ExecutionEngine.cpp revision 2c39b15073db81d93bb629303915b7d7e5d088dc
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MutexGuard.h"
28#include "llvm/Support/ValueHandle.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Support/DynamicLibrary.h"
31#include "llvm/Support/Host.h"
32#include "llvm/Support/TargetRegistry.h"
33#include "llvm/DataLayout.h"
34#include "llvm/Target/TargetMachine.h"
35#include <cmath>
36#include <cstring>
37using namespace llvm;
38
39STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
40STATISTIC(NumGlobals  , "Number of global vars initialized");
41
42ExecutionEngine *(*ExecutionEngine::JITCtor)(
43  Module *M,
44  std::string *ErrorStr,
45  JITMemoryManager *JMM,
46  bool GVsWithCode,
47  TargetMachine *TM) = 0;
48ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
49  Module *M,
50  std::string *ErrorStr,
51  JITMemoryManager *JMM,
52  bool GVsWithCode,
53  TargetMachine *TM) = 0;
54ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
55                                                std::string *ErrorStr) = 0;
56
57ExecutionEngine::ExecutionEngine(Module *M)
58  : EEState(*this),
59    LazyFunctionCreator(0),
60    ExceptionTableRegister(0),
61    ExceptionTableDeregister(0) {
62  CompilingLazily         = false;
63  GVCompilationDisabled   = false;
64  SymbolSearchingDisabled = false;
65  Modules.push_back(M);
66  assert(M && "Module is null?");
67}
68
69ExecutionEngine::~ExecutionEngine() {
70  clearAllGlobalMappings();
71  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
72    delete Modules[i];
73}
74
75void ExecutionEngine::DeregisterAllTables() {
76  if (ExceptionTableDeregister) {
77    DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
78    DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
79    for (; it != ite; ++it)
80      ExceptionTableDeregister(it->second);
81    AllExceptionTables.clear();
82  }
83}
84
85namespace {
86/// \brief Helper class which uses a value handler to automatically deletes the
87/// memory block when the GlobalVariable is destroyed.
88class GVMemoryBlock : public CallbackVH {
89  GVMemoryBlock(const GlobalVariable *GV)
90    : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
91
92public:
93  /// \brief Returns the address the GlobalVariable should be written into.  The
94  /// GVMemoryBlock object prefixes that.
95  static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
96    Type *ElTy = GV->getType()->getElementType();
97    size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
98    void *RawMemory = ::operator new(
99      DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
100                                   TD.getPreferredAlignment(GV))
101      + GVSize);
102    new(RawMemory) GVMemoryBlock(GV);
103    return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
104  }
105
106  virtual void deleted() {
107    // We allocated with operator new and with some extra memory hanging off the
108    // end, so don't just delete this.  I'm not sure if this is actually
109    // required.
110    this->~GVMemoryBlock();
111    ::operator delete(this);
112  }
113};
114}  // anonymous namespace
115
116char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
117  return GVMemoryBlock::Create(GV, *getDataLayout());
118}
119
120bool ExecutionEngine::removeModule(Module *M) {
121  for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
122        E = Modules.end(); I != E; ++I) {
123    Module *Found = *I;
124    if (Found == M) {
125      Modules.erase(I);
126      clearGlobalMappingsFromModule(M);
127      return true;
128    }
129  }
130  return false;
131}
132
133Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
134  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
135    if (Function *F = Modules[i]->getFunction(FnName))
136      return F;
137  }
138  return 0;
139}
140
141
142void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
143                                          const GlobalValue *ToUnmap) {
144  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
145  void *OldVal;
146
147  // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
148  // GlobalAddressMap.
149  if (I == GlobalAddressMap.end())
150    OldVal = 0;
151  else {
152    OldVal = I->second;
153    GlobalAddressMap.erase(I);
154  }
155
156  GlobalAddressReverseMap.erase(OldVal);
157  return OldVal;
158}
159
160void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
161  MutexGuard locked(lock);
162
163  DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
164        << "\' to [" << Addr << "]\n";);
165  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
166  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
167  CurVal = Addr;
168
169  // If we are using the reverse mapping, add it too.
