RegAllocGreedy.cpp revision cfafc54040cc9722995558124f253d05a038176b
1//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the RAGreedy function pass for register allocation in
11// optimized builds.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "AllocationOrder.h"
17#include "InterferenceCache.h"
18#include "LiveDebugVariables.h"
19#include "LiveRangeEdit.h"
20#include "RegAllocBase.h"
21#include "Spiller.h"
22#include "SpillPlacement.h"
23#include "SplitKit.h"
24#include "VirtRegMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Function.h"
28#include "llvm/PassAnalysisSupport.h"
29#include "llvm/CodeGen/CalcSpillWeights.h"
30#include "llvm/CodeGen/EdgeBundles.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineLoopInfo.h"
36#include "llvm/CodeGen/MachineLoopRanges.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/CodeGen/RegAllocRegistry.h"
40#include "llvm/CodeGen/RegisterCoalescer.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Timer.h"
46
47#include <queue>
48
49using namespace llvm;
50
51STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52STATISTIC(NumLocalSplits,  "Number of split local live ranges");
53STATISTIC(NumEvicted,      "Number of interferences evicted");
54
55static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56                                       createGreedyRegisterAllocator);
57
58namespace {
59class RAGreedy : public MachineFunctionPass,
60                 public RegAllocBase,
61                 private LiveRangeEdit::Delegate {
62
63  // context
64  MachineFunction *MF;
65  BitVector ReservedRegs;
66
67  // analyses
68  SlotIndexes *Indexes;
69  LiveStacks *LS;
70  MachineDominatorTree *DomTree;
71  MachineLoopInfo *Loops;
72  MachineLoopRanges *LoopRanges;
73  EdgeBundles *Bundles;
74  SpillPlacement *SpillPlacer;
75
76  // state
77  std::auto_ptr<Spiller> SpillerInstance;
78  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
79
80  // Live ranges pass through a number of stages as we try to allocate them.
81  // Some of the stages may also create new live ranges:
82  //
83  // - Region splitting.
84  // - Per-block splitting.
85  // - Local splitting.
86  // - Spilling.
87  //
88  // Ranges produced by one of the stages skip the previous stages when they are
89  // dequeued. This improves performance because we can skip interference checks
90  // that are unlikely to give any results. It also guarantees that the live
91  // range splitting algorithm terminates, something that is otherwise hard to
92  // ensure.
93  enum LiveRangeStage {
94    RS_New,      ///< Never seen before.
95    RS_First,    ///< First time in the queue.
96    RS_Second,   ///< Second time in the queue.
97    RS_Region,   ///< Produced by region splitting.
98    RS_Block,    ///< Produced by per-block splitting.
99    RS_Local,    ///< Produced by local splitting.
100    RS_Spill     ///< Produced by spilling.
101  };
102
103  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
104
105  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
106    return LiveRangeStage(LRStage[VirtReg.reg]);
107  }
108
109  template<typename Iterator>
110  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
111    LRStage.resize(MRI->getNumVirtRegs());
112    for (;Begin != End; ++Begin) {
113      unsigned Reg = (*Begin)->reg;
114      if (LRStage[Reg] == RS_New)
115        LRStage[Reg] = NewStage;
116    }
117  }
118
119  // splitting state.
120  std::auto_ptr<SplitAnalysis> SA;
121  std::auto_ptr<SplitEditor> SE;
122
123  /// Cached per-block interference maps
124  InterferenceCache IntfCache;
125
126  /// All basic blocks where the current register is live.
127  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
128
129  /// Global live range splitting candidate info.
130  struct GlobalSplitCandidate {
131    unsigned PhysReg;
132    BitVector LiveBundles;
133  };
134
135  /// Candidate info for for each PhysReg in AllocationOrder.
136  /// This vector never shrinks, but grows to the size of the largest register
137  /// class.
138  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
139
140  /// For every instruction in SA->UseSlots, store the previous non-copy
141  /// instruction.
142  SmallVector<SlotIndex, 8> PrevSlot;
143
144public:
145  RAGreedy();
146
147  /// Return the pass name.
148  virtual const char* getPassName() const {
149    return "Greedy Register Allocator";
150  }
151
152  /// RAGreedy analysis usage.
153  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
154  virtual void releaseMemory();
155  virtual Spiller &spiller() { return *SpillerInstance; }
156  virtual void enqueue(LiveInterval *LI);
157  virtual LiveInterval *dequeue();
158  virtual unsigned selectOrSplit(LiveInterval&,
159                                 SmallVectorImpl<LiveInterval*>&);
160
161  /// Perform register allocation.
