ScheduleDAGRRList.cpp revision 94d7a5f8156e62532870fbaf197377b34e52ff2a
1//===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAG.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <climits>
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
38STATISTIC(NumUnfolds,    "Number of nodes unfolded");
39STATISTIC(NumDups,       "Number of duplicated nodes");
40STATISTIC(NumCCCopies,   "Number of cross class copies");
41
42static RegisterScheduler
43  burrListDAGScheduler("list-burr",
44                       "  Bottom-up register reduction list scheduling",
45                       createBURRListDAGScheduler);
46static RegisterScheduler
47  tdrListrDAGScheduler("list-tdrr",
48                       "  Top-down register reduction list scheduling",
49                       createTDRRListDAGScheduler);
50
51namespace {
52//===----------------------------------------------------------------------===//
53/// ScheduleDAGRRList - The actual register reduction list scheduler
54/// implementation.  This supports both top-down and bottom-up scheduling.
55///
56class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
57private:
58  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
59  /// it is top-down.
60  bool isBottomUp;
61
62  /// AvailableQueue - The priority queue to use for the available SUnits.
63  SchedulingPriorityQueue *AvailableQueue;
64
65  /// LiveRegs / LiveRegDefs - A set of physical registers and their definition
66  /// that are "live". These nodes must be scheduled before any other nodes that
67  /// modifies the registers can be scheduled.
68  SmallSet<unsigned, 4> LiveRegs;
69  std::vector<SUnit*> LiveRegDefs;
70  std::vector<unsigned> LiveRegCycles;
71
72public:
73  ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
74                  const TargetMachine &tm, bool isbottomup,
75                  SchedulingPriorityQueue *availqueue)
76    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
77      AvailableQueue(availqueue) {
78    }
79
80  ~ScheduleDAGRRList() {
81    delete AvailableQueue;
82  }
83
84  void Schedule();
85
86  /// IsReachable - Checks if SU is reachable from TargetSU.
87  bool IsReachable(SUnit *SU, SUnit *TargetSU);
88
89  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
90  /// create a cycle.
91  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
92
93  /// AddPred - This adds the specified node X as a predecessor of
94  /// the current node Y if not already.
95  /// This returns true if this is a new predecessor.
96  /// Updates the topological ordering if required.
97  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
98               unsigned PhyReg = 0, int Cost = 1);
99
100  /// RemovePred - This removes the specified node N from the predecessors of
101  /// the current node M. Updates the topological ordering if required.
102  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
103
104private:
105  void ReleasePred(SUnit*, bool, unsigned);
106  void ReleaseSucc(SUnit*, bool isChain, unsigned);
107  void CapturePred(SUnit*, SUnit*, bool);
108  void ScheduleNodeBottomUp(SUnit*, unsigned);
109  void ScheduleNodeTopDown(SUnit*, unsigned);
110  void UnscheduleNodeBottomUp(SUnit*);
111  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
112  SUnit *CopyAndMoveSuccessors(SUnit*);
113  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
114                                  const TargetRegisterClass*,
115                                  const TargetRegisterClass*,
116                                  SmallVector<SUnit*, 2>&);
117  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
118  void ListScheduleTopDown();
119  void ListScheduleBottomUp();
120  void CommuteNodesToReducePressure();
121
122
123  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
124  /// Updates the topological ordering if required.
125  SUnit *CreateNewSUnit(SDNode *N) {
126    SUnit *NewNode = NewSUnit(N);
127    // Update the topological ordering.
128    if (NewNode->NodeNum >= Node2Index.size())
129      InitDAGTopologicalSorting();
130    return NewNode;
131  }
132
133  /// CreateClone - Creates a new SUnit from an existing one.
134  /// Updates the topological ordering if required.
135  SUnit *CreateClone(SUnit *N) {
136    SUnit *NewNode = Clone(N);
137    // Update the topological ordering.
138    if (NewNode->NodeNum >= Node2Index.size())
139      InitDAGTopologicalSorting();
140    return NewNode;
141  }
142
143  /// Functions for preserving the topological ordering
144  /// even after dynamic insertions of new edges.
145  /// This allows a very fast implementation of IsReachable.
146
147
148  /**
149  The idea of the algorithm is taken from
150  "Online algorithms for managing the topological order of
151  a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
152  This is the MNR algorithm, which was first introduced by
153  A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
154  "Maintaining a topological order under edge insertions".
155
156  Short description of the algorithm:
157
158  Topological ordering, ord, of a DAG maps each node to a topological
159  index so that for all edges X->Y it is the case that ord(X) < ord(Y).
160
161  This means that if there is a path from the node X to the node Z,
162  then ord(X) < ord(Z).
163
164  This property can be used to check for reachability of nodes:
165  if Z is reachable from X, then an insertion of the edge Z->X would
166  create a cycle.
167
168  The algorithm first computes a topological ordering for the DAG by initializing
169  the Index2Node and Node2Index arrays and then tries to keep the ordering
170  up-to-date after edge insertions by reordering the DAG.
171
172  On insertion of the edge X->Y, the algorithm first marks by calling DFS the
173  nodes reachable from Y, and then shifts them using Shift to lie immediately
174  after X in Index2Node.
175  */
176
177  /// InitDAGTopologicalSorting - create the initial topological
178  /// ordering from the DAG to be scheduled.
179  void InitDAGTopologicalSorting();
180
181  /// DFS - make a DFS traversal and mark all nodes affected by the
182  /// edge insertion. These nodes will later get new topological indexes
183  /// by means of the Shift method.
184  void DFS(SUnit *SU, int UpperBound, bool& HasLoop);
185
186  /// Shift - reassign topological indexes for the nodes in the DAG
187  /// to preserve the topological ordering.
188  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
189
190  /// Allocate - assign the topological index to the node n.
191  void Allocate(int n, int index);
192
193  /// Index2Node - Maps topological index to the node number.
194  std::vector<int> Index2Node;
195  /// Node2Index - Maps the node number to its topological index.
196  std::vector<int> Node2Index;
197  /// Visited - a set of nodes visited during a DFS traversal.
198  BitVector Visited;
199};
200}  // end anonymous namespace
201
202
203/// Schedule - Schedule the DAG using list scheduling.
204void ScheduleDAGRRList::Schedule() {
205  DOUT << "********** List Scheduling **********\n";
206
207  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
208  LiveRegCycles.resize(TRI->getNumRegs(), 0);
209
210  // Build scheduling units.
211  BuildSchedUnits();
212
213  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
214          SUnits[su].dumpAll(&DAG));
215  CalculateDepths();
216  CalculateHeights();
217  InitDAGTopologicalSorting();
218
219  AvailableQueue->initNodes(SUnits);
220
221  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
222  if (isBottomUp)
223    ListScheduleBottomUp();
224  else
225    ListScheduleTopDown();
226
227  AvailableQueue->releaseState();
228
229  CommuteNodesToReducePressure();
230
231  DOUT << "*** Final schedule ***\n";
232  DEBUG(dumpSchedule());
233  DOUT << "\n";
234
235  // Emit in scheduled order
236  EmitSchedule();
237}
238
239/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
240/// it is not the last use of its first operand, add it to the CommuteSet if
241/// possible. It will be commuted when it is translated to a MI.