170  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
171    AssertingVH<const GlobalValue> &V =
172      EEState.getGlobalAddressReverseMap(locked)[Addr];
173    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
174    V = GV;
175  }
176}
177
178void ExecutionEngine::clearAllGlobalMappings() {
179  MutexGuard locked(lock);
180
181  EEState.getGlobalAddressMap(locked).clear();
182  EEState.getGlobalAddressReverseMap(locked).clear();
183}
184
185void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
186  MutexGuard locked(lock);
187
188  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
189    EEState.RemoveMapping(locked, FI);
190  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
191       GI != GE; ++GI)
192    EEState.RemoveMapping(locked, GI);
193}
194
195void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
196  MutexGuard locked(lock);
197
198  ExecutionEngineState::GlobalAddressMapTy &Map =
199    EEState.getGlobalAddressMap(locked);
200
201  // Deleting from the mapping?
202  if (Addr == 0)
203    return EEState.RemoveMapping(locked, GV);
204
205  void *&CurVal = Map[GV];
206  void *OldVal = CurVal;
207
208  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
209    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
210  CurVal = Addr;
211
212  // If we are using the reverse mapping, add it too.
213  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
214    AssertingVH<const GlobalValue> &V =
215      EEState.getGlobalAddressReverseMap(locked)[Addr];
216    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
217    V = GV;
218  }
219  return OldVal;
220}
221
222void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
223  MutexGuard locked(lock);
224
225  ExecutionEngineState::GlobalAddressMapTy::iterator I =
226    EEState.getGlobalAddressMap(locked).find(GV);
227  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
228}
229
230const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
231  MutexGuard locked(lock);
232
233  // If we haven't computed the reverse mapping yet, do so first.
234  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
235    for (ExecutionEngineState::GlobalAddressMapTy::iterator
236         I = EEState.getGlobalAddressMap(locked).begin(),
237         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
238      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
239                                                          I->second, I->first));
240  }
241
242  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
243    EEState.getGlobalAddressReverseMap(locked).find(Addr);
244  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
245}
246
247namespace {
248class ArgvArray {
249  char *Array;
250  std::vector<char*> Values;
251public:
252  ArgvArray() : Array(NULL) {}
253  ~ArgvArray() { clear(); }
254  void clear() {
255    delete[] Array;
256    Array = NULL;
257    for (size_t I = 0, E = Values.size(); I != E; ++I) {
258      delete[] Values[I];
259    }
260    Values.clear();
261  }
262  /// Turn a vector of strings into a nice argv style array of pointers to null
263  /// terminated strings.
264  void *reset(LLVMContext &C, ExecutionEngine *EE,
265              const std::vector<std::string> &InputArgv);
266};
267}  // anonymous namespace
268void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
269                       const std::vector<std::string> &InputArgv) {
270  clear();  // Free the old contents.
271  unsigned PtrSize = EE->getDataLayout()->getPointerSize(0);
272  Array = new char[(InputArgv.size()+1)*PtrSize];
273
274  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
275  Type *SBytePtr = Type::getInt8PtrTy(C);
276
277  for (unsigned i = 0; i != InputArgv.size(); ++i) {
278    unsigned Size = InputArgv[i].size()+1;
279    char *Dest = new char[Size];
280    Values.push_back(Dest);
281    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
282
283    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
284    Dest[Size-1] = 0;
285
286    // Endian safe: Array[i] = (PointerTy)Dest;
287    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
288                           SBytePtr);
289  }
290
291  // Null terminate it
292  EE->StoreValueToMemory(PTOGV(0),
293                         (GenericValue*)(Array+InputArgv.size()*PtrSize),
294                         SBytePtr);
295  return Array;
296}
297
298void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
299                                                       bool isDtors) {
300  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
301  GlobalVariable *GV = module->getNamedGlobal(Name);
302
303  // If this global has internal linkage, or if it has a use, then it must be
304  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
305  // this is the case, don't execute any of the global ctors, __main will do
306  // it.
307  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
308
309  // Should be an array of '{ i32, void ()* }' structs.  The first value is
310  // the init priority, which we ignore.
311  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
312  if (InitList == 0)
313    return;
314  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
315    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
316    if (CS == 0) continue;
317
318    Constant *FP = CS->getOperand(1);
319    if (FP->isNullValue())
320      continue;  // Found a sentinal value, ignore.
321
322    // Strip off constant expression casts.
323    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
324      if (CE->isCast())
325        FP = CE->getOperand(0);
326
327    // Execute the ctor/dtor function!
328    if (Function *F = dyn_cast<Function>(FP))
329      runFunction(F, std::vector<GenericValue>());
330
331    // FIXME: It is marginally lame that we just do nothing here if we see an
332    // entry we don't recognize. It might not be unreasonable for the verifier
333    // to not even allow this and just assert here.