162  virtual bool runOnMachineFunction(MachineFunction &mf);
163
164  static char ID;
165
166private:
167  void LRE_WillEraseInstruction(MachineInstr*);
168  bool LRE_CanEraseVirtReg(unsigned);
169  void LRE_WillShrinkVirtReg(unsigned);
170  void LRE_DidCloneVirtReg(unsigned, unsigned);
171
172  float calcSplitConstraints(unsigned);
173  float calcGlobalSplitCost(const BitVector&);
174  void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
175                         SmallVectorImpl<LiveInterval*>&);
176  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
177  SlotIndex getPrevMappedIndex(const MachineInstr*);
178  void calcPrevSlots();
179  unsigned nextSplitPoint(unsigned);
180  bool canEvictInterference(LiveInterval&, unsigned, float&);
181
182  unsigned tryEvict(LiveInterval&, AllocationOrder&,
183                    SmallVectorImpl<LiveInterval*>&);
184  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
185                          SmallVectorImpl<LiveInterval*>&);
186  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
187    SmallVectorImpl<LiveInterval*>&);
188  unsigned trySplit(LiveInterval&, AllocationOrder&,
189                    SmallVectorImpl<LiveInterval*>&);
190};
191} // end anonymous namespace
192
193char RAGreedy::ID = 0;
194
195FunctionPass* llvm::createGreedyRegisterAllocator() {
196  return new RAGreedy();
197}
198
199RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
200  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
201  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
202  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
203  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
204  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
205  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
206  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
207  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
208  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
209  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
210  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
211  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
212  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
213  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
214}
215
216void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
217  AU.setPreservesCFG();
218  AU.addRequired<AliasAnalysis>();
219  AU.addPreserved<AliasAnalysis>();
220  AU.addRequired<LiveIntervals>();
221  AU.addRequired<SlotIndexes>();
222  AU.addPreserved<SlotIndexes>();
223  AU.addRequired<LiveDebugVariables>();
224  AU.addPreserved<LiveDebugVariables>();
225  if (StrongPHIElim)
226    AU.addRequiredID(StrongPHIEliminationID);
227  AU.addRequiredTransitive<RegisterCoalescer>();
228  AU.addRequired<CalculateSpillWeights>();
229  AU.addRequired<LiveStacks>();
230  AU.addPreserved<LiveStacks>();
231  AU.addRequired<MachineDominatorTree>();
232  AU.addPreserved<MachineDominatorTree>();
233  AU.addRequired<MachineLoopInfo>();
234  AU.addPreserved<MachineLoopInfo>();
235  AU.addRequired<MachineLoopRanges>();
236  AU.addPreserved<MachineLoopRanges>();
237  AU.addRequired<VirtRegMap>();
238  AU.addPreserved<VirtRegMap>();
239  AU.addRequired<EdgeBundles>();
240  AU.addRequired<SpillPlacement>();
241  MachineFunctionPass::getAnalysisUsage(AU);
242}
243
244
245//===----------------------------------------------------------------------===//
246//                     LiveRangeEdit delegate methods
247//===----------------------------------------------------------------------===//
248
249void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
250  // LRE itself will remove from SlotIndexes and parent basic block.
251  VRM->RemoveMachineInstrFromMaps(MI);
252}
253
254bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
255  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
256    unassign(LIS->getInterval(VirtReg), PhysReg);
257    return true;
258  }
259  // Unassigned virtreg is probably in the priority queue.
260  // RegAllocBase will erase it after dequeueing.
261  return false;
262}
263
264void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
265  unsigned PhysReg = VRM->getPhys(VirtReg);
266  if (!PhysReg)
267    return;
268
269  // Register is assigned, put it back on the queue for reassignment.
270  LiveInterval &LI = LIS->getInterval(VirtReg);
271  unassign(LI, PhysReg);
272  enqueue(&LI);
273}
274
275void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
276  // LRE may clone a virtual register because dead code elimination causes it to
277  // be split into connected components. Ensure that the new register gets the
278  // same stage as the parent.
279  LRStage.grow(New);
280  LRStage[New] = LRStage[Old];
281}
282
283void RAGreedy::releaseMemory() {
284  SpillerInstance.reset(0);
285  LRStage.clear();
286  RegAllocBase::releaseMemory();
287}
288
289void RAGreedy::enqueue(LiveInterval *LI) {
290  // Prioritize live ranges by size, assigning larger ranges first.
291  // The queue holds (size, reg) pairs.
