ExecutionEngine.cpp revision 2c44a80d991df258a45e2f5fa76d5ada9e99015c
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18#include "llvm/Constants.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/Module.h" 21#include "llvm/ExecutionEngine/GenericValue.h" 22#include "llvm/ADT/SmallString.h" 23#include "llvm/ADT/Statistic.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/ErrorHandling.h" 26#include "llvm/Support/MutexGuard.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/Support/DynamicLibrary.h" 30#include "llvm/Support/Host.h" 31#include "llvm/Target/TargetData.h" 32#include <cmath> 33#include <cstring> 34using namespace llvm; 35 36STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39ExecutionEngine *(*ExecutionEngine::JITCtor)( 40 Module *M, 41 std::string *ErrorStr, 42 JITMemoryManager *JMM, 43 CodeGenOpt::Level OptLevel, 44 bool GVsWithCode, 45 CodeModel::Model CMM, 46 StringRef MArch, 47 StringRef MCPU, 48 const SmallVectorImpl<std::string>& MAttrs) = 0; 49ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 50 Module *M, 51 std::string *ErrorStr, 52 JITMemoryManager *JMM, 53 CodeGenOpt::Level OptLevel, 54 bool GVsWithCode, 55 CodeModel::Model CMM, 56 StringRef MArch, 57 StringRef MCPU, 58 const SmallVectorImpl<std::string>& MAttrs) = 0; 59ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 60 std::string *ErrorStr) = 0; 61 62ExecutionEngine::ExecutionEngine(Module *M) 63 : EEState(*this), 64 LazyFunctionCreator(0), 65 ExceptionTableRegister(0), 66 ExceptionTableDeregister(0) { 67 CompilingLazily = false; 68 GVCompilationDisabled = false; 69 SymbolSearchingDisabled = false; 70 Modules.push_back(M); 71 assert(M && "Module is null?"); 72} 73 74ExecutionEngine::~ExecutionEngine() { 75 clearAllGlobalMappings(); 76 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 77 delete Modules[i]; 78} 79 80void ExecutionEngine::DeregisterAllTables() { 81 if (ExceptionTableDeregister) { 82 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin(); 83 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end(); 84 for (; it != ite; ++it) 85 ExceptionTableDeregister(it->second); 86 AllExceptionTables.clear(); 87 } 88} 89 90namespace { 91/// \brief Helper class which uses a value handler to automatically deletes the 92/// memory block when the GlobalVariable is destroyed. 93class GVMemoryBlock : public CallbackVH { 94 GVMemoryBlock(const GlobalVariable *GV) 95 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 96 97public: 98 /// \brief Returns the address the GlobalVariable should be written into. The 99 /// GVMemoryBlock object prefixes that. 100 static char *Create(const GlobalVariable *GV, const TargetData& TD) { 101 const Type *ElTy = GV->getType()->getElementType(); 102 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 103 void *RawMemory = ::operator new( 104 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock), 105 TD.getPreferredAlignment(GV)) 106 + GVSize); 107 new(RawMemory) GVMemoryBlock(GV); 108 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 109 } 110 111 virtual void deleted() { 112 // We allocated with operator new and with some extra memory hanging off the 113 // end, so don't just delete this. I'm not sure if this is actually 114 // required. 115 this->~GVMemoryBlock(); 116 ::operator delete(this); 117 } 118}; 119} // anonymous namespace 120 121char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 122 return GVMemoryBlock::Create(GV, *getTargetData()); 123} 124 125bool ExecutionEngine::removeModule(Module *M) { 126 for(SmallVector<Module *, 1>::iterator I = Modules.begin(), 127 E = Modules.end(); I != E; ++I) { 128 Module *Found = *I; 129 if (Found == M) { 130 Modules.erase(I); 131 clearGlobalMappingsFromModule(M); 132 return true; 133 } 134 } 135 return false; 136} 137 138Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 139 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 140 if (Function *F = Modules[i]->getFunction(FnName)) 141 return F; 142 } 143 return 0; 144} 145 146 147void *ExecutionEngineState::RemoveMapping(const MutexGuard &, 148 const GlobalValue *ToUnmap) { 149 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 150 void *OldVal; 151 152 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 153 // GlobalAddressMap. 