RegAllocGreedy.cpp revision 39b5abf507b43da6b92f68b86406e0015ead18e9
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "RegisterCoalescer.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Function.h"
29#include "llvm/PassAnalysisSupport.h"
30#include "llvm/CodeGen/CalcSpillWeights.h"
31#include "llvm/CodeGen/EdgeBundles.h"
32#include "llvm/CodeGen/LiveIntervalAnalysis.h"
33#include "llvm/CodeGen/LiveStackAnalysis.h"
34#include "llvm/CodeGen/MachineDominators.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/CodeGen/RegAllocRegistry.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/Timer.h"
45
46#include <queue>
47
48using namespace llvm;
49
50STATISTIC(NumGlobalSplits, "Number of split global live ranges");
51STATISTIC(NumLocalSplits,  "Number of split local live ranges");
52STATISTIC(NumEvicted,      "Number of interferences evicted");
53
54static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
55                                       createGreedyRegisterAllocator);
56
57namespace {
58class RAGreedy : public MachineFunctionPass,
59                 public RegAllocBase,
60                 private LiveRangeEdit::Delegate {
61
62  // context
63  MachineFunction *MF;
64
65  // analyses
66  SlotIndexes *Indexes;
67  LiveStacks *LS;
68  MachineDominatorTree *DomTree;
69  MachineLoopInfo *Loops;
70  EdgeBundles *Bundles;
71  SpillPlacement *SpillPlacer;
72  LiveDebugVariables *DebugVars;
73
74  // state
75  std::auto_ptr<Spiller> SpillerInstance;
76  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
77  unsigned NextCascade;
78
79  // Live ranges pass through a number of stages as we try to allocate them.
80  // Some of the stages may also create new live ranges:
81  //
82  // - Region splitting.
83  // - Per-block splitting.
84  // - Local splitting.
85  // - Spilling.
86  //
87  // Ranges produced by one of the stages skip the previous stages when they are
88  // dequeued. This improves performance because we can skip interference checks
89  // that are unlikely to give any results. It also guarantees that the live
90  // range splitting algorithm terminates, something that is otherwise hard to
91  // ensure.
92  enum LiveRangeStage {
93    RS_New,      ///< Never seen before.
94    RS_First,    ///< First time in the queue.
95    RS_Second,   ///< Second time in the queue.
96    RS_Global,   ///< Produced by global splitting.
97    RS_Local,    ///< Produced by local splitting.
98    RS_Spill     ///< Produced by spilling.
99  };
100
101  static const char *const StageName[];
102
103  // RegInfo - Keep additional information about each live range.
104  struct RegInfo {
105    LiveRangeStage Stage;
106
107    // Cascade - Eviction loop prevention. See canEvictInterference().
108    unsigned Cascade;
109
110    RegInfo() : Stage(RS_New), Cascade(0) {}
111  };
112
113  IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
114
115  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
116    return ExtraRegInfo[VirtReg.reg].Stage;
117  }
118
119  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
120    ExtraRegInfo.resize(MRI->getNumVirtRegs());
121    ExtraRegInfo[VirtReg.reg].Stage = Stage;
122  }
123
124  template<typename Iterator>
125  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
126    ExtraRegInfo.resize(MRI->getNumVirtRegs());
127    for (;Begin != End; ++Begin) {
128      unsigned Reg = (*Begin)->reg;
129      if (ExtraRegInfo[Reg].Stage == RS_New)
130        ExtraRegInfo[Reg].Stage = NewStage;
131    }
132  }
133
134  /// Cost of evicting interference.
135  struct EvictionCost {
136    unsigned BrokenHints; ///< Total number of broken hints.
137    float MaxWeight;      ///< Maximum spill weight evicted.
138
139    EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
140
141    bool operator<(const EvictionCost &O) const {
142      if (BrokenHints != O.BrokenHints)
143        return BrokenHints < O.BrokenHints;
144      return MaxWeight < O.MaxWeight;
145    }
146  };
147
148  // splitting state.
149  std::auto_ptr<SplitAnalysis> SA;
150  std::auto_ptr<SplitEditor> SE;
151
152  /// Cached per-block interference maps
153  InterferenceCache IntfCache;
154
155  /// All basic blocks where the current register has uses.
156  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
157
158  /// Global live range splitting candidate info.
159  struct GlobalSplitCandidate {
160    unsigned PhysReg;
161    InterferenceCache::Cursor Intf;
162    BitVector LiveBundles;
163    SmallVector<unsigned, 8> ActiveBlocks;
164
165    void reset(InterferenceCache &Cache, unsigned Reg) {
166      PhysReg = Reg;
167      Intf.setPhysReg(Cache, Reg);
168      LiveBundles.clear();
169      ActiveBlocks.clear();
170    }
171  };
172
173  /// Candidate info for for each PhysReg in AllocationOrder.
174  /// This vector never shrinks, but grows to the size of the largest register
175  /// class.
176  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
177
178public:
179  RAGreedy();
180
181  /// Return the pass name.
182  virtual const char* getPassName() const {
183    return "Greedy Register Allocator";
184  }
185
186  /// RAGreedy analysis usage.
187  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
188  virtual void releaseMemory();
189  virtual Spiller &spiller() { return *SpillerInstance; }
190  virtual void enqueue(LiveInterval *LI);
191  virtual LiveInterval *dequeue();
192  virtual unsigned selectOrSplit(LiveInterval&,
193                                 SmallVectorImpl<LiveInterval*>&);
194
195  /// Perform register allocation.
