ScheduleDAGRRList.cpp revision fd2163bcf77df6b3e58868483c089bd3869b01d6
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/PriorityQueue.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include <climits>
32#include "llvm/Support/CommandLine.h"
33using namespace llvm;
34
35STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
36STATISTIC(NumUnfolds,    "Number of nodes unfolded");
37STATISTIC(NumDups,       "Number of duplicated nodes");
38STATISTIC(NumCCCopies,   "Number of cross class copies");
39
40static RegisterScheduler
41  burrListDAGScheduler("list-burr",
42                       "Bottom-up register reduction list scheduling",
43                       createBURRListDAGScheduler);
44static RegisterScheduler
45  tdrListrDAGScheduler("list-tdrr",
46                       "Top-down register reduction list scheduling",
47                       createTDRRListDAGScheduler);
48
49namespace {
50//===----------------------------------------------------------------------===//
51/// ScheduleDAGRRList - The actual register reduction list scheduler
52/// implementation.  This supports both top-down and bottom-up scheduling.
53///
54class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes {
55private:
56  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
57  /// it is top-down.
58  bool isBottomUp;
59
60  /// AvailableQueue - The priority queue to use for the available SUnits.
61  SchedulingPriorityQueue *AvailableQueue;
62
63  /// LiveRegDefs - A set of physical registers and their definition
64  /// that are "live". These nodes must be scheduled before any other nodes that
65  /// modifies the registers can be scheduled.
66  unsigned NumLiveRegs;
67  std::vector<SUnit*> LiveRegDefs;
68  std::vector<unsigned> LiveRegCycles;
69
70  /// Topo - A topological ordering for SUnits which permits fast IsReachable
71  /// and similar queries.
72  ScheduleDAGTopologicalSort Topo;
73
74public:
75  ScheduleDAGRRList(SelectionDAG *dag, MachineBasicBlock *bb,
76                    const TargetMachine &tm, bool isbottomup,
77                    SchedulingPriorityQueue *availqueue)
78    : ScheduleDAGSDNodes(dag, bb, tm), isBottomUp(isbottomup),
79      AvailableQueue(availqueue), Topo(SUnits) {
80    }
81
82  ~ScheduleDAGRRList() {
83    delete AvailableQueue;
84  }
85
86  void Schedule();
87
88  /// IsReachable - Checks if SU is reachable from TargetSU.
89  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
90    return Topo.IsReachable(SU, TargetSU);
91  }
92
93  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
94  /// create a cycle.
95  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
96    return Topo.WillCreateCycle(SU, TargetSU);
97  }
98
99  /// AddPred - adds a predecessor edge to SUnit SU.
100  /// This returns true if this is a new predecessor.
101  /// Updates the topological ordering if required.
102  void AddPred(SUnit *SU, const SDep &D) {
103    Topo.AddPred(SU, D.getSUnit());
104    SU->addPred(D);
105  }
106
107  /// RemovePred - removes a predecessor edge from SUnit SU.
108  /// This returns true if an edge was removed.
109  /// Updates the topological ordering if required.
110  void RemovePred(SUnit *SU, const SDep &D) {
111    Topo.RemovePred(SU, D.getSUnit());
112    SU->removePred(D);
113  }
114
115private:
116  void ReleasePred(SUnit *SU, SDep *PredEdge);
117  void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
118  void CapturePred(SDep *PredEdge);
119  void ScheduleNodeBottomUp(SUnit*, unsigned);
120  void ScheduleNodeTopDown(SUnit*, unsigned);
121  void UnscheduleNodeBottomUp(SUnit*);
122  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
123  SUnit *CopyAndMoveSuccessors(SUnit*);
124  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
125                                  const TargetRegisterClass*,
126                                  const TargetRegisterClass*,
127                                  SmallVector<SUnit*, 2>&);
128  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
129  void ListScheduleTopDown();
130  void ListScheduleBottomUp();
131
132
133  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
134  /// Updates the topological ordering if required.
135  SUnit *CreateNewSUnit(SDNode *N) {
136    unsigned NumSUnits = SUnits.size();
137    SUnit *NewNode = NewSUnit(N);
138    // Update the topological ordering.
139    if (NewNode->NodeNum >= NumSUnits)
140      Topo.InitDAGTopologicalSorting();
141    return NewNode;
142  }
143
144  /// CreateClone - Creates a new SUnit from an existing one.
145  /// Updates the topological ordering if required.
146  SUnit *CreateClone(SUnit *N) {
147    unsigned NumSUnits = SUnits.size();
148    SUnit *NewNode = Clone(N);
149    // Update the topological ordering.
150    if (NewNode->NodeNum >= NumSUnits)
151      Topo.InitDAGTopologicalSorting();
152    return NewNode;
153  }
154
155  /// ForceUnitLatencies - Return true, since register-pressure-reducing
156  /// scheduling doesn't need actual latency information.
157  bool ForceUnitLatencies() const { return true; }
158};
159}  // end anonymous namespace
160
161
162/// Schedule - Schedule the DAG using list scheduling.
163void ScheduleDAGRRList::Schedule() {
164  DOUT << "********** List Scheduling **********\n";
165
166  NumLiveRegs = 0;
167  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
168  LiveRegCycles.resize(TRI->getNumRegs(), 0);
169
170  // Build the scheduling graph.