154 if (I == GlobalAddressMap.end()) 155 OldVal = 0; 156 else { 157 OldVal = I->second; 158 GlobalAddressMap.erase(I); 159 } 160 161 GlobalAddressReverseMap.erase(OldVal); 162 return OldVal; 163} 164 165void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 166 MutexGuard locked(lock); 167 168 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 169 << "\' to [" << Addr << "]\n";); 170 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV]; 171 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 172 CurVal = Addr; 173 174 // If we are using the reverse mapping, add it too. 175 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 176 AssertingVH<const GlobalValue> &V = 177 EEState.getGlobalAddressReverseMap(locked)[Addr]; 178 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 179 V = GV; 180 } 181} 182 183void ExecutionEngine::clearAllGlobalMappings() { 184 MutexGuard locked(lock); 185 186 EEState.getGlobalAddressMap(locked).clear(); 187 EEState.getGlobalAddressReverseMap(locked).clear(); 188} 189 190void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 191 MutexGuard locked(lock); 192 193 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 194 EEState.RemoveMapping(locked, FI); 195 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 196 GI != GE; ++GI) 197 EEState.RemoveMapping(locked, GI); 198} 199 200void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 201 MutexGuard locked(lock); 202 203 ExecutionEngineState::GlobalAddressMapTy &Map = 204 EEState.getGlobalAddressMap(locked); 205 206 // Deleting from the mapping? 207 if (Addr == 0) 208 return EEState.RemoveMapping(locked, GV); 209 210 void *&CurVal = Map[GV]; 211 void *OldVal = CurVal; 212 213 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty()) 214 EEState.getGlobalAddressReverseMap(locked).erase(CurVal); 215 CurVal = Addr; 216 217 // If we are using the reverse mapping, add it too. 218 if (!EEState.getGlobalAddressReverseMap(locked).empty()) { 219 AssertingVH<const GlobalValue> &V = 220 EEState.getGlobalAddressReverseMap(locked)[Addr]; 221 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 222 V = GV; 223 } 224 return OldVal; 225} 226 227void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 228 MutexGuard locked(lock); 229 230 ExecutionEngineState::GlobalAddressMapTy::iterator I = 231 EEState.getGlobalAddressMap(locked).find(GV); 232 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0; 233} 234 235const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 236 MutexGuard locked(lock); 237 238 // If we haven't computed the reverse mapping yet, do so first. 239 if (EEState.getGlobalAddressReverseMap(locked).empty()) { 240 for (ExecutionEngineState::GlobalAddressMapTy::iterator 241 I = EEState.getGlobalAddressMap(locked).begin(), 242 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I) 243 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair( 244 I->second, I->first)); 245 } 246 247 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 248 EEState.getGlobalAddressReverseMap(locked).find(Addr); 249 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 250} 251 252namespace { 253class ArgvArray { 254 char *Array; 255 std::vector<char*> Values; 256public: 257 ArgvArray() : Array(NULL) {} 258 ~ArgvArray() { clear(); } 259 void clear() { 260 delete[] Array; 261 Array = NULL; 262 for (size_t I = 0, E = Values.size(); I != E; ++I) { 263 delete[] Values[I]; 264 } 265 Values.clear(); 266 } 267 /// Turn a vector of strings into a nice argv style array of pointers to null 268 /// terminated strings. 269 void *reset(LLVMContext &C, ExecutionEngine *EE, 270 const std::vector<std::string> &InputArgv); 271}; 272} // anonymous namespace 273void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 274 const std::vector<std::string> &InputArgv) { 275 clear(); // Free the old contents. 276 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 277 Array = new char[(InputArgv.size()+1)*PtrSize]; 278 279 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 280 const Type *SBytePtr = Type::getInt8PtrTy(C); 281 282 for (unsigned i = 0; i != InputArgv.size(); ++i) { 283 unsigned Size = InputArgv[i].size()+1; 284 char *Dest = new char[Size]; 285 Values.push_back(Dest); 286 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 287 288 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 289 Dest[Size-1] = 0; 290 291 // Endian safe: Array[i] = (PointerTy)Dest; 292 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 293 SBytePtr); 294 } 295 296 // Null terminate it 297 EE->StoreValueToMemory(PTOGV(0), 