196  virtual bool runOnMachineFunction(MachineFunction &mf);
197
198  static char ID;
199
200private:
201  void LRE_WillEraseInstruction(MachineInstr*);
202  bool LRE_CanEraseVirtReg(unsigned);
203  void LRE_WillShrinkVirtReg(unsigned);
204  void LRE_DidCloneVirtReg(unsigned, unsigned);
205
206  float calcSpillCost();
207  bool addSplitConstraints(InterferenceCache::Cursor, float&);
208  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
209  void growRegion(GlobalSplitCandidate &Cand);
210  float calcGlobalSplitCost(GlobalSplitCandidate&);
211  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
212                         SmallVectorImpl<LiveInterval*>&);
213  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
214  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
215  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
216  void evictInterference(LiveInterval&, unsigned,
217                         SmallVectorImpl<LiveInterval*>&);
218
219  unsigned tryAssign(LiveInterval&, AllocationOrder&,
220                     SmallVectorImpl<LiveInterval*>&);
221  unsigned tryEvict(LiveInterval&, AllocationOrder&,
222                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
223  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
224                          SmallVectorImpl<LiveInterval*>&);
225  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
226    SmallVectorImpl<LiveInterval*>&);
227  unsigned trySplit(LiveInterval&, AllocationOrder&,
228                    SmallVectorImpl<LiveInterval*>&);
229};
230} // end anonymous namespace
231
232char RAGreedy::ID = 0;
233
234#ifndef NDEBUG
235const char *const RAGreedy::StageName[] = {
236  "RS_New",
237  "RS_First",
238  "RS_Second",
239  "RS_Global",
240  "RS_Local",
241  "RS_Spill"
242};
243#endif
244
245// Hysteresis to use when comparing floats.
246// This helps stabilize decisions based on float comparisons.
247const float Hysteresis = 0.98f;
248
249
250FunctionPass* llvm::createGreedyRegisterAllocator() {
251  return new RAGreedy();
252}
253
254RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
255  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
256  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
257  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
258  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
259  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
260  initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
261  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
262  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
263  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
264  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
265  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
266  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
267  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
268}
269
270void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
271  AU.setPreservesCFG();
272  AU.addRequired<AliasAnalysis>();
273  AU.addPreserved<AliasAnalysis>();
274  AU.addRequired<LiveIntervals>();
275  AU.addRequired<SlotIndexes>();
276  AU.addPreserved<SlotIndexes>();
277  AU.addRequired<LiveDebugVariables>();
278  AU.addPreserved<LiveDebugVariables>();
279  if (StrongPHIElim)
280    AU.addRequiredID(StrongPHIEliminationID);
281  AU.addRequiredTransitive<RegisterCoalescer>();
282  AU.addRequired<CalculateSpillWeights>();
283  AU.addRequired<LiveStacks>();
284  AU.addPreserved<LiveStacks>();
285  AU.addRequired<MachineDominatorTree>();
286  AU.addPreserved<MachineDominatorTree>();
287  AU.addRequired<MachineLoopInfo>();
288  AU.addPreserved<MachineLoopInfo>();
289  AU.addRequired<VirtRegMap>();
290  AU.addPreserved<VirtRegMap>();
291  AU.addRequired<EdgeBundles>();
292  AU.addRequired<SpillPlacement>();
293  MachineFunctionPass::getAnalysisUsage(AU);
294}
295
296
297//===----------------------------------------------------------------------===//
298//                     LiveRangeEdit delegate methods
299//===----------------------------------------------------------------------===//
300
301void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
302  // LRE itself will remove from SlotIndexes and parent basic block.
303  VRM->RemoveMachineInstrFromMaps(MI);
304}
305
306bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
307  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
308    unassign(LIS->getInterval(VirtReg), PhysReg);
309    return true;
310  }
311  // Unassigned virtreg is probably in the priority queue.
312  // RegAllocBase will erase it after dequeueing.
313  return false;
314}
315
316void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
317  unsigned PhysReg = VRM->getPhys(VirtReg);
318  if (!PhysReg)
319    return;
320
321  // Register is assigned, put it back on the queue for reassignment.
322  LiveInterval &LI = LIS->getInterval(VirtReg);
323  unassign(LI, PhysReg);
324  enqueue(&LI);
325}
326
327void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
328  // LRE may clone a virtual register because dead code elimination causes it to
329  // be split into connected components. Ensure that the new register gets the
330  // same stage as the parent.
331  ExtraRegInfo.grow(New);
332  ExtraRegInfo[New] = ExtraRegInfo[Old];
333}
334
335void RAGreedy::releaseMemory() {
336  SpillerInstance.reset(0);
337  ExtraRegInfo.clear();
338  GlobalCand.clear();
339  RegAllocBase::releaseMemory();
340}
341
342void RAGreedy::enqueue(LiveInterval *LI) {
343  // Prioritize live ranges by size, assigning larger ranges first.
344  // The queue holds (size, reg) pairs.
345  const unsigned Size = LI->getSize();
346  const unsigned Reg = LI->reg;
347  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
348         "Can only enqueue virtual registers");
349  unsigned Prio;
350
351  ExtraRegInfo.grow(Reg);
352  if (ExtraRegInfo[Reg].Stage == RS_New)
353    ExtraRegInfo[Reg].Stage = RS_First;
354
355  if (ExtraRegInfo[Reg].Stage == RS_Second)
356    // Unsplit ranges that couldn't be allocated immediately are deferred until
357    // everything else has been allocated. Long ranges are allocated last so
358    // they are split against realistic interference.
