SjLjEHPrepare.cpp revision 3669915c6dc8d57a4525fb0c592e6c8c1df098f5
1//===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which use SjLj
11// based exception handling.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sjljehprepare"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Transforms/Utils/BasicBlockUtils.h"
27#include "llvm/Transforms/Utils/Local.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include <set>
33using namespace llvm;
34
35STATISTIC(NumInvokes, "Number of invokes replaced");
36STATISTIC(NumUnwinds, "Number of unwinds replaced");
37STATISTIC(NumSpilled, "Number of registers live across unwind edges");
38
39namespace {
40  class SjLjEHPass : public FunctionPass {
41    const TargetLowering *TLI;
42    Type *FunctionContextTy;
43    Constant *RegisterFn;
44    Constant *UnregisterFn;
45    Constant *BuiltinSetjmpFn;
46    Constant *FrameAddrFn;
47    Constant *StackAddrFn;
48    Constant *StackRestoreFn;
49    Constant *LSDAAddrFn;
50    Value *PersonalityFn;
51    Constant *SelectorFn;
52    Constant *ExceptionFn;
53    Constant *CallSiteFn;
54    Constant *DispatchSetupFn;
55    Value *CallSite;
56    DenseMap<InvokeInst*, BasicBlock*> LPadSuccMap;
57  public:
58    static char ID; // Pass identification, replacement for typeid
59    explicit SjLjEHPass(const TargetLowering *tli = NULL)
60      : FunctionPass(ID), TLI(tli) { }
61    bool doInitialization(Module &M);
62    bool runOnFunction(Function &F);
63
64    virtual void getAnalysisUsage(AnalysisUsage &AU) const {}
65    const char *getPassName() const {
66      return "SJLJ Exception Handling preparation";
67    }
68
69  private:
70    void insertCallSiteStore(Instruction *I, int Number, Value *CallSite);
71    void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite,
72                            SwitchInst *CatchSwitch);
73    void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
74    void splitLandingPad(InvokeInst *II);
75    bool insertSjLjEHSupport(Function &F);
76  };
77} // end anonymous namespace
78
79char SjLjEHPass::ID = 0;
80
81// Public Interface To the SjLjEHPass pass.
82FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) {
83  return new SjLjEHPass(TLI);
84}
85// doInitialization - Set up decalarations and types needed to process
86// exceptions.
87bool SjLjEHPass::doInitialization(Module &M) {
88  // Build the function context structure.
89  // builtin_setjmp uses a five word jbuf
90  Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
91  Type *Int32Ty = Type::getInt32Ty(M.getContext());
92  FunctionContextTy =
93    StructType::get(VoidPtrTy,                        // __prev
94                    Int32Ty,                          // call_site
95                    ArrayType::get(Int32Ty, 4),       // __data
96                    VoidPtrTy,                        // __personality
97                    VoidPtrTy,                        // __lsda
98                    ArrayType::get(VoidPtrTy, 5),     // __jbuf
99                    NULL);
100  RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
101                                     Type::getVoidTy(M.getContext()),
102                                     PointerType::getUnqual(FunctionContextTy),
103                                     (Type *)0);
104  UnregisterFn =
105    M.getOrInsertFunction("_Unwind_SjLj_Unregister",
106                          Type::getVoidTy(M.getContext()),
107                          PointerType::getUnqual(FunctionContextTy),
108                          (Type *)0);
109  FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
110  StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
111  StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
112  BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
113  LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
114  SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
115  ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
116  CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
117  DispatchSetupFn
118    = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_dispatch_setup);
119  PersonalityFn = 0;
120
121  return true;
122}
123
124/// insertCallSiteStore - Insert a store of the call-site value to the
125/// function context
126void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number,
127                                     Value *CallSite) {
128  ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()),
129                                              Number);
130  // Insert a store of the call-site number
131  new StoreInst(CallSiteNoC, CallSite, true, I);  // volatile
132}
133
134/// splitLandingPad - Split a landing pad. This takes considerable care because
135/// of PHIs and other nasties. The problem is that the jump table needs to jump
136/// to the landing pad block. However, the landing pad block can be jumped to
137/// only by an invoke instruction. So we clone the landingpad instruction into
138/// its own basic block, have the invoke jump to there. The landingpad
139/// instruction's basic block's successor is now the target for the jump table.
