ScheduleDAGRRList.cpp revision 3c6e49504e9a57a4818750fd2520967f84634eac
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  tdrListrDAGScheduler("list-tdrr",
49                       "Top-down register reduction list scheduling",
50                       createTDRRListDAGScheduler);
51static RegisterScheduler
52  sourceListDAGScheduler("source",
53                         "Similar to list-burr but schedules in source "
54                         "order when possible",
55                         createSourceListDAGScheduler);
56
57static RegisterScheduler
58  hybridListDAGScheduler("list-hybrid",
59                         "Bottom-up register pressure aware list scheduling "
60                         "which tries to balance latency and register pressure",
61                         createHybridListDAGScheduler);
62
63static RegisterScheduler
64  ILPListDAGScheduler("list-ilp",
65                      "Bottom-up register pressure aware list scheduling "
66                      "which tries to balance ILP and register pressure",
67                      createILPListDAGScheduler);
68
69static cl::opt<bool> DisableSchedCycles(
70  "disable-sched-cycles", cl::Hidden, cl::init(false),
71  cl::desc("Disable cycle-level precision during preRA scheduling"));
72
73// Temporary sched=list-ilp flags until the heuristics are robust.
74static cl::opt<bool> DisableSchedRegPressure(
75  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
76  cl::desc("Disable regpressure priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedLiveUses(
78  "disable-sched-live-uses", cl::Hidden, cl::init(true),
79  cl::desc("Disable live use priority in sched=list-ilp"));
80static cl::opt<bool> DisableSchedStalls(
81  "disable-sched-stalls", cl::Hidden, cl::init(true),
82  cl::desc("Disable no-stall priority in sched=list-ilp"));
83static cl::opt<bool> DisableSchedCriticalPath(
84  "disable-sched-critical-path", cl::Hidden, cl::init(false),
85  cl::desc("Disable critical path priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedHeight(
87  "disable-sched-height", cl::Hidden, cl::init(false),
88  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
89
90static cl::opt<int> MaxReorderWindow(
91  "max-sched-reorder", cl::Hidden, cl::init(6),
92  cl::desc("Number of instructions to allow ahead of the critical path "
93           "in sched=list-ilp"));
94
95static cl::opt<unsigned> AvgIPC(
96  "sched-avg-ipc", cl::Hidden, cl::init(1),
97  cl::desc("Average inst/cycle whan no target itinerary exists."));
98
99#ifndef NDEBUG
100namespace {
101  // For sched=list-ilp, Count the number of times each factor comes into play.
102  enum { FactPressureDiff, FactRegUses, FactHeight, FactDepth, FactUllman,
103         NumFactors };
104}
105static const char *FactorName[NumFactors] =
106{"PressureDiff", "RegUses", "Height", "Depth","Ullman"};
107static int FactorCount[NumFactors];
108#endif //!NDEBUG
109
110namespace {
111//===----------------------------------------------------------------------===//
112/// ScheduleDAGRRList - The actual register reduction list scheduler
113/// implementation.  This supports both top-down and bottom-up scheduling.
114///
115class ScheduleDAGRRList : public ScheduleDAGSDNodes {
116private:
117  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
118  /// it is top-down.
119  bool isBottomUp;
120
121  /// NeedLatency - True if the scheduler will make use of latency information.
122  ///
123  bool NeedLatency;
124
125  /// AvailableQueue - The priority queue to use for the available SUnits.
126  SchedulingPriorityQueue *AvailableQueue;
127
128  /// PendingQueue - This contains all of the instructions whose operands have
129  /// been issued, but their results are not ready yet (due to the latency of
130  /// the operation).  Once the operands becomes available, the instruction is
131  /// added to the AvailableQueue.
132  std::vector<SUnit*> PendingQueue;
133
134  /// HazardRec - The hazard recognizer to use.
135  ScheduleHazardRecognizer *HazardRec;
136
137  /// CurCycle - The current scheduler state corresponds to this cycle.
138  unsigned CurCycle;
139
140  /// MinAvailableCycle - Cycle of the soonest available instruction.
141  unsigned MinAvailableCycle;
142
143  /// IssueCount - Count instructions issued in this cycle
144  /// Currently valid only for bottom-up scheduling.
145  unsigned IssueCount;
146
147  /// LiveRegDefs - A set of physical registers and their definition
148  /// that are "live". These nodes must be scheduled before any other nodes that
149  /// modifies the registers can be scheduled.
150  unsigned NumLiveRegs;
151  std::vector<SUnit*> LiveRegDefs;
152  std::vector<SUnit*> LiveRegGens;
153
154  /// Topo - A topological ordering for SUnits which permits fast IsReachable
155  /// and similar queries.
156  ScheduleDAGTopologicalSort Topo;
157
158public:
159  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
160                    SchedulingPriorityQueue *availqueue,
161                    CodeGenOpt::Level OptLevel)
162    : ScheduleDAGSDNodes(mf), isBottomUp(availqueue->isBottomUp()),
163      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
164      Topo(SUnits) {
165
166    const TargetMachine &tm = mf.getTarget();
167    if (DisableSchedCycles || !NeedLatency)
168      HazardRec = new ScheduleHazardRecognizer();
169    else
170      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
171  }
172
173  ~ScheduleDAGRRList() {
174    delete HazardRec;
175    delete AvailableQueue;
176  }
177
178  void Schedule();
179
180  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
181
182  /// IsReachable - Checks if SU is reachable from TargetSU.
183  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
184    return Topo.IsReachable(SU, TargetSU);
185  }
186
187  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
188  /// create a cycle.
189  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
190    return Topo.WillCreateCycle(SU, TargetSU);
191  }
192
193  /// AddPred - adds a predecessor edge to SUnit SU.
194  /// This returns true if this is a new predecessor.
195  /// Updates the topological ordering if required.
196  void AddPred(SUnit *SU, const SDep &D) {
197    Topo.AddPred(SU, D.getSUnit());
198    SU->addPred(D);
199  }
200
201  /// RemovePred - removes a predecessor edge from SUnit SU.
202  /// This returns true if an edge was removed.
203  /// Updates the topological ordering if required.
204  void RemovePred(SUnit *SU, const SDep &D) {
205    Topo.RemovePred(SU, D.getSUnit());
206    SU->removePred(D);
207  }
208
209private:
210  bool isReady(SUnit *SU) {
211    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
212      AvailableQueue->isReady(SU);
213  }
214
215  void ReleasePred(SUnit *SU, const SDep *PredEdge);
216  void ReleasePredecessors(SUnit *SU);
217  void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
218  void ReleaseSuccessors(SUnit *SU);
219  void ReleasePending();
220  void AdvanceToCycle(unsigned NextCycle);
221  void AdvancePastStalls(SUnit *SU);
222  void EmitNode(SUnit *SU);
223  void ScheduleNodeBottomUp(SUnit*);
224  void CapturePred(SDep *PredEdge);
225  void UnscheduleNodeBottomUp(SUnit*);
226  void RestoreHazardCheckerBottomUp();
227  void BacktrackBottomUp(SUnit*, SUnit*);
228  SUnit *CopyAndMoveSuccessors(SUnit*);
229  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
230                                const TargetRegisterClass*,
231                                const TargetRegisterClass*,
232                                SmallVector<SUnit*, 2>&);
233  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
234
235  SUnit *PickNodeToScheduleBottomUp();
236  void ListScheduleBottomUp();
237
238  void ScheduleNodeTopDown(SUnit*);
239  void ListScheduleTopDown();
240
241
242  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
243  /// Updates the topological ordering if required.
244  SUnit *CreateNewSUnit(SDNode *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = NewSUnit(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// CreateClone - Creates a new SUnit from an existing one.
254  /// Updates the topological ordering if required.
255  SUnit *CreateClone(SUnit *N) {
256    unsigned NumSUnits = SUnits.size();
257    SUnit *NewNode = Clone(N);
258    // Update the topological ordering.
259    if (NewNode->NodeNum >= NumSUnits)
260      Topo.InitDAGTopologicalSorting();
261    return NewNode;
262  }
263
264  /// ForceUnitLatencies - Register-pressure-reducing scheduling doesn't
265  /// need actual latency information but the hybrid scheduler does.
266  bool ForceUnitLatencies() const {
267    return !NeedLatency;
268  }
269};
270}  // end anonymous namespace
271
272
273/// Schedule - Schedule the DAG using list scheduling.
274void ScheduleDAGRRList::Schedule() {
275  DEBUG(dbgs()
276        << "********** List Scheduling BB#" << BB->getNumber()
277        << " '" << BB->getName() << "' **********\n");
278#ifndef NDEBUG
279  for (int i = 0; i < NumFactors; ++i) {
280    FactorCount[i] = 0;
281  }
282#endif //!NDEBUG
283
284  CurCycle = 0;
285  IssueCount = 0;
286  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
287  NumLiveRegs = 0;
288  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
289  LiveRegGens.resize(TRI->getNumRegs(), NULL);
290
291  // Build the scheduling graph.
292  BuildSchedGraph(NULL);
293
294  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
295          SUnits[su].dumpAll(this));
296  Topo.InitDAGTopologicalSorting();
297
298  AvailableQueue->initNodes(SUnits);
299
300  HazardRec->Reset();
301
302  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
303  if (isBottomUp)
304    ListScheduleBottomUp();
305  else
306    ListScheduleTopDown();
307
308#ifndef NDEBUG
309  for (int i = 0; i < NumFactors; ++i) {
310    DEBUG(dbgs() << FactorName[i] << "\t" << FactorCount[i] << "\n");
311  }
312#endif // !NDEBUG
313  AvailableQueue->releaseState();
314}
315
316//===----------------------------------------------------------------------===//
317//  Bottom-Up Scheduling
318//===----------------------------------------------------------------------===//
319
320/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
321/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
322void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
323  SUnit *PredSU = PredEdge->getSUnit();
324
325#ifndef NDEBUG
326  if (PredSU->NumSuccsLeft == 0) {
327    dbgs() << "*** Scheduling failed! ***\n";
328    PredSU->dump(this);
329    dbgs() << " has been released too many times!\n";
330    llvm_unreachable(0);
331  }
332#endif
333  --PredSU->NumSuccsLeft;
334
335  if (!ForceUnitLatencies()) {
336    // Updating predecessor's height. This is now the cycle when the
337    // predecessor can be scheduled without causing a pipeline stall.
338    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
339  }
340
341  // If all the node's successors are scheduled, this node is ready
342  // to be scheduled. Ignore the special EntrySU node.
343  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
344    PredSU->isAvailable = true;
345
346    unsigned Height = PredSU->getHeight();
347    if (Height < MinAvailableCycle)
348      MinAvailableCycle = Height;
349
350    if (isReady(PredSU)) {
351      AvailableQueue->push(PredSU);
352    }
353    // CapturePred and others may have left the node in the pending queue, avoid
354    // adding it twice.