334  }
335}
336
337void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
338  // Execute global ctors/dtors for each module in the program.
339  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
340    runStaticConstructorsDestructors(Modules[i], isDtors);
341}
342
343#ifndef NDEBUG
344/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
345static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
346  unsigned PtrSize = EE->getDataLayout()->getPointerSize(0);
347  for (unsigned i = 0; i < PtrSize; ++i)
348    if (*(i + (uint8_t*)Loc))
349      return false;
350  return true;
351}
352#endif
353
354int ExecutionEngine::runFunctionAsMain(Function *Fn,
355                                       const std::vector<std::string> &argv,
356                                       const char * const * envp) {
357  std::vector<GenericValue> GVArgs;
358  GenericValue GVArgc;
359  GVArgc.IntVal = APInt(32, argv.size());
360
361  // Check main() type
362  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
363  FunctionType *FTy = Fn->getFunctionType();
364  Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
365
366  // Check the argument types.
367  if (NumArgs > 3)
368    report_fatal_error("Invalid number of arguments of main() supplied");
369  if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
370    report_fatal_error("Invalid type for third argument of main() supplied");
371  if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
372    report_fatal_error("Invalid type for second argument of main() supplied");
373  if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
374    report_fatal_error("Invalid type for first argument of main() supplied");
375  if (!FTy->getReturnType()->isIntegerTy() &&
376      !FTy->getReturnType()->isVoidTy())
377    report_fatal_error("Invalid return type of main() supplied");
378
379  ArgvArray CArgv;
380  ArgvArray CEnv;
381  if (NumArgs) {
382    GVArgs.push_back(GVArgc); // Arg #0 = argc.
383    if (NumArgs > 1) {
384      // Arg #1 = argv.
385      GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
386      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
387             "argv[0] was null after CreateArgv");
388      if (NumArgs > 2) {
389        std::vector<std::string> EnvVars;
390        for (unsigned i = 0; envp[i]; ++i)
391          EnvVars.push_back(envp[i]);
392        // Arg #2 = envp.
393        GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
394      }
395    }
396  }
397
398  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
399}
400
401ExecutionEngine *ExecutionEngine::create(Module *M,
402                                         bool ForceInterpreter,
403                                         std::string *ErrorStr,
404                                         CodeGenOpt::Level OptLevel,
405                                         bool GVsWithCode) {
406  EngineBuilder EB =  EngineBuilder(M)
407      .setEngineKind(ForceInterpreter
408                     ? EngineKind::Interpreter
409                     : EngineKind::JIT)
410      .setErrorStr(ErrorStr)
411      .setOptLevel(OptLevel)
412      .setAllocateGVsWithCode(GVsWithCode);
413
414  return EB.create();
415}
416
417/// createJIT - This is the factory method for creating a JIT for the current
418/// machine, it does not fall back to the interpreter.  This takes ownership
419/// of the module.
420ExecutionEngine *ExecutionEngine::createJIT(Module *M,
421                                            std::string *ErrorStr,
422                                            JITMemoryManager *JMM,
423                                            CodeGenOpt::Level OL,
424                                            bool GVsWithCode,
425                                            Reloc::Model RM,
426                                            CodeModel::Model CMM) {
427  if (ExecutionEngine::JITCtor == 0) {
428    if (ErrorStr)
429      *ErrorStr = "JIT has not been linked in.";
430    return 0;
431  }
432
433  // Use the defaults for extra parameters.  Users can use EngineBuilder to
434  // set them.
435  EngineBuilder EB(M);
436  EB.setEngineKind(EngineKind::JIT);
437  EB.setErrorStr(ErrorStr);
438  EB.setRelocationModel(RM);
439  EB.setCodeModel(CMM);
440  EB.setAllocateGVsWithCode(GVsWithCode);
441  EB.setOptLevel(OL);
442  EB.setJITMemoryManager(JMM);
443
444  // TODO: permit custom TargetOptions here
445  TargetMachine *TM = EB.selectTarget();
446  if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
447
448  return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
449}
450
451ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
452  OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
453
454  // Make sure we can resolve symbols in the program as well. The zero arg
455  // to the function tells DynamicLibrary to load the program, not a library.
456  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
457    return 0;
458
459  // If the user specified a memory manager but didn't specify which engine to
460  // create, we assume they only want the JIT, and we fail if they only want
461  // the interpreter.