140///
141/// But because of PHI nodes, we need to create another basic block for the jump
142/// table to jump to. This is definitely a hack, because the values for the PHI
143/// nodes may not be defined on the edge from the jump table. But that's okay,
144/// because the jump table is simply a construct to mimic what is happening in
145/// the CFG. So the values are mysteriously there, even though there is no value
146/// for the PHI from the jump table's edge (hence calling this a hack).
147void SjLjEHPass::splitLandingPad(InvokeInst *II) {
148  SmallVector<BasicBlock*, 2> NewBBs;
149  SplitLandingPadPredecessors(II->getUnwindDest(), II->getParent(),
150                              ".1", ".2", this, NewBBs);
151
152  // Create an empty block so that the jump table has something to jump to
153  // which doesn't have any PHI nodes.
154  BasicBlock *LPad = NewBBs[0];
155  BasicBlock *Succ = *succ_begin(LPad);
156  BasicBlock *JumpTo = BasicBlock::Create(II->getContext(), "jt.land",
157                                          LPad->getParent(), Succ);
158  LPad->getTerminator()->eraseFromParent();
159  BranchInst::Create(JumpTo, LPad);
160  BranchInst::Create(Succ, JumpTo);
161  LPadSuccMap[II] = JumpTo;
162
163  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
164    PHINode *PN = cast<PHINode>(I);
165    Value *Val = PN->removeIncomingValue(LPad, false);
166    PN->addIncoming(Val, JumpTo);
167  }
168}
169
170/// markInvokeCallSite - Insert code to mark the call_site for this invoke
171void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo,
172                                    Value *CallSite,
173                                    SwitchInst *CatchSwitch) {
174  ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
175                                              InvokeNo);
176  // The runtime comes back to the dispatcher with the call_site - 1 in
177  // the context. Odd, but there it is.
178  ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
179                                             InvokeNo - 1);
180
181  // If the unwind edge has phi nodes, split the edge.
182  if (isa<PHINode>(II->getUnwindDest()->begin())) {
183    // FIXME: New EH - This if-condition will be always true in the new scheme.
184    if (II->getUnwindDest()->isLandingPad())
185      splitLandingPad(II);
186    else
187      SplitCriticalEdge(II, 1, this);
188
189    // If there are any phi nodes left, they must have a single predecessor.
190    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
191      PN->replaceAllUsesWith(PN->getIncomingValue(0));
192      PN->eraseFromParent();
193    }
194  }
195
196  // Insert the store of the call site value
197  insertCallSiteStore(II, InvokeNo, CallSite);
198
199  // Record the call site value for the back end so it stays associated with
200  // the invoke.
201  CallInst::Create(CallSiteFn, CallSiteNoC, "", II);
202
203  // Add a switch case to our unwind block.
204  if (BasicBlock *SuccBB = LPadSuccMap[II]) {
205    CatchSwitch->addCase(SwitchValC, SuccBB);
206  } else {
207    CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
208  }
209
210  // We still want this to look like an invoke so we emit the LSDA properly,
211  // so we don't transform the invoke into a call here.
212}
213
214/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
215/// we reach blocks we've already seen.
216static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
217  if (!LiveBBs.insert(BB).second) return; // already been here.
218
219  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
220    MarkBlocksLiveIn(*PI, LiveBBs);
221}
222
223/// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
224/// we spill into a stack location, guaranteeing that there is nothing live
225/// across the unwind edge.  This process also splits all critical edges
226/// coming out of invoke's.
227/// FIXME: Move this function to a common utility file (Local.cpp?) so
228/// both SjLj and LowerInvoke can use it.
229void SjLjEHPass::
230splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
231  // First step, split all critical edges from invoke instructions.
232  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
233    InvokeInst *II = Invokes[i];
234    SplitCriticalEdge(II, 0, this);
235
236    // FIXME: New EH - This if-condition will be always true in the new scheme.
237    if (II->getUnwindDest()->isLandingPad())
238      splitLandingPad(II);
239    else
240      SplitCriticalEdge(II, 1, this);
241
242    assert(!isa<PHINode>(II->getNormalDest()) &&
243           !isa<PHINode>(II->getUnwindDest()) &&
244           "Critical edge splitting left single entry phi nodes?");
245  }
246
247  Function *F = Invokes.back()->getParent()->getParent();
248
249  // To avoid having to handle incoming arguments specially, we lower each arg
250  // to a copy instruction in the entry block.  This ensures that the argument
251  // value itself cannot be live across the entry block.