355    else if (!PredSU->isPending) {
356      PredSU->isPending = true;
357      PendingQueue.push_back(PredSU);
358    }
359  }
360}
361
362/// Call ReleasePred for each predecessor, then update register live def/gen.
363/// Always update LiveRegDefs for a register dependence even if the current SU
364/// also defines the register. This effectively create one large live range
365/// across a sequence of two-address node. This is important because the
366/// entire chain must be scheduled together. Example:
367///
368/// flags = (3) add
369/// flags = (2) addc flags
370/// flags = (1) addc flags
371///
372/// results in
373///
374/// LiveRegDefs[flags] = 3
375/// LiveRegGens[flags] = 1
376///
377/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
378/// interference on flags.
379void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
380  // Bottom up: release predecessors
381  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
382       I != E; ++I) {
383    ReleasePred(SU, &*I);
384    if (I->isAssignedRegDep()) {
385      // This is a physical register dependency and it's impossible or
386      // expensive to copy the register. Make sure nothing that can
387      // clobber the register is scheduled between the predecessor and
388      // this node.
389      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
390      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
391             "interference on register dependence");
392      LiveRegDefs[I->getReg()] = I->getSUnit();
393      if (!LiveRegGens[I->getReg()]) {
394        ++NumLiveRegs;
395        LiveRegGens[I->getReg()] = SU;
396      }
397    }
398  }
399}
400
401/// Check to see if any of the pending instructions are ready to issue.  If
402/// so, add them to the available queue.
403void ScheduleDAGRRList::ReleasePending() {
404  if (DisableSchedCycles) {
405    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
406    return;
407  }
408
409  // If the available queue is empty, it is safe to reset MinAvailableCycle.
410  if (AvailableQueue->empty())
411    MinAvailableCycle = UINT_MAX;
412
413  // Check to see if any of the pending instructions are ready to issue.  If
414  // so, add them to the available queue.
415  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
416    unsigned ReadyCycle =
417      isBottomUp ? PendingQueue[i]->getHeight() : PendingQueue[i]->getDepth();
418    if (ReadyCycle < MinAvailableCycle)
419      MinAvailableCycle = ReadyCycle;
420
421    if (PendingQueue[i]->isAvailable) {
422      if (!isReady(PendingQueue[i]))
423          continue;
424      AvailableQueue->push(PendingQueue[i]);
425    }
426    PendingQueue[i]->isPending = false;
427    PendingQueue[i] = PendingQueue.back();
428    PendingQueue.pop_back();
429    --i; --e;
430  }
431}
432
433/// Move the scheduler state forward by the specified number of Cycles.
434void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
435  if (NextCycle <= CurCycle)
436    return;
437
438  IssueCount = 0;
439  AvailableQueue->setCurCycle(NextCycle);
440  if (!HazardRec->isEnabled()) {
441    // Bypass lots of virtual calls in case of long latency.
442    CurCycle = NextCycle;
443  }
444  else {
445    for (; CurCycle != NextCycle; ++CurCycle) {
446      if (isBottomUp)
447        HazardRec->RecedeCycle();
448      else
449        HazardRec->AdvanceCycle();
450    }
451  }
452  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
453  // available Q to release pending nodes at least once before popping.
454  ReleasePending();
455}
456
457/// Move the scheduler state forward until the specified node's dependents are
458/// ready and can be scheduled with no resource conflicts.
459void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
460  if (DisableSchedCycles)
461    return;
462
463  unsigned ReadyCycle = isBottomUp ? SU->getHeight() : SU->getDepth();
464
465  // Bump CurCycle to account for latency. We assume the latency of other
466  // available instructions may be hidden by the stall (not a full pipe stall).
467  // This updates the hazard recognizer's cycle before reserving resources for
468  // this instruction.
469  AdvanceToCycle(ReadyCycle);
470
471  // Calls are scheduled in their preceding cycle, so don't conflict with
472  // hazards from instructions after the call. EmitNode will reset the
473  // scoreboard state before emitting the call.
474  if (isBottomUp && SU->isCall)
475    return;
476
477  // FIXME: For resource conflicts in very long non-pipelined stages, we
478  // should probably skip ahead here to avoid useless scoreboard checks.
479  int Stalls = 0;
480  while (true) {
481    ScheduleHazardRecognizer::HazardType HT =
482      HazardRec->getHazardType(SU, isBottomUp ? -Stalls : Stalls);
483
484    if (HT == ScheduleHazardRecognizer::NoHazard)
485      break;
486
487    ++Stalls;
488  }
489  AdvanceToCycle(CurCycle + Stalls);
490}
491
492/// Record this SUnit in the HazardRecognizer.
493/// Does not update CurCycle.
494void ScheduleDAGRRList::EmitNode(SUnit *SU) {
495  if (!HazardRec->isEnabled())
496    return;
497
498  // Check for phys reg copy.
499  if (!SU->getNode())
500    return;
501
502  switch (SU->getNode()->getOpcode()) {
503  default:
504    assert(SU->getNode()->isMachineOpcode() &&
505           "This target-independent node should not be scheduled.");
506    break;
507  case ISD::MERGE_VALUES:
508  case ISD::TokenFactor:
509  case ISD::CopyToReg:
510  case ISD::CopyFromReg:
511  case ISD::EH_LABEL:
512    // Noops don't affect the scoreboard state. Copies are likely to be
513    // removed.
514    return;
515  case ISD::INLINEASM:
516    // For inline asm, clear the pipeline state.
517    HazardRec->Reset();
518    return;
519  }
520  if (isBottomUp && SU->isCall) {
521    // Calls are scheduled with their preceding instructions. For bottom-up
522    // scheduling, clear the pipeline state before emitting.
523    HazardRec->Reset();
524  }
525
526  HazardRec->EmitInstruction(SU);
527
528  if (!isBottomUp && SU->isCall) {
529    HazardRec->Reset();
530  }
531}
532
533/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
534/// count of its predecessors. If a predecessor pending count is zero, add it to
535/// the Available queue.
536void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
537  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
538  DEBUG(SU->dump(this));
539
540#ifndef NDEBUG
541  if (CurCycle < SU->getHeight())
542    DEBUG(dbgs() << "   Height [" << SU->getHeight() << "] pipeline stall!\n");
543#endif
544
545  // FIXME: Do not modify node height. It may interfere with
546  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
547  // node it's ready cycle can aid heuristics, and after scheduling it can
548  // indicate the scheduled cycle.
549  SU->setHeightToAtLeast(CurCycle);
550
551  // Reserve resources for the scheduled intruction.
552  EmitNode(SU);
553
554  Sequence.push_back(SU);
555
556  AvailableQueue->ScheduledNode(SU);
557
558  // If HazardRec is disabled, and each inst counts as one cycle, then
559  // advance CurCycle before ReleasePredecessors to avoid useles pushed to
560  // PendingQueue for schedulers that implement HasReadyFilter.
561  if (!HazardRec->isEnabled() && AvgIPC < 2)
562    AdvanceToCycle(CurCycle + 1);
563
564  // Update liveness of predecessors before successors to avoid treating a
565  // two-address node as a live range def.
566  ReleasePredecessors(SU);
567
568  // Release all the implicit physical register defs that are live.
569  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
570       I != E; ++I) {
571    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
572    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
573      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
574      --NumLiveRegs;
575      LiveRegDefs[I->getReg()] = NULL;
576      LiveRegGens[I->getReg()] = NULL;
577    }
578  }
579
580  SU->isScheduled = true;
581
582  // Conditions under which the scheduler should eagerly advance the cycle:
583  // (1) No available instructions
584  // (2) All pipelines full, so available instructions must have hazards.
585  //
586  // If HazardRec is disabled, the cycle was advanced earlier.
587  //
588  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
589  ++IssueCount;
590  if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
591      || (!HazardRec->isEnabled() && AvgIPC > 1 && IssueCount == AvgIPC)
592      || AvailableQueue->empty())
593    AdvanceToCycle(CurCycle + 1);
594}
595
596/// CapturePred - This does the opposite of ReleasePred. Since SU is being
597/// unscheduled, incrcease the succ left count of its predecessors. Remove
598/// them from AvailableQueue if necessary.
599void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
600  SUnit *PredSU = PredEdge->getSUnit();
601  if (PredSU->isAvailable) {
602    PredSU->isAvailable = false;
603    if (!PredSU->isPending)
604      AvailableQueue->remove(PredSU);
605  }
606
607  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
608  ++PredSU->NumSuccsLeft;
609}
610
611/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
612/// its predecessor states to reflect the change.
613void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
614  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
615  DEBUG(SU->dump(this));
616
617  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
618       I != E; ++I) {
619    CapturePred(&*I);
620    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
621      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
622      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
623             "Physical register dependency violated?");
624      --NumLiveRegs;
625      LiveRegDefs[I->getReg()] = NULL;
626      LiveRegGens[I->getReg()] = NULL;
627    }
628  }
629
630  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
631       I != E; ++I) {
632    if (I->isAssignedRegDep()) {
633      // This becomes the nearest def. Note that an earlier def may still be
634      // pending if this is a two-address node.
635      LiveRegDefs[I->getReg()] = SU;
636      if (!LiveRegDefs[I->getReg()]) {
637        ++NumLiveRegs;
638      }
639      if (LiveRegGens[I->getReg()] == NULL ||
640          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
641        LiveRegGens[I->getReg()] = I->getSUnit();
642    }
643  }
644  if (SU->getHeight() < MinAvailableCycle)
645    MinAvailableCycle = SU->getHeight();
646
647  SU->setHeightDirty();
648  SU->isScheduled = false;
649  SU->isAvailable = true;
650  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
651    // Don't make available until backtracking is complete.
652    SU->isPending = true;
653    PendingQueue.push_back(SU);
654  }
655  else {
656    AvailableQueue->push(SU);
657  }
658  AvailableQueue->UnscheduledNode(SU);
659}
660
661/// After backtracking, the hazard checker needs to be restored to a state
662/// corresponding the the current cycle.
663void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
664  HazardRec->Reset();
665
666  unsigned LookAhead = std::min((unsigned)Sequence.size(),
667                                HazardRec->getMaxLookAhead());
668  if (LookAhead == 0)
669    return;
670
671  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
672  unsigned HazardCycle = (*I)->getHeight();
673  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
674    SUnit *SU = *I;
675    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
676      HazardRec->RecedeCycle();
677    }
678    EmitNode(SU);
679  }
680}
681
682/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
683/// BTCycle in order to schedule a specific node.
684void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
685  SUnit *OldSU = Sequence.back();
686  while (true) {
687    Sequence.pop_back();
688    if (SU->isSucc(OldSU))
689      // Don't try to remove SU from AvailableQueue.