359    Prio = (1u << 31) - Size;
360  else {
361    // Everything else is allocated in long->short order. Long ranges that don't
362    // fit should be spilled ASAP so they don't create interference.
363    Prio = (1u << 31) + Size;
364
365    // Boost ranges that have a physical register hint.
366    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
367      Prio |= (1u << 30);
368  }
369
370  Queue.push(std::make_pair(Prio, Reg));
371}
372
373LiveInterval *RAGreedy::dequeue() {
374  if (Queue.empty())
375    return 0;
376  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
377  Queue.pop();
378  return LI;
379}
380
381
382//===----------------------------------------------------------------------===//
383//                            Direct Assignment
384//===----------------------------------------------------------------------===//
385
386/// tryAssign - Try to assign VirtReg to an available register.
387unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
388                             AllocationOrder &Order,
389                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
390  Order.rewind();
391  unsigned PhysReg;
392  while ((PhysReg = Order.next()))
393    if (!checkPhysRegInterference(VirtReg, PhysReg))
394      break;
395  if (!PhysReg || Order.isHint(PhysReg))
396    return PhysReg;
397
398  // PhysReg is available, but there may be a better choice.
399
400  // If we missed a simple hint, try to cheaply evict interference from the
401  // preferred register.
402  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
403    if (Order.isHint(Hint)) {
404      DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
405      EvictionCost MaxCost(1);
406      if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
407        evictInterference(VirtReg, Hint, NewVRegs);
408        return Hint;
409      }
410    }
411
412  // Try to evict interference from a cheaper alternative.
413  unsigned Cost = TRI->getCostPerUse(PhysReg);
414
415  // Most registers have 0 additional cost.
416  if (!Cost)
417    return PhysReg;
418
419  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
420               << '\n');
421  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
422  return CheapReg ? CheapReg : PhysReg;
423}
424
425
426//===----------------------------------------------------------------------===//
427//                         Interference eviction
428//===----------------------------------------------------------------------===//
429
430/// shouldEvict - determine if A should evict the assigned live range B. The
431/// eviction policy defined by this function together with the allocation order
432/// defined by enqueue() decides which registers ultimately end up being split
433/// and spilled.
434///
435/// Cascade numbers are used to prevent infinite loops if this function is a
436/// cyclic relation.
437///
438/// @param A          The live range to be assigned.
439/// @param IsHint     True when A is about to be assigned to its preferred
440///                   register.
441/// @param B          The live range to be evicted.
442/// @param BreaksHint True when B is already assigned to its preferred register.
443bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
444                           LiveInterval &B, bool BreaksHint) {
445  bool CanSplit = getStage(B) <= RS_Second;
446
447  // Be fairly aggressive about following hints as long as the evictee can be
448  // split.
449  if (CanSplit && IsHint && !BreaksHint)
450    return true;
451
452  return A.weight > B.weight;
453}
454
455/// canEvictInterference - Return true if all interferences between VirtReg and
456/// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
457///
458/// @param VirtReg Live range that is about to be assigned.
459/// @param PhysReg Desired register for assignment.
460/// @prarm IsHint  True when PhysReg is VirtReg's preferred register.
461/// @param MaxCost Only look for cheaper candidates and update with new cost
462///                when returning true.
463/// @returns True when interference can be evicted cheaper than MaxCost.
464bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
465                                    bool IsHint, EvictionCost &MaxCost) {
466  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
467  // involved in an eviction before. If a cascade number was assigned, deny
468  // evicting anything with the same or a newer cascade number. This prevents
469  // infinite eviction loops.
470  //
471  // This works out so a register without a cascade number is allowed to evict
472  // anything, and it can be evicted by anything.
473  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
474  if (!Cascade)
475    Cascade = NextCascade;
476
477  EvictionCost Cost;
478  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
479    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
480    // If there is 10 or more interferences, chances are one is heavier.
481    if (Q.collectInterferingVRegs(10) >= 10)
482      return false;
483
484    // Check if any interfering live range is heavier than MaxWeight.
485    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
486      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
487      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
488        return false;
489      // Never evict spill products. They cannot split or spill.
490      if (getStage(*Intf) == RS_Spill)
491        return false;
492      // Once a live range becomes small enough, it is urgent that we find a
493      // register for it. This is indicated by an infinite spill weight. These
494      // urgent live ranges get to evict almost anything.
495      bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
496      // Only evict older cascades or live ranges without a cascade.
497      unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
498      if (Cascade <= IntfCascade) {
499        if (!Urgent)
500          return false;
501        // We permit breaking cascades for urgent evictions. It should be the
502        // last resort, though, so make it really expensive.
503        Cost.BrokenHints += 10;
504      }
505      // Would this break a satisfied hint?
506      bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
507      // Update eviction cost.
508      Cost.BrokenHints += BreaksHint;
509      Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
510      // Abort if this would be too expensive.
511      if (!(Cost < MaxCost))
512        return false;
513      // Finally, apply the eviction policy for non-urgent evictions.
514      if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
515        return false;
516    }
517  }
518  MaxCost = Cost;
519  return true;
520}
521
522/// evictInterference - Evict any interferring registers that prevent VirtReg
523/// from being assigned to Physreg. This assumes that canEvictInterference
524/// returned true.
525void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
526                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
527  // Make sure that VirtReg has a cascade number, and assign that cascade
528  // number to every evicted register. These live ranges than then only be
529  // evicted by a newer cascade, preventing infinite loops.