292  const unsigned Size = LI->getSize();
293  const unsigned Reg = LI->reg;
294  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
295         "Can only enqueue virtual registers");
296  unsigned Prio;
297
298  LRStage.grow(Reg);
299  if (LRStage[Reg] == RS_New)
300    LRStage[Reg] = RS_First;
301
302  if (LRStage[Reg] == RS_Second)
303    // Unsplit ranges that couldn't be allocated immediately are deferred until
304    // everything else has been allocated. Long ranges are allocated last so
305    // they are split against realistic interference.
306    Prio = (1u << 31) - Size;
307  else {
308    // Everything else is allocated in long->short order. Long ranges that don't
309    // fit should be spilled ASAP so they don't create interference.
310    Prio = (1u << 31) + Size;
311
312    // Boost ranges that have a physical register hint.
313    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
314      Prio |= (1u << 30);
315  }
316
317  Queue.push(std::make_pair(Prio, Reg));
318}
319
320LiveInterval *RAGreedy::dequeue() {
321  if (Queue.empty())
322    return 0;
323  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
324  Queue.pop();
325  return LI;
326}
327
328//===----------------------------------------------------------------------===//
329//                         Interference eviction
330//===----------------------------------------------------------------------===//
331
332/// canEvict - Return true if all interferences between VirtReg and PhysReg can
333/// be evicted. Set maxWeight to the maximal spill weight of an interference.
334bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
335                                    float &MaxWeight) {
336  float Weight = 0;
337  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
338    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
339    // If there is 10 or more interferences, chances are one is smaller.
340    if (Q.collectInterferingVRegs(10) >= 10)
341      return false;
342
343    // Check if any interfering live range is heavier than VirtReg.
344    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
345      LiveInterval *Intf = Q.interferingVRegs()[i];
346      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
347        return false;
348      if (Intf->weight >= VirtReg.weight)
349        return false;
350      Weight = std::max(Weight, Intf->weight);
351    }
352  }
353  MaxWeight = Weight;
354  return true;
355}
356
357/// tryEvict - Try to evict all interferences for a physreg.
358/// @param  VirtReg Currently unassigned virtual register.
359/// @param  Order   Physregs to try.
360/// @return         Physreg to assign VirtReg, or 0.
361unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
362                            AllocationOrder &Order,
363                            SmallVectorImpl<LiveInterval*> &NewVRegs){
364  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
365
366  // Keep track of the lightest single interference seen so far.
367  float BestWeight = 0;
368  unsigned BestPhys = 0;
369
370  Order.rewind();
371  while (unsigned PhysReg = Order.next()) {
372    float Weight = 0;
373    if (!canEvictInterference(VirtReg, PhysReg, Weight))
374      continue;
375
376    // This is an eviction candidate.
377    DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
378                 << Weight << '\n');
379    if (BestPhys && Weight >= BestWeight)
380      continue;
381
382    // Best so far.
383    BestPhys = PhysReg;
384    BestWeight = Weight;
385    // Stop if the hint can be used.
386    if (Order.isHint(PhysReg))
387      break;
388  }
389
390  if (!BestPhys)
391    return 0;
392
393  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
394  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
395    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
396    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
397    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
398      LiveInterval *Intf = Q.interferingVRegs()[i];
399      unassign(*Intf, VRM->getPhys(Intf->reg));
400      ++NumEvicted;
401      NewVRegs.push_back(Intf);
402    }
403  }
404  return BestPhys;
405}
406
407
408//===----------------------------------------------------------------------===//
409//                              Region Splitting
410//===----------------------------------------------------------------------===//
411
412/// calcSplitConstraints - Fill out the SplitConstraints vector based on the
413/// interference pattern in Physreg and its aliases. Return the static cost of
414/// this split, assuming that all preferences in SplitConstraints are met.
415float RAGreedy::calcSplitConstraints(unsigned PhysReg) {
416  InterferenceCache::Cursor Intf(IntfCache, PhysReg);
417
418  // Reset interference dependent info.
419  SplitConstraints.resize(SA->LiveBlocks.size());
420  float StaticCost = 0;
421  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
422    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
423    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
424
425    BC.Number = BI.MBB->getNumber();
426    Intf.moveToBlock(BC.Number);
427    BC.Entry = (BI.Uses && BI.LiveIn) ?
428      SpillPlacement::PrefReg : SpillPlacement::DontCare;
429    BC.Exit = (BI.Uses && BI.LiveOut) ?
430      SpillPlacement::PrefReg : SpillPlacement::DontCare;
431
432    if (!Intf.hasInterference())
433      continue;
434
435    // Number of spill code instructions to insert.
