ScheduleDAGFast.cpp revision ffa391272bad598d73fd5404dadf3686b69f2a63
1//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a fast scheduler.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "pre-RA-sched"
15#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
16#include "llvm/CodeGen/SchedulerRegistry.h"
17#include "llvm/Target/TargetRegisterInfo.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetInstrInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/CommandLine.h"
27using namespace llvm;
28
29STATISTIC(NumUnfolds,    "Number of nodes unfolded");
30STATISTIC(NumDups,       "Number of duplicated nodes");
31STATISTIC(NumCCCopies,   "Number of cross class copies");
32
33static RegisterScheduler
34  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
35                   createFastDAGScheduler);
36
37namespace {
38  /// FastPriorityQueue - A degenerate priority queue that considers
39  /// all nodes to have the same priority.
40  ///
41  struct VISIBILITY_HIDDEN FastPriorityQueue {
42    SmallVector<SUnit *, 16> Queue;
43
44    bool empty() const { return Queue.empty(); }
45
46    void push(SUnit *U) {
47      Queue.push_back(U);
48    }
49
50    SUnit *pop() {
51      if (empty()) return NULL;
52      SUnit *V = Queue.back();
53      Queue.pop_back();
54      return V;
55    }
56  };
57
58//===----------------------------------------------------------------------===//
59/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
60///
61class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAGSDNodes {
62private:
63  /// AvailableQueue - The priority queue to use for the available SUnits.
64  FastPriorityQueue AvailableQueue;
65
66  /// LiveRegDefs - A set of physical registers and their definition
67  /// that are "live". These nodes must be scheduled before any other nodes that
68  /// modifies the registers can be scheduled.
69  unsigned NumLiveRegs;
70  std::vector<SUnit*> LiveRegDefs;
71  std::vector<unsigned> LiveRegCycles;
72
73public:
74  ScheduleDAGFast(SelectionDAG *dag, MachineBasicBlock *bb,
75                  const TargetMachine &tm)
76    : ScheduleDAGSDNodes(dag, bb, tm) {}
77
78  void Schedule();
79
80  /// AddPred - adds a predecessor edge to SUnit SU.
81  /// This returns true if this is a new predecessor.
82  void AddPred(SUnit *SU, const SDep &D) {
83    SU->addPred(D);
84  }
85
86  /// RemovePred - removes a predecessor edge from SUnit SU.
87  /// This returns true if an edge was removed.
88  void RemovePred(SUnit *SU, const SDep &D) {
89    SU->removePred(D);
90  }
91
92private:
93  void ReleasePred(SUnit *SU, SDep *PredEdge);
94  void ScheduleNodeBottomUp(SUnit*, unsigned);
95  SUnit *CopyAndMoveSuccessors(SUnit*);
96  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
97                                  const TargetRegisterClass*,
98                                  const TargetRegisterClass*,
99                                  SmallVector<SUnit*, 2>&);
100  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
101  void ListScheduleBottomUp();
102};
103}  // end anonymous namespace
104
105
106/// Schedule - Schedule the DAG using list scheduling.
107void ScheduleDAGFast::Schedule() {
108  DOUT << "********** List Scheduling **********\n";
109
110  NumLiveRegs = 0;
111  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
112  LiveRegCycles.resize(TRI->getNumRegs(), 0);
113
114  // Build scheduling units.
115  BuildSchedUnits();
116
117  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
118          SUnits[su].dumpAll(this));
119
120  // Execute the actual scheduling loop.