690      SU->isAvailable = false;
691    // FIXME: use ready cycle instead of height
692    CurCycle = OldSU->getHeight();
693    UnscheduleNodeBottomUp(OldSU);
694    AvailableQueue->setCurCycle(CurCycle);
695    if (OldSU == BtSU)
696      break;
697    OldSU = Sequence.back();
698  }
699
700  assert(!SU->isSucc(OldSU) && "Something is wrong!");
701
702  RestoreHazardCheckerBottomUp();
703
704  ReleasePending();
705
706  ++NumBacktracks;
707}
708
709static bool isOperandOf(const SUnit *SU, SDNode *N) {
710  for (const SDNode *SUNode = SU->getNode(); SUNode;
711       SUNode = SUNode->getGluedNode()) {
712    if (SUNode->isOperandOf(N))
713      return true;
714  }
715  return false;
716}
717
718/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
719/// successors to the newly created node.
720SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
721  SDNode *N = SU->getNode();
722  if (!N)
723    return NULL;
724
725  if (SU->getNode()->getGluedNode())
726    return NULL;
727
728  SUnit *NewSU;
729  bool TryUnfold = false;
730  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
731    EVT VT = N->getValueType(i);
732    if (VT == MVT::Glue)
733      return NULL;
734    else if (VT == MVT::Other)
735      TryUnfold = true;
736  }
737  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
738    const SDValue &Op = N->getOperand(i);
739    EVT VT = Op.getNode()->getValueType(Op.getResNo());
740    if (VT == MVT::Glue)
741      return NULL;
742  }
743
744  if (TryUnfold) {
745    SmallVector<SDNode*, 2> NewNodes;
746    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
747      return NULL;
748
749    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
750    assert(NewNodes.size() == 2 && "Expected a load folding node!");
751
752    N = NewNodes[1];
753    SDNode *LoadNode = NewNodes[0];
754    unsigned NumVals = N->getNumValues();
755    unsigned OldNumVals = SU->getNode()->getNumValues();
756    for (unsigned i = 0; i != NumVals; ++i)
757      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
758    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
759                                   SDValue(LoadNode, 1));
760
761    // LoadNode may already exist. This can happen when there is another
762    // load from the same location and producing the same type of value
763    // but it has different alignment or volatileness.
764    bool isNewLoad = true;
765    SUnit *LoadSU;
766    if (LoadNode->getNodeId() != -1) {
767      LoadSU = &SUnits[LoadNode->getNodeId()];
768      isNewLoad = false;
769    } else {
770      LoadSU = CreateNewSUnit(LoadNode);
771      LoadNode->setNodeId(LoadSU->NodeNum);
772
773      InitNumRegDefsLeft(LoadSU);
774      ComputeLatency(LoadSU);
775    }
776
777    SUnit *NewSU = CreateNewSUnit(N);
778    assert(N->getNodeId() == -1 && "Node already inserted!");
779    N->setNodeId(NewSU->NodeNum);
780
781    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
782    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
783      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
784        NewSU->isTwoAddress = true;
785        break;
786      }
787    }
788    if (TID.isCommutable())
789      NewSU->isCommutable = true;
790
791    InitNumRegDefsLeft(NewSU);
792    ComputeLatency(NewSU);
793
794    // Record all the edges to and from the old SU, by category.
795    SmallVector<SDep, 4> ChainPreds;
796    SmallVector<SDep, 4> ChainSuccs;
797    SmallVector<SDep, 4> LoadPreds;
798    SmallVector<SDep, 4> NodePreds;
799    SmallVector<SDep, 4> NodeSuccs;
800    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
801         I != E; ++I) {
802      if (I->isCtrl())
803        ChainPreds.push_back(*I);
804      else if (isOperandOf(I->getSUnit(), LoadNode))
805        LoadPreds.push_back(*I);
806      else
807        NodePreds.push_back(*I);
808    }
809    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
810         I != E; ++I) {
811      if (I->isCtrl())
812        ChainSuccs.push_back(*I);
813      else
814        NodeSuccs.push_back(*I);
815    }
816
817    // Now assign edges to the newly-created nodes.
818    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
819      const SDep &Pred = ChainPreds[i];
820      RemovePred(SU, Pred);
821      if (isNewLoad)
822        AddPred(LoadSU, Pred);
823    }
824    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
825      const SDep &Pred = LoadPreds[i];
826      RemovePred(SU, Pred);
827      if (isNewLoad)
828        AddPred(LoadSU, Pred);
829    }
830    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
831      const SDep &Pred = NodePreds[i];
832      RemovePred(SU, Pred);
833      AddPred(NewSU, Pred);
834    }
835    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
836      SDep D = NodeSuccs[i];
837      SUnit *SuccDep = D.getSUnit();
838      D.setSUnit(SU);
839      RemovePred(SuccDep, D);
840      D.setSUnit(NewSU);
841      AddPred(SuccDep, D);
842      // Balance register pressure.
843      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
844          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
845        --NewSU->NumRegDefsLeft;
846    }
847    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
848      SDep D = ChainSuccs[i];
849      SUnit *SuccDep = D.getSUnit();
850      D.setSUnit(SU);
851      RemovePred(SuccDep, D);
852      if (isNewLoad) {
853        D.setSUnit(LoadSU);
854        AddPred(SuccDep, D);
855      }
856    }
857
858    // Add a data dependency to reflect that NewSU reads the value defined
859    // by LoadSU.
860    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
861
862    if (isNewLoad)
863      AvailableQueue->addNode(LoadSU);
864    AvailableQueue->addNode(NewSU);
865
866    ++NumUnfolds;
867
868    if (NewSU->NumSuccsLeft == 0) {
869      NewSU->isAvailable = true;
870      return NewSU;
871    }
872    SU = NewSU;
873  }
874
875  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
876  NewSU = CreateClone(SU);
877
878  // New SUnit has the exact same predecessors.
879  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
880       I != E; ++I)
881    if (!I->isArtificial())
882      AddPred(NewSU, *I);
883
884  // Only copy scheduled successors. Cut them from old node's successor
885  // list and move them over.
886  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
887  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
888       I != E; ++I) {
889    if (I->isArtificial())
890      continue;
891    SUnit *SuccSU = I->getSUnit();
892    if (SuccSU->isScheduled) {
893      SDep D = *I;
894      D.setSUnit(NewSU);
895      AddPred(SuccSU, D);
896      D.setSUnit(SU);
897      DelDeps.push_back(std::make_pair(SuccSU, D));
898    }
899  }
900  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
901    RemovePred(DelDeps[i].first, DelDeps[i].second);
902
903  AvailableQueue->updateNode(SU);
904  AvailableQueue->addNode(NewSU);
905
906  ++NumDups;
907  return NewSU;
908}
909
910/// InsertCopiesAndMoveSuccs - Insert register copies and move all
911/// scheduled successors of the given SUnit to the last copy.
912void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
913                                               const TargetRegisterClass *DestRC,
914                                               const TargetRegisterClass *SrcRC,
915                                               SmallVector<SUnit*, 2> &Copies) {
916  SUnit *CopyFromSU = CreateNewSUnit(NULL);
917  CopyFromSU->CopySrcRC = SrcRC;
918  CopyFromSU->CopyDstRC = DestRC;
919
920  SUnit *CopyToSU = CreateNewSUnit(NULL);
921  CopyToSU->CopySrcRC = DestRC;
922  CopyToSU->CopyDstRC = SrcRC;
923
924  // Only copy scheduled successors. Cut them from old node's successor
925  // list and move them over.
926  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
927  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
928       I != E; ++I) {
929    if (I->isArtificial())
930      continue;
931    SUnit *SuccSU = I->getSUnit();
932    if (SuccSU->isScheduled) {
933      SDep D = *I;
934      D.setSUnit(CopyToSU);
935      AddPred(SuccSU, D);
936      DelDeps.push_back(std::make_pair(SuccSU, *I));
937    }
938  }
939  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
940    RemovePred(DelDeps[i].first, DelDeps[i].second);
941
942  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
943  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
944
945  AvailableQueue->updateNode(SU);
946  AvailableQueue->addNode(CopyFromSU);
947  AvailableQueue->addNode(CopyToSU);
948  Copies.push_back(CopyFromSU);
949  Copies.push_back(CopyToSU);
950
951  ++NumPRCopies;
952}
953
954/// getPhysicalRegisterVT - Returns the ValueType of the physical register
955/// definition of the specified node.
956/// FIXME: Move to SelectionDAG?
957static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
958                                 const TargetInstrInfo *TII) {
959  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
960  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
961  unsigned NumRes = TID.getNumDefs();
962  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
963    if (Reg == *ImpDef)
964      break;
965    ++NumRes;
966  }
967  return N->getValueType(NumRes);
968}
969
970/// CheckForLiveRegDef - Return true and update live register vector if the
971/// specified register def of the specified SUnit clobbers any "live" registers.
972static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
973                               std::vector<SUnit*> &LiveRegDefs,
974                               SmallSet<unsigned, 4> &RegAdded,
975                               SmallVector<unsigned, 4> &LRegs,
976                               const TargetRegisterInfo *TRI) {
977  for (const unsigned *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
978
979    // Check if Ref is live.
980    if (!LiveRegDefs[Reg]) continue;
981
982    // Allow multiple uses of the same def.
983    if (LiveRegDefs[Reg] == SU) continue;
984
985    // Add Reg to the set of interfering live regs.
986    if (RegAdded.insert(Reg))
987      LRegs.push_back(Reg);
988  }
989}
990
991/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
992/// scheduling of the given node to satisfy live physical register dependencies.
993/// If the specific node is the last one that's available to schedule, do
994/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
995bool ScheduleDAGRRList::
996DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
997  if (NumLiveRegs == 0)
998    return false;
999
1000  SmallSet<unsigned, 4> RegAdded;
1001  // If this node would clobber any "live" register, then it's not ready.
1002  //
1003  // If SU is the currently live definition of the same register that it uses,
1004  // then we are free to schedule it.
1005  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1006       I != E; ++I) {
1007    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1008      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1009                         RegAdded, LRegs, TRI);
1010  }
1011
1012  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1013    if (Node->getOpcode() == ISD::INLINEASM) {
1014      // Inline asm can clobber physical defs.
1015      unsigned NumOps = Node->getNumOperands();
1016      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1017        --NumOps;  // Ignore the glue operand.
1018
1019      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1020        unsigned Flags =
1021          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1022        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1023
1024        ++i; // Skip the ID value.
1025        if (InlineAsm::isRegDefKind(Flags) ||
1026            InlineAsm::isRegDefEarlyClobberKind(Flags)) {
1027          // Check for def of register or earlyclobber register.
1028          for (; NumVals; --NumVals, ++i) {
1029            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1030            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1031              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1032          }
1033        } else
1034          i += NumVals;
1035      }
1036      continue;
1037    }
1038
1039    if (!Node->isMachineOpcode())
1040      continue;
1041    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
1042    if (!TID.ImplicitDefs)
1043      continue;
1044    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
1045      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1046  }
1047
1048  return !LRegs.empty();
1049}
1050
1051/// Return a node that can be scheduled in this cycle. Requirements:
1052/// (1) Ready: latency has been satisfied
1053/// (2) No Hazards: resources are available
1054/// (3) No Interferences: may unschedule to break register interferences.