252  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
253  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
254        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
255    ++AfterAllocaInsertPt;
256  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
257       AI != E; ++AI) {
258    Type *Ty = AI->getType();
259    // Aggregate types can't be cast, but are legal argument types, so we have
260    // to handle them differently. We use an extract/insert pair as a
261    // lightweight method to achieve the same goal.
262    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
263      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
264      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
265      NI->insertAfter(EI);
266      AI->replaceAllUsesWith(NI);
267      // Set the operand of the instructions back to the AllocaInst.
268      EI->setOperand(0, AI);
269      NI->setOperand(0, AI);
270    } else {
271      // This is always a no-op cast because we're casting AI to AI->getType()
272      // so src and destination types are identical. BitCast is the only
273      // possibility.
274      CastInst *NC = new BitCastInst(
275        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
276      AI->replaceAllUsesWith(NC);
277      // Set the operand of the cast instruction back to the AllocaInst.
278      // Normally it's forbidden to replace a CastInst's operand because it
279      // could cause the opcode to reflect an illegal conversion. However,
280      // we're replacing it here with the same value it was constructed with.
281      // We do this because the above replaceAllUsesWith() clobbered the
282      // operand, but we want this one to remain.
283      NC->setOperand(0, AI);
284    }
285  }
286
287  // Finally, scan the code looking for instructions with bad live ranges.
288  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
289    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
290      // Ignore obvious cases we don't have to handle.  In particular, most
291      // instructions either have no uses or only have a single use inside the
292      // current block.  Ignore them quickly.
293      Instruction *Inst = II;
294      if (Inst->use_empty()) continue;
295      if (Inst->hasOneUse() &&
296          cast<Instruction>(Inst->use_back())->getParent() == BB &&
297          !isa<PHINode>(Inst->use_back())) continue;
298
299      // If this is an alloca in the entry block, it's not a real register
300      // value.
301      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
302        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
303          continue;
304
305      // Avoid iterator invalidation by copying users to a temporary vector.
306      SmallVector<Instruction*,16> Users;
307      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
308           UI != E; ++UI) {
309        Instruction *User = cast<Instruction>(*UI);
310        if (User->getParent() != BB || isa<PHINode>(User))
311          Users.push_back(User);
312      }
313
314      // Find all of the blocks that this value is live in.
315      std::set<BasicBlock*> LiveBBs;
316      LiveBBs.insert(Inst->getParent());
317      while (!Users.empty()) {
318        Instruction *U = Users.back();
319        Users.pop_back();
320
321        if (!isa<PHINode>(U)) {
322          MarkBlocksLiveIn(U->getParent(), LiveBBs);
323        } else {
324          // Uses for a PHI node occur in their predecessor block.
325          PHINode *PN = cast<PHINode>(U);
326          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
327            if (PN->getIncomingValue(i) == Inst)
328              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
329        }
330      }
331
332      // Now that we know all of the blocks that this thing is live in, see if
333      // it includes any of the unwind locations.
334      bool NeedsSpill = false;
335      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
336        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
337        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
338          NeedsSpill = true;
339        }
340      }
341
342      // If we decided we need a spill, do it.
343      // FIXME: Spilling this way is overkill, as it forces all uses of
344      // the value to be reloaded from the stack slot, even those that aren't
345      // in the unwind blocks. We should be more selective.
346      if (NeedsSpill) {
347        ++NumSpilled;
348        DemoteRegToStack(*Inst, true);
349      }
350    }
351}
352
353/// CreateLandingPadLoad - Load the exception handling values and insert them
354/// into a structure.
355static Instruction *CreateLandingPadLoad(Function &F, Value *ExnAddr,
356                                         Value *SelAddr,
357                                         BasicBlock::iterator InsertPt) {
358  Value *Exn = new LoadInst(ExnAddr, "exn", false,
359                            InsertPt);
360  Type *Ty = Type::getInt8PtrTy(F.getContext());
361  Exn = CastInst::Create(Instruction::IntToPtr, Exn, Ty, "", InsertPt);
362  Value *Sel = new LoadInst(SelAddr, "sel", false, InsertPt);
363
364  Ty = StructType::get(Exn->getType(), Sel->getType(), NULL);
365  InsertValueInst *LPadVal = InsertValueInst::Create(llvm::UndefValue::get(Ty),
366                                                     Exn, 0,
367                                                     "lpad.val", InsertPt);
368  return InsertValueInst::Create(LPadVal, Sel, 1, "lpad.val", InsertPt);
369}
370
371/// ReplaceLandingPadVal - Replace the landingpad instruction's value with a
372/// load from the stored values (via CreateLandingPadLoad). This looks through
373/// PHI nodes, and removes them if they are dead.