171  BuildSchedGraph();
172
173  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
174          SUnits[su].dumpAll(this));
175  Topo.InitDAGTopologicalSorting();
176
177  AvailableQueue->initNodes(SUnits);
178
179  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
180  if (isBottomUp)
181    ListScheduleBottomUp();
182  else
183    ListScheduleTopDown();
184
185  AvailableQueue->releaseState();
186}
187
188//===----------------------------------------------------------------------===//
189//  Bottom-Up Scheduling
190//===----------------------------------------------------------------------===//
191
192/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
193/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
194void ScheduleDAGRRList::ReleasePred(SUnit *SU, SDep *PredEdge) {
195  SUnit *PredSU = PredEdge->getSUnit();
196  --PredSU->NumSuccsLeft;
197
198#ifndef NDEBUG
199  if (PredSU->NumSuccsLeft < 0) {
200    cerr << "*** Scheduling failed! ***\n";
201    PredSU->dump(this);
202    cerr << " has been released too many times!\n";
203    assert(0);
204  }
205#endif
206
207  if (PredSU->NumSuccsLeft == 0) {
208    PredSU->isAvailable = true;
209    AvailableQueue->push(PredSU);
210  }
211}
212
213/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
214/// count of its predecessors. If a predecessor pending count is zero, add it to
215/// the Available queue.
216void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
217  DOUT << "*** Scheduling [" << CurCycle << "]: ";
218  DEBUG(SU->dump(this));
219
220  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
221  SU->setHeightToAtLeast(CurCycle);
222  Sequence.push_back(SU);
223
224  // Bottom up: release predecessors
225  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
226       I != E; ++I) {
227    ReleasePred(SU, &*I);
228    if (I->isAssignedRegDep()) {
229      // This is a physical register dependency and it's impossible or
230      // expensive to copy the register. Make sure nothing that can
231      // clobber the register is scheduled between the predecessor and
232      // this node.
233      if (!LiveRegDefs[I->getReg()]) {
234        ++NumLiveRegs;
235        LiveRegDefs[I->getReg()] = I->getSUnit();
236        LiveRegCycles[I->getReg()] = CurCycle;
237      }
238    }
239  }
240
241  // Release all the implicit physical register defs that are live.
242  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
243       I != E; ++I) {
244    if (I->isAssignedRegDep()) {
245      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
246        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
247        assert(LiveRegDefs[I->getReg()] == SU &&
248               "Physical register dependency violated?");
249        --NumLiveRegs;
250        LiveRegDefs[I->getReg()] = NULL;
251        LiveRegCycles[I->getReg()] = 0;
252      }
253    }
254  }
255
256  SU->isScheduled = true;
257  AvailableQueue->ScheduledNode(SU);
258}
259
260/// CapturePred - This does the opposite of ReleasePred. Since SU is being
261/// unscheduled, incrcease the succ left count of its predecessors. Remove
262/// them from AvailableQueue if necessary.
263void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
264  SUnit *PredSU = PredEdge->getSUnit();
265  if (PredSU->isAvailable) {
266    PredSU->isAvailable = false;
267    if (!PredSU->isPending)
268      AvailableQueue->remove(PredSU);
269  }
270
271  ++PredSU->NumSuccsLeft;
272}
273
274/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
275/// its predecessor states to reflect the change.
276void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
277  DOUT << "*** Unscheduling [" << SU->getHeight() << "]: ";
278  DEBUG(SU->dump(this));
279
280  AvailableQueue->UnscheduledNode(SU);
281
282  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
283       I != E; ++I) {
284    CapturePred(&*I);
285    if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]) {
286      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
287      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
288             "Physical register dependency violated?");
289      --NumLiveRegs;
290      LiveRegDefs[I->getReg()] = NULL;
291      LiveRegCycles[I->getReg()] = 0;
292    }
293  }
294
295  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
296       I != E; ++I) {
297    if (I->isAssignedRegDep()) {
298      if (!LiveRegDefs[I->getReg()]) {
299        LiveRegDefs[I->getReg()] = SU;
300        ++NumLiveRegs;
301      }
302      if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()])
303        LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight();
304    }
305  }
306
307  SU->setHeightDirty();
308  SU->isScheduled = false;
309  SU->isAvailable = true;
310  AvailableQueue->push(SU);
311}
312
313/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
314/// BTCycle in order to schedule a specific node. Returns the last unscheduled
315/// SUnit. Also returns if a successor is unscheduled in the process.
316void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
317                                          unsigned &CurCycle) {
318  SUnit *OldSU = NULL;
319  while (CurCycle > BtCycle) {
320    OldSU = Sequence.back();
321    Sequence.pop_back();
322    if (SU->isSucc(OldSU))
323      // Don't try to remove SU from AvailableQueue.
324      SU->isAvailable = false;
325    UnscheduleNodeBottomUp(OldSU);
326    --CurCycle;
327  }
328
329
330  if (SU->isSucc(OldSU)) {
331    assert(false && "Something is wrong!");
332    abort();
333  }
334
335  ++NumBacktracks;
336}
337
338/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
339/// successors to the newly created node.
340SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
341  if (SU->getNode()->getFlaggedNode())
342    return NULL;
343
344  SDNode *N = SU->getNode();
345  if (!N)
346    return NULL;
347
348  SUnit *NewSU;
349  bool TryUnfold = false;
350  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
351    MVT VT = N->getValueType(i);
352    if (VT == MVT::Flag)
353      return NULL;
354    else if (VT == MVT::Other)
355      TryUnfold = true;
356  }
357  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
358    const SDValue &Op = N->getOperand(i);
359    MVT VT = Op.getNode()->getValueType(Op.getResNo());
360    if (VT == MVT::Flag)
361      return NULL;
362  }
363
364  if (TryUnfold) {
365    SmallVector<SDNode*, 2> NewNodes;
366    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
367      return NULL;
368
369    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
370    assert(NewNodes.size() == 2 && "Expected a load folding node!");
371
372    N = NewNodes[1];
373    SDNode *LoadNode = NewNodes[0];
374    unsigned NumVals = N->getNumValues();
375    unsigned OldNumVals = SU->getNode()->getNumValues();
376    for (unsigned i = 0; i != NumVals; ++i)
377      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
378    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
379                                   SDValue(LoadNode, 1));
380
381    // LoadNode may already exist. This can happen when there is another
382    // load from the same location and producing the same type of value
383    // but it has different alignment or volatileness.
384    bool isNewLoad = true;
385    SUnit *LoadSU;
386    if (LoadNode->getNodeId() != -1) {
387      LoadSU = &SUnits[LoadNode->getNodeId()];
388      isNewLoad = false;
389    } else {
390      LoadSU = CreateNewSUnit(LoadNode);
391      LoadNode->setNodeId(LoadSU->NodeNum);
392      ComputeLatency(LoadSU);
393    }
394
395    SUnit *NewSU = CreateNewSUnit(N);
396    assert(N->getNodeId() == -1 && "Node already inserted!");
397    N->setNodeId(NewSU->NodeNum);
398
399    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
400    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
401      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
402        NewSU->isTwoAddress = true;
403        break;
404      }
405    }
406    if (TID.isCommutable())
407      NewSU->isCommutable = true;
408    ComputeLatency(NewSU);
409
410    SDep ChainPred;
411    SmallVector<SDep, 4> ChainSuccs;
412    SmallVector<SDep, 4> LoadPreds;
413    SmallVector<SDep, 4> NodePreds;
414    SmallVector<SDep, 4> NodeSuccs;
415    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
416         I != E; ++I) {
417      if (I->isCtrl())
418        ChainPred = *I;
419      else if (I->getSUnit()->getNode() &&
420               I->getSUnit()->getNode()->isOperandOf(LoadNode))
421        LoadPreds.push_back(*I);
422      else
423        NodePreds.push_back(*I);
424    }
425    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
426         I != E; ++I) {
427      if (I->isCtrl())
428        ChainSuccs.push_back(*I);
429      else
430        NodeSuccs.push_back(*I);
431    }
432
433    if (ChainPred.getSUnit()) {
434      RemovePred(SU, ChainPred);
435      if (isNewLoad)
436        AddPred(LoadSU, ChainPred);
437    }
438    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
439      const SDep &Pred = LoadPreds[i];
440      RemovePred(SU, Pred);
441      if (isNewLoad) {
442        AddPred(LoadSU, Pred);
443      }
444    }
445    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
446      const SDep &Pred = NodePreds[i];
447      RemovePred(SU, Pred);
448      AddPred(NewSU, Pred);
449    }
450    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
451      SDep D = NodeSuccs[i];
452      SUnit *SuccDep = D.getSUnit();
453      D.setSUnit(SU);
454      RemovePred(SuccDep, D);
455      D.setSUnit(NewSU);
456      AddPred(SuccDep, D);
457    }
458    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
459      SDep D = ChainSuccs[i];
460      SUnit *SuccDep = D.getSUnit();
461      D.setSUnit(SU);
462      RemovePred(SuccDep, D);
463      if (isNewLoad) {
464        D.setSUnit(LoadSU);
465        AddPred(SuccDep, D);
466      }
467    }
468    if (isNewLoad) {
469      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
470    }
471
472    if (isNewLoad)
473      AvailableQueue->addNode(LoadSU);
474    AvailableQueue->addNode(NewSU);
475
476    ++NumUnfolds;
477
478    if (NewSU->NumSuccsLeft == 0) {
479      NewSU->isAvailable = true;
480      return NewSU;
481    }
482    SU = NewSU;
483  }
484
485  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
486  NewSU = CreateClone(SU);
487
488  // New SUnit has the exact same predecessors.
489  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
490       I != E; ++I)
491    if (!I->isArtificial())
492      AddPred(NewSU, *I);
493
494  // Only copy scheduled successors. Cut them from old node's successor
495  // list and move them over.
496  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
497  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
498       I != E; ++I) {
499    if (I->isArtificial())
500      continue;
501    SUnit *SuccSU = I->getSUnit();
502    if (SuccSU->isScheduled) {
503      SDep D = *I;
504      D.setSUnit(NewSU);
505      AddPred(SuccSU, D);
506      D.setSUnit(SU);
507      DelDeps.push_back(std::make_pair(SuccSU, D));
508    }
509  }
510  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
511    RemovePred(DelDeps[i].first, DelDeps[i].second);
512
513  AvailableQueue->updateNode(SU);
514  AvailableQueue->addNode(NewSU);
515
516  ++NumDups;
517  return NewSU;
518}
519
520/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
521/// and move all scheduled successors of the given SUnit to the last copy.