530  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
531  if (!Cascade)
532    Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
533
534  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
535               << " interference: Cascade " << Cascade << '\n');
536  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
537    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
538    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
539    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
540      LiveInterval *Intf = Q.interferingVRegs()[i];
541      unassign(*Intf, VRM->getPhys(Intf->reg));
542      assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
543              VirtReg.isSpillable() < Intf->isSpillable()) &&
544             "Cannot decrease cascade number, illegal eviction");
545      ExtraRegInfo[Intf->reg].Cascade = Cascade;
546      ++NumEvicted;
547      NewVRegs.push_back(Intf);
548    }
549  }
550}
551
552/// tryEvict - Try to evict all interferences for a physreg.
553/// @param  VirtReg Currently unassigned virtual register.
554/// @param  Order   Physregs to try.
555/// @return         Physreg to assign VirtReg, or 0.
556unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
557                            AllocationOrder &Order,
558                            SmallVectorImpl<LiveInterval*> &NewVRegs,
559                            unsigned CostPerUseLimit) {
560  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
561
562  // Keep track of the cheapest interference seen so far.
563  EvictionCost BestCost(~0u);
564  unsigned BestPhys = 0;
565
566  // When we are just looking for a reduced cost per use, don't break any
567  // hints, and only evict smaller spill weights.
568  if (CostPerUseLimit < ~0u) {
569    BestCost.BrokenHints = 0;
570    BestCost.MaxWeight = VirtReg.weight;
571  }
572
573  Order.rewind();
574  while (unsigned PhysReg = Order.next()) {
575    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
576      continue;
577    // The first use of a callee-saved register in a function has cost 1.
578    // Don't start using a CSR when the CostPerUseLimit is low.
579    if (CostPerUseLimit == 1)
580     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
581       if (!MRI->isPhysRegUsed(CSR)) {
582         DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
583                      << PrintReg(CSR, TRI) << '\n');
584         continue;
585       }
586
587    if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
588      continue;
589
590    // Best so far.
591    BestPhys = PhysReg;
592
593    // Stop if the hint can be used.
594    if (Order.isHint(PhysReg))
595      break;
596  }
597
598  if (!BestPhys)
599    return 0;
600
601  evictInterference(VirtReg, BestPhys, NewVRegs);
602  return BestPhys;
603}
604
605
606//===----------------------------------------------------------------------===//
607//                              Region Splitting
608//===----------------------------------------------------------------------===//
609
610/// addSplitConstraints - Fill out the SplitConstraints vector based on the
611/// interference pattern in Physreg and its aliases. Add the constraints to
612/// SpillPlacement and return the static cost of this split in Cost, assuming
613/// that all preferences in SplitConstraints are met.
614/// Return false if there are no bundles with positive bias.
615bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
616                                   float &Cost) {
617  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
618
619  // Reset interference dependent info.
620  SplitConstraints.resize(UseBlocks.size());
621  float StaticCost = 0;
622  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
623    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
624    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
625
626    BC.Number = BI.MBB->getNumber();
627    Intf.moveToBlock(BC.Number);
628    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
629    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
630
631    if (!Intf.hasInterference())
632      continue;
633
634    // Number of spill code instructions to insert.
635    unsigned Ins = 0;
636
637    // Interference for the live-in value.
638    if (BI.LiveIn) {
639      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
640        BC.Entry = SpillPlacement::MustSpill, ++Ins;
641      else if (Intf.first() < BI.FirstUse)
642        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
643      else if (Intf.first() < BI.LastUse)
644        ++Ins;
645    }
646
647    // Interference for the live-out value.
648    if (BI.LiveOut) {
649      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
650        BC.Exit = SpillPlacement::MustSpill, ++Ins;
651      else if (Intf.last() > BI.LastUse)
652        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
653      else if (Intf.last() > BI.FirstUse)
654        ++Ins;
655    }
656
657    // Accumulate the total frequency of inserted spill code.
658    if (Ins)
659      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
660  }
661  Cost = StaticCost;
662
663  // Add constraints for use-blocks. Note that these are the only constraints
664  // that may add a positive bias, it is downhill from here.
665  SpillPlacer->addConstraints(SplitConstraints);
666  return SpillPlacer->scanActiveBundles();
667}
668
669
670/// addThroughConstraints - Add constraints and links to SpillPlacer from the
671/// live-through blocks in Blocks.
672void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
673                                     ArrayRef<unsigned> Blocks) {
674  const unsigned GroupSize = 8;
675  SpillPlacement::BlockConstraint BCS[GroupSize];
676  unsigned TBS[GroupSize];
677  unsigned B = 0, T = 0;
678
679  for (unsigned i = 0; i != Blocks.size(); ++i) {
680    unsigned Number = Blocks[i];
681    Intf.moveToBlock(Number);
682
683    if (!Intf.hasInterference()) {
684      assert(T < GroupSize && "Array overflow");
685      TBS[T] = Number;
686      if (++T == GroupSize) {
687        SpillPlacer->addLinks(makeArrayRef(TBS, T));
688        T = 0;
689      }
690      continue;
691    }
692
693    assert(B < GroupSize && "Array overflow");
694    BCS[B].Number = Number;
695
696    // Interference for the live-in value.
697    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
698      BCS[B].Entry = SpillPlacement::MustSpill;
699    else
700      BCS[B].Entry = SpillPlacement::PrefSpill;
701
702    // Interference for the live-out value.