242void ScheduleDAGRRList::CommuteNodesToReducePressure() {
243  SmallPtrSet<SUnit*, 4> OperandSeen;
244  for (unsigned i = Sequence.size(); i != 0; ) {
245    --i;
246    SUnit *SU = Sequence[i];
247    if (!SU || !SU->Node) continue;
248    if (SU->isCommutable) {
249      unsigned Opc = SU->Node->getTargetOpcode();
250      const TargetInstrDesc &TID = TII->get(Opc);
251      unsigned NumRes = TID.getNumDefs();
252      unsigned NumOps = TID.getNumOperands() - NumRes;
253      for (unsigned j = 0; j != NumOps; ++j) {
254        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
255          continue;
256
257        SDNode *OpN = SU->Node->getOperand(j).Val;
258        SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
259        if (OpSU && OperandSeen.count(OpSU) == 1) {
260          // Ok, so SU is not the last use of OpSU, but SU is two-address so
261          // it will clobber OpSU. Try to commute SU if no other source operands
262          // are live below.
263          bool DoCommute = true;
264          for (unsigned k = 0; k < NumOps; ++k) {
265            if (k != j) {
266              OpN = SU->Node->getOperand(k).Val;
267              OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
268              if (OpSU && OperandSeen.count(OpSU) == 1) {
269                DoCommute = false;
270                break;
271              }
272            }
273          }
274          if (DoCommute)
275            CommuteSet.insert(SU->Node);
276        }
277
278        // Only look at the first use&def node for now.
279        break;
280      }
281    }
282
283    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
284         I != E; ++I) {
285      if (!I->isCtrl)
286        OperandSeen.insert(I->Dep->OrigNode);
287    }
288  }
289}
290
291//===----------------------------------------------------------------------===//
292//  Bottom-Up Scheduling
293//===----------------------------------------------------------------------===//
294
295/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
296/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
297void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
298                                    unsigned CurCycle) {
299  // FIXME: the distance between two nodes is not always == the predecessor's
300  // latency. For example, the reader can very well read the register written
301  // by the predecessor later than the issue cycle. It also depends on the
302  // interrupt model (drain vs. freeze).
303  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
304
305  --PredSU->NumSuccsLeft;
306
307#ifndef NDEBUG
308  if (PredSU->NumSuccsLeft < 0) {
309    cerr << "*** List scheduling failed! ***\n";
310    PredSU->dump(&DAG);
311    cerr << " has been released too many times!\n";
312    assert(0);
313  }
314#endif
315
316  if (PredSU->NumSuccsLeft == 0) {
317    PredSU->isAvailable = true;
318    AvailableQueue->push(PredSU);
319  }
320}
321
322/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
323/// count of its predecessors. If a predecessor pending count is zero, add it to
324/// the Available queue.
325void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
326  DOUT << "*** Scheduling [" << CurCycle << "]: ";
327  DEBUG(SU->dump(&DAG));
328  SU->Cycle = CurCycle;
329
330  AvailableQueue->ScheduledNode(SU);
331
332  // Bottom up: release predecessors
333  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
334       I != E; ++I) {
335    ReleasePred(I->Dep, I->isCtrl, CurCycle);
336    if (I->Cost < 0)  {
337      // This is a physical register dependency and it's impossible or
338      // expensive to copy the register. Make sure nothing that can
339      // clobber the register is scheduled between the predecessor and
340      // this node.
341      if (LiveRegs.insert(I->Reg)) {
342        LiveRegDefs[I->Reg] = I->Dep;
343        LiveRegCycles[I->Reg] = CurCycle;
344      }
345    }
346  }
347
348  // Release all the implicit physical register defs that are live.
349  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
350       I != E; ++I) {
351    if (I->Cost < 0)  {
352      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
353        LiveRegs.erase(I->Reg);
354        assert(LiveRegDefs[I->Reg] == SU &&
355               "Physical register dependency violated?");
356        LiveRegDefs[I->Reg] = NULL;
357        LiveRegCycles[I->Reg] = 0;
358      }
359    }
360  }
361
362  SU->isScheduled = true;
363}
364
365/// CapturePred - This does the opposite of ReleasePred. Since SU is being
366/// unscheduled, incrcease the succ left count of its predecessors. Remove
367/// them from AvailableQueue if necessary.
368void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
369  unsigned CycleBound = 0;
370  for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
371       I != E; ++I) {
372    if (I->Dep == SU)
373      continue;
374    CycleBound = std::max(CycleBound,
375                          I->Dep->Cycle + PredSU->Latency);
376  }
377
378  if (PredSU->isAvailable) {
379    PredSU->isAvailable = false;
380    if (!PredSU->isPending)
381      AvailableQueue->remove(PredSU);
382  }
383
384  PredSU->CycleBound = CycleBound;
385  ++PredSU->NumSuccsLeft;
386}
387
388/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
389/// its predecessor states to reflect the change.
390void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
391  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
392  DEBUG(SU->dump(&DAG));
393
394  AvailableQueue->UnscheduledNode(SU);
395
396  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
397       I != E; ++I) {
398    CapturePred(I->Dep, SU, I->isCtrl);
399    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
400      LiveRegs.erase(I->Reg);
401      assert(LiveRegDefs[I->Reg] == I->Dep &&
402             "Physical register dependency violated?");
403      LiveRegDefs[I->Reg] = NULL;
404      LiveRegCycles[I->Reg] = 0;
405    }
406  }
407
408  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
409       I != E; ++I) {
410    if (I->Cost < 0)  {
411      if (LiveRegs.insert(I->Reg)) {
412        assert(!LiveRegDefs[I->Reg] &&
413               "Physical register dependency violated?");
414        LiveRegDefs[I->Reg] = SU;
415      }
416      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
417        LiveRegCycles[I->Reg] = I->Dep->Cycle;
418    }
419  }
420
421  SU->Cycle = 0;
422  SU->isScheduled = false;
423  SU->isAvailable = true;
424  AvailableQueue->push(SU);
425}
426
427/// IsReachable - Checks if SU is reachable from TargetSU.
428bool ScheduleDAGRRList::IsReachable(SUnit *SU, SUnit *TargetSU) {
429  // If insertion of the edge SU->TargetSU would create a cycle
430  // then there is a path from TargetSU to SU.
431  int UpperBound, LowerBound;
432  LowerBound = Node2Index[TargetSU->NodeNum];
433  UpperBound = Node2Index[SU->NodeNum];
434  bool HasLoop = false;
435  // Is Ord(TargetSU) < Ord(SU) ?
436  if (LowerBound < UpperBound) {
437    Visited.reset();
438    // There may be a path from TargetSU to SU. Check for it.
439    DFS(TargetSU, UpperBound, HasLoop);
440  }
441  return HasLoop;
442}
443
444/// Allocate - assign the topological index to the node n.
445inline void ScheduleDAGRRList::Allocate(int n, int index) {
446  Node2Index[n] = index;
447  Index2Node[index] = n;
448}
449
450/// InitDAGTopologicalSorting - create the initial topological
451/// ordering from the DAG to be scheduled.
452void ScheduleDAGRRList::InitDAGTopologicalSorting() {
453  unsigned DAGSize = SUnits.size();
454  std::vector<unsigned> InDegree(DAGSize);
455  std::vector<SUnit*> WorkList;
456  WorkList.reserve(DAGSize);
457  std::vector<SUnit*> TopOrder;
458  TopOrder.reserve(DAGSize);
459
460  // Initialize the data structures.
461  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
462    SUnit *SU = &SUnits[i];
463    int NodeNum = SU->NodeNum;
464    unsigned Degree = SU->Succs.size();
465    InDegree[NodeNum] = Degree;
466
467    // Is it a node without dependencies?