522void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
523                                              const TargetRegisterClass *DestRC,
524                                              const TargetRegisterClass *SrcRC,
525                                               SmallVector<SUnit*, 2> &Copies) {
526  SUnit *CopyFromSU = CreateNewSUnit(NULL);
527  CopyFromSU->CopySrcRC = SrcRC;
528  CopyFromSU->CopyDstRC = DestRC;
529
530  SUnit *CopyToSU = CreateNewSUnit(NULL);
531  CopyToSU->CopySrcRC = DestRC;
532  CopyToSU->CopyDstRC = SrcRC;
533
534  // Only copy scheduled successors. Cut them from old node's successor
535  // list and move them over.
536  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
537  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
538       I != E; ++I) {
539    if (I->isArtificial())
540      continue;
541    SUnit *SuccSU = I->getSUnit();
542    if (SuccSU->isScheduled) {
543      SDep D = *I;
544      D.setSUnit(CopyToSU);
545      AddPred(SuccSU, D);
546      DelDeps.push_back(std::make_pair(SuccSU, *I));
547    }
548  }
549  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
550    RemovePred(DelDeps[i].first, DelDeps[i].second);
551  }
552
553  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
554  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
555
556  AvailableQueue->updateNode(SU);
557  AvailableQueue->addNode(CopyFromSU);
558  AvailableQueue->addNode(CopyToSU);
559  Copies.push_back(CopyFromSU);
560  Copies.push_back(CopyToSU);
561
562  ++NumCCCopies;
563}
564
565/// getPhysicalRegisterVT - Returns the ValueType of the physical register
566/// definition of the specified node.
567/// FIXME: Move to SelectionDAG?
568static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
569                                 const TargetInstrInfo *TII) {
570  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
571  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
572  unsigned NumRes = TID.getNumDefs();
573  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
574    if (Reg == *ImpDef)
575      break;
576    ++NumRes;
577  }
578  return N->getValueType(NumRes);
579}
580
581/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
582/// scheduling of the given node to satisfy live physical register dependencies.
583/// If the specific node is the last one that's available to schedule, do
584/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
585bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
586                                                 SmallVector<unsigned, 4> &LRegs){
587  if (NumLiveRegs == 0)
588    return false;
589
590  SmallSet<unsigned, 4> RegAdded;
591  // If this node would clobber any "live" register, then it's not ready.
592  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
593       I != E; ++I) {
594    if (I->isAssignedRegDep()) {
595      unsigned Reg = I->getReg();
596      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
597        if (RegAdded.insert(Reg))
598          LRegs.push_back(Reg);
599      }
600      for (const unsigned *Alias = TRI->getAliasSet(Reg);
601           *Alias; ++Alias)
602        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
603          if (RegAdded.insert(*Alias))
604            LRegs.push_back(*Alias);
605        }
606    }
607  }
608
609  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
610    if (!Node->isMachineOpcode())
611      continue;
612    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
613    if (!TID.ImplicitDefs)
614      continue;
615    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
616      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
617        if (RegAdded.insert(*Reg))
618          LRegs.push_back(*Reg);
619      }
620      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
621           *Alias; ++Alias)
622        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
623          if (RegAdded.insert(*Alias))
624            LRegs.push_back(*Alias);
625        }
626    }
627  }
628  return !LRegs.empty();
629}
630
631
632/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
633/// schedulers.
634void ScheduleDAGRRList::ListScheduleBottomUp() {
635  unsigned CurCycle = 0;
636  // Add root to Available queue.
637  if (!SUnits.empty()) {
638    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
639    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
640    RootSU->isAvailable = true;
641    AvailableQueue->push(RootSU);
642  }
643
644  // While Available queue is not empty, grab the node with the highest
645  // priority. If it is not ready put it back.  Schedule the node.
646  SmallVector<SUnit*, 4> NotReady;
647  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
648  Sequence.reserve(SUnits.size());
649  while (!AvailableQueue->empty()) {
650    bool Delayed = false;
651    LRegsMap.clear();
652    SUnit *CurSU = AvailableQueue->pop();
653    while (CurSU) {
654      SmallVector<unsigned, 4> LRegs;
655      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
656        break;
657      Delayed = true;
658      LRegsMap.insert(std::make_pair(CurSU, LRegs));
659
660      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
661      NotReady.push_back(CurSU);
662      CurSU = AvailableQueue->pop();
663    }
664
665    // All candidates are delayed due to live physical reg dependencies.
666    // Try backtracking, code duplication, or inserting cross class copies
667    // to resolve it.
668    if (Delayed && !CurSU) {
669      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
670        SUnit *TrySU = NotReady[i];
671        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
672
673        // Try unscheduling up to the point where it's safe to schedule
674        // this node.
675        unsigned LiveCycle = CurCycle;
676        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
677          unsigned Reg = LRegs[j];
678          unsigned LCycle = LiveRegCycles[Reg];
679          LiveCycle = std::min(LiveCycle, LCycle);
680        }
681        SUnit *OldSU = Sequence[LiveCycle];
682        if (!WillCreateCycle(TrySU, OldSU))  {
683          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
684          // Force the current node to be scheduled before the node that
685          // requires the physical reg dep.
686          if (OldSU->isAvailable) {
687            OldSU->isAvailable = false;
688            AvailableQueue->remove(OldSU);
689          }
690          AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
691                              /*Reg=*/0, /*isNormalMemory=*/false,
692                              /*isMustAlias=*/false, /*isArtificial=*/true));
693          // If one or more successors has been unscheduled, then the current
694          // node is no longer avaialable. Schedule a successor that's now
695          // available instead.