462  if (JMM) {
463    if (WhichEngine & EngineKind::JIT)
464      WhichEngine = EngineKind::JIT;
465    else {
466      if (ErrorStr)
467        *ErrorStr = "Cannot create an interpreter with a memory manager.";
468      return 0;
469    }
470  }
471
472  // Unless the interpreter was explicitly selected or the JIT is not linked,
473  // try making a JIT.
474  if ((WhichEngine & EngineKind::JIT) && TheTM) {
475    Triple TT(M->getTargetTriple());
476    if (!TM->getTarget().hasJIT()) {
477      errs() << "WARNING: This target JIT is not designed for the host"
478             << " you are running.  If bad things happen, please choose"
479             << " a different -march switch.\n";
480    }
481
482    if (UseMCJIT && ExecutionEngine::MCJITCtor) {
483      ExecutionEngine *EE =
484        ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
485                                   AllocateGVsWithCode, TheTM.take());
486      if (EE) return EE;
487    } else if (ExecutionEngine::JITCtor) {
488      ExecutionEngine *EE =
489        ExecutionEngine::JITCtor(M, ErrorStr, JMM,
490                                 AllocateGVsWithCode, TheTM.take());
491      if (EE) return EE;
492    }
493  }
494
495  // If we can't make a JIT and we didn't request one specifically, try making
496  // an interpreter instead.
497  if (WhichEngine & EngineKind::Interpreter) {
498    if (ExecutionEngine::InterpCtor)
499      return ExecutionEngine::InterpCtor(M, ErrorStr);
500    if (ErrorStr)
501      *ErrorStr = "Interpreter has not been linked in.";
502    return 0;
503  }
504
505  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
506      ExecutionEngine::MCJITCtor == 0) {
507    if (ErrorStr)
508      *ErrorStr = "JIT has not been linked in.";
509  }
510
511  return 0;
512}
513
514void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
515  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
516    return getPointerToFunction(F);
517
518  MutexGuard locked(lock);
519  if (void *P = EEState.getGlobalAddressMap(locked)[GV])
520    return P;
521
522  // Global variable might have been added since interpreter started.
523  if (GlobalVariable *GVar =
524          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
525    EmitGlobalVariable(GVar);
526  else
527    llvm_unreachable("Global hasn't had an address allocated yet!");
528
529  return EEState.getGlobalAddressMap(locked)[GV];
530}
531
532/// \brief Converts a Constant* into a GenericValue, including handling of
533/// ConstantExpr values.
534GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
535  // If its undefined, return the garbage.
536  if (isa<UndefValue>(C)) {
537    GenericValue Result;
538    switch (C->getType()->getTypeID()) {
539    case Type::IntegerTyID:
540    case Type::X86_FP80TyID:
541    case Type::FP128TyID:
542    case Type::PPC_FP128TyID:
543      // Although the value is undefined, we still have to construct an APInt
544      // with the correct bit width.
545      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
546      break;
547    default:
548      break;
549    }
550    return Result;
551  }
552
553  // Otherwise, if the value is a ConstantExpr...