468    if (Degree == 0) {
469        assert(SU->Succs.empty() && "SUnit should have no successors");
470        // Collect leaf nodes.
471        WorkList.push_back(SU);
472    }
473  }
474
475  while (!WorkList.empty()) {
476    SUnit *SU = WorkList.back();
477    WorkList.pop_back();
478    TopOrder.push_back(SU);
479    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
480         I != E; ++I) {
481      SUnit *SU = I->Dep;
482      if (!--InDegree[SU->NodeNum])
483        // If all dependencies of the node are processed already,
484        // then the node can be computed now.
485        WorkList.push_back(SU);
486    }
487  }
488
489  // Second pass, assign the actual topological order as node ids.
490  int Id = 0;
491
492  Index2Node.clear();
493  Node2Index.clear();
494  Index2Node.resize(DAGSize);
495  Node2Index.resize(DAGSize);
496  Visited.resize(DAGSize);
497
498  for (std::vector<SUnit*>::reverse_iterator TI = TopOrder.rbegin(),
499       TE = TopOrder.rend();TI != TE; ++TI) {
500    Allocate((*TI)->NodeNum, Id);
501    Id++;
502  }
503
504#ifndef NDEBUG
505  // Check correctness of the ordering
506  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
507    SUnit *SU = &SUnits[i];
508    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
509         I != E; ++I) {
510       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
511       "Wrong topological sorting");
512    }
513  }
514#endif
515}
516
517/// AddPred - adds an edge from SUnit X to SUnit Y.
518/// Updates the topological ordering if required.
519bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
520                 unsigned PhyReg, int Cost) {
521  int UpperBound, LowerBound;
522  LowerBound = Node2Index[Y->NodeNum];
523  UpperBound = Node2Index[X->NodeNum];
524  bool HasLoop = false;
525  // Is Ord(X) < Ord(Y) ?
526  if (LowerBound < UpperBound) {
527    // Update the topological order.
528    Visited.reset();
529    DFS(Y, UpperBound, HasLoop);
530    assert(!HasLoop && "Inserted edge creates a loop!");
531    // Recompute topological indexes.
532    Shift(Visited, LowerBound, UpperBound);
533  }
534  // Now really insert the edge.
535  return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
536}
537
538/// RemovePred - This removes the specified node N from the predecessors of
539/// the current node M. Updates the topological ordering if required.
540bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
541                                   bool isCtrl, bool isSpecial) {
542  // InitDAGTopologicalSorting();
543  return M->removePred(N, isCtrl, isSpecial);
544}
545
546/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
547/// all nodes affected by the edge insertion. These nodes will later get new
548/// topological indexes by means of the Shift method.
549void ScheduleDAGRRList::DFS(SUnit *SU, int UpperBound, bool& HasLoop) {
550  std::vector<SUnit*> WorkList;
551  WorkList.reserve(SUnits.size());
552
553  WorkList.push_back(SU);
554  while (!WorkList.empty()) {
555    SU = WorkList.back();
556    WorkList.pop_back();
557    Visited.set(SU->NodeNum);
558    for (int I = SU->Succs.size()-1; I >= 0; --I) {
559      int s = SU->Succs[I].Dep->NodeNum;
560      if (Node2Index[s] == UpperBound) {
561        HasLoop = true;
562        return;
563      }
564      // Visit successors if not already and in affected region.
565      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
566        WorkList.push_back(SU->Succs[I].Dep);
567      }
568    }
569  }
570}
571
572/// Shift - Renumber the nodes so that the topological ordering is
573/// preserved.
574void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
575                              int UpperBound) {
576  std::vector<int> L;
577  int shift = 0;
578  int i;
579
580  for (i = LowerBound; i <= UpperBound; ++i) {
581    // w is node at topological index i.
582    int w = Index2Node[i];
583    if (Visited.test(w)) {
584      // Unmark.
585      Visited.reset(w);
586      L.push_back(w);
587      shift = shift + 1;
588    } else {
589      Allocate(w, i - shift);
590    }
591  }
592
593  for (unsigned j = 0; j < L.size(); ++j) {
594    Allocate(L[j], i - shift);
595    i = i + 1;
596  }
597}
598
599
600/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
601/// create a cycle.
602bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
603  if (IsReachable(TargetSU, SU))
604    return true;
605  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
606       I != E; ++I)
607    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
608      return true;
609  return false;
610}
611
612/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
613/// BTCycle in order to schedule a specific node. Returns the last unscheduled
614/// SUnit. Also returns if a successor is unscheduled in the process.
615void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
616                                          unsigned &CurCycle) {
617  SUnit *OldSU = NULL;
618  while (CurCycle > BtCycle) {
619    OldSU = Sequence.back();
620    Sequence.pop_back();
621    if (SU->isSucc(OldSU))
622      // Don't try to remove SU from AvailableQueue.
623      SU->isAvailable = false;
624    UnscheduleNodeBottomUp(OldSU);
625    --CurCycle;
626  }
627
628
629  if (SU->isSucc(OldSU)) {
630    assert(false && "Something is wrong!");
631    abort();
632  }
633
634  ++NumBacktracks;
635}
636
637/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
638/// successors to the newly created node.
639SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
640  if (SU->FlaggedNodes.size())
641    return NULL;
642
643  SDNode *N = SU->Node;
644  if (!N)
645    return NULL;
646
647  SUnit *NewSU;
648  bool TryUnfold = false;
649  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
650    MVT VT = N->getValueType(i);
651    if (VT == MVT::Flag)
652      return NULL;
653    else if (VT == MVT::Other)
654      TryUnfold = true;
655  }
656  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
657    const SDOperand &Op = N->getOperand(i);
658    MVT VT = Op.Val->getValueType(Op.ResNo);
659    if (VT == MVT::Flag)
660      return NULL;
661  }
662
663  if (TryUnfold) {
664    SmallVector<SDNode*, 2> NewNodes;
665    if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
666      return NULL;
667
668    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
669    assert(NewNodes.size() == 2 && "Expected a load folding node!");
670
671    N = NewNodes[1];
672    SDNode *LoadNode = NewNodes[0];
673    unsigned NumVals = N->getNumValues();
674    unsigned OldNumVals = SU->Node->getNumValues();
675    for (unsigned i = 0; i != NumVals; ++i)
676      DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, i), SDOperand(N, i));
677    DAG.ReplaceAllUsesOfValueWith(SDOperand(SU->Node, OldNumVals-1),
678                                  SDOperand(LoadNode, 1));
679
680    SUnit *NewSU = CreateNewSUnit(N);
681    assert(N->getNodeId() == -1 && "Node already inserted!");
682    N->setNodeId(NewSU->NodeNum);
683
684    const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
685    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
686      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
687        NewSU->isTwoAddress = true;
688        break;
689      }
690    }
691    if (TID.isCommutable())
692      NewSU->isCommutable = true;
693    // FIXME: Calculate height / depth and propagate the changes?
694    NewSU->Depth = SU->Depth;
695    NewSU->Height = SU->Height;
696    ComputeLatency(NewSU);
697
698    // LoadNode may already exist. This can happen when there is another
699    // load from the same location and producing the same type of value
700    // but it has different alignment or volatileness.