696          if (!TrySU->isAvailable)
697            CurSU = AvailableQueue->pop();
698          else {
699            CurSU = TrySU;
700            TrySU->isPending = false;
701            NotReady.erase(NotReady.begin()+i);
702          }
703          break;
704        }
705      }
706
707      if (!CurSU) {
708        // Can't backtrack. Try duplicating the nodes that produces these
709        // "expensive to copy" values to break the dependency. In case even
710        // that doesn't work, insert cross class copies.
711        SUnit *TrySU = NotReady[0];
712        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
713        assert(LRegs.size() == 1 && "Can't handle this yet!");
714        unsigned Reg = LRegs[0];
715        SUnit *LRDef = LiveRegDefs[Reg];
716        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
717        if (!NewDef) {
718          // Issue expensive cross register class copies.
719          MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
720          const TargetRegisterClass *RC =
721            TRI->getPhysicalRegisterRegClass(Reg, VT);
722          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
723          if (!DestRC) {
724            assert(false && "Don't know how to copy this physical register!");
725            abort();
726          }
727          SmallVector<SUnit*, 2> Copies;
728          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
729          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
730               << " to SU #" << Copies.front()->NodeNum << "\n";
731          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
732                              /*Reg=*/0, /*isMustAlias=*/false,
733                              /*isArtificial=*/true));
734          NewDef = Copies.back();
735        }
736
737        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
738             << " to SU #" << TrySU->NodeNum << "\n";
739        LiveRegDefs[Reg] = NewDef;
740        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
741                             /*Reg=*/0, /*isMustAlias=*/false,
742                             /*isArtificial=*/true));
743        TrySU->isAvailable = false;
744        CurSU = NewDef;
745      }
746
747      if (!CurSU) {
748        assert(false && "Unable to resolve live physical register dependencies!");
749        abort();
750      }
751    }
752
753    // Add the nodes that aren't ready back onto the available list.
754    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
755      NotReady[i]->isPending = false;
756      // May no longer be available due to backtracking.
757      if (NotReady[i]->isAvailable)
758        AvailableQueue->push(NotReady[i]);
759    }
760    NotReady.clear();
761
762    if (CurSU)
763      ScheduleNodeBottomUp(CurSU, CurCycle);
764    ++CurCycle;
765  }
766
767  // Reverse the order if it is bottom up.
768  std::reverse(Sequence.begin(), Sequence.end());
769
770#ifndef NDEBUG
771  VerifySchedule(isBottomUp);
772#endif
773}
774
775//===----------------------------------------------------------------------===//
776//  Top-Down Scheduling
777//===----------------------------------------------------------------------===//
778
779/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
780/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
781void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
782  SUnit *SuccSU = SuccEdge->getSUnit();
783  --SuccSU->NumPredsLeft;
784
785#ifndef NDEBUG
786  if (SuccSU->NumPredsLeft < 0) {
787    cerr << "*** Scheduling failed! ***\n";
788    SuccSU->dump(this);
789    cerr << " has been released too many times!\n";
790    assert(0);
791  }
792#endif
793
794  if (SuccSU->NumPredsLeft == 0) {
795    SuccSU->isAvailable = true;
796    AvailableQueue->push(SuccSU);
797  }
798}
799
800/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
801/// count of its successors. If a successor pending count is zero, add it to
802/// the Available queue.
803void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
804  DOUT << "*** Scheduling [" << CurCycle << "]: ";
805  DEBUG(SU->dump(this));
806
807  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
808  SU->setDepthToAtLeast(CurCycle);
809  Sequence.push_back(SU);
810
811  // Top down: release successors
812  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
813       I != E; ++I)
814    ReleaseSucc(SU, &*I);
815
816  SU->isScheduled = true;
817  AvailableQueue->ScheduledNode(SU);
818}
819
820/// ListScheduleTopDown - The main loop of list scheduling for top-down
821/// schedulers.
822void ScheduleDAGRRList::ListScheduleTopDown() {
823  unsigned CurCycle = 0;
824
825  // All leaves to Available queue.
826  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
827    // It is available if it has no predecessors.
828    if (SUnits[i].Preds.empty()) {
829      AvailableQueue->push(&SUnits[i]);
830      SUnits[i].isAvailable = true;
831    }
832  }
833
834  // While Available queue is not empty, grab the node with the highest
835  // priority. If it is not ready put it back.  Schedule the node.
836  Sequence.reserve(SUnits.size());
837  while (!AvailableQueue->empty()) {
838    SUnit *CurSU = AvailableQueue->pop();
839
840    if (CurSU)
841      ScheduleNodeTopDown(CurSU, CurCycle);
842    ++CurCycle;
843  }
844
845#ifndef NDEBUG
846  VerifySchedule(isBottomUp);
847#endif
848}
849
850
851//===----------------------------------------------------------------------===//
852//                RegReductionPriorityQueue Implementation
853//===----------------------------------------------------------------------===//
854//
855// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
856// to reduce register pressure.
857//
858namespace {
859  template<class SF>
860  class RegReductionPriorityQueue;
861
862  /// Sorting functions for the Available queue.
863  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
864    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
865    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
866    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
867
868    bool operator()(const SUnit* left, const SUnit* right) const;
869  };
870
871  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
872    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
873    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
874    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
875
876    bool operator()(const SUnit* left, const SUnit* right) const;
877  };
878}  // end anonymous namespace
879
880static inline bool isCopyFromLiveIn(const SUnit *SU) {
881  SDNode *N = SU->getNode();
882  return N && N->getOpcode() == ISD::CopyFromReg &&
883    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
884}
885
886/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
887/// Smaller number is the higher priority.