298 (GenericValue*)(Array+InputArgv.size()*PtrSize), 299 SBytePtr); 300 return Array; 301} 302 303void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 304 bool isDtors) { 305 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 306 GlobalVariable *GV = module->getNamedGlobal(Name); 307 308 // If this global has internal linkage, or if it has a use, then it must be 309 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 310 // this is the case, don't execute any of the global ctors, __main will do 311 // it. 312 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 313 314 // Should be an array of '{ i32, void ()* }' structs. The first value is 315 // the init priority, which we ignore. 316 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); 317 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 318 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i)); 319 320 Constant *FP = CS->getOperand(1); 321 if (FP->isNullValue()) 322 break; // Found a null terminator, exit. 323 324 // Strip off constant expression casts. 325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 326 if (CE->isCast()) 327 FP = CE->getOperand(0); 328 329 // Execute the ctor/dtor function! 330 if (Function *F = dyn_cast<Function>(FP)) 331 runFunction(F, std::vector<GenericValue>()); 332 333 // FIXME: It is marginally lame that we just do nothing here if we see an 334 // entry we don't recognize. It might not be unreasonable for the verifier 335 // to not even allow this and just assert here. 336 } 337} 338 339void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 340 // Execute global ctors/dtors for each module in the program. 341 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 342 runStaticConstructorsDestructors(Modules[i], isDtors); 343} 344 345#ifndef NDEBUG 346/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 347static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 348 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 349 for (unsigned i = 0; i < PtrSize; ++i) 350 if (*(i + (uint8_t*)Loc)) 351 return false; 352 return true; 353} 354#endif 355 356int ExecutionEngine::runFunctionAsMain(Function *Fn, 357 const std::vector<std::string> &argv, 358 const char * const * envp) { 359 std::vector<GenericValue> GVArgs; 360 GenericValue GVArgc; 361 GVArgc.IntVal = APInt(32, argv.size()); 362 363 // Check main() type 364 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 365 const FunctionType *FTy = Fn->getFunctionType(); 366 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 367 368 // Check the argument types. 369 if (NumArgs > 3) 370 report_fatal_error("Invalid number of arguments of main() supplied"); 371 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 372 report_fatal_error("Invalid type for third argument of main() supplied"); 373 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 374 report_fatal_error("Invalid type for second argument of main() supplied"); 375 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 376 report_fatal_error("Invalid type for first argument of main() supplied"); 377 if (!FTy->getReturnType()->isIntegerTy() && 378 !FTy->getReturnType()->isVoidTy()) 379 report_fatal_error("Invalid return type of main() supplied"); 380 381 ArgvArray CArgv; 382 ArgvArray CEnv; 383 if (NumArgs) { 384 GVArgs.push_back(GVArgc); // Arg #0 = argc. 385 if (NumArgs > 1) { 386 // Arg #1 = argv. 387 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 388 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 389 "argv[0] was null after CreateArgv"); 390 if (NumArgs > 2) { 391 std::vector<std::string> EnvVars; 392 for (unsigned i = 0; envp[i]; ++i) 393 EnvVars.push_back(envp[i]); 394 // Arg #2 = envp. 395 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 396 } 397 } 398 } 399 400 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 401} 402 403ExecutionEngine *ExecutionEngine::create(Module *M, 404 bool ForceInterpreter, 405 std::string *ErrorStr, 406 CodeGenOpt::Level OptLevel, 407 bool GVsWithCode) { 408 return EngineBuilder(M) 409 .setEngineKind(ForceInterpreter 410 ? EngineKind::Interpreter 411 : EngineKind::JIT) 412 .setErrorStr(ErrorStr) 413 .setOptLevel(OptLevel) 414 .setAllocateGVsWithCode(GVsWithCode) 415 .create(); 416} 417 418ExecutionEngine *EngineBuilder::create() { 419 // Make sure we can resolve symbols in the program as well. The zero arg 420 // to the function tells DynamicLibrary to load the program, not a library. 