701    bool isNewLoad = true;
702    SUnit *LoadSU;
703    if (LoadNode->getNodeId() != -1) {
704      LoadSU = &SUnits[LoadNode->getNodeId()];
705      isNewLoad = false;
706    } else {
707      LoadSU = CreateNewSUnit(LoadNode);
708      LoadNode->setNodeId(LoadSU->NodeNum);
709
710      LoadSU->Depth = SU->Depth;
711      LoadSU->Height = SU->Height;
712      ComputeLatency(LoadSU);
713    }
714
715    SUnit *ChainPred = NULL;
716    SmallVector<SDep, 4> ChainSuccs;
717    SmallVector<SDep, 4> LoadPreds;
718    SmallVector<SDep, 4> NodePreds;
719    SmallVector<SDep, 4> NodeSuccs;
720    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
721         I != E; ++I) {
722      if (I->isCtrl)
723        ChainPred = I->Dep;
724      else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
725        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
726      else
727        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
728    }
729    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
730         I != E; ++I) {
731      if (I->isCtrl)
732        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
733                                  I->isCtrl, I->isSpecial));
734      else
735        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
736                                 I->isCtrl, I->isSpecial));
737    }
738
739    if (ChainPred) {
740      RemovePred(SU, ChainPred, true, false);
741      if (isNewLoad)
742        AddPred(LoadSU, ChainPred, true, false);
743    }
744    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
745      SDep *Pred = &LoadPreds[i];
746      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
747      if (isNewLoad) {
748        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
749                Pred->Reg, Pred->Cost);
750      }
751    }
752    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
753      SDep *Pred = &NodePreds[i];
754      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
755      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
756              Pred->Reg, Pred->Cost);
757    }
758    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
759      SDep *Succ = &NodeSuccs[i];
760      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
761      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
762              Succ->Reg, Succ->Cost);
763    }
764    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
765      SDep *Succ = &ChainSuccs[i];
766      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
767      if (isNewLoad) {
768        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
769                Succ->Reg, Succ->Cost);
770      }
771    }
772    if (isNewLoad) {
773      AddPred(NewSU, LoadSU, false, false);
774    }
775
776    if (isNewLoad)
777      AvailableQueue->addNode(LoadSU);
778    AvailableQueue->addNode(NewSU);
779
780    ++NumUnfolds;
781
782    if (NewSU->NumSuccsLeft == 0) {
783      NewSU->isAvailable = true;
784      return NewSU;
785    }
786    SU = NewSU;
787  }
788
789  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
790  NewSU = CreateClone(SU);
791
792  // New SUnit has the exact same predecessors.
793  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
794       I != E; ++I)
795    if (!I->isSpecial) {
796      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
797      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
798    }
799
800  // Only copy scheduled successors. Cut them from old node's successor
801  // list and move them over.
802  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
803  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
804       I != E; ++I) {
805    if (I->isSpecial)
806      continue;
807    if (I->Dep->isScheduled) {
808      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
809      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
810      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
811    }
812  }
813  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
814    SUnit *Succ = DelDeps[i].first;
815    bool isCtrl = DelDeps[i].second;
816    RemovePred(Succ, SU, isCtrl, false);
817  }
818
819  AvailableQueue->updateNode(SU);
820  AvailableQueue->addNode(NewSU);
821
822  ++NumDups;
823  return NewSU;
824}
825
826/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
827/// and move all scheduled successors of the given SUnit to the last copy.
828void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
829                                              const TargetRegisterClass *DestRC,
830                                              const TargetRegisterClass *SrcRC,
831                                               SmallVector<SUnit*, 2> &Copies) {
832  SUnit *CopyFromSU = CreateNewSUnit(NULL);
833  CopyFromSU->CopySrcRC = SrcRC;
834  CopyFromSU->CopyDstRC = DestRC;
835  CopyFromSU->Depth = SU->Depth;
836  CopyFromSU->Height = SU->Height;
837
838  SUnit *CopyToSU = CreateNewSUnit(NULL);
839  CopyToSU->CopySrcRC = DestRC;
840  CopyToSU->CopyDstRC = SrcRC;
841
842  // Only copy scheduled successors. Cut them from old node's successor
843  // list and move them over.
844  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
845  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
846       I != E; ++I) {
847    if (I->isSpecial)
848      continue;
849    if (I->Dep->isScheduled) {
850      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
851      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
852      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
853    }
854  }
855  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
856    SUnit *Succ = DelDeps[i].first;
857    bool isCtrl = DelDeps[i].second;
858    RemovePred(Succ, SU, isCtrl, false);
859  }
860
861  AddPred(CopyFromSU, SU, false, false, Reg, -1);
862  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
863
864  AvailableQueue->updateNode(SU);
865  AvailableQueue->addNode(CopyFromSU);
866  AvailableQueue->addNode(CopyToSU);
867  Copies.push_back(CopyFromSU);
868  Copies.push_back(CopyToSU);
869
870  ++NumCCCopies;
871}
872
873/// getPhysicalRegisterVT - Returns the ValueType of the physical register
874/// definition of the specified node.
875/// FIXME: Move to SelectionDAG?
876static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
877                                 const TargetInstrInfo *TII) {
878  const TargetInstrDesc &TID = TII->get(N->getTargetOpcode());
879  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
880  unsigned NumRes = TID.getNumDefs();
881  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
882    if (Reg == *ImpDef)
883      break;
884    ++NumRes;
885  }
886  return N->getValueType(NumRes);
887}
888
889/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
890/// scheduling of the given node to satisfy live physical register dependencies.
891/// If the specific node is the last one that's available to schedule, do
892/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
893bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
894                                                 SmallVector<unsigned, 4> &LRegs){
895  if (LiveRegs.empty())
896    return false;
897
898  SmallSet<unsigned, 4> RegAdded;
899  // If this node would clobber any "live" register, then it's not ready.
900  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
901       I != E; ++I) {
902    if (I->Cost < 0)  {
903      unsigned Reg = I->Reg;
904      if (LiveRegs.count(Reg) && LiveRegDefs[Reg] != I->Dep) {
905        if (RegAdded.insert(Reg))
906          LRegs.push_back(Reg);
907      }
908      for (const unsigned *Alias = TRI->getAliasSet(Reg);
909           *Alias; ++Alias)
910        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != I->Dep) {
911          if (RegAdded.insert(*Alias))
912            LRegs.push_back(*Alias);
913        }
914    }
915  }
916
917  for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
918    SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
919    if (!Node || !Node->isTargetOpcode())
920      continue;
921    const TargetInstrDesc &TID = TII->get(Node->getTargetOpcode());
922    if (!TID.ImplicitDefs)
923      continue;
924    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
925      if (LiveRegs.count(*Reg) && LiveRegDefs[*Reg] != SU) {
926        if (RegAdded.insert(*Reg))
927          LRegs.push_back(*Reg);
928      }
929      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
930           *Alias; ++Alias)
931        if (LiveRegs.count(*Alias) && LiveRegDefs[*Alias] != SU) {
932          if (RegAdded.insert(*Alias))
933            LRegs.push_back(*Alias);
934        }
935    }
936  }
937  return !LRegs.empty();
938}
939
940
941/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
942/// schedulers.
943void ScheduleDAGRRList::ListScheduleBottomUp() {
944  unsigned CurCycle = 0;
945  // Add root to Available queue.
946  if (!SUnits.empty()) {
947    SUnit *RootSU = &SUnits[DAG.getRoot().Val->getNodeId()];
948    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
949    RootSU->isAvailable = true;
950    AvailableQueue->push(RootSU);
951  }
952
953  // While Available queue is not empty, grab the node with the highest
954  // priority. If it is not ready put it back.  Schedule the node.