888static unsigned
889CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
890  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
891  if (SethiUllmanNumber != 0)
892    return SethiUllmanNumber;
893
894  unsigned Extra = 0;
895  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
896       I != E; ++I) {
897    if (I->isCtrl()) continue;  // ignore chain preds
898    SUnit *PredSU = I->getSUnit();
899    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
900    if (PredSethiUllman > SethiUllmanNumber) {
901      SethiUllmanNumber = PredSethiUllman;
902      Extra = 0;
903    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl())
904      ++Extra;
905  }
906
907  SethiUllmanNumber += Extra;
908
909  if (SethiUllmanNumber == 0)
910    SethiUllmanNumber = 1;
911
912  return SethiUllmanNumber;
913}
914
915namespace {
916  template<class SF>
917  class VISIBILITY_HIDDEN RegReductionPriorityQueue
918   : public SchedulingPriorityQueue {
919    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
920    unsigned currentQueueId;
921
922  protected:
923    // SUnits - The SUnits for the current graph.
924    std::vector<SUnit> *SUnits;
925
926    const TargetInstrInfo *TII;
927    const TargetRegisterInfo *TRI;
928    ScheduleDAGRRList *scheduleDAG;
929
930    // SethiUllmanNumbers - The SethiUllman number for each node.
931    std::vector<unsigned> SethiUllmanNumbers;
932
933  public:
934    RegReductionPriorityQueue(const TargetInstrInfo *tii,
935                              const TargetRegisterInfo *tri) :
936    Queue(SF(this)), currentQueueId(0),
937    TII(tii), TRI(tri), scheduleDAG(NULL) {}
938
939    void initNodes(std::vector<SUnit> &sunits) {
940      SUnits = &sunits;
941      // Add pseudo dependency edges for two-address nodes.
942      AddPseudoTwoAddrDeps();
943      // Calculate node priorities.
944      CalculateSethiUllmanNumbers();
945    }
946
947    void addNode(const SUnit *SU) {
948      unsigned SUSize = SethiUllmanNumbers.size();
949      if (SUnits->size() > SUSize)
950        SethiUllmanNumbers.resize(SUSize*2, 0);
951      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
952    }
953
954    void updateNode(const SUnit *SU) {
955      SethiUllmanNumbers[SU->NodeNum] = 0;
956      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
957    }
958
959    void releaseState() {
960      SUnits = 0;
961      SethiUllmanNumbers.clear();
962    }
963
964    unsigned getNodePriority(const SUnit *SU) const {
965      assert(SU->NodeNum < SethiUllmanNumbers.size());
966      unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
967      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
968        // CopyFromReg should be close to its def because it restricts
969        // allocation choices. But if it is a livein then perhaps we want it
970        // closer to its uses so it can be coalesced.
971        return 0xffff;
972      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
973        // CopyToReg should be close to its uses to facilitate coalescing and
974        // avoid spilling.
975        return 0;
976      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
977               Opc == TargetInstrInfo::INSERT_SUBREG)
978        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
979        // facilitate coalescing.
980        return 0;
981      else if (SU->NumSuccs == 0)
982        // If SU does not have a use, i.e. it doesn't produce a value that would
983        // be consumed (e.g. store), then it terminates a chain of computation.
984        // Give it a large SethiUllman number so it will be scheduled right
985        // before its predecessors that it doesn't lengthen their live ranges.
986        return 0xffff;
987      else if (SU->NumPreds == 0)
988        // If SU does not have a def, schedule it close to its uses because it
989        // does not lengthen any live ranges.
990        return 0;
991      else
992        return SethiUllmanNumbers[SU->NodeNum];
993    }
994
995    unsigned size() const { return Queue.size(); }
996
997    bool empty() const { return Queue.empty(); }
998
999    void push(SUnit *U) {
1000      assert(!U->NodeQueueId && "Node in the queue already");
1001      U->NodeQueueId = ++currentQueueId;
1002      Queue.push(U);
1003    }
1004
1005    void push_all(const std::vector<SUnit *> &Nodes) {
1006      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1007        push(Nodes[i]);
1008    }
1009
1010    SUnit *pop() {
1011      if (empty()) return NULL;
1012      SUnit *V = Queue.top();
1013      Queue.pop();
1014      V->NodeQueueId = 0;
1015      return V;
1016    }
1017
1018    void remove(SUnit *SU) {
1019      assert(!Queue.empty() && "Queue is empty!");
1020      assert(SU->NodeQueueId != 0 && "Not in queue!");
1021      Queue.erase_one(SU);
1022      SU->NodeQueueId = 0;
1023    }
1024
1025    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1026      scheduleDAG = scheduleDag;
1027    }
1028
1029  protected:
1030    bool canClobber(const SUnit *SU, const SUnit *Op);
1031    void AddPseudoTwoAddrDeps();
1032    void CalculateSethiUllmanNumbers();
1033  };
1034
1035  typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1036    BURegReductionPriorityQueue;
1037
1038  typedef RegReductionPriorityQueue<td_ls_rr_sort>
1039    TDRegReductionPriorityQueue;
1040}
1041
1042/// closestSucc - Returns the scheduled cycle of the successor which is
1043/// closet to the current cycle.