421 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 422 return 0; 423 424 // If the user specified a memory manager but didn't specify which engine to 425 // create, we assume they only want the JIT, and we fail if they only want 426 // the interpreter. 427 if (JMM) { 428 if (WhichEngine & EngineKind::JIT) 429 WhichEngine = EngineKind::JIT; 430 else { 431 if (ErrorStr) 432 *ErrorStr = "Cannot create an interpreter with a memory manager."; 433 return 0; 434 } 435 } 436 437 // Unless the interpreter was explicitly selected or the JIT is not linked, 438 // try making a JIT. 439 if (WhichEngine & EngineKind::JIT) { 440 if (UseMCJIT && ExecutionEngine::MCJITCtor) { 441 ExecutionEngine *EE = 442 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel, 443 AllocateGVsWithCode, CMModel, 444 MArch, MCPU, MAttrs); 445 if (EE) return EE; 446 } else if (ExecutionEngine::JITCtor) { 447 ExecutionEngine *EE = 448 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, 449 AllocateGVsWithCode, CMModel, 450 MArch, MCPU, MAttrs); 451 if (EE) return EE; 452 } 453 } 454 455 // If we can't make a JIT and we didn't request one specifically, try making 456 // an interpreter instead. 457 if (WhichEngine & EngineKind::Interpreter) { 458 if (ExecutionEngine::InterpCtor) 459 return ExecutionEngine::InterpCtor(M, ErrorStr); 460 if (ErrorStr) 461 *ErrorStr = "Interpreter has not been linked in."; 462 return 0; 463 } 464 465 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) { 466 if (ErrorStr) 467 *ErrorStr = "JIT has not been linked in."; 468 } 469 470 return 0; 471} 472 473void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 474 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 475 return getPointerToFunction(F); 476 477 MutexGuard locked(lock); 478 if (void *P = EEState.getGlobalAddressMap(locked)[GV]) 479 return P; 480 481 // Global variable might have been added since interpreter started. 482 if (GlobalVariable *GVar = 483 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 484 EmitGlobalVariable(GVar); 485 else 486 llvm_unreachable("Global hasn't had an address allocated yet!"); 487 488 return EEState.getGlobalAddressMap(locked)[GV]; 489} 490 491/// \brief Converts a Constant* into a GenericValue, including handling of 492/// ConstantExpr values. 493GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 494 // If its undefined, return the garbage. 495 if (isa<UndefValue>(C)) { 496 GenericValue Result; 497 switch (C->getType()->getTypeID()) { 498 case Type::IntegerTyID: 499 case Type::X86_FP80TyID: 500 case Type::FP128TyID: 501 case Type::PPC_FP128TyID: 502 // Although the value is undefined, we still have to construct an APInt 503 // with the correct bit width. 504 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 505 break; 506 default: 507 break; 508 } 509 return Result; 510 } 511 512 // Otherwise, if the value is a ConstantExpr... 513 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 514 Constant *Op0 = CE->getOperand(0); 515 switch (CE->getOpcode()) { 516 case Instruction::GetElementPtr: { 517 // Compute the index 518 GenericValue Result = getConstantValue(Op0); 519 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 520 uint64_t Offset = 521 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 522 523 char* tmp = (char*) Result.PointerVal; 524 Result = PTOGV(tmp + Offset); 525 return Result; 526 } 527 case Instruction::Trunc: { 528 GenericValue GV = getConstantValue(Op0); 529 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 530 GV.IntVal = GV.IntVal.trunc(BitWidth); 531 return GV; 532 } 533 case Instruction::ZExt: { 534 GenericValue GV = getConstantValue(Op0); 535 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 536 GV.IntVal = GV.IntVal.zext(BitWidth); 537 return GV; 538 } 539 case Instruction::SExt: { 540 GenericValue GV = getConstantValue(Op0); 541 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 542 GV.IntVal = GV.IntVal.sext(BitWidth); 543 return GV; 544 } 545 case Instruction::FPTrunc: { 546 // FIXME long double 547 GenericValue GV = getConstantValue(Op0); 548 GV.FloatVal = float(GV.DoubleVal); 549 return GV; 550 } 551 case Instruction::FPExt:{ 552 // FIXME long double 553 GenericValue GV = getConstantValue(Op0); 554 GV.DoubleVal = double(GV.FloatVal); 555 return GV; 556 } 557 case Instruction::UIToFP: { 558 GenericValue GV = getConstantValue(Op0); 559 if (CE->getType()->isFloatTy()) 560 GV.FloatVal = float(GV.IntVal.roundToDouble()); 561 else if (CE->getType()->isDoubleTy()) 562 GV.DoubleVal = GV.IntVal.roundToDouble(); 563 else if (CE->getType()->isX86_FP80Ty()) { 564 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 565 (void)apf.convertFromAPInt(GV.IntVal, 566 false, 567 APFloat::rmNearestTiesToEven); 568 GV.IntVal = apf.bitcastToAPInt(); 569 } 570 return GV; 571 } 572 case Instruction::SIToFP: { 573 GenericValue GV = getConstantValue(Op0); 574 if (CE->getType()->isFloatTy()) 575 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 576 else if (CE->getType()->isDoubleTy()) 577 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 578 else if (CE->getType()->isX86_FP80Ty()) { 579 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 580 (void)apf.convertFromAPInt(GV.IntVal, 581 true, 582 APFloat::rmNearestTiesToEven); 583 GV.IntVal = apf.bitcastToAPInt(); 584 } 585 return GV; 586 } 587 case Instruction::FPToUI: // double->APInt conversion handles sign 588 case Instruction::FPToSI: { 589 GenericValue GV = getConstantValue(Op0); 590 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 591 if (Op0->getType()->isFloatTy()) 592 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 593 else if (Op0->getType()->isDoubleTy()) 594 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 595 else if (Op0->getType()->isX86_FP80Ty()) { 596 APFloat apf = APFloat(GV.IntVal); 597 uint64_t v; 598 bool ignored; 599 (void)apf.convertToInteger(&v, BitWidth, 600 CE->getOpcode()==Instruction::FPToSI, 601 APFloat::rmTowardZero, &ignored); 602 GV.IntVal = v; // endian? 603 } 604 return GV; 605 } 606 case Instruction::PtrToInt: { 607 GenericValue GV = getConstantValue(Op0); 608 uint32_t PtrWidth = TD->getPointerSizeInBits(); 609 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 610 return GV; 611 } 612 case Instruction::IntToPtr: { 613 GenericValue GV = getConstantValue(Op0); 614 uint32_t PtrWidth = TD->getPointerSizeInBits(); 615 if (PtrWidth != GV.IntVal.getBitWidth()) 616 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 617 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 618 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 619 return GV; 620 } 621 case Instruction::BitCast: { 622 GenericValue GV = getConstantValue(Op0); 623 const Type* DestTy = CE->getType(); 624 switch (Op0->getType()->getTypeID()) { 625 default: llvm_unreachable("Invalid bitcast operand"); 626 case Type::IntegerTyID: 627 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 628 if (DestTy->isFloatTy()) 629 GV.FloatVal = GV.IntVal.bitsToFloat(); 630 else if (DestTy->isDoubleTy()) 631 GV.DoubleVal = GV.IntVal.bitsToDouble(); 632 break; 633 case Type::FloatTyID: 634 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 635 GV.IntVal = APInt::floatToBits(GV.FloatVal); 636 break; 637 case Type::DoubleTyID: 638 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 639 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 640 break; 641 case Type::PointerTyID: 642 assert(DestTy->isPointerTy() && "Invalid bitcast"); 643 break; // getConstantValue(Op0) above already converted it 644 } 645 return GV; 646 } 647 case Instruction::Add: 648 case Instruction::FAdd: 649 case Instruction::Sub: 650 case Instruction::FSub: 651 case Instruction::Mul: 652 case Instruction::FMul: 653 case Instruction::UDiv: 654 case Instruction::SDiv: 655 case Instruction::URem: 656 case Instruction::SRem: 657 case Instruction::And: 658 case Instruction::Or: 659 case Instruction::Xor: { 660 GenericValue LHS = getConstantValue(Op0); 661 GenericValue RHS = getConstantValue(CE->getOperand(1)); 662 GenericValue GV; 663 switch (CE->getOperand(0)->getType()->getTypeID()) { 664 default: llvm_unreachable("Bad add type!"); 665 case Type::IntegerTyID: 666 switch (CE->getOpcode()) { 667 default: llvm_unreachable("Invalid integer opcode"); 668 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 669 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 670 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 671 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 672 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 673 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 674 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 675 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 676 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 677 