1055SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1056  SmallVector<SUnit*, 4> Interferences;
1057  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1058
1059  SUnit *CurSU = AvailableQueue->pop();
1060  while (CurSU) {
1061    SmallVector<unsigned, 4> LRegs;
1062    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1063      break;
1064    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1065
1066    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1067    Interferences.push_back(CurSU);
1068    CurSU = AvailableQueue->pop();
1069  }
1070  if (CurSU) {
1071    // Add the nodes that aren't ready back onto the available list.
1072    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1073      Interferences[i]->isPending = false;
1074      assert(Interferences[i]->isAvailable && "must still be available");
1075      AvailableQueue->push(Interferences[i]);
1076    }
1077    return CurSU;
1078  }
1079
1080  // All candidates are delayed due to live physical reg dependencies.
1081  // Try backtracking, code duplication, or inserting cross class copies
1082  // to resolve it.
1083  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1084    SUnit *TrySU = Interferences[i];
1085    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1086
1087    // Try unscheduling up to the point where it's safe to schedule
1088    // this node.
1089    SUnit *BtSU = NULL;
1090    unsigned LiveCycle = UINT_MAX;
1091    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1092      unsigned Reg = LRegs[j];
1093      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1094        BtSU = LiveRegGens[Reg];
1095        LiveCycle = BtSU->getHeight();
1096      }
1097    }
1098    if (!WillCreateCycle(TrySU, BtSU))  {
1099      BacktrackBottomUp(TrySU, BtSU);
1100
1101      // Force the current node to be scheduled before the node that
1102      // requires the physical reg dep.
1103      if (BtSU->isAvailable) {
1104        BtSU->isAvailable = false;
1105        if (!BtSU->isPending)
1106          AvailableQueue->remove(BtSU);
1107      }
1108      AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1109                          /*Reg=*/0, /*isNormalMemory=*/false,
1110                          /*isMustAlias=*/false, /*isArtificial=*/true));
1111
1112      // If one or more successors has been unscheduled, then the current
1113      // node is no longer avaialable. Schedule a successor that's now
1114      // available instead.
1115      if (!TrySU->isAvailable) {
1116        CurSU = AvailableQueue->pop();
1117      }
1118      else {
1119        CurSU = TrySU;
1120        TrySU->isPending = false;
1121        Interferences.erase(Interferences.begin()+i);
1122      }
1123      break;
1124    }
1125  }
1126
1127  if (!CurSU) {
1128    // Can't backtrack. If it's too expensive to copy the value, then try
1129    // duplicate the nodes that produces these "too expensive to copy"
1130    // values to break the dependency. In case even that doesn't work,
1131    // insert cross class copies.
1132    // If it's not too expensive, i.e. cost != -1, issue copies.
1133    SUnit *TrySU = Interferences[0];
1134    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1135    assert(LRegs.size() == 1 && "Can't handle this yet!");
1136    unsigned Reg = LRegs[0];
1137    SUnit *LRDef = LiveRegDefs[Reg];
1138    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1139    const TargetRegisterClass *RC =
1140      TRI->getMinimalPhysRegClass(Reg, VT);
1141    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1142
1143    // If cross copy register class is null, then it must be possible copy
1144    // the value directly. Do not try duplicate the def.
1145    SUnit *NewDef = 0;
1146    if (DestRC)
1147      NewDef = CopyAndMoveSuccessors(LRDef);
1148    else
1149      DestRC = RC;
1150    if (!NewDef) {
1151      // Issue copies, these can be expensive cross register class copies.
1152      SmallVector<SUnit*, 2> Copies;
1153      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1154      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1155            << " to SU #" << Copies.front()->NodeNum << "\n");
1156      AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1157                          /*Reg=*/0, /*isNormalMemory=*/false,
1158                          /*isMustAlias=*/false,
1159                          /*isArtificial=*/true));
1160      NewDef = Copies.back();
1161    }
1162
1163    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1164          << " to SU #" << TrySU->NodeNum << "\n");
1165    LiveRegDefs[Reg] = NewDef;
1166    AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1167                         /*Reg=*/0, /*isNormalMemory=*/false,
1168                         /*isMustAlias=*/false,
1169                         /*isArtificial=*/true));
1170    TrySU->isAvailable = false;
1171    CurSU = NewDef;
1172  }
1173
1174  assert(CurSU && "Unable to resolve live physical register dependencies!");
1175
1176  // Add the nodes that aren't ready back onto the available list.
1177  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1178    Interferences[i]->isPending = false;
1179    // May no longer be available due to backtracking.
1180    if (Interferences[i]->isAvailable) {
1181      AvailableQueue->push(Interferences[i]);
1182    }
1183  }
1184  return CurSU;
1185}
1186
1187/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1188/// schedulers.
1189void ScheduleDAGRRList::ListScheduleBottomUp() {
1190  // Release any predecessors of the special Exit node.
1191  ReleasePredecessors(&ExitSU);
1192
1193  // Add root to Available queue.
1194  if (!SUnits.empty()) {
1195    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1196    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1197    RootSU->isAvailable = true;
1198    AvailableQueue->push(RootSU);
1199  }
1200
1201  // While Available queue is not empty, grab the node with the highest
1202  // priority. If it is not ready put it back.  Schedule the node.
1203  Sequence.reserve(SUnits.size());
1204  while (!AvailableQueue->empty()) {
1205    DEBUG(dbgs() << "\n*** Examining Available\n";
1206          AvailableQueue->dump(this));
1207
1208    // Pick the best node to schedule taking all constraints into
1209    // consideration.
1210    SUnit *SU = PickNodeToScheduleBottomUp();
1211
1212    AdvancePastStalls(SU);
1213
1214    ScheduleNodeBottomUp(SU);
1215
1216    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1217      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1218      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1219      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1220    }
1221  }
1222
1223  // Reverse the order if it is bottom up.
1224  std::reverse(Sequence.begin(), Sequence.end());
1225
1226#ifndef NDEBUG
1227  VerifySchedule(isBottomUp);
1228#endif
1229}
1230
1231//===----------------------------------------------------------------------===//
1232//  Top-Down Scheduling
1233//===----------------------------------------------------------------------===//
1234
1235/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1236/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1237void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
1238  SUnit *SuccSU = SuccEdge->getSUnit();
1239
1240#ifndef NDEBUG
1241  if (SuccSU->NumPredsLeft == 0) {
1242    dbgs() << "*** Scheduling failed! ***\n";
1243    SuccSU->dump(this);
1244    dbgs() << " has been released too many times!\n";
1245    llvm_unreachable(0);
1246  }
1247#endif
1248  --SuccSU->NumPredsLeft;
1249
1250  // If all the node's predecessors are scheduled, this node is ready
1251  // to be scheduled. Ignore the special ExitSU node.
1252  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
1253    SuccSU->isAvailable = true;
1254    AvailableQueue->push(SuccSU);
1255  }
1256}
1257
1258void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
1259  // Top down: release successors
1260  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1261       I != E; ++I) {
1262    assert(!I->isAssignedRegDep() &&
1263           "The list-tdrr scheduler doesn't yet support physreg dependencies!");
1264
1265    ReleaseSucc(SU, &*I);
1266  }
1267}
1268
1269/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1270/// count of its successors. If a successor pending count is zero, add it to
1271/// the Available queue.
1272void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU) {
1273  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
1274  DEBUG(SU->dump(this));
1275
1276  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
1277  SU->setDepthToAtLeast(CurCycle);
1278  Sequence.push_back(SU);
1279
1280  ReleaseSuccessors(SU);
1281  SU->isScheduled = true;
1282  AvailableQueue->ScheduledNode(SU);
1283}
1284
1285/// ListScheduleTopDown - The main loop of list scheduling for top-down
1286/// schedulers.
1287void ScheduleDAGRRList::ListScheduleTopDown() {
1288  AvailableQueue->setCurCycle(CurCycle);
1289
1290  // Release any successors of the special Entry node.
1291  ReleaseSuccessors(&EntrySU);
1292
1293  // All leaves to Available queue.
1294  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1295    // It is available if it has no predecessors.
1296    if (SUnits[i].Preds.empty()) {
1297      AvailableQueue->push(&SUnits[i]);
1298      SUnits[i].isAvailable = true;
1299    }
1300  }
1301
1302  // While Available queue is not empty, grab the node with the highest
1303  // priority. If it is not ready put it back.  Schedule the node.
1304  Sequence.reserve(SUnits.size());
1305  while (!AvailableQueue->empty()) {
1306    SUnit *CurSU = AvailableQueue->pop();
1307
1308    if (CurSU)
1309      ScheduleNodeTopDown(CurSU);
1310    ++CurCycle;
1311    AvailableQueue->setCurCycle(CurCycle);
1312  }
1313
1314#ifndef NDEBUG
1315  VerifySchedule(isBottomUp);
1316#endif
1317}
1318
1319
1320//===----------------------------------------------------------------------===//
1321//                RegReductionPriorityQueue Definition
1322//===----------------------------------------------------------------------===//
1323//
1324// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1325// to reduce register pressure.
1326//
1327namespace {
1328class RegReductionPQBase;
1329
1330struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1331  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1332};
1333
1334/// bu_ls_rr_sort - Priority function for bottom up register pressure
1335// reduction scheduler.
1336struct bu_ls_rr_sort : public queue_sort {
1337  enum {
1338    IsBottomUp = true,
1339    HasReadyFilter = false
1340  };
1341
1342  RegReductionPQBase *SPQ;
1343  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1344  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1345
1346  bool operator()(SUnit* left, SUnit* right) const;
1347};
1348
1349// td_ls_rr_sort - Priority function for top down register pressure reduction
1350// scheduler.
1351struct td_ls_rr_sort : public queue_sort {
1352  enum {
1353    IsBottomUp = false,
1354    HasReadyFilter = false
1355  };
1356
1357  RegReductionPQBase *SPQ;
1358  td_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1359  td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1360
1361  bool operator()(const SUnit* left, const SUnit* right) const;
1362};
1363
1364// src_ls_rr_sort - Priority function for source order scheduler.
1365struct src_ls_rr_sort : public queue_sort {
1366  enum {
1367    IsBottomUp = true,
1368    HasReadyFilter = false
1369  };
1370
1371  RegReductionPQBase *SPQ;
1372  src_ls_rr_sort(RegReductionPQBase *spq)
1373    : SPQ(spq) {}
1374  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1375    : SPQ(RHS.SPQ) {}
1376
1377  bool operator()(SUnit* left, SUnit* right) const;
1378};
1379
1380// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1381struct hybrid_ls_rr_sort : public queue_sort {
1382  enum {
1383    IsBottomUp = true,
1384    HasReadyFilter = false
1385  };
1386
1387  RegReductionPQBase *SPQ;
1388  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1389    : SPQ(spq) {}
1390  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1391    : SPQ(RHS.SPQ) {}
1392
1393  bool isReady(SUnit *SU, unsigned CurCycle) const;
1394
1395  bool operator()(SUnit* left, SUnit* right) const;
1396};
1397
1398// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1399// scheduler.