1044static unsigned closestSucc(const SUnit *SU) {
1045  unsigned MaxHeight = 0;
1046  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1047       I != E; ++I) {
1048    unsigned Height = I->getSUnit()->getHeight();
1049    // If there are bunch of CopyToRegs stacked up, they should be considered
1050    // to be at the same position.
1051    if (I->getSUnit()->getNode() &&
1052        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
1053      Height = closestSucc(I->getSUnit())+1;
1054    if (Height > MaxHeight)
1055      MaxHeight = Height;
1056  }
1057  return MaxHeight;
1058}
1059
1060/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1061/// for scratch registers. Live-in operands and live-out results don't count
1062/// since they are "fixed".
1063static unsigned calcMaxScratches(const SUnit *SU) {
1064  unsigned Scratches = 0;
1065  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1066       I != E; ++I) {
1067    if (I->isCtrl()) continue;  // ignore chain preds
1068    if (!I->getSUnit()->getNode() ||
1069        I->getSUnit()->getNode()->getOpcode() != ISD::CopyFromReg)
1070      Scratches++;
1071  }
1072  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1073       I != E; ++I) {
1074    if (I->isCtrl()) continue;  // ignore chain succs
1075    if (!I->getSUnit()->getNode() ||
1076        I->getSUnit()->getNode()->getOpcode() != ISD::CopyToReg)
1077      Scratches += 10;
1078  }
1079  return Scratches;
1080}
1081
1082// Bottom up
1083bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1084  unsigned LPriority = SPQ->getNodePriority(left);
1085  unsigned RPriority = SPQ->getNodePriority(right);
1086  if (LPriority != RPriority)
1087    return LPriority > RPriority;
1088
1089  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1090  // e.g.
1091  // t1 = op t2, c1
1092  // t3 = op t4, c2
1093  //
1094  // and the following instructions are both ready.
1095  // t2 = op c3
1096  // t4 = op c4
1097  //
1098  // Then schedule t2 = op first.
1099  // i.e.
1100  // t4 = op c4
1101  // t2 = op c3
1102  // t1 = op t2, c1
1103  // t3 = op t4, c2
1104  //
1105  // This creates more short live intervals.
1106  unsigned LDist = closestSucc(left);
1107  unsigned RDist = closestSucc(right);
1108  if (LDist != RDist)
1109    return LDist < RDist;
1110
1111  // Intuitively, it's good to push down instructions whose results are
1112  // liveout so their long live ranges won't conflict with other values
1113  // which are needed inside the BB. Further prioritize liveout instructions
1114  // by the number of operands which are calculated within the BB.
1115  unsigned LScratch = calcMaxScratches(left);
1116  unsigned RScratch = calcMaxScratches(right);
1117  if (LScratch != RScratch)
1118    return LScratch > RScratch;
1119
1120  if (left->getHeight() != right->getHeight())
1121    return left->getHeight() > right->getHeight();
1122
1123  if (left->getDepth() != right->getDepth())
1124    return left->getDepth() < right->getDepth();
1125
1126  assert(left->NodeQueueId && right->NodeQueueId &&
1127         "NodeQueueId cannot be zero");
1128  return (left->NodeQueueId > right->NodeQueueId);
1129}
1130
1131template<class SF>
1132bool
1133RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1134  if (SU->isTwoAddress) {
1135    unsigned Opc = SU->getNode()->getMachineOpcode();
1136    const TargetInstrDesc &TID = TII->get(Opc);
1137    unsigned NumRes = TID.getNumDefs();
1138    unsigned NumOps = TID.getNumOperands() - NumRes;
1139    for (unsigned i = 0; i != NumOps; ++i) {
1140      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1141        SDNode *DU = SU->getNode()->getOperand(i).getNode();
1142        if (DU->getNodeId() != -1 &&
1143            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1144          return true;
1145      }
1146    }
1147  }
1148  return false;
1149}
1150
1151
1152/// hasCopyToRegUse - Return true if SU has a value successor that is a
1153/// CopyToReg node.
1154static bool hasCopyToRegUse(const SUnit *SU) {
1155  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1156       I != E; ++I) {
1157    if (I->isCtrl()) continue;
1158    const SUnit *SuccSU = I->getSUnit();
1159    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
1160      return true;
1161  }
1162  return false;
1163}
1164
1165/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1166/// physical register defs.
1167static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
1168                                  const TargetInstrInfo *TII,
1169                                  const TargetRegisterInfo *TRI) {
1170  SDNode *N = SuccSU->getNode();
1171  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1172  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1173  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1174  const unsigned *SUImpDefs =
1175    TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
1176  if (!SUImpDefs)
1177    return false;
1178  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1179    MVT VT = N->getValueType(i);
1180    if (VT == MVT::Flag || VT == MVT::Other)
1181      continue;
1182    if (!N->hasAnyUseOfValue(i))
1183      continue;
1184    unsigned Reg = ImpDefs[i - NumDefs];
1185    for (;*SUImpDefs; ++SUImpDefs) {
1186      unsigned SUReg = *SUImpDefs;
1187      if (TRI->regsOverlap(Reg, SUReg))
1188        return true;
1189    }
1190  }
1191  return false;
1192}
1193
1194/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1195/// it as a def&use operand. Add a pseudo control edge from it to the other
1196/// node (if it won't create a cycle) so the two-address one will be scheduled
1197/// first (lower in the schedule). If both nodes are two-address, favor the
1198/// one that has a CopyToReg use (more likely to be a loop induction update).