121  ListScheduleBottomUp();
122}
123
124//===----------------------------------------------------------------------===//
125//  Bottom-Up Scheduling
126//===----------------------------------------------------------------------===//
127
128/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
129/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
130void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
131  SUnit *PredSU = PredEdge->getSUnit();
132  --PredSU->NumSuccsLeft;
133
134#ifndef NDEBUG
135  if (PredSU->NumSuccsLeft < 0) {
136    cerr << "*** Scheduling failed! ***\n";
137    PredSU->dump(this);
138    cerr << " has been released too many times!\n";
139    assert(0);
140  }
141#endif
142
143  if (PredSU->NumSuccsLeft == 0) {
144    PredSU->isAvailable = true;
145    AvailableQueue.push(PredSU);
146  }
147}
148
149/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
150/// count of its predecessors. If a predecessor pending count is zero, add it to
151/// the Available queue.
152void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
153  DOUT << "*** Scheduling [" << CurCycle << "]: ";
154  DEBUG(SU->dump(this));
155
156  SU->Cycle = CurCycle;
157  Sequence.push_back(SU);
158
159  // Bottom up: release predecessors
160  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
161       I != E; ++I) {
162    ReleasePred(SU, &*I);
163    if (I->isAssignedRegDep()) {
164      // This is a physical register dependency and it's impossible or
165      // expensive to copy the register. Make sure nothing that can
166      // clobber the register is scheduled between the predecessor and
167      // this node.
168      if (!LiveRegDefs[I->getReg()]) {
169        ++NumLiveRegs;
170        LiveRegDefs[I->getReg()] = I->getSUnit();
171        LiveRegCycles[I->getReg()] = CurCycle;
172      }
173    }
174  }
175
176  // Release all the implicit physical register defs that are live.
177  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
178       I != E; ++I) {
179    if (I->isAssignedRegDep()) {
180      if (LiveRegCycles[I->getReg()] == I->getSUnit()->Cycle) {
181        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
182        assert(LiveRegDefs[I->getReg()] == SU &&
183               "Physical register dependency violated?");
184        --NumLiveRegs;
185        LiveRegDefs[I->getReg()] = NULL;
186        LiveRegCycles[I->getReg()] = 0;
187      }
188    }
189  }
190
191  SU->isScheduled = true;
192}
193
194/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
195/// successors to the newly created node.
196SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
197  if (SU->getNode()->getFlaggedNode())
198    return NULL;
199
200  SDNode *N = SU->getNode();
201  if (!N)
202    return NULL;
203
204  SUnit *NewSU;
205  bool TryUnfold = false;
206  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
207    MVT VT = N->getValueType(i);
208    if (VT == MVT::Flag)
209      return NULL;
210    else if (VT == MVT::Other)
211      TryUnfold = true;
212  }
213  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
214    const SDValue &Op = N->getOperand(i);
215    MVT VT = Op.getNode()->getValueType(Op.getResNo());
216    if (VT == MVT::Flag)
217      return NULL;
218  }
219
220  if (TryUnfold) {
221    SmallVector<SDNode*, 2> NewNodes;
222    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
223      return NULL;
224
225    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
226    assert(NewNodes.size() == 2 && "Expected a load folding node!");
227
228    N = NewNodes[1];
229    SDNode *LoadNode = NewNodes[0];
230    unsigned NumVals = N->getNumValues();
231    unsigned OldNumVals = SU->getNode()->getNumValues();
232    for (unsigned i = 0; i != NumVals; ++i)
233      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
234    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
235                                   SDValue(LoadNode, 1));
236
237    SUnit *NewSU = NewSUnit(N);
238    assert(N->getNodeId() == -1 && "Node already inserted!");
239    N->setNodeId(NewSU->NodeNum);
240
241    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
242    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
243      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
244        NewSU->isTwoAddress = true;
245        break;
246      }
247    }
248    if (TID.isCommutable())
249      NewSU->isCommutable = true;
250    // FIXME: Calculate height / depth and propagate the changes?
251    NewSU->Depth = SU->Depth;
252    NewSU->Height = SU->Height;
253
254    // LoadNode may already exist. This can happen when there is another
255    // load from the same location and producing the same type of value
256    // but it has different alignment or volatileness.