955  SmallVector<SUnit*, 4> NotReady;
956  Sequence.reserve(SUnits.size());
957  while (!AvailableQueue->empty()) {
958    bool Delayed = false;
959    DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
960    SUnit *CurSU = AvailableQueue->pop();
961    while (CurSU) {
962      if (CurSU->CycleBound <= CurCycle) {
963        SmallVector<unsigned, 4> LRegs;
964        if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
965          break;
966        Delayed = true;
967        LRegsMap.insert(std::make_pair(CurSU, LRegs));
968      }
969
970      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
971      NotReady.push_back(CurSU);
972      CurSU = AvailableQueue->pop();
973    }
974
975    // All candidates are delayed due to live physical reg dependencies.
976    // Try backtracking, code duplication, or inserting cross class copies
977    // to resolve it.
978    if (Delayed && !CurSU) {
979      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
980        SUnit *TrySU = NotReady[i];
981        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
982
983        // Try unscheduling up to the point where it's safe to schedule
984        // this node.
985        unsigned LiveCycle = CurCycle;
986        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
987          unsigned Reg = LRegs[j];
988          unsigned LCycle = LiveRegCycles[Reg];
989          LiveCycle = std::min(LiveCycle, LCycle);
990        }
991        SUnit *OldSU = Sequence[LiveCycle];
992        if (!WillCreateCycle(TrySU, OldSU))  {
993          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
994          // Force the current node to be scheduled before the node that
995          // requires the physical reg dep.
996          if (OldSU->isAvailable) {
997            OldSU->isAvailable = false;
998            AvailableQueue->remove(OldSU);
999          }
1000          AddPred(TrySU, OldSU, true, true);
1001          // If one or more successors has been unscheduled, then the current
1002          // node is no longer avaialable. Schedule a successor that's now
1003          // available instead.
1004          if (!TrySU->isAvailable)
1005            CurSU = AvailableQueue->pop();
1006          else {
1007            CurSU = TrySU;
1008            TrySU->isPending = false;
1009            NotReady.erase(NotReady.begin()+i);
1010          }
1011          break;
1012        }
1013      }
1014
1015      if (!CurSU) {
1016        // Can't backtrack. Try duplicating the nodes that produces these
1017        // "expensive to copy" values to break the dependency. In case even
1018        // that doesn't work, insert cross class copies.
1019        SUnit *TrySU = NotReady[0];
1020        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1021        assert(LRegs.size() == 1 && "Can't handle this yet!");
1022        unsigned Reg = LRegs[0];
1023        SUnit *LRDef = LiveRegDefs[Reg];
1024        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
1025        if (!NewDef) {
1026          // Issue expensive cross register class copies.
1027          MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
1028          const TargetRegisterClass *RC =
1029            TRI->getPhysicalRegisterRegClass(Reg, VT);
1030          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1031          if (!DestRC) {
1032            assert(false && "Don't know how to copy this physical register!");
1033            abort();
1034          }
1035          SmallVector<SUnit*, 2> Copies;
1036          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1037          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1038               << " to SU #" << Copies.front()->NodeNum << "\n";
1039          AddPred(TrySU, Copies.front(), true, true);
1040          NewDef = Copies.back();
1041        }
1042
1043        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1044             << " to SU #" << TrySU->NodeNum << "\n";
1045        LiveRegDefs[Reg] = NewDef;
1046        AddPred(NewDef, TrySU, true, true);
1047        TrySU->isAvailable = false;
1048        CurSU = NewDef;
1049      }
1050
1051      if (!CurSU) {
1052        assert(false && "Unable to resolve live physical register dependencies!");
1053        abort();
1054      }
1055    }
1056
1057    // Add the nodes that aren't ready back onto the available list.
1058    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1059      NotReady[i]->isPending = false;
1060      // May no longer be available due to backtracking.
1061      if (NotReady[i]->isAvailable)
1062        AvailableQueue->push(NotReady[i]);
1063    }
1064    NotReady.clear();
1065
1066    if (!CurSU)
1067      Sequence.push_back(0);
1068    else {
1069      ScheduleNodeBottomUp(CurSU, CurCycle);
1070      Sequence.push_back(CurSU);
1071    }
1072    ++CurCycle;
1073  }
1074
1075  // Reverse the order if it is bottom up.
1076  std::reverse(Sequence.begin(), Sequence.end());
1077
1078
1079#ifndef NDEBUG
1080  // Verify that all SUnits were scheduled.
1081  bool AnyNotSched = false;
1082  unsigned DeadNodes = 0;
1083  unsigned Noops = 0;
1084  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1085    if (!SUnits[i].isScheduled) {
1086      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1087        ++DeadNodes;
1088        continue;
1089      }
1090      if (!AnyNotSched)
1091        cerr << "*** List scheduling failed! ***\n";
1092      SUnits[i].dump(&DAG);
1093      cerr << "has not been scheduled!\n";
1094      AnyNotSched = true;
1095    }
1096    if (SUnits[i].NumSuccsLeft != 0) {
1097      if (!AnyNotSched)
1098        cerr << "*** List scheduling failed! ***\n";
1099      SUnits[i].dump(&DAG);
1100      cerr << "has successors left!\n";
1101      AnyNotSched = true;
1102    }
1103  }
1104  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1105    if (!Sequence[i])
1106      ++Noops;
1107  assert(!AnyNotSched);
1108  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1109         "The number of nodes scheduled doesn't match the expected number!");
1110#endif
1111}
1112
1113//===----------------------------------------------------------------------===//
1114//  Top-Down Scheduling
1115//===----------------------------------------------------------------------===//
1116
1117/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1118/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1119void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
1120                                    unsigned CurCycle) {
1121  // FIXME: the distance between two nodes is not always == the predecessor's
1122  // latency. For example, the reader can very well read the register written
1123  // by the predecessor later than the issue cycle. It also depends on the
1124  // interrupt model (drain vs. freeze).
1125  SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
1126
1127  --SuccSU->NumPredsLeft;
1128
1129#ifndef NDEBUG
1130  if (SuccSU->NumPredsLeft < 0) {
1131    cerr << "*** List scheduling failed! ***\n";
1132    SuccSU->dump(&DAG);
1133    cerr << " has been released too many times!\n";
1134    assert(0);
1135  }
1136#endif
1137
1138  if (SuccSU->NumPredsLeft == 0) {
1139    SuccSU->isAvailable = true;
1140    AvailableQueue->push(SuccSU);
1141  }
1142}
1143
1144
1145/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1146/// count of its successors. If a successor pending count is zero, add it to
1147/// the Available queue.
1148void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1149  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1150  DEBUG(SU->dump(&DAG));
1151  SU->Cycle = CurCycle;
1152
1153  AvailableQueue->ScheduledNode(SU);
1154
1155  // Top down: release successors
1156  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1157       I != E; ++I)
1158    ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
1159  SU->isScheduled = true;
1160}
1161
1162/// ListScheduleTopDown - The main loop of list scheduling for top-down
1163/// schedulers.
1164void ScheduleDAGRRList::ListScheduleTopDown() {
1165  unsigned CurCycle = 0;
1166
1167  // All leaves to Available queue.
1168  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1169    // It is available if it has no predecessors.
1170    if (SUnits[i].Preds.empty()) {
1171      AvailableQueue->push(&SUnits[i]);
1172      SUnits[i].isAvailable = true;
1173    }
1174  }
1175
1176  // While Available queue is not empty, grab the node with the highest
1177  // priority. If it is not ready put it back.  Schedule the node.