1400struct ilp_ls_rr_sort : public queue_sort {
1401  enum {
1402    IsBottomUp = true,
1403    HasReadyFilter = false
1404  };
1405
1406  RegReductionPQBase *SPQ;
1407  ilp_ls_rr_sort(RegReductionPQBase *spq)
1408    : SPQ(spq) {}
1409  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1410    : SPQ(RHS.SPQ) {}
1411
1412  bool isReady(SUnit *SU, unsigned CurCycle) const;
1413
1414  bool operator()(SUnit* left, SUnit* right) const;
1415};
1416
1417class RegReductionPQBase : public SchedulingPriorityQueue {
1418protected:
1419  std::vector<SUnit*> Queue;
1420  unsigned CurQueueId;
1421  bool TracksRegPressure;
1422
1423  // SUnits - The SUnits for the current graph.
1424  std::vector<SUnit> *SUnits;
1425
1426  MachineFunction &MF;
1427  const TargetInstrInfo *TII;
1428  const TargetRegisterInfo *TRI;
1429  const TargetLowering *TLI;
1430  ScheduleDAGRRList *scheduleDAG;
1431
1432  // SethiUllmanNumbers - The SethiUllman number for each node.
1433  std::vector<unsigned> SethiUllmanNumbers;
1434
1435  /// RegPressure - Tracking current reg pressure per register class.
1436  ///
1437  std::vector<unsigned> RegPressure;
1438
1439  /// RegLimit - Tracking the number of allocatable registers per register
1440  /// class.
1441  std::vector<unsigned> RegLimit;
1442
1443public:
1444  RegReductionPQBase(MachineFunction &mf,
1445                     bool hasReadyFilter,
1446                     bool tracksrp,
1447                     const TargetInstrInfo *tii,
1448                     const TargetRegisterInfo *tri,
1449                     const TargetLowering *tli)
1450    : SchedulingPriorityQueue(hasReadyFilter),
1451      CurQueueId(0), TracksRegPressure(tracksrp),
1452      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1453    if (TracksRegPressure) {
1454      unsigned NumRC = TRI->getNumRegClasses();
1455      RegLimit.resize(NumRC);
1456      RegPressure.resize(NumRC);
1457      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1458      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1459      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1460             E = TRI->regclass_end(); I != E; ++I)
1461        RegLimit[(*I)->getID()] = tli->getRegPressureLimit(*I, MF);
1462    }
1463  }
1464
1465  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1466    scheduleDAG = scheduleDag;
1467  }
1468
1469  ScheduleHazardRecognizer* getHazardRec() {
1470    return scheduleDAG->getHazardRec();
1471  }
1472
1473  void initNodes(std::vector<SUnit> &sunits);
1474
1475  void addNode(const SUnit *SU);
1476
1477  void updateNode(const SUnit *SU);
1478
1479  void releaseState() {
1480    SUnits = 0;
1481    SethiUllmanNumbers.clear();
1482    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1483  }
1484
1485  unsigned getNodePriority(const SUnit *SU) const;
1486
1487  unsigned getNodeOrdering(const SUnit *SU) const {
1488    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1489  }
1490
1491  bool empty() const { return Queue.empty(); }
1492
1493  void push(SUnit *U) {
1494    assert(!U->NodeQueueId && "Node in the queue already");
1495    U->NodeQueueId = ++CurQueueId;
1496    Queue.push_back(U);
1497  }
1498
1499  void remove(SUnit *SU) {
1500    assert(!Queue.empty() && "Queue is empty!");
1501    assert(SU->NodeQueueId != 0 && "Not in queue!");
1502    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1503                                                 SU);
1504    if (I != prior(Queue.end()))
1505      std::swap(*I, Queue.back());
1506    Queue.pop_back();
1507    SU->NodeQueueId = 0;
1508  }
1509
1510  bool tracksRegPressure() const { return TracksRegPressure; }
1511
1512  void dumpRegPressure() const;
1513
1514  bool HighRegPressure(const SUnit *SU) const;
1515
1516  bool MayReduceRegPressure(SUnit *SU) const;
1517
1518  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1519
1520  void ScheduledNode(SUnit *SU);
1521
1522  void UnscheduledNode(SUnit *SU);
1523
1524protected:
1525  bool canClobber(const SUnit *SU, const SUnit *Op);
1526  void AddPseudoTwoAddrDeps();
1527  void PrescheduleNodesWithMultipleUses();
1528  void CalculateSethiUllmanNumbers();
1529};
1530
1531template<class SF>
1532class RegReductionPriorityQueue : public RegReductionPQBase {
1533  static SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker) {
1534    std::vector<SUnit *>::iterator Best = Q.begin();
1535    for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1536           E = Q.end(); I != E; ++I)
1537      if (Picker(*Best, *I))
1538        Best = I;
1539    SUnit *V = *Best;
1540    if (Best != prior(Q.end()))
1541      std::swap(*Best, Q.back());
1542    Q.pop_back();
1543    return V;
1544  }
1545
1546  SF Picker;
1547
1548public:
1549  RegReductionPriorityQueue(MachineFunction &mf,
1550                            bool tracksrp,
1551                            const TargetInstrInfo *tii,
1552                            const TargetRegisterInfo *tri,
1553                            const TargetLowering *tli)
1554    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, tii, tri, tli),
1555      Picker(this) {}
1556
1557  bool isBottomUp() const { return SF::IsBottomUp; }
1558
1559  bool isReady(SUnit *U) const {
1560    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1561  }
1562
1563  SUnit *pop() {
1564    if (Queue.empty()) return NULL;
1565
1566    SUnit *V = popFromQueue(Queue, Picker);
1567    V->NodeQueueId = 0;
1568    return V;
1569  }
1570
1571  void dump(ScheduleDAG *DAG) const {
1572    // Emulate pop() without clobbering NodeQueueIds.
1573    std::vector<SUnit*> DumpQueue = Queue;
1574    SF DumpPicker = Picker;
1575    while (!DumpQueue.empty()) {
1576      SUnit *SU = popFromQueue(DumpQueue, DumpPicker);
1577      if (isBottomUp())
1578        dbgs() << "Height " << SU->getHeight() << ": ";
1579      else
1580        dbgs() << "Depth " << SU->getDepth() << ": ";
1581      SU->dump(DAG);
1582    }
1583  }
1584};
1585
1586typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1587BURegReductionPriorityQueue;
1588
1589typedef RegReductionPriorityQueue<td_ls_rr_sort>
1590TDRegReductionPriorityQueue;
1591
1592typedef RegReductionPriorityQueue<src_ls_rr_sort>
1593SrcRegReductionPriorityQueue;
1594
1595typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1596HybridBURRPriorityQueue;
1597
1598typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1599ILPBURRPriorityQueue;
1600} // end anonymous namespace
1601
1602//===----------------------------------------------------------------------===//
1603//           Static Node Priority for Register Pressure Reduction
1604//===----------------------------------------------------------------------===//
1605
1606/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1607/// Smaller number is the higher priority.
1608static unsigned
1609CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1610  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1611  if (SethiUllmanNumber != 0)
1612    return SethiUllmanNumber;
1613
1614  unsigned Extra = 0;
1615  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1616       I != E; ++I) {
1617    if (I->isCtrl()) continue;  // ignore chain preds
1618    SUnit *PredSU = I->getSUnit();
1619    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1620    if (PredSethiUllman > SethiUllmanNumber) {
1621      SethiUllmanNumber = PredSethiUllman;
1622      Extra = 0;
1623    } else if (PredSethiUllman == SethiUllmanNumber)
1624      ++Extra;
1625  }
1626
1627  SethiUllmanNumber += Extra;
1628
1629  if (SethiUllmanNumber == 0)
1630    SethiUllmanNumber = 1;
1631
1632  return SethiUllmanNumber;
1633}
1634
1635/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1636/// scheduling units.
1637void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1638  SethiUllmanNumbers.assign(SUnits->size(), 0);
1639
1640  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1641    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1642}
1643
1644void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
1645  SUnits = &sunits;
1646  // Add pseudo dependency edges for two-address nodes.
1647  AddPseudoTwoAddrDeps();
1648  // Reroute edges to nodes with multiple uses.
1649  if (!TracksRegPressure)
1650    PrescheduleNodesWithMultipleUses();
1651  // Calculate node priorities.
1652  CalculateSethiUllmanNumbers();
1653}
1654
1655void RegReductionPQBase::addNode(const SUnit *SU) {
1656  unsigned SUSize = SethiUllmanNumbers.size();
1657  if (SUnits->size() > SUSize)
1658    SethiUllmanNumbers.resize(SUSize*2, 0);
1659  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1660}
1661
1662void RegReductionPQBase::updateNode(const SUnit *SU) {
1663  SethiUllmanNumbers[SU->NodeNum] = 0;
1664  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1665}
1666
1667// Lower priority means schedule further down. For bottom-up scheduling, lower
1668// priority SUs are scheduled before higher priority SUs.
1669unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1670  assert(SU->NodeNum < SethiUllmanNumbers.size());
1671  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1672  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1673    // CopyToReg should be close to its uses to facilitate coalescing and
1674    // avoid spilling.
1675    return 0;
1676  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1677      Opc == TargetOpcode::SUBREG_TO_REG ||
1678      Opc == TargetOpcode::INSERT_SUBREG)
1679    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1680    // close to their uses to facilitate coalescing.
1681    return 0;
1682  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1683    // If SU does not have a register use, i.e. it doesn't produce a value
1684    // that would be consumed (e.g. store), then it terminates a chain of
1685    // computation.  Give it a large SethiUllman number so it will be
1686    // scheduled right before its predecessors that it doesn't lengthen
1687    // their live ranges.
1688    return 0xffff;
1689  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1690    // If SU does not have a register def, schedule it close to its uses
1691    // because it does not lengthen any live ranges.
1692    return 0;
1693  return SethiUllmanNumbers[SU->NodeNum];
1694}
1695
1696//===----------------------------------------------------------------------===//
1697//                     Register Pressure Tracking
1698//===----------------------------------------------------------------------===//
1699
1700void RegReductionPQBase::dumpRegPressure() const {
1701  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1702         E = TRI->regclass_end(); I != E; ++I) {
1703    const TargetRegisterClass *RC = *I;
1704    unsigned Id = RC->getID();
1705    unsigned RP = RegPressure[Id];
1706    if (!RP) continue;
1707    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1708          << '\n');
1709  }
1710}
1711
1712bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1713  if (!TLI)
1714    return false;
1715
1716  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1717       I != E; ++I) {
1718    if (I->isCtrl())
1719      continue;
1720    SUnit *PredSU = I->getSUnit();
1721    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1722    // to cover the number of registers defined (they are all live).