257    bool isNewLoad = true;
258    SUnit *LoadSU;
259    if (LoadNode->getNodeId() != -1) {
260      LoadSU = &SUnits[LoadNode->getNodeId()];
261      isNewLoad = false;
262    } else {
263      LoadSU = NewSUnit(LoadNode);
264      LoadNode->setNodeId(LoadSU->NodeNum);
265
266      LoadSU->Depth = SU->Depth;
267      LoadSU->Height = SU->Height;
268    }
269
270    SDep ChainPred;
271    SmallVector<SDep, 4> ChainSuccs;
272    SmallVector<SDep, 4> LoadPreds;
273    SmallVector<SDep, 4> NodePreds;
274    SmallVector<SDep, 4> NodeSuccs;
275    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
276         I != E; ++I) {
277      if (I->isCtrl())
278        ChainPred = *I;
279      else if (I->getSUnit()->getNode() &&
280               I->getSUnit()->getNode()->isOperandOf(LoadNode))
281        LoadPreds.push_back(*I);
282      else
283        NodePreds.push_back(*I);
284    }
285    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
286         I != E; ++I) {
287      if (I->isCtrl())
288        ChainSuccs.push_back(*I);
289      else
290        NodeSuccs.push_back(*I);
291    }
292
293    if (ChainPred.getSUnit()) {
294      RemovePred(SU, ChainPred);
295      if (isNewLoad)
296        AddPred(LoadSU, ChainPred);
297    }
298    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
299      const SDep &Pred = LoadPreds[i];
300      RemovePred(SU, Pred);
301      if (isNewLoad) {
302        AddPred(LoadSU, Pred);
303      }
304    }
305    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
306      const SDep &Pred = NodePreds[i];
307      RemovePred(SU, Pred);
308      AddPred(NewSU, Pred);
309    }
310    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
311      SDep D = NodeSuccs[i];
312      SUnit *SuccDep = D.getSUnit();
313      D.setSUnit(SU);
314      RemovePred(SuccDep, D);
315      D.setSUnit(NewSU);
316      AddPred(SuccDep, D);
317    }
318    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
319      SDep D = ChainSuccs[i];
320      SUnit *SuccDep = D.getSUnit();
321      D.setSUnit(SU);
322      RemovePred(SuccDep, D);
323      if (isNewLoad) {
324        D.setSUnit(LoadSU);
325        AddPred(SuccDep, D);
326      }
327    }
328    if (isNewLoad) {
329      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
330    }
331
332    ++NumUnfolds;
333
334    if (NewSU->NumSuccsLeft == 0) {
335      NewSU->isAvailable = true;
336      return NewSU;
337    }
338    SU = NewSU;
339  }
340
341  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
342  NewSU = Clone(SU);
343
344  // New SUnit has the exact same predecessors.
345  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
346       I != E; ++I)
347    if (!I->isArtificial()) {
348      AddPred(NewSU, *I);
349      NewSU->Depth = std::max(NewSU->Depth, I->getSUnit()->Depth+1);
350    }
351
352  // Only copy scheduled successors. Cut them from old node's successor
353  // list and move them over.
354  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
355  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
356       I != E; ++I) {
357    if (I->isArtificial())
358      continue;
359    SUnit *SuccSU = I->getSUnit();
360    if (SuccSU->isScheduled) {
361      NewSU->Height = std::max(NewSU->Height, SuccSU->Height+1);
362      SDep D = *I;
363      D.setSUnit(NewSU);
364      AddPred(SuccSU, D);
365      D.setSUnit(SU);
366      DelDeps.push_back(std::make_pair(SuccSU, D));
367    }
368  }
369  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
370    RemovePred(DelDeps[i].first, DelDeps[i].second);
371  }
372
373  ++NumDups;
374  return NewSU;
375}
376
377/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
378/// and move all scheduled successors of the given SUnit to the last copy.