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 678 } 679 break; 680 case Type::FloatTyID: 681 switch (CE->getOpcode()) { 682 default: llvm_unreachable("Invalid float opcode"); 683 case Instruction::FAdd: 684 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 685 case Instruction::FSub: 686 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 687 case Instruction::FMul: 688 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 689 case Instruction::FDiv: 690 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 691 case Instruction::FRem: 692 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 693 } 694 break; 695 case Type::DoubleTyID: 696 switch (CE->getOpcode()) { 697 default: llvm_unreachable("Invalid double opcode"); 698 case Instruction::FAdd: 699 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 700 case Instruction::FSub: 701 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 702 case Instruction::FMul: 703 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 704 case Instruction::FDiv: 705 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 706 case Instruction::FRem: 707 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 708 } 709 break; 710 case Type::X86_FP80TyID: 711 case Type::PPC_FP128TyID: 712 case Type::FP128TyID: { 713 APFloat apfLHS = APFloat(LHS.IntVal); 714 switch (CE->getOpcode()) { 715 default: llvm_unreachable("Invalid long double opcode"); 716 case Instruction::FAdd: 717 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 718 GV.IntVal = apfLHS.bitcastToAPInt(); 719 break; 720 case Instruction::FSub: 721 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 722 GV.IntVal = apfLHS.bitcastToAPInt(); 723 break; 724 case Instruction::FMul: 725 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 726 GV.IntVal = apfLHS.bitcastToAPInt(); 727 break; 728 case Instruction::FDiv: 729 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 730 GV.IntVal = apfLHS.bitcastToAPInt(); 731 break; 732 case Instruction::FRem: 733 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 734 GV.IntVal = apfLHS.bitcastToAPInt(); 735 break; 736 } 737 } 738 break; 739 } 740 return GV; 741 } 742 default: 743 break; 744 } 745 746 SmallString<256> Msg; 747 raw_svector_ostream OS(Msg); 748 OS << "ConstantExpr not handled: " << *CE; 749 report_fatal_error(OS.str()); 750 } 751 752 // Otherwise, we have a simple constant. 753 GenericValue Result; 754 switch (C->getType()->getTypeID()) { 755 case Type::FloatTyID: 756 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 757 break; 758 case Type::DoubleTyID: 759 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 760 break; 761 case Type::X86_FP80TyID: 762 case Type::FP128TyID: 763 case Type::PPC_FP128TyID: 764 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 765 break; 766 case Type::IntegerTyID: 767 Result.IntVal = cast<ConstantInt>(C)->getValue(); 768 break; 769 case Type::PointerTyID: 770 if (isa<ConstantPointerNull>(C)) 771 Result.PointerVal = 0; 772 else if (const Function *F = dyn_cast<Function>(C)) 773 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 774 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 775 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 776 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 777 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 778 BA->getBasicBlock()))); 779 else 780 llvm_unreachable("Unknown constant pointer type!"); 781 break; 782 default: 783 SmallString<256> Msg; 784 raw_svector_ostream OS(Msg); 785 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 786 report_fatal_error(OS.str()); 787 } 788 789 return Result; 790} 791 792/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 793/// with the integer held in IntVal. 794static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 795 unsigned StoreBytes) { 796 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 797 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 798 799 if (sys::isLittleEndianHost()) { 800 // Little-endian host - the source is ordered from LSB to MSB. Order the 801 // destination from LSB to MSB: Do a straight copy. 802 memcpy(Dst, Src, StoreBytes); 803 } else { 804 // Big-endian host - the source is an array of 64 bit words ordered from 805 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 806 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 807 while (StoreBytes > sizeof(uint64_t)) { 808 StoreBytes -= sizeof(uint64_t); 809 // May not be aligned so use memcpy. 