436    unsigned Ins = 0;
437
438    // Interference for the live-in value.
439    if (BI.LiveIn) {
440      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
441        BC.Entry = SpillPlacement::MustSpill, Ins += BI.Uses;
442      else if (!BI.Uses)
443        BC.Entry = SpillPlacement::PrefSpill;
444      else if (Intf.first() < BI.FirstUse)
445        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
446      else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
447        ++Ins;
448    }
449
450    // Interference for the live-out value.
451    if (BI.LiveOut) {
452      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
453        BC.Exit = SpillPlacement::MustSpill, Ins += BI.Uses;
454      else if (!BI.Uses)
455        BC.Exit = SpillPlacement::PrefSpill;
456      else if (Intf.last() > BI.LastUse)
457        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
458      else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
459        ++Ins;
460    }
461
462    // Accumulate the total frequency of inserted spill code.
463    if (Ins)
464      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
465  }
466  return StaticCost;
467}
468
469
470/// calcGlobalSplitCost - Return the global split cost of following the split
471/// pattern in LiveBundles. This cost should be added to the local cost of the
472/// interference pattern in SplitConstraints.
473///
474float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
475  float GlobalCost = 0;
476  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
477    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
478    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
479    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
480    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
481    unsigned Ins = 0;
482
483    if (!BI.Uses)
484      Ins += RegIn != RegOut;
485    else {
486      if (BI.LiveIn)
487        Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
488      if (BI.LiveOut)
489        Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
490    }
491    if (Ins)
492      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
493  }
494  return GlobalCost;
495}
496
497/// splitAroundRegion - Split VirtReg around the region determined by
498/// LiveBundles. Make an effort to avoid interference from PhysReg.
499///
500/// The 'register' interval is going to contain as many uses as possible while
501/// avoiding interference. The 'stack' interval is the complement constructed by
502/// SplitEditor. It will contain the rest.
503///
504void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
505                                 const BitVector &LiveBundles,
506                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
507  DEBUG({
508    dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
509           << " with bundles";
510    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
511      dbgs() << " EB#" << i;
512    dbgs() << ".\n";
513  });
514
515  InterferenceCache::Cursor Intf(IntfCache, PhysReg);
516  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
517  SE->reset(LREdit);
518
519  // Create the main cross-block interval.
520  SE->openIntv();
521
522  // First add all defs that are live out of a block.
523  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
524    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
525    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
526    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
527
528    // Should the register be live out?
529    if (!BI.LiveOut || !RegOut)
530      continue;
531
532    SlotIndex Start, Stop;
533    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
534    Intf.moveToBlock(BI.MBB->getNumber());
535    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
536                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
537                 << " [" << Start << ';'
538                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
539                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
540
541    // The interference interval should either be invalid or overlap MBB.
542    assert((!Intf.hasInterference() || Intf.first() < Stop)
543           && "Bad interference");
544    assert((!Intf.hasInterference() || Intf.last() > Start)
545           && "Bad interference");
546
547    // Check interference leaving the block.
548    if (!Intf.hasInterference()) {
549      // Block is interference-free.
550      DEBUG(dbgs() << ", no interference");
551      if (!BI.Uses) {
552        assert(BI.LiveThrough && "No uses, but not live through block?");
553        // Block is live-through without interference.
554        DEBUG(dbgs() << ", no uses"
555                     << (RegIn ? ", live-through.\n" : ", stack in.\n"));
556        if (!RegIn)
557          SE->enterIntvAtEnd(*BI.MBB);
558        continue;
559      }
560      if (!BI.LiveThrough) {
561        DEBUG(dbgs() << ", not live-through.\n");
562        SE->useIntv(SE->enterIntvBefore(BI.Def), Stop);
563        continue;
564      }
565      if (!RegIn) {
566        // Block is live-through, but entry bundle is on the stack.
567        // Reload just before the first use.
568        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
569        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
570        continue;
571      }
572      DEBUG(dbgs() << ", live-through.\n");
573      continue;
574    }
575
576    // Block has interference.
577    DEBUG(dbgs() << ", interference to " << Intf.last());
578
579    if (!BI.LiveThrough && Intf.last() <= BI.Def) {
580      // The interference doesn't reach the outgoing segment.
581      DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
582      SE->useIntv(BI.Def, Stop);
583      continue;
584    }
585
586
587    if (!BI.Uses) {
588      // No uses in block, avoid interference by reloading as late as possible.
589      DEBUG(dbgs() << ", no uses.\n");
590      SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
591      assert(SegStart >= Intf.last() && "Couldn't avoid interference");
592      continue;
593    }
594
595    SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
596    if (Intf.last().getBoundaryIndex() < BI.LastUse) {
597      // There are interference-free uses at the end of the block.