1178  std::vector<SUnit*> NotReady;
1179  Sequence.reserve(SUnits.size());
1180  while (!AvailableQueue->empty()) {
1181    SUnit *CurSU = AvailableQueue->pop();
1182    while (CurSU && CurSU->CycleBound > CurCycle) {
1183      NotReady.push_back(CurSU);
1184      CurSU = AvailableQueue->pop();
1185    }
1186
1187    // Add the nodes that aren't ready back onto the available list.
1188    AvailableQueue->push_all(NotReady);
1189    NotReady.clear();
1190
1191    if (!CurSU)
1192      Sequence.push_back(0);
1193    else {
1194      ScheduleNodeTopDown(CurSU, CurCycle);
1195      Sequence.push_back(CurSU);
1196    }
1197    ++CurCycle;
1198  }
1199
1200
1201#ifndef NDEBUG
1202  // Verify that all SUnits were scheduled.
1203  bool AnyNotSched = false;
1204  unsigned DeadNodes = 0;
1205  unsigned Noops = 0;
1206  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1207    if (!SUnits[i].isScheduled) {
1208      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
1209        ++DeadNodes;
1210        continue;
1211      }
1212      if (!AnyNotSched)
1213        cerr << "*** List scheduling failed! ***\n";
1214      SUnits[i].dump(&DAG);
1215      cerr << "has not been scheduled!\n";
1216      AnyNotSched = true;
1217    }
1218    if (SUnits[i].NumPredsLeft != 0) {
1219      if (!AnyNotSched)
1220        cerr << "*** List scheduling failed! ***\n";
1221      SUnits[i].dump(&DAG);
1222      cerr << "has predecessors left!\n";
1223      AnyNotSched = true;
1224    }
1225  }
1226  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
1227    if (!Sequence[i])
1228      ++Noops;
1229  assert(!AnyNotSched);
1230  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
1231         "The number of nodes scheduled doesn't match the expected number!");
1232#endif
1233}
1234
1235
1236
1237//===----------------------------------------------------------------------===//
1238//                RegReductionPriorityQueue Implementation
1239//===----------------------------------------------------------------------===//
1240//
1241// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1242// to reduce register pressure.
1243//
1244namespace {
1245  template<class SF>
1246  class RegReductionPriorityQueue;
1247
1248  /// Sorting functions for the Available queue.
1249  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1250    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1251    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1252    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1253
1254    bool operator()(const SUnit* left, const SUnit* right) const;
1255  };
1256
1257  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1258    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1259    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1260    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1261
1262    bool operator()(const SUnit* left, const SUnit* right) const;
1263  };
1264}  // end anonymous namespace
1265
1266static inline bool isCopyFromLiveIn(const SUnit *SU) {
1267  SDNode *N = SU->Node;
1268  return N && N->getOpcode() == ISD::CopyFromReg &&
1269    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1270}
1271
1272namespace {
1273  template<class SF>
1274  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1275   : public SchedulingPriorityQueue {
1276    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
1277    unsigned currentQueueId;
1278
1279  public:
1280    RegReductionPriorityQueue() :
1281    Queue(SF(this)), currentQueueId(0) {}
1282
1283    virtual void initNodes(std::vector<SUnit> &sunits) {}
1284
1285    virtual void addNode(const SUnit *SU) {}
1286
1287    virtual void updateNode(const SUnit *SU) {}
1288
1289    virtual void releaseState() {}
1290
1291    virtual unsigned getNodePriority(const SUnit *SU) const {
1292      return 0;
1293    }
1294
1295    unsigned size() const { return Queue.size(); }
1296
1297    bool empty() const { return Queue.empty(); }
1298
1299    void push(SUnit *U) {
1300      assert(!U->NodeQueueId && "Node in the queue already");
1301      U->NodeQueueId = ++currentQueueId;
1302      Queue.push(U);
1303    }
1304
1305    void push_all(const std::vector<SUnit *> &Nodes) {
1306      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1307        push(Nodes[i]);
1308    }
1309
1310    SUnit *pop() {
1311      if (empty()) return NULL;
1312      SUnit *V = Queue.top();
1313      Queue.pop();
1314      V->NodeQueueId = 0;
1315      return V;
1316    }
1317
1318    void remove(SUnit *SU) {
1319      assert(!Queue.empty() && "Queue is empty!");
1320      assert(SU->NodeQueueId != 0 && "Not in queue!");
1321      Queue.erase_one(SU);
1322      SU->NodeQueueId = 0;
1323    }
1324  };
1325
1326  class VISIBILITY_HIDDEN BURegReductionPriorityQueue
1327   : public RegReductionPriorityQueue<bu_ls_rr_sort> {
1328    // SUnits - The SUnits for the current graph.
1329    const std::vector<SUnit> *SUnits;
1330
1331    // SethiUllmanNumbers - The SethiUllman number for each node.
1332    std::vector<unsigned> SethiUllmanNumbers;
1333
1334    const TargetInstrInfo *TII;
1335    const TargetRegisterInfo *TRI;
1336    ScheduleDAGRRList *scheduleDAG;
1337  public:
1338    explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
1339                                         const TargetRegisterInfo *tri)
1340      : TII(tii), TRI(tri), scheduleDAG(NULL) {}
1341
1342    void initNodes(std::vector<SUnit> &sunits) {
1343      SUnits = &sunits;
1344      // Add pseudo dependency edges for two-address nodes.
1345      AddPseudoTwoAddrDeps();
1346      // Calculate node priorities.
1347      CalculateSethiUllmanNumbers();
1348    }
1349
1350    void addNode(const SUnit *SU) {
1351      SethiUllmanNumbers.resize(SUnits->size(), 0);
1352      CalcNodeSethiUllmanNumber(SU);
1353    }
1354
1355    void updateNode(const SUnit *SU) {
1356      SethiUllmanNumbers[SU->NodeNum] = 0;
1357      CalcNodeSethiUllmanNumber(SU);
1358    }
1359
1360    void releaseState() {
1361      SUnits = 0;
1362      SethiUllmanNumbers.clear();
1363    }
1364
1365    unsigned getNodePriority(const SUnit *SU) const {
1366      assert(SU->NodeNum < SethiUllmanNumbers.size());
1367      unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1368      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1369        // CopyFromReg should be close to its def because it restricts
1370        // allocation choices. But if it is a livein then perhaps we want it
1371        // closer to its uses so it can be coalesced.
1372        return 0xffff;
1373      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1374        // CopyToReg should be close to its uses to facilitate coalescing and
1375        // avoid spilling.
1376        return 0;
1377      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1378               Opc == TargetInstrInfo::INSERT_SUBREG)
1379        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1380        // facilitate coalescing.
1381        return 0;
1382      else if (SU->NumSuccs == 0)
1383        // If SU does not have a use, i.e. it doesn't produce a value that would
1384        // be consumed (e.g. store), then it terminates a chain of computation.
1385        // Give it a large SethiUllman number so it will be scheduled right
1386        // before its predecessors that it doesn't lengthen their live ranges.
1387        return 0xffff;
1388      else if (SU->NumPreds == 0)
1389        // If SU does not have a def, schedule it close to its uses because it
1390        // does not lengthen any live ranges.
1391        return 0;
1392      else
1393        return SethiUllmanNumbers[SU->NodeNum];
1394    }
1395
1396    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1397      scheduleDAG = scheduleDag;
1398    }
1399
1400  private:
1401    bool canClobber(const SUnit *SU, const SUnit *Op);
1402    void AddPseudoTwoAddrDeps();
1403    void CalculateSethiUllmanNumbers();
1404    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1405  };
1406
1407
1408  class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
1409   : public RegReductionPriorityQueue<td_ls_rr_sort> {
1410    // SUnits - The SUnits for the current graph.