810 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 811 Src += sizeof(uint64_t); 812 } 813 814 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 815 } 816} 817 818void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 819 GenericValue *Ptr, const Type *Ty) { 820 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 821 822 switch (Ty->getTypeID()) { 823 case Type::IntegerTyID: 824 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 825 break; 826 case Type::FloatTyID: 827 *((float*)Ptr) = Val.FloatVal; 828 break; 829 case Type::DoubleTyID: 830 *((double*)Ptr) = Val.DoubleVal; 831 break; 832 case Type::X86_FP80TyID: 833 memcpy(Ptr, Val.IntVal.getRawData(), 10); 834 break; 835 case Type::PointerTyID: 836 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 837 if (StoreBytes != sizeof(PointerTy)) 838 memset(Ptr, 0, StoreBytes); 839 840 *((PointerTy*)Ptr) = Val.PointerVal; 841 break; 842 default: 843 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 844 } 845 846 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 847 // Host and target are different endian - reverse the stored bytes. 848 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 849} 850 851/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 852/// from Src into IntVal, which is assumed to be wide enough and to hold zero. 853static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 854 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 855 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 856 857 if (sys::isLittleEndianHost()) 858 // Little-endian host - the destination must be ordered from LSB to MSB. 859 // The source is ordered from LSB to MSB: Do a straight copy. 860 memcpy(Dst, Src, LoadBytes); 861 else { 862 // Big-endian - the destination is an array of 64 bit words ordered from 863 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 864 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 865 // a word. 866 while (LoadBytes > sizeof(uint64_t)) { 867 LoadBytes -= sizeof(uint64_t); 868 // May not be aligned so use memcpy. 869 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 870 Dst += sizeof(uint64_t); 871 } 872 873 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 874 } 875} 876 877/// FIXME: document 878/// 879void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 880 GenericValue *Ptr, 881 const Type *Ty) { 882 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 883 884 switch (Ty->getTypeID()) { 885 case Type::IntegerTyID: 886 // An APInt with all words initially zero. 887 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 888 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 889 break; 890 case Type::FloatTyID: 891 Result.FloatVal = *((float*)Ptr); 892 break; 893 case Type::DoubleTyID: 894 Result.DoubleVal = *((double*)Ptr); 895 break; 896 case Type::PointerTyID: 897 Result.PointerVal = *((PointerTy*)Ptr); 898 break; 899 case Type::X86_FP80TyID: { 900 // This is endian dependent, but it will only work on x86 anyway. 901 // FIXME: Will not trap if loading a signaling NaN. 902 uint64_t y[2]; 903 memcpy(y, Ptr, 10); 904 Result.IntVal = APInt(80, 2, y); 905 break; 906 } 907 default: 908 SmallString<256> Msg; 909 raw_svector_ostream OS(Msg); 910 OS << "Cannot load value of type " << *Ty << "!"; 911 report_fatal_error(OS.str()); 912 } 913} 914 915void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 916 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 917 DEBUG(Init->dump()); 918 if (isa<UndefValue>(Init)) { 919 return; 920 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 921 unsigned ElementSize = 922 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 923 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 924 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 925 return; 926 } else if (isa<ConstantAggregateZero>(Init)) { 927 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 928 return; 929 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 930 unsigned ElementSize = 931 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 932 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 933 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 934 return; 935 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 936 const StructLayout *SL = 937 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 938 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 939 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 940 return; 941 } else if (Init->getType()->isFirstClassType()) { 942 GenericValue Val = getConstantValue(Init); 943 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 944 return; 945 } 946 947 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 948 llvm_unreachable("Unknown constant type to initialize memory with!"); 949} 950 951/// EmitGlobals - Emit all of the global variables to memory, storing their 952/// addresses into GlobalAddress. This must make sure to copy the contents of 953/// their initializers into the memory. 