554  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
555    Constant *Op0 = CE->getOperand(0);
556    switch (CE->getOpcode()) {
557    case Instruction::GetElementPtr: {
558      // Compute the index
559      GenericValue Result = getConstantValue(Op0);
560      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
561      uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices);
562
563      char* tmp = (char*) Result.PointerVal;
564      Result = PTOGV(tmp + Offset);
565      return Result;
566    }
567    case Instruction::Trunc: {
568      GenericValue GV = getConstantValue(Op0);
569      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
570      GV.IntVal = GV.IntVal.trunc(BitWidth);
571      return GV;
572    }
573    case Instruction::ZExt: {
574      GenericValue GV = getConstantValue(Op0);
575      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
576      GV.IntVal = GV.IntVal.zext(BitWidth);
577      return GV;
578    }
579    case Instruction::SExt: {
580      GenericValue GV = getConstantValue(Op0);
581      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
582      GV.IntVal = GV.IntVal.sext(BitWidth);
583      return GV;
584    }
585    case Instruction::FPTrunc: {
586      // FIXME long double
587      GenericValue GV = getConstantValue(Op0);
588      GV.FloatVal = float(GV.DoubleVal);
589      return GV;
590    }
591    case Instruction::FPExt:{
592      // FIXME long double
593      GenericValue GV = getConstantValue(Op0);
594      GV.DoubleVal = double(GV.FloatVal);
595      return GV;
596    }
597    case Instruction::UIToFP: {
598      GenericValue GV = getConstantValue(Op0);
599      if (CE->getType()->isFloatTy())
600        GV.FloatVal = float(GV.IntVal.roundToDouble());
601      else if (CE->getType()->isDoubleTy())
602        GV.DoubleVal = GV.IntVal.roundToDouble();
603      else if (CE->getType()->isX86_FP80Ty()) {
604        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
605        (void)apf.convertFromAPInt(GV.IntVal,
606                                   false,
607                                   APFloat::rmNearestTiesToEven);
608        GV.IntVal = apf.bitcastToAPInt();
609      }
610      return GV;
611    }
612    case Instruction::SIToFP: {
613      GenericValue GV = getConstantValue(Op0);
614      if (CE->getType()->isFloatTy())
615        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
616      else if (CE->getType()->isDoubleTy())
617        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
618      else if (CE->getType()->isX86_FP80Ty()) {
619        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
620        (void)apf.convertFromAPInt(GV.IntVal,
621                                   true,
622                                   APFloat::rmNearestTiesToEven);
623        GV.IntVal = apf.bitcastToAPInt();
624      }
625      return GV;
626    }
627    case Instruction::FPToUI: // double->APInt conversion handles sign
628    case Instruction::FPToSI: {
629      GenericValue GV = getConstantValue(Op0);
630      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
631      if (Op0->getType()->isFloatTy())
632        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
633      else if (Op0->getType()->isDoubleTy())
634        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
635      else if (Op0->getType()->isX86_FP80Ty()) {
636        APFloat apf = APFloat(GV.IntVal);
637        uint64_t v;
638        bool ignored;
639        (void)apf.convertToInteger(&v, BitWidth,
640                                   CE->getOpcode()==Instruction::FPToSI,
641                                   APFloat::rmTowardZero, &ignored);
642        GV.IntVal = v; // endian?
643      }
644      return GV;
645    }
646    case Instruction::PtrToInt: {
647      GenericValue GV = getConstantValue(Op0);
648      unsigned AS = cast<PointerType>(CE->getOperand(1)->getType())
649        ->getAddressSpace();
650      uint32_t PtrWidth = TD->getPointerSizeInBits(AS);
651      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
652      return GV;
653    }
654    case Instruction::IntToPtr: {
655      GenericValue GV = getConstantValue(Op0);
656      unsigned AS = cast<PointerType>(CE->getType())->getAddressSpace();
657      uint32_t PtrWidth = TD->getPointerSizeInBits(AS);
658      if (PtrWidth != GV.IntVal.getBitWidth())
659        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
660      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
661      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
662      return GV;
663    }
664    case Instruction::BitCast: {
665      GenericValue GV = getConstantValue(Op0);
666      Type* DestTy = CE->getType();
667      switch (Op0->getType()->getTypeID()) {
668        default: llvm_unreachable("Invalid bitcast operand");
669        case Type::IntegerTyID:
670          assert(DestTy->isFloatingPointTy() && "invalid bitcast");
671          if (DestTy->isFloatTy())
672            GV.FloatVal = GV.IntVal.bitsToFloat();
673          else if (DestTy->isDoubleTy())
674            GV.DoubleVal = GV.IntVal.bitsToDouble();
675          break;
676        case Type::FloatTyID:
677          assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
678          GV.IntVal = APInt::floatToBits(GV.FloatVal);
679          break;
680        case Type::DoubleTyID:
681          assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
682          GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
683          break;
684        case Type::PointerTyID:
685          assert(DestTy->isPointerTy() && "Invalid bitcast");
686          break; // getConstantValue(Op0)  above already converted it
687      }
688      return GV;
689    }
690    case Instruction::Add:
691    case Instruction::FAdd:
692    case Instruction::Sub:
693    case Instruction::FSub:
694    case Instruction::Mul:
695    case Instruction::FMul:
696    case Instruction::UDiv:
697    case Instruction::SDiv:
698    case Instruction::URem:
699    case Instruction::SRem:
700    case Instruction::And:
701    case Instruction::Or:
702    case Instruction::Xor: {
703      GenericValue LHS = getConstantValue(Op0);
704      GenericValue RHS = getConstantValue(CE->getOperand(1));