598      // Find the first use that can get the live-out register.
599      SmallVectorImpl<SlotIndex>::const_iterator UI =
600        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
601                         Intf.last().getBoundaryIndex());
602      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
603      SlotIndex Use = *UI;
604      assert(Use <= BI.LastUse && "Couldn't find last use");
605      // Only attempt a split befroe the last split point.
606      if (Use.getBaseIndex() <= LastSplitPoint) {
607        DEBUG(dbgs() << ", free use at " << Use << ".\n");
608        SlotIndex SegStart = SE->enterIntvBefore(Use);
609        assert(SegStart >= Intf.last() && "Couldn't avoid interference");
610        assert(SegStart < LastSplitPoint && "Impossible split point");
611        SE->useIntv(SegStart, Stop);
612        continue;
613      }
614    }
615
616    // Interference is after the last use.
617    DEBUG(dbgs() << " after last use.\n");
618    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
619    assert(SegStart >= Intf.last() && "Couldn't avoid interference");
620  }
621
622  // Now all defs leading to live bundles are handled, do everything else.
623  for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
624    SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
625    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
626    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
627
628    // Is the register live-in?
629    if (!BI.LiveIn || !RegIn)
630      continue;
631
632    // We have an incoming register. Check for interference.
633    SlotIndex Start, Stop;
634    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
635    Intf.moveToBlock(BI.MBB->getNumber());
636    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
637                 << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
638                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
639                 << ')');
640
641    // Check interference entering the block.
642    if (!Intf.hasInterference()) {
643      // Block is interference-free.
644      DEBUG(dbgs() << ", no interference");
645      if (!BI.Uses) {
646        assert(BI.LiveThrough && "No uses, but not live through block?");
647        // Block is live-through without interference.
648        if (RegOut) {
649          DEBUG(dbgs() << ", no uses, live-through.\n");
650          SE->useIntv(Start, Stop);
651        } else {
652          DEBUG(dbgs() << ", no uses, stack-out.\n");
653          SE->leaveIntvAtTop(*BI.MBB);
654        }
655        continue;
656      }
657      if (!BI.LiveThrough) {
658        DEBUG(dbgs() << ", killed in block.\n");
659        SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill));
660        continue;
661      }
662      if (!RegOut) {
663        SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
664        // Block is live-through, but exit bundle is on the stack.
665        // Spill immediately after the last use.
666        if (BI.LastUse < LastSplitPoint) {
667          DEBUG(dbgs() << ", uses, stack-out.\n");
668          SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
669          continue;
670        }
671        // The last use is after the last split point, it is probably an
672        // indirect jump.
673        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
674                     << LastSplitPoint << ", stack-out.\n");
675        SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
676        SE->useIntv(Start, SegEnd);
677        // Run a double interval from the split to the last use.
678        // This makes it possible to spill the complement without affecting the
679        // indirect branch.
680        SE->overlapIntv(SegEnd, BI.LastUse);
681        continue;
682      }
683      // Register is live-through.
684      DEBUG(dbgs() << ", uses, live-through.\n");
685      SE->useIntv(Start, Stop);
686      continue;
687    }
688
689    // Block has interference.
690    DEBUG(dbgs() << ", interference from " << Intf.first());
691
692    if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
693      // The interference doesn't reach the outgoing segment.
694      DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
695      SE->useIntv(Start, BI.Kill);
696      continue;
697    }
698
699    if (!BI.Uses) {
700      // No uses in block, avoid interference by spilling as soon as possible.
701      DEBUG(dbgs() << ", no uses.\n");
702      SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
703      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
704      continue;
705    }
706    if (Intf.first().getBaseIndex() > BI.FirstUse) {
707      // There are interference-free uses at the beginning of the block.
708      // Find the last use that can get the register.
709      SmallVectorImpl<SlotIndex>::const_iterator UI =
710        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
711                         Intf.first().getBaseIndex());
712      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
713      SlotIndex Use = (--UI)->getBoundaryIndex();
714      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
715      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
716      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
717      SE->useIntv(Start, SegEnd);
718      continue;
719    }
720
721    // Interference is before the first use.
722    DEBUG(dbgs() << " before first use.\n");
723    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
724    assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
725  }
726
727  SE->closeIntv();
728
729  // FIXME: Should we be more aggressive about splitting the stack region into
730  // per-block segments? The current approach allows the stack region to
731  // separate into connected components. Some components may be allocatable.