1411    const std::vector<SUnit> *SUnits;
1412
1413    // SethiUllmanNumbers - The SethiUllman number for each node.
1414    std::vector<unsigned> SethiUllmanNumbers;
1415
1416  public:
1417    TDRegReductionPriorityQueue() {}
1418
1419    void initNodes(std::vector<SUnit> &sunits) {
1420      SUnits = &sunits;
1421      // Calculate node priorities.
1422      CalculateSethiUllmanNumbers();
1423    }
1424
1425    void addNode(const SUnit *SU) {
1426      SethiUllmanNumbers.resize(SUnits->size(), 0);
1427      CalcNodeSethiUllmanNumber(SU);
1428    }
1429
1430    void updateNode(const SUnit *SU) {
1431      SethiUllmanNumbers[SU->NodeNum] = 0;
1432      CalcNodeSethiUllmanNumber(SU);
1433    }
1434
1435    void releaseState() {
1436      SUnits = 0;
1437      SethiUllmanNumbers.clear();
1438    }
1439
1440    unsigned getNodePriority(const SUnit *SU) const {
1441      assert(SU->NodeNum < SethiUllmanNumbers.size());
1442      return SethiUllmanNumbers[SU->NodeNum];
1443    }
1444
1445  private:
1446    void CalculateSethiUllmanNumbers();
1447    unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
1448  };
1449}
1450
1451/// closestSucc - Returns the scheduled cycle of the successor which is
1452/// closet to the current cycle.
1453static unsigned closestSucc(const SUnit *SU) {
1454  unsigned MaxCycle = 0;
1455  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1456       I != E; ++I) {
1457    unsigned Cycle = I->Dep->Cycle;
1458    // If there are bunch of CopyToRegs stacked up, they should be considered
1459    // to be at the same position.
1460    if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
1461      Cycle = closestSucc(I->Dep)+1;
1462    if (Cycle > MaxCycle)
1463      MaxCycle = Cycle;
1464  }
1465  return MaxCycle;
1466}
1467
1468/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1469/// for scratch registers. Live-in operands and live-out results don't count
1470/// since they are "fixed".
1471static unsigned calcMaxScratches(const SUnit *SU) {
1472  unsigned Scratches = 0;
1473  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1474       I != E; ++I) {
1475    if (I->isCtrl) continue;  // ignore chain preds
1476    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
1477      Scratches++;
1478  }
1479  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1480       I != E; ++I) {
1481    if (I->isCtrl) continue;  // ignore chain succs
1482    if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
1483      Scratches += 10;
1484  }
1485  return Scratches;
1486}
1487
1488// Bottom up
1489bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1490
1491  unsigned LPriority = SPQ->getNodePriority(left);
1492  unsigned RPriority = SPQ->getNodePriority(right);
1493  if (LPriority != RPriority)
1494    return LPriority > RPriority;
1495
1496  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1497  // e.g.
1498  // t1 = op t2, c1
1499  // t3 = op t4, c2
1500  //
1501  // and the following instructions are both ready.
1502  // t2 = op c3
1503  // t4 = op c4
1504  //
1505  // Then schedule t2 = op first.
1506  // i.e.
1507  // t4 = op c4
1508  // t2 = op c3
1509  // t1 = op t2, c1
1510  // t3 = op t4, c2
1511  //
1512  // This creates more short live intervals.
1513  unsigned LDist = closestSucc(left);
1514  unsigned RDist = closestSucc(right);
1515  if (LDist != RDist)
1516    return LDist < RDist;
1517
1518  // Intuitively, it's good to push down instructions whose results are
1519  // liveout so their long live ranges won't conflict with other values
1520  // which are needed inside the BB. Further prioritize liveout instructions
1521  // by the number of operands which are calculated within the BB.
1522  unsigned LScratch = calcMaxScratches(left);
1523  unsigned RScratch = calcMaxScratches(right);
1524  if (LScratch != RScratch)
1525    return LScratch > RScratch;
1526
1527  if (left->Height != right->Height)
1528    return left->Height > right->Height;
1529
1530  if (left->Depth != right->Depth)
1531    return left->Depth < right->Depth;
1532
1533  if (left->CycleBound != right->CycleBound)
1534    return left->CycleBound > right->CycleBound;
1535
1536  assert(left->NodeQueueId && right->NodeQueueId &&
1537         "NodeQueueId cannot be zero");
1538  return (left->NodeQueueId > right->NodeQueueId);
1539}
1540
1541bool
1542BURegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) {
1543  if (SU->isTwoAddress) {
1544    unsigned Opc = SU->Node->getTargetOpcode();
1545    const TargetInstrDesc &TID = TII->get(Opc);
1546    unsigned NumRes = TID.getNumDefs();
1547    unsigned NumOps = TID.getNumOperands() - NumRes;
1548    for (unsigned i = 0; i != NumOps; ++i) {
1549      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1550        SDNode *DU = SU->Node->getOperand(i).Val;
1551        if (DU->getNodeId() != -1 &&
1552            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1553          return true;
1554      }
1555    }
1556  }
1557  return false;
1558}
1559
1560
1561/// hasCopyToRegUse - Return true if SU has a value successor that is a
1562/// CopyToReg node.
1563static bool hasCopyToRegUse(SUnit *SU) {
1564  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1565       I != E; ++I) {
1566    if (I->isCtrl) continue;
1567    SUnit *SuccSU = I->Dep;
1568    if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
1569      return true;
1570  }
1571  return false;
1572}
1573
1574/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1575/// physical register def.
1576static bool canClobberPhysRegDefs(SUnit *SuccSU, SUnit *SU,
1577                                  const TargetInstrInfo *TII,
1578                                  const TargetRegisterInfo *TRI) {
1579  SDNode *N = SuccSU->Node;
1580  unsigned NumDefs = TII->get(N->getTargetOpcode()).getNumDefs();
1581  const unsigned *ImpDefs = TII->get(N->getTargetOpcode()).getImplicitDefs();
1582  if (!ImpDefs)
1583    return false;
1584  const unsigned *SUImpDefs =
1585    TII->get(SU->Node->getTargetOpcode()).getImplicitDefs();
1586  if (!SUImpDefs)
1587    return false;
1588  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1589    MVT VT = N->getValueType(i);
1590    if (VT == MVT::Flag || VT == MVT::Other)
1591      continue;
1592    unsigned Reg = ImpDefs[i - NumDefs];
1593    for (;*SUImpDefs; ++SUImpDefs) {
1594      unsigned SUReg = *SUImpDefs;
1595      if (TRI->regsOverlap(Reg, SUReg))
1596        return true;
1597    }
1598  }
1599  return false;
1600}
1601
1602/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1603/// it as a def&use operand. Add a pseudo control edge from it to the other
1604/// node (if it won't create a cycle) so the two-address one will be scheduled
1605/// first (lower in the schedule). If both nodes are two-address, favor the
1606/// one that has a CopyToReg use (more likely to be a loop induction update).
1607/// If both are two-address, but one is commutable while the other is not
1608/// commutable, favor the one that's not commutable.