1723    if (PredSU->NumRegDefsLeft == 0) {
1724      continue;
1725    }
1726    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1727         RegDefPos.IsValid(); RegDefPos.Advance()) {
1728      EVT VT = RegDefPos.GetValue();
1729      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1730      unsigned Cost = TLI->getRepRegClassCostFor(VT);
1731      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1732        return true;
1733    }
1734  }
1735  return false;
1736}
1737
1738bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1739  const SDNode *N = SU->getNode();
1740
1741  if (!N->isMachineOpcode() || !SU->NumSuccs)
1742    return false;
1743
1744  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1745  for (unsigned i = 0; i != NumDefs; ++i) {
1746    EVT VT = N->getValueType(i);
1747    if (!N->hasAnyUseOfValue(i))
1748      continue;
1749    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1750    if (RegPressure[RCId] >= RegLimit[RCId])
1751      return true;
1752  }
1753  return false;
1754}
1755
1756// Compute the register pressure contribution by this instruction by count up
1757// for uses that are not live and down for defs. Only count register classes
1758// that are already under high pressure. As a side effect, compute the number of
1759// uses of registers that are already live.
1760//
1761// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1762// so could probably be factored.
1763int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1764  LiveUses = 0;
1765  int PDiff = 0;
1766  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1767       I != E; ++I) {
1768    if (I->isCtrl())
1769      continue;
1770    SUnit *PredSU = I->getSUnit();
1771    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1772    // to cover the number of registers defined (they are all live).
1773    if (PredSU->NumRegDefsLeft == 0) {
1774      if (PredSU->getNode()->isMachineOpcode())
1775        ++LiveUses;
1776      continue;
1777    }
1778    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1779         RegDefPos.IsValid(); RegDefPos.Advance()) {
1780      EVT VT = RegDefPos.GetValue();
1781      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1782      if (RegPressure[RCId] >= RegLimit[RCId])
1783        ++PDiff;
1784    }
1785  }
1786  const SDNode *N = SU->getNode();
1787
1788  if (!N->isMachineOpcode() || !SU->NumSuccs)
1789    return PDiff;
1790
1791  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1792  for (unsigned i = 0; i != NumDefs; ++i) {
1793    EVT VT = N->getValueType(i);
1794    if (!N->hasAnyUseOfValue(i))
1795      continue;
1796    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1797    if (RegPressure[RCId] >= RegLimit[RCId])
1798      --PDiff;
1799  }
1800  return PDiff;
1801}
1802
1803void RegReductionPQBase::ScheduledNode(SUnit *SU) {
1804  if (!TracksRegPressure)
1805    return;
1806
1807  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1808       I != E; ++I) {
1809    if (I->isCtrl())
1810      continue;
1811    SUnit *PredSU = I->getSUnit();
1812    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1813    // to cover the number of registers defined (they are all live).
1814    if (PredSU->NumRegDefsLeft == 0) {
1815      continue;
1816    }
1817    // FIXME: The ScheduleDAG currently loses information about which of a
1818    // node's values is consumed by each dependence. Consequently, if the node
1819    // defines multiple register classes, we don't know which to pressurize
1820    // here. Instead the following loop consumes the register defs in an
1821    // arbitrary order. At least it handles the common case of clustered loads
1822    // to the same class. For precise liveness, each SDep needs to indicate the
1823    // result number. But that tightly couples the ScheduleDAG with the
1824    // SelectionDAG making updates tricky. A simpler hack would be to attach a
1825    // value type or register class to SDep.
1826    //
1827    // The most important aspect of register tracking is balancing the increase
1828    // here with the reduction further below. Note that this SU may use multiple
1829    // defs in PredSU. The can't be determined here, but we've already
1830    // compensated by reducing NumRegDefsLeft in PredSU during
1831    // ScheduleDAGSDNodes::AddSchedEdges.
1832    --PredSU->NumRegDefsLeft;
1833    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
1834    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1835         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
1836      if (SkipRegDefs)
1837        continue;
1838      EVT VT = RegDefPos.GetValue();
1839      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1840      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1841      break;
1842    }
1843  }
1844
1845  // We should have this assert, but there may be dead SDNodes that never
1846  // materialize as SUnits, so they don't appear to generate liveness.
1847  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
1848  int SkipRegDefs = (int)SU->NumRegDefsLeft;
1849  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
1850       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
1851    if (SkipRegDefs > 0)
1852      continue;
1853    EVT VT = RegDefPos.GetValue();
1854    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1855    if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT)) {
1856      // Register pressure tracking is imprecise. This can happen. But we try
1857      // hard not to let it happen because it likely results in poor scheduling.
1858      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
1859      RegPressure[RCId] = 0;
1860    }
1861    else {
1862      RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
1863    }
1864  }
1865  dumpRegPressure();
1866}
1867
1868void RegReductionPQBase::UnscheduledNode(SUnit *SU) {
1869  if (!TracksRegPressure)
1870    return;
1871
1872  const SDNode *N = SU->getNode();
1873  if (!N->isMachineOpcode()) {
1874    if (N->getOpcode() != ISD::CopyToReg)
1875      return;
1876  } else {
1877    unsigned Opc = N->getMachineOpcode();
1878    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1879        Opc == TargetOpcode::INSERT_SUBREG ||
1880        Opc == TargetOpcode::SUBREG_TO_REG ||
1881        Opc == TargetOpcode::REG_SEQUENCE ||
1882        Opc == TargetOpcode::IMPLICIT_DEF)
1883      return;
1884  }
1885
1886  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1887       I != E; ++I) {
1888    if (I->isCtrl())
1889      continue;
1890    SUnit *PredSU = I->getSUnit();
1891    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
1892    // counts data deps.
1893    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
1894      continue;
1895    const SDNode *PN = PredSU->getNode();
1896    if (!PN->isMachineOpcode()) {
1897      if (PN->getOpcode() == ISD::CopyFromReg) {
1898        EVT VT = PN->getValueType(0);
1899        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1900        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1901      }
1902      continue;
1903    }
1904    unsigned POpc = PN->getMachineOpcode();
1905    if (POpc == TargetOpcode::IMPLICIT_DEF)
1906      continue;
1907    if (POpc == TargetOpcode::EXTRACT_SUBREG) {
1908      EVT VT = PN->getOperand(0).getValueType();
1909      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1910      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1911      continue;
1912    } else if (POpc == TargetOpcode::INSERT_SUBREG ||
1913               POpc == TargetOpcode::SUBREG_TO_REG) {
1914      EVT VT = PN->getValueType(0);
1915      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1916      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1917      continue;
1918    }
1919    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
1920    for (unsigned i = 0; i != NumDefs; ++i) {
1921      EVT VT = PN->getValueType(i);
1922      if (!PN->hasAnyUseOfValue(i))
1923        continue;
1924      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1925      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
1926        // Register pressure tracking is imprecise. This can happen.
1927        RegPressure[RCId] = 0;
1928      else
1929        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
1930    }
1931  }
1932
1933  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
1934  // may transfer data dependencies to CopyToReg.
1935  if (SU->NumSuccs && N->isMachineOpcode()) {
1936    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1937    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1938      EVT VT = N->getValueType(i);
1939      if (VT == MVT::Glue || VT == MVT::Other)
1940        continue;
1941      if (!N->hasAnyUseOfValue(i))
1942        continue;
1943      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1944      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
1945    }
1946  }
1947
1948  dumpRegPressure();
1949}
1950
1951//===----------------------------------------------------------------------===//
1952//           Dynamic Node Priority for Register Pressure Reduction
1953//===----------------------------------------------------------------------===//
1954
1955/// closestSucc - Returns the scheduled cycle of the successor which is
1956/// closest to the current cycle.
1957static unsigned closestSucc(const SUnit *SU) {
1958  unsigned MaxHeight = 0;
1959  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1960       I != E; ++I) {
1961    if (I->isCtrl()) continue;  // ignore chain succs
1962    unsigned Height = I->getSUnit()->getHeight();
1963    // If there are bunch of CopyToRegs stacked up, they should be considered
1964    // to be at the same position.
1965    if (I->getSUnit()->getNode() &&
1966        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
1967      Height = closestSucc(I->getSUnit())+1;
1968    if (Height > MaxHeight)
1969      MaxHeight = Height;
1970  }
1971  return MaxHeight;
1972}
1973
1974/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1975/// for scratch registers, i.e. number of data dependencies.
1976static unsigned calcMaxScratches(const SUnit *SU) {
1977  unsigned Scratches = 0;
1978  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1979       I != E; ++I) {
1980    if (I->isCtrl()) continue;  // ignore chain preds
1981    Scratches++;
1982  }
1983  return Scratches;
1984}
1985
1986/// hasOnlyLiveOutUse - Return true if SU has a single value successor that is a
1987/// CopyToReg to a virtual register. This SU def is probably a liveout and
1988/// it has no other use. It should be scheduled closer to the terminator.
1989static bool hasOnlyLiveOutUses(const SUnit *SU) {
1990  bool RetVal = false;
1991  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1992       I != E; ++I) {
1993    if (I->isCtrl()) continue;
1994    const SUnit *SuccSU = I->getSUnit();
1995    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
1996      unsigned Reg =
1997        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
1998      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1999        RetVal = true;
2000        continue;
2001      }
2002    }
2003    return false;
2004  }
2005  return RetVal;
2006}
2007
2008/// UnitsSharePred - Return true if the two scheduling units share a common
2009/// data predecessor.
2010static bool UnitsSharePred(const SUnit *left, const SUnit *right) {
2011  SmallSet<const SUnit*, 4> Preds;
2012  for (SUnit::const_pred_iterator I = left->Preds.begin(),E = left->Preds.end();
2013       I != E; ++I) {
2014    if (I->isCtrl()) continue;  // ignore chain preds
2015    Preds.insert(I->getSUnit());
2016  }
2017  for (SUnit::const_pred_iterator I = right->Preds.begin(),E = right->Preds.end();
2018       I != E; ++I) {
2019    if (I->isCtrl()) continue;  // ignore chain preds
2020    if (Preds.count(I->getSUnit()))
2021      return true;
2022  }
2023  return false;
2024}
2025
2026// Check for either a dependence (latency) or resource (hazard) stall.
2027//
2028// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2029static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2030  if ((int)SPQ->getCurCycle() < Height) return true;
2031  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2032      != ScheduleHazardRecognizer::NoHazard)
2033    return true;
2034  return false;
2035}
2036
2037// Return -1 if left has higher priority, 1 if right has higher priority.
2038// Return 0 if latency-based priority is equivalent.