732  SE->finish();
733  ++NumGlobalSplits;
734
735  if (VerifyEnabled)
736    MF->verify(this, "After splitting live range around region");
737}
738
739unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
740                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
741  BitVector LiveBundles, BestBundles;
742  float BestCost = 0;
743  unsigned BestReg = 0;
744
745  Order.rewind();
746  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
747    if (GlobalCand.size() <= Cand)
748      GlobalCand.resize(Cand+1);
749    GlobalCand[Cand].PhysReg = PhysReg;
750
751    float Cost = calcSplitConstraints(PhysReg);
752    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
753    if (BestReg && Cost >= BestCost) {
754      DEBUG(dbgs() << " higher.\n");
755      continue;
756    }
757
758    SpillPlacer->placeSpills(SplitConstraints, LiveBundles);
759    // No live bundles, defer to splitSingleBlocks().
760    if (!LiveBundles.any()) {
761      DEBUG(dbgs() << " no bundles.\n");
762      continue;
763    }
764
765    Cost += calcGlobalSplitCost(LiveBundles);
766    DEBUG({
767      dbgs() << ", total = " << Cost << " with bundles";
768      for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
769        dbgs() << " EB#" << i;
770      dbgs() << ".\n";
771    });
772    if (!BestReg || Cost < BestCost) {
773      BestReg = PhysReg;
774      BestCost = 0.98f * Cost; // Prevent rounding effects.
775      BestBundles.swap(LiveBundles);
776    }
777  }
778
779  if (!BestReg)
780    return 0;
781
782  splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
783  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Region);
784  return 0;
785}
786
787
788//===----------------------------------------------------------------------===//
789//                             Local Splitting
790//===----------------------------------------------------------------------===//
791
792
793/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
794/// in order to use PhysReg between two entries in SA->UseSlots.
795///
796/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
797///
798void RAGreedy::calcGapWeights(unsigned PhysReg,
799                              SmallVectorImpl<float> &GapWeight) {
800  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
801  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
802  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
803  const unsigned NumGaps = Uses.size()-1;
804
805  // Start and end points for the interference check.
806  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
807  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
808
809  GapWeight.assign(NumGaps, 0.0f);
810
811  // Add interference from each overlapping register.
812  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
813    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
814           .checkInterference())
815      continue;
816
817    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
818    // so we don't need InterferenceQuery.
819    //
820    // Interference that overlaps an instruction is counted in both gaps
821    // surrounding the instruction. The exception is interference before
822    // StartIdx and after StopIdx.
823    //
824    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
825    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
826      // Skip the gaps before IntI.
827      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
828        if (++Gap == NumGaps)
829          break;
830      if (Gap == NumGaps)
831        break;
832
833      // Update the gaps covered by IntI.
834      const float weight = IntI.value()->weight;
835      for (; Gap != NumGaps; ++Gap) {
836        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
837        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
838          break;
839      }
840      if (Gap == NumGaps)
841        break;
842    }
843  }
844}
845
846/// getPrevMappedIndex - Return the slot index of the last non-copy instruction
847/// before MI that has a slot index. If MI is the first mapped instruction in
848/// its block, return the block start index instead.
849///
850SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
851  assert(MI && "Missing MachineInstr");
852  const MachineBasicBlock *MBB = MI->getParent();
853  MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
854  while (I != B)
855    if (!(--I)->isDebugValue() && !I->isCopy())
856      return Indexes->getInstructionIndex(I);
857  return Indexes->getMBBStartIdx(MBB);
858}
859
860/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
861/// real non-copy instruction for each instruction in SA->UseSlots.
862///
863void RAGreedy::calcPrevSlots() {
864  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
865  PrevSlot.clear();
866  PrevSlot.reserve(Uses.size());
867  for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
868    const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
869    PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
870  }
871}
872
873/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
874/// be beneficial to split before UseSlots[i].
875///
876/// 0 is always a valid split point
877unsigned RAGreedy::nextSplitPoint(unsigned i) {
878  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
879  const unsigned Size = Uses.size();
880  assert(i != Size && "No split points after the end");
881  // Allow split before i when Uses[i] is not adjacent to the previous use.
882  while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
883    ;
884  return i;
885}
886
887/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
888/// basic block.
889///
890unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
891                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
892  assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
893  const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
894
895  // Note that it is possible to have an interval that is live-in or live-out
896  // while only covering a single block - A phi-def can use undef values from
897  // predecessors, and the block could be a single-block loop.
898  // We don't bother doing anything clever about such a case, we simply assume
899  // that the interval is continuous from FirstUse to LastUse. We should make
900  // sure that we don't do anything illegal to such an interval, though.