1609void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() {
1610  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1611    SUnit *SU = (SUnit *)&((*SUnits)[i]);
1612    if (!SU->isTwoAddress)
1613      continue;
1614
1615    SDNode *Node = SU->Node;
1616    if (!Node || !Node->isTargetOpcode() || SU->FlaggedNodes.size() > 0)
1617      continue;
1618
1619    unsigned Opc = Node->getTargetOpcode();
1620    const TargetInstrDesc &TID = TII->get(Opc);
1621    unsigned NumRes = TID.getNumDefs();
1622    unsigned NumOps = TID.getNumOperands() - NumRes;
1623    for (unsigned j = 0; j != NumOps; ++j) {
1624      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
1625        SDNode *DU = SU->Node->getOperand(j).Val;
1626        if (DU->getNodeId() == -1)
1627          continue;
1628        const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1629        if (!DUSU) continue;
1630        for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1631             E = DUSU->Succs.end(); I != E; ++I) {
1632          if (I->isCtrl) continue;
1633          SUnit *SuccSU = I->Dep;
1634          if (SuccSU == SU)
1635            continue;
1636          // Be conservative. Ignore if nodes aren't at roughly the same
1637          // depth and height.
1638          if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1639            continue;
1640          if (!SuccSU->Node || !SuccSU->Node->isTargetOpcode())
1641            continue;
1642          // Don't constrain nodes with physical register defs if the
1643          // predecessor can clobber them.
1644          if (SuccSU->hasPhysRegDefs) {
1645            if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1646              continue;
1647          }
1648          // Don't constraint extract_subreg / insert_subreg these may be
1649          // coalesced away. We don't them close to their uses.
1650          unsigned SuccOpc = SuccSU->Node->getTargetOpcode();
1651          if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1652              SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1653            continue;
1654          if ((!canClobber(SuccSU, DUSU) ||
1655               (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1656               (!SU->isCommutable && SuccSU->isCommutable)) &&
1657              !scheduleDAG->IsReachable(SuccSU, SU)) {
1658            DOUT << "Adding an edge from SU # " << SU->NodeNum
1659                 << " to SU #" << SuccSU->NodeNum << "\n";
1660            scheduleDAG->AddPred(SU, SuccSU, true, true);
1661          }
1662        }
1663      }
1664    }
1665  }
1666}
1667
1668/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1669/// Smaller number is the higher priority.
1670unsigned BURegReductionPriorityQueue::
1671CalcNodeSethiUllmanNumber(const SUnit *SU) {
1672  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1673  if (SethiUllmanNumber != 0)
1674    return SethiUllmanNumber;
1675
1676  unsigned Extra = 0;
1677  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1678       I != E; ++I) {
1679    if (I->isCtrl) continue;  // ignore chain preds
1680    SUnit *PredSU = I->Dep;
1681    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1682    if (PredSethiUllman > SethiUllmanNumber) {
1683      SethiUllmanNumber = PredSethiUllman;
1684      Extra = 0;
1685    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1686      ++Extra;
1687  }
1688
1689  SethiUllmanNumber += Extra;
1690
1691  if (SethiUllmanNumber == 0)
1692    SethiUllmanNumber = 1;
1693
1694  return SethiUllmanNumber;
1695}
1696
1697/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1698/// scheduling units.
1699void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1700  SethiUllmanNumbers.assign(SUnits->size(), 0);
1701
1702  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1703    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1704}
1705
1706/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1707/// predecessors of the successors of the SUnit SU. Stop when the provided
1708/// limit is exceeded.
1709static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1710                                                    unsigned Limit) {
1711  unsigned Sum = 0;
1712  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1713       I != E; ++I) {
1714    SUnit *SuccSU = I->Dep;
1715    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1716         EE = SuccSU->Preds.end(); II != EE; ++II) {
1717      SUnit *PredSU = II->Dep;
1718      if (!PredSU->isScheduled)
1719        if (++Sum > Limit)
1720          return Sum;
1721    }
1722  }
1723  return Sum;
1724}
1725
1726
1727// Top down
1728bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1729  unsigned LPriority = SPQ->getNodePriority(left);
1730  unsigned RPriority = SPQ->getNodePriority(right);
1731  bool LIsTarget = left->Node && left->Node->isTargetOpcode();
1732  bool RIsTarget = right->Node && right->Node->isTargetOpcode();
1733  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1734  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1735  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1736  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1737
1738  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1739    return false;
1740  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1741    return true;
1742
1743  if (LIsFloater)
1744    LBonus -= 2;
1745  if (RIsFloater)
1746    RBonus -= 2;
1747  if (left->NumSuccs == 1)
1748    LBonus += 2;
1749  if (right->NumSuccs == 1)
1750    RBonus += 2;
1751
1752  if (LPriority+LBonus != RPriority+RBonus)
1753    return LPriority+LBonus < RPriority+RBonus;
1754
1755  if (left->Depth != right->Depth)
1756    return left->Depth < right->Depth;
1757
1758  if (left->NumSuccsLeft != right->NumSuccsLeft)
1759    return left->NumSuccsLeft > right->NumSuccsLeft;
1760
1761  if (left->CycleBound != right->CycleBound)
1762    return left->CycleBound > right->CycleBound;
1763
1764  assert(left->NodeQueueId && right->NodeQueueId &&
1765         "NodeQueueId cannot be zero");
1766  return (left->NodeQueueId > right->NodeQueueId);
1767}
1768
1769/// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number.
1770/// Smaller number is the higher priority.
1771unsigned TDRegReductionPriorityQueue::
1772CalcNodeSethiUllmanNumber(const SUnit *SU) {
1773  unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
1774  if (SethiUllmanNumber != 0)
1775    return SethiUllmanNumber;
1776
1777  unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
1778  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1779    SethiUllmanNumber = 0xffff;
1780  else if (SU->NumSuccsLeft == 0)
1781    // If SU does not have a use, i.e. it doesn't produce a value that would
1782    // be consumed (e.g. store), then it terminates a chain of computation.
1783    // Give it a small SethiUllman number so it will be scheduled right before
1784    // its predecessors that it doesn't lengthen their live ranges.
1785    SethiUllmanNumber = 0;
1786  else if (SU->NumPredsLeft == 0 &&
1787           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
1788    SethiUllmanNumber = 0xffff;
1789  else {
1790    int Extra = 0;
1791    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1792         I != E; ++I) {
1793      if (I->isCtrl) continue;  // ignore chain preds
1794      SUnit *PredSU = I->Dep;
1795      unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
1796      if (PredSethiUllman > SethiUllmanNumber) {
1797        SethiUllmanNumber = PredSethiUllman;
1798        Extra = 0;
1799      } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1800        ++Extra;
1801    }
1802
1803    SethiUllmanNumber += Extra;
1804  }
1805
1806  return SethiUllmanNumber;
1807}
1808
1809/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1810/// scheduling units.
1811void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
1812  SethiUllmanNumbers.assign(SUnits->size(), 0);
1813
1814  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1815    CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
1816}
1817
1818//===----------------------------------------------------------------------===//
1819//                         Public Constructor Functions
1820//===----------------------------------------------------------------------===//
1821
1822llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1823                                                    SelectionDAG *DAG,
1824                                                    MachineBasicBlock *BB) {
1825  const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
1826  const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
1827
1828  BURegReductionPriorityQueue *priorityQueue =
1829    new BURegReductionPriorityQueue(TII, TRI);
1830
1831  ScheduleDAGRRList * scheduleDAG =
1832    new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, priorityQueue);
1833  priorityQueue->setScheduleDAG(scheduleDAG);
1834  return scheduleDAG;
1835}
1836
1837llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1838                                                    SelectionDAG *DAG,
1839                                                    MachineBasicBlock *BB) {
1840  return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
1841                              new TDRegReductionPriorityQueue());
1842}
1843
1844