379void ScheduleDAGFast::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
380                                              const TargetRegisterClass *DestRC,
381                                              const TargetRegisterClass *SrcRC,
382                                               SmallVector<SUnit*, 2> &Copies) {
383  SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
384  CopyFromSU->CopySrcRC = SrcRC;
385  CopyFromSU->CopyDstRC = DestRC;
386
387  SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
388  CopyToSU->CopySrcRC = DestRC;
389  CopyToSU->CopyDstRC = SrcRC;
390
391  // Only copy scheduled successors. Cut them from old node's successor
392  // list and move them over.
393  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
394  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
395       I != E; ++I) {
396    if (I->isArtificial())
397      continue;
398    SUnit *SuccSU = I->getSUnit();
399    if (SuccSU->isScheduled) {
400      SDep D = *I;
401      D.setSUnit(CopyToSU);
402      AddPred(SuccSU, D);
403      DelDeps.push_back(std::make_pair(SuccSU, *I));
404    }
405  }
406  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
407    RemovePred(DelDeps[i].first, DelDeps[i].second);
408  }
409
410  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
411  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
412
413  Copies.push_back(CopyFromSU);
414  Copies.push_back(CopyToSU);
415
416  ++NumCCCopies;
417}
418
419/// getPhysicalRegisterVT - Returns the ValueType of the physical register
420/// definition of the specified node.
421/// FIXME: Move to SelectionDAG?
422static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
423                                 const TargetInstrInfo *TII) {
424  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
425  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
426  unsigned NumRes = TID.getNumDefs();
427  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
428    if (Reg == *ImpDef)
429      break;
430    ++NumRes;
431  }
432  return N->getValueType(NumRes);
433}
434
435/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
436/// scheduling of the given node to satisfy live physical register dependencies.
437/// If the specific node is the last one that's available to schedule, do
438/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
439bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
440                                               SmallVector<unsigned, 4> &LRegs){
441  if (NumLiveRegs == 0)
442    return false;
443
444  SmallSet<unsigned, 4> RegAdded;
445  // If this node would clobber any "live" register, then it's not ready.
446  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
447       I != E; ++I) {
448    if (I->isAssignedRegDep()) {
449      unsigned Reg = I->getReg();
450      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
451        if (RegAdded.insert(Reg))
452          LRegs.push_back(Reg);
453      }
454      for (const unsigned *Alias = TRI->getAliasSet(Reg);
455           *Alias; ++Alias)
456        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
457          if (RegAdded.insert(*Alias))
458            LRegs.push_back(*Alias);
459        }
460    }
461  }
462
463  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
464    if (!Node->isMachineOpcode())
465      continue;
466    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
467    if (!TID.ImplicitDefs)
468      continue;
469    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
470      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
471        if (RegAdded.insert(*Reg))
472          LRegs.push_back(*Reg);
473      }
474      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
475           *Alias; ++Alias)
476        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
477          if (RegAdded.insert(*Alias))
478            LRegs.push_back(*Alias);
479        }
480    }
481  }
482  return !LRegs.empty();
483}
484
485
486/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
487/// schedulers.
488void ScheduleDAGFast::ListScheduleBottomUp() {
489  unsigned CurCycle = 0;
490  // Add root to Available queue.
491  if (!SUnits.empty()) {
492    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
493    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
494    RootSU->isAvailable = true;
495    AvailableQueue.push(RootSU);
496  }
497
498  // While Available queue is not empty, grab the node with the highest
499  // priority. If it is not ready put it back.  Schedule the node.
500  SmallVector<SUnit*, 4> NotReady;
501  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
502  Sequence.reserve(SUnits.size());
503  while (!AvailableQueue.empty()) {
504    bool Delayed = false;
505    LRegsMap.clear();
506    SUnit *CurSU = AvailableQueue.pop();
507    while (CurSU) {
508      SmallVector<unsigned, 4> LRegs;
509      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
510        break;
511      Delayed = true;
512      LRegsMap.insert(std::make_pair(CurSU, LRegs));
513
514      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
515      NotReady.push_back(CurSU);
516      CurSU = AvailableQueue.pop();
517    }
518
519    // All candidates are delayed due to live physical reg dependencies.