374static void ReplaceLandingPadVal(Function &F, Instruction *Inst, Value *ExnAddr,
375                                 Value *SelAddr) {
376  if (Inst->use_empty()) return;
377
378  while (!Inst->use_empty()) {
379    Instruction *I = cast<Instruction>(Inst->use_back());
380
381    if (PHINode *PN = dyn_cast<PHINode>(I)) {
382      ReplaceLandingPadVal(F, PN, ExnAddr, SelAddr);
383      if (PN->use_empty()) PN->eraseFromParent();
384      continue;
385    }
386
387    I->replaceUsesOfWith(Inst, CreateLandingPadLoad(F, ExnAddr, SelAddr, I));
388  }
389}
390
391bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
392  SmallVector<ReturnInst*,16> Returns;
393  SmallVector<UnwindInst*,16> Unwinds;
394  SmallVector<InvokeInst*,16> Invokes;
395
396  // Look through the terminators of the basic blocks to find invokes, returns
397  // and unwinds.
398  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
399    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
400      // Remember all return instructions in case we insert an invoke into this
401      // function.
402      Returns.push_back(RI);
403    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
404      Invokes.push_back(II);
405    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
406      Unwinds.push_back(UI);
407    }
408  }
409
410  NumInvokes += Invokes.size();
411  NumUnwinds += Unwinds.size();
412
413  // If we don't have any invokes, there's nothing to do.
414  if (Invokes.empty()) return false;
415
416  // Find the eh.selector.*, eh.exception and alloca calls.
417  //
418  // Remember any allocas() that aren't in the entry block, as the
419  // jmpbuf saved SP will need to be updated for them.
420  //
421  // We'll use the first eh.selector to determine the right personality
422  // function to use. For SJLJ, we always use the same personality for the
423  // whole function, not on a per-selector basis.
424  // FIXME: That's a bit ugly. Better way?
425  SmallVector<CallInst*,16> EH_Selectors;
426  SmallVector<CallInst*,16> EH_Exceptions;
427  SmallVector<Instruction*,16> JmpbufUpdatePoints;
428
429  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
430    // Note: Skip the entry block since there's nothing there that interests
431    // us. eh.selector and eh.exception shouldn't ever be there, and we
432    // want to disregard any allocas that are there.
433    //
434    // FIXME: This is awkward. The new EH scheme won't need to skip the entry
435    //        block.
436    if (BB == F.begin()) {
437      if (InvokeInst *II = dyn_cast<InvokeInst>(F.begin()->getTerminator())) {
438        // FIXME: This will be always non-NULL in the new EH.
439        if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
440          if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
441      }
442
443      continue;
444    }
445
446    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
447      if (CallInst *CI = dyn_cast<CallInst>(I)) {
448        if (CI->getCalledFunction() == SelectorFn) {
449          if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1);
450          EH_Selectors.push_back(CI);
451        } else if (CI->getCalledFunction() == ExceptionFn) {
452          EH_Exceptions.push_back(CI);
453        } else if (CI->getCalledFunction() == StackRestoreFn) {
454          JmpbufUpdatePoints.push_back(CI);
455        }
456      } else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
457        JmpbufUpdatePoints.push_back(AI);
458      } else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
459        // FIXME: This will be always non-NULL in the new EH.
460        if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
461          if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
462      }
463    }
464  }
465
466  // If we don't have any eh.selector calls, we can't determine the personality
467  // function. Without a personality function, we can't process exceptions.
468  if (!PersonalityFn) return false;
469
470  // We have invokes, so we need to add register/unregister calls to get this
471  // function onto the global unwind stack.
472  //
473  // First thing we need to do is scan the whole function for values that are
474  // live across unwind edges.  Each value that is live across an unwind edge we
475  // spill into a stack location, guaranteeing that there is nothing live across
476  // the unwind edge.  This process also splits all critical edges coming out of
477  // invoke's.