2039static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2040                            RegReductionPQBase *SPQ) {
2041  // If the two nodes share an operand and one of them has a single
2042  // use that is a live out copy, favor the one that is live out. Otherwise
2043  // it will be difficult to eliminate the copy if the instruction is a
2044  // loop induction variable update. e.g.
2045  // BB:
2046  // sub r1, r3, #1
2047  // str r0, [r2, r3]
2048  // mov r3, r1
2049  // cmp
2050  // bne BB
2051  bool SharePred = UnitsSharePred(left, right);
2052  // FIXME: Only adjust if BB is a loop back edge.
2053  // FIXME: What's the cost of a copy?
2054  int LBonus = (SharePred && hasOnlyLiveOutUses(left)) ? 1 : 0;
2055  int RBonus = (SharePred && hasOnlyLiveOutUses(right)) ? 1 : 0;
2056  int LHeight = (int)left->getHeight() - LBonus;
2057  int RHeight = (int)right->getHeight() - RBonus;
2058
2059  bool LStall = (!checkPref || left->SchedulingPref == Sched::Latency) &&
2060    BUHasStall(left, LHeight, SPQ);
2061  bool RStall = (!checkPref || right->SchedulingPref == Sched::Latency) &&
2062    BUHasStall(right, RHeight, SPQ);
2063
2064  // If scheduling one of the node will cause a pipeline stall, delay it.
2065  // If scheduling either one of the node will cause a pipeline stall, sort
2066  // them according to their height.
2067  if (LStall) {
2068    if (!RStall)
2069      return 1;
2070    if (LHeight != RHeight)
2071      return LHeight > RHeight ? 1 : -1;
2072  } else if (RStall)
2073    return -1;
2074
2075  // If either node is scheduling for latency, sort them by height/depth
2076  // and latency.
2077  if (!checkPref || (left->SchedulingPref == Sched::Latency ||
2078                     right->SchedulingPref == Sched::Latency)) {
2079    if (DisableSchedCycles) {
2080      if (LHeight != RHeight)
2081        return LHeight > RHeight ? 1 : -1;
2082    }
2083    else {
2084      // If neither instruction stalls (!LStall && !RStall) then
2085      // it's height is already covered so only its depth matters. We also reach
2086      // this if both stall but have the same height.
2087      unsigned LDepth = left->getDepth();
2088      unsigned RDepth = right->getDepth();
2089      if (LDepth != RDepth) {
2090        DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2091              << ") depth " << LDepth << " vs SU (" << right->NodeNum
2092              << ") depth " << RDepth << "\n");
2093        return LDepth < RDepth ? 1 : -1;
2094      }
2095    }
2096    if (left->Latency != right->Latency)
2097      return left->Latency > right->Latency ? 1 : -1;
2098  }
2099  return 0;
2100}
2101
2102static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2103  unsigned LPriority = SPQ->getNodePriority(left);
2104  unsigned RPriority = SPQ->getNodePriority(right);
2105  if (LPriority != RPriority) {
2106    DEBUG(++FactorCount[FactUllman]);
2107    return LPriority > RPriority;
2108  }
2109  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2110  // e.g.
2111  // t1 = op t2, c1
2112  // t3 = op t4, c2
2113  //
2114  // and the following instructions are both ready.
2115  // t2 = op c3
2116  // t4 = op c4
2117  //
2118  // Then schedule t2 = op first.
2119  // i.e.
2120  // t4 = op c4
2121  // t2 = op c3
2122  // t1 = op t2, c1
2123  // t3 = op t4, c2
2124  //
2125  // This creates more short live intervals.
2126  unsigned LDist = closestSucc(left);
2127  unsigned RDist = closestSucc(right);
2128  if (LDist != RDist)
2129    return LDist < RDist;
2130
2131  // How many registers becomes live when the node is scheduled.
2132  unsigned LScratch = calcMaxScratches(left);
2133  unsigned RScratch = calcMaxScratches(right);
2134  if (LScratch != RScratch)
2135    return LScratch > RScratch;
2136
2137  if (!DisableSchedCycles) {
2138    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2139    if (result != 0)
2140      return result > 0;
2141  }
2142  else {
2143    if (left->getHeight() != right->getHeight())
2144      return left->getHeight() > right->getHeight();
2145
2146    if (left->getDepth() != right->getDepth())
2147      return left->getDepth() < right->getDepth();
2148  }
2149
2150  assert(left->NodeQueueId && right->NodeQueueId &&
2151         "NodeQueueId cannot be zero");
2152  return (left->NodeQueueId > right->NodeQueueId);
2153}
2154
2155// Bottom up
2156bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2157  return BURRSort(left, right, SPQ);
2158}
2159
2160// Source order, otherwise bottom up.
2161bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2162  unsigned LOrder = SPQ->getNodeOrdering(left);
2163  unsigned ROrder = SPQ->getNodeOrdering(right);
2164
2165  // Prefer an ordering where the lower the non-zero order number, the higher
2166  // the preference.
2167  if ((LOrder || ROrder) && LOrder != ROrder)
2168    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2169
2170  return BURRSort(left, right, SPQ);
2171}
2172
2173// If the time between now and when the instruction will be ready can cover
2174// the spill code, then avoid adding it to the ready queue. This gives long
2175// stalls highest priority and allows hoisting across calls. It should also
2176// speed up processing the available queue.
2177bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2178  static const unsigned ReadyDelay = 3;
2179
2180  if (SPQ->MayReduceRegPressure(SU)) return true;
2181
2182  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2183
2184  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2185      != ScheduleHazardRecognizer::NoHazard)
2186    return false;
2187
2188  return true;
2189}
2190
2191// Return true if right should be scheduled with higher priority than left.
2192bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2193  if (left->isCall || right->isCall)
2194    // No way to compute latency of calls.
2195    return BURRSort(left, right, SPQ);
2196
2197  bool LHigh = SPQ->HighRegPressure(left);
2198  bool RHigh = SPQ->HighRegPressure(right);
2199  // Avoid causing spills. If register pressure is high, schedule for
2200  // register pressure reduction.
2201  if (LHigh && !RHigh) {
2202    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2203          << right->NodeNum << ")\n");
2204    return true;
2205  }
2206  else if (!LHigh && RHigh) {
2207    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2208          << left->NodeNum << ")\n");
2209    return false;
2210  }
2211  else if (!LHigh && !RHigh) {
2212    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2213    if (result != 0)
2214      return result > 0;
2215  }
2216  return BURRSort(left, right, SPQ);
2217}
2218
2219// Schedule as many instructions in each cycle as possible. So don't make an
2220// instruction available unless it is ready in the current cycle.
2221bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2222  if (SU->getHeight() > CurCycle) return false;
2223
2224  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2225      != ScheduleHazardRecognizer::NoHazard)
2226    return false;
2227
2228  return true;
2229}
2230
2231// list-ilp is currently an experimental scheduler that allows various
2232// heuristics to be enabled prior to the normal register reduction logic.
2233bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2234  if (left->isCall || right->isCall)
2235    // No way to compute latency of calls.
2236    return BURRSort(left, right, SPQ);
2237
2238  unsigned LLiveUses, RLiveUses;
2239  int LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2240  int RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2241  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2242    DEBUG(++FactorCount[FactPressureDiff]);
2243    return LPDiff > RPDiff;
2244  }
2245
2246  if (!DisableSchedLiveUses && LLiveUses != RLiveUses) {
2247    DEBUG(dbgs() << "Live uses " << left->NodeNum << " = " << LLiveUses
2248          << " != " << right->NodeNum << " = " << RLiveUses << "\n");
2249    DEBUG(++FactorCount[FactRegUses]);
2250    return LLiveUses < RLiveUses;
2251  }
2252
2253  bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2254  bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2255  if (!DisableSchedStalls && LStall != RStall) {
2256    DEBUG(++FactorCount[FactHeight]);
2257    return left->getHeight() > right->getHeight();
2258  }
2259
2260  if (!DisableSchedCriticalPath) {
2261    int spread = (int)left->getDepth() - (int)right->getDepth();
2262    if (std::abs(spread) > MaxReorderWindow) {
2263      DEBUG(++FactorCount[FactDepth]);
2264      return left->getDepth() < right->getDepth();
2265    }
2266  }
2267
2268  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2269    DEBUG(++FactorCount[FactHeight]);
2270    return left->getHeight() > right->getHeight();
2271  }
2272
2273  return BURRSort(left, right, SPQ);
2274}
2275
2276//===----------------------------------------------------------------------===//
2277//                    Preschedule for Register Pressure
2278//===----------------------------------------------------------------------===//
2279
2280bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2281  if (SU->isTwoAddress) {
2282    unsigned Opc = SU->getNode()->getMachineOpcode();
2283    const TargetInstrDesc &TID = TII->get(Opc);
2284    unsigned NumRes = TID.getNumDefs();
2285    unsigned NumOps = TID.getNumOperands() - NumRes;
2286    for (unsigned i = 0; i != NumOps; ++i) {
2287      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
2288        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2289        if (DU->getNodeId() != -1 &&
2290            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2291          return true;
2292      }
2293    }
2294  }
2295  return false;
2296}
2297
2298/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2299/// physical register defs.
2300static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2301                                  const TargetInstrInfo *TII,
2302                                  const TargetRegisterInfo *TRI) {
2303  SDNode *N = SuccSU->getNode();
2304  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2305  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2306  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2307  for (const SDNode *SUNode = SU->getNode(); SUNode;
2308       SUNode = SUNode->getGluedNode()) {
2309    if (!SUNode->isMachineOpcode())
2310      continue;
2311    const unsigned *SUImpDefs =
2312      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2313    if (!SUImpDefs)
2314      return false;
2315    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2316      EVT VT = N->getValueType(i);
2317      if (VT == MVT::Glue || VT == MVT::Other)
2318        continue;
2319      if (!N->hasAnyUseOfValue(i))
2320        continue;
2321      unsigned Reg = ImpDefs[i - NumDefs];
2322      for (;*SUImpDefs; ++SUImpDefs) {
2323        unsigned SUReg = *SUImpDefs;
2324        if (TRI->regsOverlap(Reg, SUReg))
2325          return true;
2326      }
2327    }
2328  }
2329  return false;
2330}
2331
2332/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2333/// are not handled well by the general register pressure reduction
2334/// heuristics. When presented with code like this:
2335///
2336///      N
2337///    / |
2338///   /  |
2339///  U  store
2340///  |
2341/// ...
2342///
2343/// the heuristics tend to push the store up, but since the
2344/// operand of the store has another use (U), this would increase
2345/// the length of that other use (the U->N edge).
2346///
2347/// This function transforms code like the above to route U's
2348/// dependence through the store when possible, like this:
2349///
2350///      N
2351///      ||
2352///      ||
2353///     store
2354///       |
2355///       U
2356///       |
2357///      ...
2358///
2359/// This results in the store being scheduled immediately
2360/// after N, which shortens the U->N live range, reducing
2361/// register pressure.