703    if (Intf.last() >= SA->getLastSplitPoint(Number))
704      BCS[B].Exit = SpillPlacement::MustSpill;
705    else
706      BCS[B].Exit = SpillPlacement::PrefSpill;
707
708    if (++B == GroupSize) {
709      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
710      SpillPlacer->addConstraints(Array);
711      B = 0;
712    }
713  }
714
715  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
716  SpillPlacer->addConstraints(Array);
717  SpillPlacer->addLinks(makeArrayRef(TBS, T));
718}
719
720void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
721  // Keep track of through blocks that have not been added to SpillPlacer.
722  BitVector Todo = SA->getThroughBlocks();
723  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
724  unsigned AddedTo = 0;
725#ifndef NDEBUG
726  unsigned Visited = 0;
727#endif
728
729  for (;;) {
730    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
731    // Find new through blocks in the periphery of PrefRegBundles.
732    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
733      unsigned Bundle = NewBundles[i];
734      // Look at all blocks connected to Bundle in the full graph.
735      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
736      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
737           I != E; ++I) {
738        unsigned Block = *I;
739        if (!Todo.test(Block))
740          continue;
741        Todo.reset(Block);
742        // This is a new through block. Add it to SpillPlacer later.
743        ActiveBlocks.push_back(Block);
744#ifndef NDEBUG
745        ++Visited;
746#endif
747      }
748    }
749    // Any new blocks to add?
750    if (ActiveBlocks.size() == AddedTo)
751      break;
752    addThroughConstraints(Cand.Intf, makeArrayRef(ActiveBlocks).slice(AddedTo));
753    AddedTo = ActiveBlocks.size();
754
755    // Perhaps iterating can enable more bundles?
756    SpillPlacer->iterate();
757  }
758  DEBUG(dbgs() << ", v=" << Visited);
759}
760
761/// calcSpillCost - Compute how expensive it would be to split the live range in
762/// SA around all use blocks instead of forming bundle regions.
763float RAGreedy::calcSpillCost() {
764  float Cost = 0;
765  const LiveInterval &LI = SA->getParent();
766  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
767  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
768    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
769    unsigned Number = BI.MBB->getNumber();
770    // We normally only need one spill instruction - a load or a store.
771    Cost += SpillPlacer->getBlockFrequency(Number);
772
773    // Unless the value is redefined in the block.
774    if (BI.LiveIn && BI.LiveOut) {
775      SlotIndex Start, Stop;
776      tie(Start, Stop) = Indexes->getMBBRange(Number);
777      LiveInterval::const_iterator I = LI.find(Start);
778      assert(I != LI.end() && "Expected live-in value");
779      // Is there a different live-out value? If so, we need an extra spill
780      // instruction.
781      if (I->end < Stop)
782        Cost += SpillPlacer->getBlockFrequency(Number);
783    }
784  }
785  return Cost;
786}
787
788/// calcGlobalSplitCost - Return the global split cost of following the split
789/// pattern in LiveBundles. This cost should be added to the local cost of the
790/// interference pattern in SplitConstraints.
791///
792float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
793  float GlobalCost = 0;
794  const BitVector &LiveBundles = Cand.LiveBundles;
795  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
796  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
797    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
798    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
799    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
800    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
801    unsigned Ins = 0;
802
803    if (BI.LiveIn)
804      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
805    if (BI.LiveOut)
806      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
807    if (Ins)
808      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
809  }
810
811  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
812    unsigned Number = Cand.ActiveBlocks[i];
813    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
814    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
815    if (!RegIn && !RegOut)
816      continue;
817    if (RegIn && RegOut) {
818      // We need double spill code if this block has interference.
819      Cand.Intf.moveToBlock(Number);
820      if (Cand.Intf.hasInterference())
821        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
822      continue;
823    }
824    // live-in / stack-out or stack-in live-out.
825    GlobalCost += SpillPlacer->getBlockFrequency(Number);
826  }
827  return GlobalCost;
828}
829
830/// splitAroundRegion - Split VirtReg around the region determined by
831/// LiveBundles. Make an effort to avoid interference from PhysReg.
832///
833/// The 'register' interval is going to contain as many uses as possible while
834/// avoiding interference. The 'stack' interval is the complement constructed by
835/// SplitEditor. It will contain the rest.
836///
837void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
838                                 GlobalSplitCandidate &Cand,
839                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
840  const BitVector &LiveBundles = Cand.LiveBundles;
841
842  DEBUG({
843    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
844           << " with bundles";
845    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
846      dbgs() << " EB#" << i;
847    dbgs() << ".\n";
848  });
849
850  InterferenceCache::Cursor &Intf = Cand.Intf;
851  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
852  SE->reset(LREdit);
853
854  // Create the main cross-block interval.
855  const unsigned MainIntv = SE->openIntv();
856
857  // First handle all the blocks with uses.
858  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
859  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
860    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
861    bool RegIn  = BI.LiveIn &&
862                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
863    bool RegOut = BI.LiveOut &&
864                  LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
865
866    // Create separate intervals for isolated blocks with multiple uses.
867    if (!RegIn && !RegOut) {
868      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
869      if (!BI.isOneInstr()) {
870        SE->splitSingleBlock(BI);
871        SE->selectIntv(MainIntv);
872      }
873      continue;
874    }
875
876    Intf.moveToBlock(BI.MBB->getNumber());
877
878    if (RegIn && RegOut)
879      SE->splitLiveThroughBlock(BI.MBB->getNumber(),
880                                MainIntv, Intf.first(),
881                                MainIntv, Intf.last());
882    else if (RegIn)
883      SE->splitRegInBlock(BI, MainIntv, Intf.first());
884    else
885      SE->splitRegOutBlock(BI, MainIntv, Intf.last());
886  }
887
888  // Handle live-through blocks.