705      GenericValue GV;
706      switch (CE->getOperand(0)->getType()->getTypeID()) {
707      default: llvm_unreachable("Bad add type!");
708      case Type::IntegerTyID:
709        switch (CE->getOpcode()) {
710          default: llvm_unreachable("Invalid integer opcode");
711          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
712          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
713          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
714          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
715          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
716          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
717          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
718          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
719          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
720          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
721        }
722        break;
723      case Type::FloatTyID:
724        switch (CE->getOpcode()) {
725          default: llvm_unreachable("Invalid float opcode");
726          case Instruction::FAdd:
727            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
728          case Instruction::FSub:
729            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
730          case Instruction::FMul:
731            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
732          case Instruction::FDiv:
733            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
734          case Instruction::FRem:
735            GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
736        }
737        break;
738      case Type::DoubleTyID:
739        switch (CE->getOpcode()) {
740          default: llvm_unreachable("Invalid double opcode");
741          case Instruction::FAdd:
742            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
743          case Instruction::FSub:
744            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
745          case Instruction::FMul:
746            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
747          case Instruction::FDiv:
748            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
749          case Instruction::FRem:
750            GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
751        }
752        break;
753      case Type::X86_FP80TyID:
754      case Type::PPC_FP128TyID:
755      case Type::FP128TyID: {
756        APFloat apfLHS = APFloat(LHS.IntVal);
757        switch (CE->getOpcode()) {
758          default: llvm_unreachable("Invalid long double opcode");
759          case Instruction::FAdd:
760            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
761            GV.IntVal = apfLHS.bitcastToAPInt();
762            break;
763          case Instruction::FSub:
764            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
765            GV.IntVal = apfLHS.bitcastToAPInt();
766            break;
767          case Instruction::FMul:
768            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
769            GV.IntVal = apfLHS.bitcastToAPInt();
770            break;
771          case Instruction::FDiv:
772            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
773            GV.IntVal = apfLHS.bitcastToAPInt();
774            break;
775          case Instruction::FRem:
776            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
777            GV.IntVal = apfLHS.bitcastToAPInt();
778            break;
779          }
780        }
781        break;
782      }
783      return GV;
784    }
785    default:
786      break;
787    }
788
789    SmallString<256> Msg;
790    raw_svector_ostream OS(Msg);
791    OS << "ConstantExpr not handled: " << *CE;
792    report_fatal_error(OS.str());
793  }
794
795  // Otherwise, we have a simple constant.
796  GenericValue Result;
797  switch (C->getType()->getTypeID()) {
798  case Type::FloatTyID:
799    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
800    break;
801  case Type::DoubleTyID:
802    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
803    break;
804  case Type::X86_FP80TyID:
805  case Type::FP128TyID:
806  case Type::PPC_FP128TyID:
807    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
808    break;
809  case Type::IntegerTyID:
810    Result.IntVal = cast<ConstantInt>(C)->getValue();
811    break;
812  case Type::PointerTyID:
813    if (isa<ConstantPointerNull>(C))
814      Result.PointerVal = 0;
815    else if (const Function *F = dyn_cast<Function>(C))
816      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
817    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
818      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
819    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
820      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
821                                                        BA->getBasicBlock())));
822    else
823      llvm_unreachable("Unknown constant pointer type!");
824    break;
825  default:
826    SmallString<256> Msg;
827    raw_svector_ostream OS(Msg);
828    OS << "ERROR: Constant unimplemented for type: " << *C->getType();
829    report_fatal_error(OS.str());
830  }
831
832  return Result;
833}
834
835/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
836/// with the integer held in IntVal.
837static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
838                             unsigned StoreBytes) {
839  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
840  const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
841
842  if (sys::isLittleEndianHost()) {
843    // Little-endian host - the source is ordered from LSB to MSB.  Order the
844    // destination from LSB to MSB: Do a straight copy.
845    memcpy(Dst, Src, StoreBytes);
846  } else {
847    // Big-endian host - the source is an array of 64 bit words ordered from
848    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
849    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
850    while (StoreBytes > sizeof(uint64_t)) {
851      StoreBytes -= sizeof(uint64_t);
852      // May not be aligned so use memcpy.