478  splitLiveRangesAcrossInvokes(Invokes);
479
480
481  SmallVector<LandingPadInst*, 16> LandingPads;
482  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
483    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
484      // FIXME: This will be always non-NULL in the new EH.
485      if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
486        LandingPads.push_back(LPI);
487  }
488
489
490  BasicBlock *EntryBB = F.begin();
491  // Create an alloca for the incoming jump buffer ptr and the new jump buffer
492  // that needs to be restored on all exits from the function.  This is an
493  // alloca because the value needs to be added to the global context list.
494  unsigned Align = 4; // FIXME: Should be a TLI check?
495  AllocaInst *FunctionContext =
496    new AllocaInst(FunctionContextTy, 0, Align,
497                   "fcn_context", F.begin()->begin());
498
499  Value *Idxs[2];
500  Type *Int32Ty = Type::getInt32Ty(F.getContext());
501  Value *Zero = ConstantInt::get(Int32Ty, 0);
502  // We need to also keep around a reference to the call_site field
503  Idxs[0] = Zero;
504  Idxs[1] = ConstantInt::get(Int32Ty, 1);
505  CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, "call_site",
506                                       EntryBB->getTerminator());
507
508  // The exception selector comes back in context->data[1]
509  Idxs[1] = ConstantInt::get(Int32Ty, 2);
510  Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, "fc_data",
511                                            EntryBB->getTerminator());
512  Idxs[1] = ConstantInt::get(Int32Ty, 1);
513  Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
514                                                  "exc_selector_gep",
515                                                  EntryBB->getTerminator());
516  // The exception value comes back in context->data[0]
517  Idxs[1] = Zero;
518  Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
519                                                   "exception_gep",
520                                                   EntryBB->getTerminator());
521
522  // The result of the eh.selector call will be replaced with a a reference to
523  // the selector value returned in the function context. We leave the selector
524  // itself so the EH analysis later can use it.
525  for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
526    CallInst *I = EH_Selectors[i];
527    Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
528    I->replaceAllUsesWith(SelectorVal);
529  }
530
531  // eh.exception calls are replaced with references to the proper location in
532  // the context. Unlike eh.selector, the eh.exception calls are removed
533  // entirely.
534  for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
535    CallInst *I = EH_Exceptions[i];
536    // Possible for there to be duplicates, so check to make sure the
537    // instruction hasn't already been removed.
538    if (!I->getParent()) continue;
539    Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
540    Type *Ty = Type::getInt8PtrTy(F.getContext());
541    Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);
542
543    I->replaceAllUsesWith(Val);
544    I->eraseFromParent();
545  }
546
547  for (unsigned i = 0, e = LandingPads.size(); i != e; ++i)
548    ReplaceLandingPadVal(F, LandingPads[i], ExceptionAddr, SelectorAddr);
549
550  // The entry block changes to have the eh.sjlj.setjmp, with a conditional
551  // branch to a dispatch block for non-zero returns. If we return normally,
552  // we're not handling an exception and just register the function context and
553  // continue.
554
555  // Create the dispatch block.  The dispatch block is basically a big switch
556  // statement that goes to all of the invoke landing pads.
557  BasicBlock *DispatchBlock =
558    BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);
559
560  // Insert a load of the callsite in the dispatch block, and a switch on its
561  // value. By default, we issue a trap statement.
562  BasicBlock *TrapBlock =
563    BasicBlock::Create(F.getContext(), "trapbb", &F);
564  CallInst::Create(Intrinsic::getDeclaration(F.getParent(), Intrinsic::trap),
565                   "", TrapBlock);
566  new UnreachableInst(F.getContext(), TrapBlock);
567
568  Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
569                                     DispatchBlock);
570  SwitchInst *DispatchSwitch =
571    SwitchInst::Create(DispatchLoad, TrapBlock, Invokes.size(),
572                       DispatchBlock);
573  // Split the entry block to insert the conditional branch for the setjmp.