889  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
890    unsigned Number = Cand.ActiveBlocks[i];
891    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
892    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
893    if (!RegIn && !RegOut)
894      continue;
895    Intf.moveToBlock(Number);
896    SE->splitLiveThroughBlock(Number, RegIn  ? MainIntv : 0, Intf.first(),
897                                      RegOut ? MainIntv : 0, Intf.last());
898  }
899
900  ++NumGlobalSplits;
901
902  SmallVector<unsigned, 8> IntvMap;
903  SE->finish(&IntvMap);
904  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
905
906  ExtraRegInfo.resize(MRI->getNumVirtRegs());
907  unsigned OrigBlocks = SA->getNumLiveBlocks();
908
909  // Sort out the new intervals created by splitting. We get four kinds:
910  // - Remainder intervals should not be split again.
911  // - Candidate intervals can be assigned to Cand.PhysReg.
912  // - Block-local splits are candidates for local splitting.
913  // - DCE leftovers should go back on the queue.
914  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
915    LiveInterval &Reg = *LREdit.get(i);
916
917    // Ignore old intervals from DCE.
918    if (getStage(Reg) != RS_New)
919      continue;
920
921    // Remainder interval. Don't try splitting again, spill if it doesn't
922    // allocate.
923    if (IntvMap[i] == 0) {
924      setStage(Reg, RS_Global);
925      continue;
926    }
927
928    // Main interval. Allow repeated splitting as long as the number of live
929    // blocks is strictly decreasing.
930    if (IntvMap[i] == MainIntv) {
931      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
932        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
933                     << " blocks as original.\n");
934        // Don't allow repeated splitting as a safe guard against looping.
935        setStage(Reg, RS_Global);
936      }
937      continue;
938    }
939
940    // Other intervals are treated as new. This includes local intervals created
941    // for blocks with multiple uses, and anything created by DCE.
942  }
943
944  if (VerifyEnabled)
945    MF->verify(this, "After splitting live range around region");
946}
947
948unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
949                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
950  float BestCost = Hysteresis * calcSpillCost();
951  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
952  const unsigned NoCand = ~0u;
953  unsigned BestCand = NoCand;
954  unsigned NumCands = 0;
955
956  Order.rewind();
957  while (unsigned PhysReg = Order.next()) {
958    // Discard bad candidates before we run out of interference cache cursors.
959    // This will only affect register classes with a lot of registers (>32).
960    if (NumCands == IntfCache.getMaxCursors()) {
961      unsigned WorstCount = ~0u;
962      unsigned Worst = 0;
963      for (unsigned i = 0; i != NumCands; ++i) {
964        if (i == BestCand)
965          continue;
966        unsigned Count = GlobalCand[i].LiveBundles.count();
967        if (Count < WorstCount)
968          Worst = i, WorstCount = Count;
969      }
970      --NumCands;
971      GlobalCand[Worst] = GlobalCand[NumCands];
972    }
973
974    if (GlobalCand.size() <= NumCands)
975      GlobalCand.resize(NumCands+1);
976    GlobalSplitCandidate &Cand = GlobalCand[NumCands];
977    Cand.reset(IntfCache, PhysReg);
978
979    SpillPlacer->prepare(Cand.LiveBundles);
980    float Cost;
981    if (!addSplitConstraints(Cand.Intf, Cost)) {
982      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
983      continue;
984    }
985    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
986    if (Cost >= BestCost) {
987      DEBUG({
988        if (BestCand == NoCand)
989          dbgs() << " worse than no bundles\n";
990        else
991          dbgs() << " worse than "
992                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
993      });
994      continue;
995    }
996    growRegion(Cand);
997
998    SpillPlacer->finish();
999
1000    // No live bundles, defer to splitSingleBlocks().
1001    if (!Cand.LiveBundles.any()) {
1002      DEBUG(dbgs() << " no bundles.\n");
1003      continue;
1004    }
1005
1006    Cost += calcGlobalSplitCost(Cand);
1007    DEBUG({
1008      dbgs() << ", total = " << Cost << " with bundles";
1009      for (int i = Cand.LiveBundles.find_first(); i>=0;
1010           i = Cand.LiveBundles.find_next(i))
1011        dbgs() << " EB#" << i;
1012      dbgs() << ".\n";
1013    });
1014    if (Cost < BestCost) {
1015      BestCand = NumCands;
1016      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1017    }
1018    ++NumCands;
1019  }
1020
1021  if (BestCand == NoCand)
1022    return 0;
1023
1024  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1025  return 0;
1026}
1027
1028
1029//===----------------------------------------------------------------------===//
1030//                             Local Splitting
1031//===----------------------------------------------------------------------===//
1032
1033
1034/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1035/// in order to use PhysReg between two entries in SA->UseSlots.
1036///
1037/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1038///
1039void RAGreedy::calcGapWeights(unsigned PhysReg,
1040                              SmallVectorImpl<float> &GapWeight) {
1041  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1042  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1043  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1044  const unsigned NumGaps = Uses.size()-1;
1045
1046  // Start and end points for the interference check.
1047  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1048  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1049
1050  GapWeight.assign(NumGaps, 0.0f);
1051
1052  // Add interference from each overlapping register.
1053  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1054    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1055           .checkInterference())
1056      continue;
1057
1058    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1059    // so we don't need InterferenceQuery.
1060    //
1061    // Interference that overlaps an instruction is counted in both gaps
1062    // surrounding the instruction. The exception is interference before
1063    // StartIdx and after StopIdx.
1064    //
1065    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1066    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1067      // Skip the gaps before IntI.