853      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
854      Src += sizeof(uint64_t);
855    }
856
857    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
858  }
859}
860
861void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
862                                         GenericValue *Ptr, Type *Ty) {
863  const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
864
865  switch (Ty->getTypeID()) {
866  case Type::IntegerTyID:
867    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
868    break;
869  case Type::FloatTyID:
870    *((float*)Ptr) = Val.FloatVal;
871    break;
872  case Type::DoubleTyID:
873    *((double*)Ptr) = Val.DoubleVal;
874    break;
875  case Type::X86_FP80TyID:
876    memcpy(Ptr, Val.IntVal.getRawData(), 10);
877    break;
878  case Type::PointerTyID:
879    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
880    if (StoreBytes != sizeof(PointerTy))
881      memset(&(Ptr->PointerVal), 0, StoreBytes);
882
883    *((PointerTy*)Ptr) = Val.PointerVal;
884    break;
885  default:
886    dbgs() << "Cannot store value of type " << *Ty << "!\n";
887  }
888
889  if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
890    // Host and target are different endian - reverse the stored bytes.
891    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
892}
893
894/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
895/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
896static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
897  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
898  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
899
900  if (sys::isLittleEndianHost())
901    // Little-endian host - the destination must be ordered from LSB to MSB.
902    // The source is ordered from LSB to MSB: Do a straight copy.
903    memcpy(Dst, Src, LoadBytes);
904  else {
905    // Big-endian - the destination is an array of 64 bit words ordered from
906    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
907    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
908    // a word.
909    while (LoadBytes > sizeof(uint64_t)) {
910      LoadBytes -= sizeof(uint64_t);
911      // May not be aligned so use memcpy.
912      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
913      Dst += sizeof(uint64_t);
914    }
915
916    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
917  }
918}
919
920/// FIXME: document
921///
922void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
923                                          GenericValue *Ptr,
924                                          Type *Ty) {
925  const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
926
927  switch (Ty->getTypeID()) {
928  case Type::IntegerTyID:
929    // An APInt with all words initially zero.
930    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
931    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
932    break;
933  case Type::FloatTyID:
934    Result.FloatVal = *((float*)Ptr);
935    break;
936  case Type::DoubleTyID:
937    Result.DoubleVal = *((double*)Ptr);
938    break;
939  case Type::PointerTyID:
940    Result.PointerVal = *((PointerTy*)Ptr);
941    break;
942  case Type::X86_FP80TyID: {
943    // This is endian dependent, but it will only work on x86 anyway.
944    // FIXME: Will not trap if loading a signaling NaN.
945    uint64_t y[2];
946    memcpy(y, Ptr, 10);
947    Result.IntVal = APInt(80, y);
948    break;
949  }
950  default:
951    SmallString<256> Msg;
952    raw_svector_ostream OS(Msg);
953    OS << "Cannot load value of type " << *Ty << "!";
954    report_fatal_error(OS.str());
955  }
956}
957
958void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
959  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
960  DEBUG(Init->dump());
961  if (isa<UndefValue>(Init))
962    return;
963
964  if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
965    unsigned ElementSize =
966      getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
967    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
968      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
969    return;
970  }
971
972  if (isa<ConstantAggregateZero>(Init)) {
973    memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
974    return;
975  }
976
977  if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
978    unsigned ElementSize =
979      getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
980    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
981      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
982    return;
983  }
984
985  if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
986    const StructLayout *SL =
987      getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
988    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
989      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
990    return;
991  }
992
993  if (const ConstantDataSequential *CDS =
994               dyn_cast<ConstantDataSequential>(Init)) {
995    // CDS is already laid out in host memory order.
996    StringRef Data = CDS->getRawDataValues();
997    memcpy(Addr, Data.data(), Data.size());
998    return;
999  }
1000
1001  if (Init->getType()->isFirstClassType()) {
1002    GenericValue Val = getConstantValue(Init);
1003    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1004    return;
1005  }
1006
1007  DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1008  llvm_unreachable("Unknown constant type to initialize memory with!");
1009}
1010
1011/// EmitGlobals - Emit all of the global variables to memory, storing their
1012/// addresses into GlobalAddress.  This must make sure to copy the contents of
1013/// their initializers into the memory.
1014void ExecutionEngine::emitGlobals() {
1015  // Loop over all of the global variables in the program, allocating the memory
1016  // to hold them.  If there is more than one module, do a prepass over globals
1017  // to figure out how the different modules should link together.