520    // Try code duplication or inserting cross class copies
521    // to resolve it.
522    if (Delayed && !CurSU) {
523      if (!CurSU) {
524        // Try duplicating the nodes that produces these
525        // "expensive to copy" values to break the dependency. In case even
526        // that doesn't work, insert cross class copies.
527        SUnit *TrySU = NotReady[0];
528        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
529        assert(LRegs.size() == 1 && "Can't handle this yet!");
530        unsigned Reg = LRegs[0];
531        SUnit *LRDef = LiveRegDefs[Reg];
532        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
533        if (!NewDef) {
534          // Issue expensive cross register class copies.
535          MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
536          const TargetRegisterClass *RC =
537            TRI->getPhysicalRegisterRegClass(Reg, VT);
538          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
539          if (!DestRC) {
540            assert(false && "Don't know how to copy this physical register!");
541            abort();
542          }
543          SmallVector<SUnit*, 2> Copies;
544          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
545          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
546               << " to SU #" << Copies.front()->NodeNum << "\n";
547          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
548                              /*Reg=*/0, /*isNormalMemory=*/false,
549                              /*isMustAlias=*/false, /*isArtificial=*/true));
550          NewDef = Copies.back();
551        }
552
553        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
554             << " to SU #" << TrySU->NodeNum << "\n";
555        LiveRegDefs[Reg] = NewDef;
556        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
557                             /*Reg=*/0, /*isNormalMemory=*/false,
558                             /*isMustAlias=*/false, /*isArtificial=*/true));
559        TrySU->isAvailable = false;
560        CurSU = NewDef;
561      }
562
563      if (!CurSU) {
564        assert(false && "Unable to resolve live physical register dependencies!");
565        abort();
566      }
567    }
568
569    // Add the nodes that aren't ready back onto the available list.
570    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
571      NotReady[i]->isPending = false;
572      // May no longer be available due to backtracking.
573      if (NotReady[i]->isAvailable)
574        AvailableQueue.push(NotReady[i]);
575    }
576    NotReady.clear();
577
578    if (CurSU)
579      ScheduleNodeBottomUp(CurSU, CurCycle);
580    ++CurCycle;
581  }
582
583  // Reverse the order if it is bottom up.
584  std::reverse(Sequence.begin(), Sequence.end());
585
586
587#ifndef NDEBUG
588  // Verify that all SUnits were scheduled.
589  bool AnyNotSched = false;
590  unsigned DeadNodes = 0;
591  unsigned Noops = 0;
592  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
593    if (!SUnits[i].isScheduled) {
594      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
595        ++DeadNodes;
596        continue;
597      }
598      if (!AnyNotSched)
599        cerr << "*** List scheduling failed! ***\n";
600      SUnits[i].dump(this);
601      cerr << "has not been scheduled!\n";
602      AnyNotSched = true;
603    }
604    if (SUnits[i].NumSuccsLeft != 0) {
605      if (!AnyNotSched)
606        cerr << "*** List scheduling failed! ***\n";
607      SUnits[i].dump(this);
608      cerr << "has successors left!\n";
609      AnyNotSched = true;
610    }
611  }
612  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
613    if (!Sequence[i])
614      ++Noops;
615  assert(!AnyNotSched);
616  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
617         "The number of nodes scheduled doesn't match the expected number!");
618#endif
619}
620
621//===----------------------------------------------------------------------===//
622//                         Public Constructor Functions
623//===----------------------------------------------------------------------===//
624
625llvm::ScheduleDAG* llvm::createFastDAGScheduler(SelectionDAGISel *IS,
626                                                SelectionDAG *DAG,
627                                                const TargetMachine *TM,
628                                                MachineBasicBlock *BB, bool) {
629  return new ScheduleDAGFast(DAG, BB, *TM);
630}
631