2362///
2363void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2364  // Visit all the nodes in topological order, working top-down.
2365  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2366    SUnit *SU = &(*SUnits)[i];
2367    // For now, only look at nodes with no data successors, such as stores.
2368    // These are especially important, due to the heuristics in
2369    // getNodePriority for nodes with no data successors.
2370    if (SU->NumSuccs != 0)
2371      continue;
2372    // For now, only look at nodes with exactly one data predecessor.
2373    if (SU->NumPreds != 1)
2374      continue;
2375    // Avoid prescheduling copies to virtual registers, which don't behave
2376    // like other nodes from the perspective of scheduling heuristics.
2377    if (SDNode *N = SU->getNode())
2378      if (N->getOpcode() == ISD::CopyToReg &&
2379          TargetRegisterInfo::isVirtualRegister
2380            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2381        continue;
2382
2383    // Locate the single data predecessor.
2384    SUnit *PredSU = 0;
2385    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2386         EE = SU->Preds.end(); II != EE; ++II)
2387      if (!II->isCtrl()) {
2388        PredSU = II->getSUnit();
2389        break;
2390      }
2391    assert(PredSU);
2392
2393    // Don't rewrite edges that carry physregs, because that requires additional
2394    // support infrastructure.
2395    if (PredSU->hasPhysRegDefs)
2396      continue;
2397    // Short-circuit the case where SU is PredSU's only data successor.
2398    if (PredSU->NumSuccs == 1)
2399      continue;
2400    // Avoid prescheduling to copies from virtual registers, which don't behave
2401    // like other nodes from the perspective of scheduling heuristics.
2402    if (SDNode *N = SU->getNode())
2403      if (N->getOpcode() == ISD::CopyFromReg &&
2404          TargetRegisterInfo::isVirtualRegister
2405            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2406        continue;
2407
2408    // Perform checks on the successors of PredSU.
2409    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2410         EE = PredSU->Succs.end(); II != EE; ++II) {
2411      SUnit *PredSuccSU = II->getSUnit();
2412      if (PredSuccSU == SU) continue;
2413      // If PredSU has another successor with no data successors, for
2414      // now don't attempt to choose either over the other.
2415      if (PredSuccSU->NumSuccs == 0)
2416        goto outer_loop_continue;
2417      // Don't break physical register dependencies.
2418      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2419        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2420          goto outer_loop_continue;
2421      // Don't introduce graph cycles.
2422      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2423        goto outer_loop_continue;
2424    }
2425
2426    // Ok, the transformation is safe and the heuristics suggest it is
2427    // profitable. Update the graph.
2428    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2429                 << " next to PredSU #" << PredSU->NodeNum
2430                 << " to guide scheduling in the presence of multiple uses\n");
2431    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2432      SDep Edge = PredSU->Succs[i];
2433      assert(!Edge.isAssignedRegDep());
2434      SUnit *SuccSU = Edge.getSUnit();
2435      if (SuccSU != SU) {
2436        Edge.setSUnit(PredSU);
2437        scheduleDAG->RemovePred(SuccSU, Edge);
2438        scheduleDAG->AddPred(SU, Edge);
2439        Edge.setSUnit(SU);
2440        scheduleDAG->AddPred(SuccSU, Edge);
2441        --i;
2442      }
2443    }
2444  outer_loop_continue:;
2445  }
2446}
2447
2448/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2449/// it as a def&use operand. Add a pseudo control edge from it to the other
2450/// node (if it won't create a cycle) so the two-address one will be scheduled
2451/// first (lower in the schedule). If both nodes are two-address, favor the
2452/// one that has a CopyToReg use (more likely to be a loop induction update).
2453/// If both are two-address, but one is commutable while the other is not
2454/// commutable, favor the one that's not commutable.
2455void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2456  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2457    SUnit *SU = &(*SUnits)[i];
2458    if (!SU->isTwoAddress)
2459      continue;
2460
2461    SDNode *Node = SU->getNode();
2462    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2463      continue;
2464
2465    bool isLiveOut = hasOnlyLiveOutUses(SU);
2466    unsigned Opc = Node->getMachineOpcode();
2467    const TargetInstrDesc &TID = TII->get(Opc);
2468    unsigned NumRes = TID.getNumDefs();
2469    unsigned NumOps = TID.getNumOperands() - NumRes;
2470    for (unsigned j = 0; j != NumOps; ++j) {
2471      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
2472        continue;
2473      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2474      if (DU->getNodeId() == -1)
2475        continue;
2476      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2477      if (!DUSU) continue;
2478      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2479           E = DUSU->Succs.end(); I != E; ++I) {
2480        if (I->isCtrl()) continue;
2481        SUnit *SuccSU = I->getSUnit();
2482        if (SuccSU == SU)
2483          continue;
2484        // Be conservative. Ignore if nodes aren't at roughly the same
2485        // depth and height.
2486        if (SuccSU->getHeight() < SU->getHeight() &&
2487            (SU->getHeight() - SuccSU->getHeight()) > 1)
2488          continue;
2489        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2490        // constrains whatever is using the copy, instead of the copy
2491        // itself. In the case that the copy is coalesced, this
2492        // preserves the intent of the pseudo two-address heurietics.
2493        while (SuccSU->Succs.size() == 1 &&
2494               SuccSU->getNode()->isMachineOpcode() &&
2495               SuccSU->getNode()->getMachineOpcode() ==
2496                 TargetOpcode::COPY_TO_REGCLASS)
2497          SuccSU = SuccSU->Succs.front().getSUnit();
2498        // Don't constrain non-instruction nodes.
2499        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2500          continue;
2501        // Don't constrain nodes with physical register defs if the
2502        // predecessor can clobber them.
2503        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2504          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2505            continue;
2506        }
2507        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2508        // these may be coalesced away. We want them close to their uses.
2509        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2510        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2511            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2512            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2513          continue;
2514        if ((!canClobber(SuccSU, DUSU) ||
2515             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2516             (!SU->isCommutable && SuccSU->isCommutable)) &&
2517            !scheduleDAG->IsReachable(SuccSU, SU)) {
2518          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2519                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2520          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2521                                        /*Reg=*/0, /*isNormalMemory=*/false,
2522                                        /*isMustAlias=*/false,
2523                                        /*isArtificial=*/true));
2524        }
2525      }
2526    }
2527  }
2528}
2529
2530/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
2531/// predecessors of the successors of the SUnit SU. Stop when the provided
2532/// limit is exceeded.
2533static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
2534                                                    unsigned Limit) {
2535  unsigned Sum = 0;
2536  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2537       I != E; ++I) {
2538    const SUnit *SuccSU = I->getSUnit();
2539    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
2540         EE = SuccSU->Preds.end(); II != EE; ++II) {
2541      SUnit *PredSU = II->getSUnit();
2542      if (!PredSU->isScheduled)
2543        if (++Sum > Limit)
2544          return Sum;
2545    }
2546  }
2547  return Sum;
2548}
2549
2550
2551// Top down
2552bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
2553  unsigned LPriority = SPQ->getNodePriority(left);
2554  unsigned RPriority = SPQ->getNodePriority(right);
2555  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
2556  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
2557  bool LIsFloater = LIsTarget && left->NumPreds == 0;
2558  bool RIsFloater = RIsTarget && right->NumPreds == 0;
2559  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
2560  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
2561
2562  if (left->NumSuccs == 0 && right->NumSuccs != 0)
2563    return false;
2564  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
2565    return true;
2566
2567  if (LIsFloater)
2568    LBonus -= 2;
2569  if (RIsFloater)
2570    RBonus -= 2;
2571  if (left->NumSuccs == 1)
2572    LBonus += 2;
2573  if (right->NumSuccs == 1)
2574    RBonus += 2;
2575
2576  if (LPriority+LBonus != RPriority+RBonus)
2577    return LPriority+LBonus < RPriority+RBonus;
2578
2579  if (left->getDepth() != right->getDepth())
2580    return left->getDepth() < right->getDepth();
2581
2582  if (left->NumSuccsLeft != right->NumSuccsLeft)
2583    return left->NumSuccsLeft > right->NumSuccsLeft;
2584
2585  assert(left->NodeQueueId && right->NodeQueueId &&
2586         "NodeQueueId cannot be zero");
2587  return (left->NodeQueueId > right->NodeQueueId);
2588}
2589
2590//===----------------------------------------------------------------------===//
2591//                         Public Constructor Functions
2592//===----------------------------------------------------------------------===//
2593
2594llvm::ScheduleDAGSDNodes *
2595llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2596                                 CodeGenOpt::Level OptLevel) {
2597  const TargetMachine &TM = IS->TM;
2598  const TargetInstrInfo *TII = TM.getInstrInfo();
2599  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2600
2601  BURegReductionPriorityQueue *PQ =
2602    new BURegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2603  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2604  PQ->setScheduleDAG(SD);
2605  return SD;
2606}
2607
2608llvm::ScheduleDAGSDNodes *
2609llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
2610                                 CodeGenOpt::Level OptLevel) {
2611  const TargetMachine &TM = IS->TM;
2612  const TargetInstrInfo *TII = TM.getInstrInfo();
2613  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2614
2615  TDRegReductionPriorityQueue *PQ =
2616    new TDRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2617  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2618  PQ->setScheduleDAG(SD);
2619  return SD;
2620}
2621
2622llvm::ScheduleDAGSDNodes *
2623llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2624                                   CodeGenOpt::Level OptLevel) {
2625  const TargetMachine &TM = IS->TM;
2626  const TargetInstrInfo *TII = TM.getInstrInfo();
2627  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2628
2629  SrcRegReductionPriorityQueue *PQ =
2630    new SrcRegReductionPriorityQueue(*IS->MF, false, TII, TRI, 0);
2631  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2632  PQ->setScheduleDAG(SD);
2633  return SD;
2634}
2635
2636llvm::ScheduleDAGSDNodes *
2637llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2638                                   CodeGenOpt::Level OptLevel) {
2639  const TargetMachine &TM = IS->TM;
2640  const TargetInstrInfo *TII = TM.getInstrInfo();
2641  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2642  const TargetLowering *TLI = &IS->getTargetLowering();
2643
2644  HybridBURRPriorityQueue *PQ =
2645    new HybridBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2646
2647  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2648  PQ->setScheduleDAG(SD);
2649  return SD;
2650}
2651
2652llvm::ScheduleDAGSDNodes *
2653llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2654                                CodeGenOpt::Level OptLevel) {
2655  const TargetMachine &TM = IS->TM;
2656  const TargetInstrInfo *TII = TM.getInstrInfo();
2657  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2658  const TargetLowering *TLI = &IS->getTargetLowering();
2659
2660  ILPBURRPriorityQueue *PQ =
2661    new ILPBURRPriorityQueue(*IS->MF, true, TII, TRI, TLI);
2662  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2663  PQ->setScheduleDAG(SD);
2664  return SD;
2665}
2666