark live-in registers as live-in.
459    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
460           EE = MBB->livein_end(); II != EE; ++II) {
461      assert(MRegisterInfo::isPhysicalRegister(*II) &&
462             "Cannot have a live-in virtual register!");
463      HandlePhysRegDef(*II, 0);
464    }
465
466    // Loop over all of the instructions, processing them.
467    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
468         I != E; ++I) {
469      MachineInstr *MI = I;
470
471      // Process all of the operands of the instruction...
472      unsigned NumOperandsToProcess = MI->getNumOperands();
473
474      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
475      // of the uses.  They will be handled in other basic blocks.
476      if (MI->getOpcode() == TargetInstrInfo::PHI)
477        NumOperandsToProcess = 1;
478
479      // Process all uses...
480      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
481        MachineOperand &MO = MI->getOperand(i);
482        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
483          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
484            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
485          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
486                     !ReservedRegisters[MO.getReg()]) {
487            HandlePhysRegUse(MO.getReg(), MI);
488          }
489        }
490      }
491
492      // Process all defs...
493      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
494        MachineOperand &MO = MI->getOperand(i);
495        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
496          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
497            VarInfo &VRInfo = getVarInfo(MO.getReg());
498
499            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
500            VRInfo.DefInst = MI;
501            // Defaults to dead
502            VRInfo.Kills.push_back(MI);
503          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
504                     !ReservedRegisters[MO.getReg()]) {
505            HandlePhysRegDef(MO.getReg(), MI);
506          }
507        }
508      }
509    }
510
511    // Handle any virtual assignments from PHI nodes which might be at the
512    // bottom of this basic block.  We check all of our successor blocks to see
513    // if they have PHI nodes, and if so, we simulate an assignment at the end
514    // of the current block.
515    if (!PHIVarInfo[MBB->getNumber()].empty()) {
516      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
517
518      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
519             E = VarInfoVec.end(); I != E; ++I) {
520        VarInfo& VRInfo = getVarInfo(*I);
521        assert(VRInfo.DefInst && "Register use before def (or no def)!");
522
523        // Only mark it alive only in the block we are representing.
524        MarkVirtRegAliveInBlock(VRInfo, MBB);
525      }
526    }
527
528    // Finally, if the last instruction in the block is a return, make sure to mark
529    // it as using all of the live-out values in the function.
530    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
531      MachineInstr *Ret = &MBB->back();
532      for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
533             E = MF->liveout_end(); I != E; ++I) {
534        assert(MRegisterInfo::isPhysicalRegister(*I) &&
535               "Cannot have a live-in virtual register!");
536        HandlePhysRegUse(*I, Ret);
537        // Add live-out registers as implicit uses.
538        if (Ret->findRegisterUseOperandIdx(*I) == -1)
539          Ret->addRegOperand(*I, false, true);
540      }
541    }
542
543    // Loop over PhysRegInfo, killing any registers that are available at the
544    // end of the basic block.  This also resets the PhysRegInfo map.
545    for (unsigned i = 0; i != NumRegs; ++i)
546      if (PhysRegInfo[i])
547        HandlePhysRegDef(i, 0);
548
549    // Clear some states between BB's. These are purely local information.
550    for (unsigned i = 0; i != NumRegs; ++i)
551      PhysRegPartDef[i].clear();
552    std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
553    std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
554    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
555  }
556
557  // Convert and transfer the dead / killed information we have gathered into
558  // VirtRegInfo onto MI's.
559  //
560  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
561    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
562      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
563        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
564                        VirtRegInfo[i].Kills[j]);
565      else
566        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
567                          VirtRegInfo[i].Kills[j]);
568    }
569
570  // Check to make sure there are no unreachable blocks in the MC CFG for the
571  // function.  If so, it is due to a bug in the instruction selector or some
572  // other part of the code generator if this happens.
573#ifndef NDEBUG
574  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
575    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
576#endif
577
578  delete[] PhysRegInfo;
579  delete[] PhysRegUsed;
580  delete[] PhysRegPartUse;
581  delete[] PhysRegPartDef;
582  delete[] PHIVarInfo;
583
584  return false;
585}
586
587/// instructionChanged - When the address of an instruction changes, this
588/// method should be called so that live variables can update its internal
589/// data structures.  This removes the records for OldMI, transfering them to
590/// the records for NewMI.
591void LiveVariables::instructionChanged(MachineInstr *OldMI,
592                                       MachineInstr *NewMI) {
593  // If the instruction defines any virtual registers, update the VarInfo,
594  // kill and dead information for the instruction.
595  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
596    MachineOperand &MO = OldMI->getOperand(i);
597    if (MO.isRegister() && MO.getReg() &&
598        MRegisterInfo::isVirtualRegister(MO.getReg())) {
599      unsigned Reg = MO.getReg();
600      VarInfo &VI = getVarInfo(Reg);
601      if (MO.isDef()) {
602        if (MO.isDead()) {
603          MO.unsetIsDead();
604          addVirtualRegisterDead(Reg, NewMI);
605        }
606        // Update the defining instruction.
607        if (VI.DefInst == OldMI)
608          VI.DefInst = NewMI;
609      }
610      if (MO.isKill()) {
611        MO.unsetIsKill();
612        addVirtualRegisterKilled(Reg, NewMI);
613      }
614      // If this is a kill of the value, update the VI kills list.
615      if (VI.removeKill(OldMI))
616        VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
617    }
618  }
619}
620
621/// removeVirtualRegistersKilled - Remove all killed info for the specified
622/// instruction.
623void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
624  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
625    MachineOperand &MO = MI->getOperand(i);
626    if (MO.isRegister() && MO.isKill()) {
627      MO.unsetIsKill();
628      unsigned Reg = MO.getReg();
629      if (MRegisterInfo::isVirtualRegister(Reg)) {
630        bool removed = getVarInfo(Reg).removeKill(MI);
631        assert(removed && "kill not in register's VarInfo?");
632      }
633    }
634  }
635}
636
637/// removeVirtualRegistersDead - Remove all of the dead registers for the
638/// specified instruction from the live variable information.
639void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
640  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
641    MachineOperand &MO = MI->getOperand(i);
642    if (MO.isRegister() && MO.isDead()) {
643      MO.unsetIsDead();
644      unsigned Reg = MO.getReg();
645      if (MRegisterInfo::isVirtualRegister(Reg)) {
646        bool removed = getVarInfo(Reg).removeKill(MI);
647        assert(removed && "kill not in register's VarInfo?");
648      }
649    }
650  }
651}
652
653/// analyzePHINodes - Gather information about the PHI nodes in here. In
654/// particular, we want to map the variable information of a virtual
655/// register which is used in a PHI node. We map that to the BB the vreg is
656/// coming from.
657///
658void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
659  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
660       I != E; ++I)
661    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
662         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
663      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
664        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
665          push_back(BBI->getOperand(i).getReg());
666}
667