901
902  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
903  if (Uses.size() <= 2)
904    return 0;
905  const unsigned NumGaps = Uses.size()-1;
906
907  DEBUG({
908    dbgs() << "tryLocalSplit: ";
909    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
910      dbgs() << ' ' << SA->UseSlots[i];
911    dbgs() << '\n';
912  });
913
914  // For every use, find the previous mapped non-copy instruction.
915  // We use this to detect valid split points, and to estimate new interval
916  // sizes.
917  calcPrevSlots();
918
919  unsigned BestBefore = NumGaps;
920  unsigned BestAfter = 0;
921  float BestDiff = 0;
922
923  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
924  SmallVector<float, 8> GapWeight;
925
926  Order.rewind();
927  while (unsigned PhysReg = Order.next()) {
928    // Keep track of the largest spill weight that would need to be evicted in
929    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
930    calcGapWeights(PhysReg, GapWeight);
931
932    // Try to find the best sequence of gaps to close.
933    // The new spill weight must be larger than any gap interference.
934
935    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
936    unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
937
938    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
939    // It is the spill weight that needs to be evicted.
940    float MaxGap = GapWeight[0];
941    for (unsigned i = 1; i != SplitAfter; ++i)
942      MaxGap = std::max(MaxGap, GapWeight[i]);
943
944    for (;;) {
945      // Live before/after split?
946      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
947      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
948
949      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
950                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
951                   << " i=" << MaxGap);
952
953      // Stop before the interval gets so big we wouldn't be making progress.
954      if (!LiveBefore && !LiveAfter) {
955        DEBUG(dbgs() << " all\n");
956        break;
957      }
958      // Should the interval be extended or shrunk?
959      bool Shrink = true;
960      if (MaxGap < HUGE_VALF) {
961        // Estimate the new spill weight.
962        //
963        // Each instruction reads and writes the register, except the first
964        // instr doesn't read when !FirstLive, and the last instr doesn't write
965        // when !LastLive.
966        //
967        // We will be inserting copies before and after, so the total number of
968        // reads and writes is 2 * EstUses.
969        //
970        const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
971                                 2*(LiveBefore + LiveAfter);
972
973        // Try to guess the size of the new interval. This should be trivial,
974        // but the slot index of an inserted copy can be a lot smaller than the
975        // instruction it is inserted before if there are many dead indexes
976        // between them.
977        //
978        // We measure the distance from the instruction before SplitBefore to
979        // get a conservative estimate.
980        //
981        // The final distance can still be different if inserting copies
982        // triggers a slot index renumbering.
983        //
984        const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
985                              PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
986        // Would this split be possible to allocate?
987        // Never allocate all gaps, we wouldn't be making progress.
988        float Diff = EstWeight - MaxGap;
989        DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
990        if (Diff > 0) {
991          Shrink = false;
992          if (Diff > BestDiff) {
993            DEBUG(dbgs() << " (best)");
994            BestDiff = Diff;
995            BestBefore = SplitBefore;
996            BestAfter = SplitAfter;
997          }
998        }
999      }
1000
1001      // Try to shrink.
1002      if (Shrink) {
1003        SplitBefore = nextSplitPoint(SplitBefore);
1004        if (SplitBefore < SplitAfter) {
1005          DEBUG(dbgs() << " shrink\n");
1006          // Recompute the max when necessary.
1007          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1008            MaxGap = GapWeight[SplitBefore];
1009            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1010              MaxGap = std::max(MaxGap, GapWeight[i]);
1011          }
1012          continue;
1013        }
1014        MaxGap = 0;
1015      }
1016
1017      // Try to extend the interval.
1018      if (SplitAfter >= NumGaps) {
1019        DEBUG(dbgs() << " end\n");
1020        break;
1021      }
1022
1023      DEBUG(dbgs() << " extend\n");
1024      for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
1025           SplitAfter != e; ++SplitAfter)
1026        MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
1027          continue;
1028    }
1029  }
1030
1031  // Didn't find any candidates?
1032  if (BestBefore == NumGaps)
1033    return 0;
1034
1035  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1036               << '-' << Uses[BestAfter] << ", " << BestDiff
1037               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1038
1039  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1040  SE->reset(LREdit);
1041
1042  SE->openIntv();
1043  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1044  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1045  SE->useIntv(SegStart, SegStop);
1046  SE->closeIntv();
1047  SE->finish();
1048  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
1049  ++NumLocalSplits;
1050
1051  return 0;
1052}
1053
1054//===----------------------------------------------------------------------===//
1055//                          Live Range Splitting
1056//===----------------------------------------------------------------------===//
1057
1058/// trySplit - Try to split VirtReg or one of its interferences, making it
1059/// assignable.