1018  std::map<std::pair<std::string, Type*>,
1019           const GlobalValue*> LinkedGlobalsMap;
1020
1021  if (Modules.size() != 1) {
1022    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1023      Module &M = *Modules[m];
1024      for (Module::const_global_iterator I = M.global_begin(),
1025           E = M.global_end(); I != E; ++I) {
1026        const GlobalValue *GV = I;
1027        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
1028            GV->hasAppendingLinkage() || !GV->hasName())
1029          continue;// Ignore external globals and globals with internal linkage.
1030
1031        const GlobalValue *&GVEntry =
1032          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1033
1034        // If this is the first time we've seen this global, it is the canonical
1035        // version.
1036        if (!GVEntry) {
1037          GVEntry = GV;
1038          continue;
1039        }
1040
1041        // If the existing global is strong, never replace it.
1042        if (GVEntry->hasExternalLinkage() ||
1043            GVEntry->hasDLLImportLinkage() ||
1044            GVEntry->hasDLLExportLinkage())
1045          continue;
1046
1047        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1048        // symbol.  FIXME is this right for common?
1049        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1050          GVEntry = GV;
1051      }
1052    }
1053  }
1054
1055  std::vector<const GlobalValue*> NonCanonicalGlobals;
1056  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1057    Module &M = *Modules[m];
1058    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1059         I != E; ++I) {
1060      // In the multi-module case, see what this global maps to.
1061      if (!LinkedGlobalsMap.empty()) {
1062        if (const GlobalValue *GVEntry =
1063              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1064          // If something else is the canonical global, ignore this one.
1065          if (GVEntry != &*I) {
1066            NonCanonicalGlobals.push_back(I);
1067            continue;
1068          }
1069        }
1070      }
1071
1072      if (!I->isDeclaration()) {
1073        addGlobalMapping(I, getMemoryForGV(I));
1074      } else {
1075        // External variable reference. Try to use the dynamic loader to
1076        // get a pointer to it.
1077        if (void *SymAddr =
1078            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1079          addGlobalMapping(I, SymAddr);
1080        else {
1081          report_fatal_error("Could not resolve external global address: "
1082                            +I->getName());
1083        }
1084      }
1085    }
1086
1087    // If there are multiple modules, map the non-canonical globals to their
1088    // canonical location.
1089    if (!NonCanonicalGlobals.empty()) {
1090      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1091        const GlobalValue *GV = NonCanonicalGlobals[i];
1092        const GlobalValue *CGV =
1093          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1094        void *Ptr = getPointerToGlobalIfAvailable(CGV);
1095        assert(Ptr && "Canonical global wasn't codegen'd!");
1096        addGlobalMapping(GV, Ptr);
1097      }
1098    }
1099
1100    // Now that all of the globals are set up in memory, loop through them all
1101    // and initialize their contents.
1102    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1103         I != E; ++I) {
1104      if (!I->isDeclaration()) {
1105        if (!LinkedGlobalsMap.empty()) {
1106          if (const GlobalValue *GVEntry =
1107                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1108            if (GVEntry != &*I)  // Not the canonical variable.
1109              continue;
1110        }
1111        EmitGlobalVariable(I);
1112      }
1113    }
1114  }
1115}
1116
1117// EmitGlobalVariable - This method emits the specified global variable to the
1118// address specified in GlobalAddresses, or allocates new memory if it's not
1119// already in the map.
1120void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1121  void *GA = getPointerToGlobalIfAvailable(GV);
1122
1123  if (GA == 0) {
1124    // If it's not already specified, allocate memory for the global.
1125    GA = getMemoryForGV(GV);
1126    addGlobalMapping(GV, GA);
1127  }
1128
1129  // Don't initialize if it's thread local, let the client do it.
1130  if (!GV->isThreadLocal())
1131    InitializeMemory(GV->getInitializer(), GA);
1132
1133  Type *ElTy = GV->getType()->getElementType();
1134  size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
1135  NumInitBytes += (unsigned)GVSize;
1136  ++NumGlobals;
1137}
1138
1139ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1140  : EE(EE), GlobalAddressMap(this) {
1141}
1142
1143sys::Mutex *
1144ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1145  return &EES->EE.lock;
1146}
1147
1148void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1149                                                      const GlobalValue *Old) {
1150  void *OldVal = EES->GlobalAddressMap.lookup(Old);
1151  EES->GlobalAddressReverseMap.erase(OldVal);
1152}
1153
1154void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1155                                                    const GlobalValue *,
1156                                                    const GlobalValue *) {
1157  llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
1158                   " RAUW on a value it has a global mapping for.");
1159}
1160