574  BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
575                                                   "eh.sjlj.setjmp.cont");
576
577  // Populate the Function Context
578  //   1. LSDA address
579  //   2. Personality function address
580  //   3. jmpbuf (save SP, FP and call eh.sjlj.setjmp)
581
582  // LSDA address
583  Idxs[0] = Zero;
584  Idxs[1] = ConstantInt::get(Int32Ty, 4);
585  Value *LSDAFieldPtr =
586    GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
587                              EntryBB->getTerminator());
588  Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
589                                 EntryBB->getTerminator());
590  new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
591
592  Idxs[1] = ConstantInt::get(Int32Ty, 3);
593  Value *PersonalityFieldPtr =
594    GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
595                              EntryBB->getTerminator());
596  new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
597                EntryBB->getTerminator());
598
599  // Save the frame pointer.
600  Idxs[1] = ConstantInt::get(Int32Ty, 5);
601  Value *JBufPtr
602    = GetElementPtrInst::Create(FunctionContext, Idxs, "jbuf_gep",
603                                EntryBB->getTerminator());
604  Idxs[1] = ConstantInt::get(Int32Ty, 0);
605  Value *FramePtr =
606    GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
607                              EntryBB->getTerminator());
608
609  Value *Val = CallInst::Create(FrameAddrFn,
610                                ConstantInt::get(Int32Ty, 0),
611                                "fp",
612                                EntryBB->getTerminator());
613  new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
614
615  // Save the stack pointer.
616  Idxs[1] = ConstantInt::get(Int32Ty, 2);
617  Value *StackPtr =
618    GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
619                              EntryBB->getTerminator());
620
621  Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
622  new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
623
624  // Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
625  Value *SetjmpArg =
626    CastInst::Create(Instruction::BitCast, JBufPtr,
627                     Type::getInt8PtrTy(F.getContext()), "",
628                     EntryBB->getTerminator());
629  Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
630                                        "dispatch",
631                                        EntryBB->getTerminator());
632
633  // Add a call to dispatch_setup after the setjmp call. This is expanded to any
634  // target-specific setup that needs to be done.
635  CallInst::Create(DispatchSetupFn, DispatchVal, "", EntryBB->getTerminator());
636
637  // check the return value of the setjmp. non-zero goes to dispatcher.
638  Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
639                                 ICmpInst::ICMP_EQ, DispatchVal, Zero,
640                                 "notunwind");
641  // Nuke the uncond branch.
642  EntryBB->getTerminator()->eraseFromParent();
643
644  // Put in a new condbranch in its place.
645  BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);
646
647  // Register the function context and make sure it's known to not throw
648  CallInst *Register =
649    CallInst::Create(RegisterFn, FunctionContext, "",
650                     ContBlock->getTerminator());
651  Register->setDoesNotThrow();
652
653  // At this point, we are all set up, update the invoke instructions to mark
654  // their call_site values, and fill in the dispatch switch accordingly.
655  for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
656    markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);
657
658  // Mark call instructions that aren't nounwind as no-action (call_site ==
659  // -1). Skip the entry block, as prior to then, no function context has been
660  // created for this function and any unexpected exceptions thrown will go
661  // directly to the caller's context, which is what we want anyway, so no need
662  // to do anything here.
663  for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
664    for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
665      if (CallInst *CI = dyn_cast<CallInst>(I)) {
666        // Ignore calls to the EH builtins (eh.selector, eh.exception)
667        Constant *Callee = CI->getCalledFunction();
668        if (Callee != SelectorFn && Callee != ExceptionFn
669            && !CI->doesNotThrow())
670          insertCallSiteStore(CI, -1, CallSite);
671      } else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
672        insertCallSiteStore(RI, -1, CallSite);
673      }
674  }
675
676  // Replace all unwinds with a branch to the unwind handler.
677  // ??? Should this ever happen with sjlj exceptions?
678  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
679    BranchInst::Create(TrapBlock, Unwinds[i]);
680    Unwinds[i]->eraseFromParent();
681  }
682
683  // Following any allocas not in the entry block, update the saved SP in the
684  // jmpbuf to the new value.
685  for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) {
686    Instruction *AI = JmpbufUpdatePoints[i];
687    Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
688    StackAddr->insertAfter(AI);
689    Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
690    StoreStackAddr->insertAfter(StackAddr);
691  }
692
693  // Finally, for any returns from this function, if this function contains an
694  // invoke, add a call to unregister the function context.
695  for (unsigned i = 0, e = Returns.size(); i != e; ++i)
696    CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);
697
698  return true;
699}
700
701bool SjLjEHPass::runOnFunction(Function &F) {
702  bool Res = insertSjLjEHSupport(F);
703  return Res;
704}
705