1068      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1069        if (++Gap == NumGaps)
1070          break;
1071      if (Gap == NumGaps)
1072        break;
1073
1074      // Update the gaps covered by IntI.
1075      const float weight = IntI.value()->weight;
1076      for (; Gap != NumGaps; ++Gap) {
1077        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1078        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1079          break;
1080      }
1081      if (Gap == NumGaps)
1082        break;
1083    }
1084  }
1085}
1086
1087/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1088/// basic block.
1089///
1090unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1091                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1092  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1093  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1094
1095  // Note that it is possible to have an interval that is live-in or live-out
1096  // while only covering a single block - A phi-def can use undef values from
1097  // predecessors, and the block could be a single-block loop.
1098  // We don't bother doing anything clever about such a case, we simply assume
1099  // that the interval is continuous from FirstUse to LastUse. We should make
1100  // sure that we don't do anything illegal to such an interval, though.
1101
1102  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1103  if (Uses.size() <= 2)
1104    return 0;
1105  const unsigned NumGaps = Uses.size()-1;
1106
1107  DEBUG({
1108    dbgs() << "tryLocalSplit: ";
1109    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1110      dbgs() << ' ' << SA->UseSlots[i];
1111    dbgs() << '\n';
1112  });
1113
1114  // Since we allow local split results to be split again, there is a risk of
1115  // creating infinite loops. It is tempting to require that the new live
1116  // ranges have less instructions than the original. That would guarantee
1117  // convergence, but it is too strict. A live range with 3 instructions can be
1118  // split 2+3 (including the COPY), and we want to allow that.
1119  //
1120  // Instead we use these rules:
1121  //
1122  // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1123  //    noop split, of course).
1124  // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1125  //    the new ranges must have fewer instructions than before the split.
1126  // 3. New ranges with the same number of instructions are marked RS_Local,
1127  //    smaller ranges are marked RS_New.
1128  //
1129  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1130  // excessive splitting and infinite loops.
1131  //
1132  bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1133
1134  // Best split candidate.
1135  unsigned BestBefore = NumGaps;
1136  unsigned BestAfter = 0;
1137  float BestDiff = 0;
1138
1139  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1140  SmallVector<float, 8> GapWeight;
1141
1142  Order.rewind();
1143  while (unsigned PhysReg = Order.next()) {
1144    // Keep track of the largest spill weight that would need to be evicted in
1145    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1146    calcGapWeights(PhysReg, GapWeight);
1147
1148    // Try to find the best sequence of gaps to close.
1149    // The new spill weight must be larger than any gap interference.
1150
1151    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1152    unsigned SplitBefore = 0, SplitAfter = 1;
1153
1154    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1155    // It is the spill weight that needs to be evicted.
1156    float MaxGap = GapWeight[0];
1157
1158    for (;;) {
1159      // Live before/after split?
1160      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1161      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1162
1163      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1164                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1165                   << " i=" << MaxGap);
1166
1167      // Stop before the interval gets so big we wouldn't be making progress.
1168      if (!LiveBefore && !LiveAfter) {
1169        DEBUG(dbgs() << " all\n");
1170        break;
1171      }
1172      // Should the interval be extended or shrunk?
1173      bool Shrink = true;
1174
1175      // How many gaps would the new range have?
1176      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1177
1178      // Legally, without causing looping?
1179      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1180
1181      if (Legal && MaxGap < HUGE_VALF) {
1182        // Estimate the new spill weight. Each instruction reads or writes the
1183        // register. Conservatively assume there are no read-modify-write
1184        // instructions.
1185        //
1186        // Try to guess the size of the new interval.
1187        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1188                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1189                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1190        // Would this split be possible to allocate?
1191        // Never allocate all gaps, we wouldn't be making progress.
1192        DEBUG(dbgs() << " w=" << EstWeight);
1193        if (EstWeight * Hysteresis >= MaxGap) {
1194          Shrink = false;
1195          float Diff = EstWeight - MaxGap;
1196          if (Diff > BestDiff) {
1197            DEBUG(dbgs() << " (best)");
1198            BestDiff = Hysteresis * Diff;
1199            BestBefore = SplitBefore;
1200            BestAfter = SplitAfter;
1201          }
1202        }
1203      }
1204
1205      // Try to shrink.
1206      if (Shrink) {
1207        if (++SplitBefore < SplitAfter) {
1208          DEBUG(dbgs() << " shrink\n");
1209          // Recompute the max when necessary.
1210          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1211            MaxGap = GapWeight[SplitBefore];
1212            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1213              MaxGap = std::max(MaxGap, GapWeight[i]);
1214          }
1215          continue;
1216        }
1217        MaxGap = 0;
1218      }
1219
1220      // Try to extend the interval.
1221      if (SplitAfter >= NumGaps) {
1222        DEBUG(dbgs() << " end\n");
1223        break;
1224      }
1225
1226      DEBUG(dbgs() << " extend\n");
1227      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1228    }
1229  }
1230
1231  // Didn't find any candidates?
1232  if (BestBefore == NumGaps)
1233    return 0;
1234
1235  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1236               << '-' << Uses[BestAfter] << ", " << BestDiff
1237               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1238
1239  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1240  SE->reset(LREdit);
1241
1242  SE->openIntv();
1243  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1244  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1245  SE->useIntv(SegStart, SegStop);
1246  SmallVector<unsigned, 8> IntvMap;
1247  SE->finish(&IntvMap);
1248  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1249
1250  // If the new range has the same number of instructions as before, mark it as
1251  // RS_Local so the next split will be forced to make progress. Otherwise,
1252  // leave the new intervals as RS_New so they can compete.