1199/// If both are two-address, but one is commutable while the other is not
1200/// commutable, favor the one that's not commutable.
1201template<class SF>
1202void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1203  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1204    SUnit *SU = &(*SUnits)[i];
1205    if (!SU->isTwoAddress)
1206      continue;
1207
1208    SDNode *Node = SU->getNode();
1209    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
1210      continue;
1211
1212    unsigned Opc = Node->getMachineOpcode();
1213    const TargetInstrDesc &TID = TII->get(Opc);
1214    unsigned NumRes = TID.getNumDefs();
1215    unsigned NumOps = TID.getNumOperands() - NumRes;
1216    for (unsigned j = 0; j != NumOps; ++j) {
1217      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
1218        continue;
1219      SDNode *DU = SU->getNode()->getOperand(j).getNode();
1220      if (DU->getNodeId() == -1)
1221        continue;
1222      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1223      if (!DUSU) continue;
1224      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1225           E = DUSU->Succs.end(); I != E; ++I) {
1226        if (I->isCtrl()) continue;
1227        SUnit *SuccSU = I->getSUnit();
1228        if (SuccSU == SU)
1229          continue;
1230        // Be conservative. Ignore if nodes aren't at roughly the same
1231        // depth and height.
1232        if (SuccSU->getHeight() < SU->getHeight() &&
1233            (SU->getHeight() - SuccSU->getHeight()) > 1)
1234          continue;
1235        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
1236          continue;
1237        // Don't constrain nodes with physical register defs if the
1238        // predecessor can clobber them.
1239        if (SuccSU->hasPhysRegDefs) {
1240          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1241            continue;
1242        }
1243        // Don't constraint extract_subreg / insert_subreg these may be
1244        // coalesced away. We don't them close to their uses.
1245        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
1246        if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1247            SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1248          continue;
1249        if ((!canClobber(SuccSU, DUSU) ||
1250             (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1251             (!SU->isCommutable && SuccSU->isCommutable)) &&
1252            !scheduleDAG->IsReachable(SuccSU, SU)) {
1253          DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum
1254               << " to SU #" << SuccSU->NodeNum << "\n";
1255          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
1256                                        /*Reg=*/0, /*isMustAlias=*/false,
1257                                        /*isArtificial=*/true));
1258        }
1259      }
1260    }
1261  }
1262}
1263
1264/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1265/// scheduling units.
1266template<class SF>
1267void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1268  SethiUllmanNumbers.assign(SUnits->size(), 0);
1269
1270  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1271    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1272}
1273
1274/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1275/// predecessors of the successors of the SUnit SU. Stop when the provided
1276/// limit is exceeded.
1277static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1278                                                    unsigned Limit) {
1279  unsigned Sum = 0;
1280  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1281       I != E; ++I) {
1282    const SUnit *SuccSU = I->getSUnit();
1283    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1284         EE = SuccSU->Preds.end(); II != EE; ++II) {
1285      SUnit *PredSU = II->getSUnit();
1286      if (!PredSU->isScheduled)
1287        if (++Sum > Limit)
1288          return Sum;
1289    }
1290  }
1291  return Sum;
1292}
1293
1294
1295// Top down
1296bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1297  unsigned LPriority = SPQ->getNodePriority(left);
1298  unsigned RPriority = SPQ->getNodePriority(right);
1299  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
1300  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
1301  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1302  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1303  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1304  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1305
1306  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1307    return false;
1308  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1309    return true;
1310
1311  if (LIsFloater)
1312    LBonus -= 2;
1313  if (RIsFloater)
1314    RBonus -= 2;
1315  if (left->NumSuccs == 1)
1316    LBonus += 2;
1317  if (right->NumSuccs == 1)
1318    RBonus += 2;
1319
1320  if (LPriority+LBonus != RPriority+RBonus)
1321    return LPriority+LBonus < RPriority+RBonus;
1322
1323  if (left->getDepth() != right->getDepth())
1324    return left->getDepth() < right->getDepth();
1325
1326  if (left->NumSuccsLeft != right->NumSuccsLeft)
1327    return left->NumSuccsLeft > right->NumSuccsLeft;
1328
1329  assert(left->NodeQueueId && right->NodeQueueId &&
1330         "NodeQueueId cannot be zero");
1331  return (left->NodeQueueId > right->NodeQueueId);
1332}
1333
1334//===----------------------------------------------------------------------===//
1335//                         Public Constructor Functions
1336//===----------------------------------------------------------------------===//
1337
1338llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1339                                                    SelectionDAG *DAG,
1340                                                    const TargetMachine *TM,
1341                                                    MachineBasicBlock *BB,
1342                                                    bool) {
1343  const TargetInstrInfo *TII = TM->getInstrInfo();
1344  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1345
1346  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1347
1348  ScheduleDAGRRList *SD =
1349    new ScheduleDAGRRList(DAG, BB, *TM, true, PQ);
1350  PQ->setScheduleDAG(SD);
1351  return SD;
1352}
1353
1354llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1355                                                    SelectionDAG *DAG,
1356                                                    const TargetMachine *TM,
1357                                                    MachineBasicBlock *BB,
1358                                                    bool) {
1359  const TargetInstrInfo *TII = TM->getInstrInfo();
1360  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1361
1362  TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI);
1363
1364  ScheduleDAGRRList *SD = new ScheduleDAGRRList(DAG, BB, *TM, false, PQ);
1365  PQ->setScheduleDAG(SD);
1366  return SD;
1367}
1368