1060/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1061unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1062                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1063  // Local intervals are handled separately.
1064  if (LIS->intervalIsInOneMBB(VirtReg)) {
1065    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1066    SA->analyze(&VirtReg);
1067    return tryLocalSplit(VirtReg, Order, NewVRegs);
1068  }
1069
1070  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1071
1072  // Don't iterate global splitting.
1073  // Move straight to spilling if this range was produced by a global split.
1074  LiveRangeStage Stage = getStage(VirtReg);
1075  if (Stage >= RS_Block)
1076    return 0;
1077
1078  SA->analyze(&VirtReg);
1079
1080  // First try to split around a region spanning multiple blocks.
1081  if (Stage < RS_Region) {
1082    unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1083    if (PhysReg || !NewVRegs.empty())
1084      return PhysReg;
1085  }
1086
1087  // Then isolate blocks with multiple uses.
1088  if (Stage < RS_Block) {
1089    SplitAnalysis::BlockPtrSet Blocks;
1090    if (SA->getMultiUseBlocks(Blocks)) {
1091      LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1092      SE->reset(LREdit);
1093      SE->splitSingleBlocks(Blocks);
1094      setStage(NewVRegs.begin(), NewVRegs.end(), RS_Block);
1095      if (VerifyEnabled)
1096        MF->verify(this, "After splitting live range around basic blocks");
1097    }
1098  }
1099
1100  // Don't assign any physregs.
1101  return 0;
1102}
1103
1104
1105//===----------------------------------------------------------------------===//
1106//                            Main Entry Point
1107//===----------------------------------------------------------------------===//
1108
1109unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1110                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1111  // First try assigning a free register.
1112  AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
1113  while (unsigned PhysReg = Order.next()) {
1114    if (!checkPhysRegInterference(VirtReg, PhysReg))
1115      return PhysReg;
1116  }
1117
1118  if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1119    return PhysReg;
1120
1121  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1122
1123  // The first time we see a live range, don't try to split or spill.
1124  // Wait until the second time, when all smaller ranges have been allocated.
1125  // This gives a better picture of the interference to split around.
1126  LiveRangeStage Stage = getStage(VirtReg);
1127  if (Stage == RS_First) {
1128    LRStage[VirtReg.reg] = RS_Second;
1129    DEBUG(dbgs() << "wait for second round\n");
1130    NewVRegs.push_back(&VirtReg);
1131    return 0;
1132  }
1133
1134  assert(Stage < RS_Spill && "Cannot allocate after spilling");
1135
1136  // Try splitting VirtReg or interferences.
1137  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1138  if (PhysReg || !NewVRegs.empty())
1139    return PhysReg;
1140
1141  // Finally spill VirtReg itself.
1142  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1143  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1144  spiller().spill(LRE);
1145  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1146
1147  if (VerifyEnabled)
1148    MF->verify(this, "After spilling");
1149
1150  // The live virtual register requesting allocation was spilled, so tell
1151  // the caller not to allocate anything during this round.
1152  return 0;
1153}
1154
1155bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1156  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1157               << "********** Function: "
1158               << ((Value*)mf.getFunction())->getName() << '\n');
1159
1160  MF = &mf;
1161  if (VerifyEnabled)
1162    MF->verify(this, "Before greedy register allocator");
1163
1164  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1165  Indexes = &getAnalysis<SlotIndexes>();
1166  DomTree = &getAnalysis<MachineDominatorTree>();
1167  ReservedRegs = TRI->getReservedRegs(*MF);
1168  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1169  Loops = &getAnalysis<MachineLoopInfo>();
1170  LoopRanges = &getAnalysis<MachineLoopRanges>();
1171  Bundles = &getAnalysis<EdgeBundles>();
1172  SpillPlacer = &getAnalysis<SpillPlacement>();
1173
1174  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1175  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1176  LRStage.clear();
1177  LRStage.resize(MRI->getNumVirtRegs());
1178  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1179
1180  allocatePhysRegs();
1181  addMBBLiveIns(MF);
1182  LIS->addKillFlags();
1183
1184  // Run rewriter
1185  {
1186    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1187    VRM->rewrite(Indexes);
1188  }
1189
1190  // Write out new DBG_VALUE instructions.
1191  getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
1192
1193  // The pass output is in VirtRegMap. Release all the transient data.
1194  releaseMemory();
1195
1196  return true;
1197}
1198