1253  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1254  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1255  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1256  if (NewGaps >= NumGaps) {
1257    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1258    assert(!ProgressRequired && "Didn't make progress when it was required.");
1259    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1260      if (IntvMap[i] == 1) {
1261        setStage(*LREdit.get(i), RS_Local);
1262        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1263      }
1264    DEBUG(dbgs() << '\n');
1265  }
1266  ++NumLocalSplits;
1267
1268  return 0;
1269}
1270
1271//===----------------------------------------------------------------------===//
1272//                          Live Range Splitting
1273//===----------------------------------------------------------------------===//
1274
1275/// trySplit - Try to split VirtReg or one of its interferences, making it
1276/// assignable.
1277/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1278unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1279                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1280  // Local intervals are handled separately.
1281  if (LIS->intervalIsInOneMBB(VirtReg)) {
1282    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1283    SA->analyze(&VirtReg);
1284    return tryLocalSplit(VirtReg, Order, NewVRegs);
1285  }
1286
1287  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1288
1289  // Don't iterate global splitting.
1290  // Move straight to spilling if this range was produced by a global split.
1291  if (getStage(VirtReg) >= RS_Global)
1292    return 0;
1293
1294  SA->analyze(&VirtReg);
1295
1296  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1297  // coalescer. That may cause the range to become allocatable which means that
1298  // tryRegionSplit won't be making progress. This check should be replaced with
1299  // an assertion when the coalescer is fixed.
1300  if (SA->didRepairRange()) {
1301    // VirtReg has changed, so all cached queries are invalid.
1302    invalidateVirtRegs();
1303    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1304      return PhysReg;
1305  }
1306
1307  // First try to split around a region spanning multiple blocks.
1308  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1309  if (PhysReg || !NewVRegs.empty())
1310    return PhysReg;
1311
1312  // Then isolate blocks with multiple uses.
1313  SplitAnalysis::BlockPtrSet Blocks;
1314  if (SA->getMultiUseBlocks(Blocks)) {
1315    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1316    SE->reset(LREdit);
1317    SE->splitSingleBlocks(Blocks);
1318    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1319    if (VerifyEnabled)
1320      MF->verify(this, "After splitting live range around basic blocks");
1321  }
1322
1323  // Don't assign any physregs.
1324  return 0;
1325}
1326
1327
1328//===----------------------------------------------------------------------===//
1329//                            Main Entry Point
1330//===----------------------------------------------------------------------===//
1331
1332unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1333                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1334  // First try assigning a free register.
1335  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1336  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1337    return PhysReg;
1338
1339  LiveRangeStage Stage = getStage(VirtReg);
1340  DEBUG(dbgs() << StageName[Stage]
1341               << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1342
1343  // Try to evict a less worthy live range, but only for ranges from the primary
1344  // queue. The RS_Second ranges already failed to do this, and they should not
1345  // get a second chance until they have been split.
1346  if (Stage != RS_Second)
1347    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1348      return PhysReg;
1349
1350  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1351
1352  // The first time we see a live range, don't try to split or spill.
1353  // Wait until the second time, when all smaller ranges have been allocated.
1354  // This gives a better picture of the interference to split around.
1355  if (Stage == RS_First) {
1356    setStage(VirtReg, RS_Second);
1357    DEBUG(dbgs() << "wait for second round\n");
1358    NewVRegs.push_back(&VirtReg);
1359    return 0;
1360  }
1361
1362  // If we couldn't allocate a register from spilling, there is probably some
1363  // invalid inline assembly. The base class wil report it.
1364  if (Stage >= RS_Spill || !VirtReg.isSpillable())
1365    return ~0u;
1366
1367  // Try splitting VirtReg or interferences.
1368  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1369  if (PhysReg || !NewVRegs.empty())
1370    return PhysReg;
1371
1372  // Finally spill VirtReg itself.
1373  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1374  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1375  spiller().spill(LRE);
1376  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1377
1378  if (VerifyEnabled)
1379    MF->verify(this, "After spilling");
1380
1381  // The live virtual register requesting allocation was spilled, so tell
1382  // the caller not to allocate anything during this round.
1383  return 0;
1384}
1385
1386bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1387  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1388               << "********** Function: "
1389               << ((Value*)mf.getFunction())->getName() << '\n');
1390
1391  MF = &mf;
1392  if (VerifyEnabled)
1393    MF->verify(this, "Before greedy register allocator");
1394
1395  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1396  Indexes = &getAnalysis<SlotIndexes>();
1397  DomTree = &getAnalysis<MachineDominatorTree>();
1398  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1399  Loops = &getAnalysis<MachineLoopInfo>();
1400  Bundles = &getAnalysis<EdgeBundles>();
1401  SpillPlacer = &getAnalysis<SpillPlacement>();
1402  DebugVars = &getAnalysis<LiveDebugVariables>();
1403
1404  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1405  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1406  ExtraRegInfo.clear();
1407  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1408  NextCascade = 1;
1409  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1410
1411  allocatePhysRegs();
1412  addMBBLiveIns(MF);
1413  LIS->addKillFlags();
1414
1415  // Run rewriter
1416  {
1417    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1418    VRM->rewrite(Indexes);
1419  }
1420
1421  // Write out new DBG_VALUE instructions.
1422  DebugVars->emitDebugValues(VRM);
1423
1424  // The pass output is in VirtRegMap. Release all the transient data.
1425  releaseMemory();
1426
1427  return true;
1428}
1429