954void ExecutionEngine::emitGlobals() { 955 // Loop over all of the global variables in the program, allocating the memory 956 // to hold them. If there is more than one module, do a prepass over globals 957 // to figure out how the different modules should link together. 958 std::map<std::pair<std::string, const Type*>, 959 const GlobalValue*> LinkedGlobalsMap; 960 961 if (Modules.size() != 1) { 962 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 963 Module &M = *Modules[m]; 964 for (Module::const_global_iterator I = M.global_begin(), 965 E = M.global_end(); I != E; ++I) { 966 const GlobalValue *GV = I; 967 if (GV->hasLocalLinkage() || GV->isDeclaration() || 968 GV->hasAppendingLinkage() || !GV->hasName()) 969 continue;// Ignore external globals and globals with internal linkage. 970 971 const GlobalValue *&GVEntry = 972 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 973 974 // If this is the first time we've seen this global, it is the canonical 975 // version. 976 if (!GVEntry) { 977 GVEntry = GV; 978 continue; 979 } 980 981 // If the existing global is strong, never replace it. 982 if (GVEntry->hasExternalLinkage() || 983 GVEntry->hasDLLImportLinkage() || 984 GVEntry->hasDLLExportLinkage()) 985 continue; 986 987 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 988 // symbol. FIXME is this right for common? 989 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 990 GVEntry = GV; 991 } 992 } 993 } 994 995 std::vector<const GlobalValue*> NonCanonicalGlobals; 996 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 997 Module &M = *Modules[m]; 998 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 999 I != E; ++I) { 1000 // In the multi-module case, see what this global maps to. 1001 if (!LinkedGlobalsMap.empty()) { 1002 if (const GlobalValue *GVEntry = 1003 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 1004 // If something else is the canonical global, ignore this one. 1005 if (GVEntry != &*I) { 1006 NonCanonicalGlobals.push_back(I); 1007 continue; 1008 } 1009 } 1010 } 1011 1012 if (!I->isDeclaration()) { 1013 addGlobalMapping(I, getMemoryForGV(I)); 1014 } else { 1015 // External variable reference. Try to use the dynamic loader to 1016 // get a pointer to it. 1017 if (void *SymAddr = 1018 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1019 addGlobalMapping(I, SymAddr); 1020 else { 1021 report_fatal_error("Could not resolve external global address: " 1022 +I->getName()); 1023 } 1024 } 1025 } 1026 1027 // If there are multiple modules, map the non-canonical globals to their 1028 // canonical location. 1029 if (!NonCanonicalGlobals.empty()) { 1030 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1031 const GlobalValue *GV = NonCanonicalGlobals[i]; 1032 const GlobalValue *CGV = 1033 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1034 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1035 assert(Ptr && "Canonical global wasn't codegen'd!"); 1036 addGlobalMapping(GV, Ptr); 1037 } 1038 } 1039 1040 // Now that all of the globals are set up in memory, loop through them all 1041 // and initialize their contents. 1042 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1043 I != E; ++I) { 1044 if (!I->isDeclaration()) { 1045 if (!LinkedGlobalsMap.empty()) { 1046 if (const GlobalValue *GVEntry = 1047 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1048 if (GVEntry != &*I) // Not the canonical variable. 1049 continue; 1050 } 1051 EmitGlobalVariable(I); 1052 } 1053 } 1054 } 1055} 1056 1057// EmitGlobalVariable - This method emits the specified global variable to the 1058// address specified in GlobalAddresses, or allocates new memory if it's not 1059// already in the map. 1060void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1061 void *GA = getPointerToGlobalIfAvailable(GV); 1062 1063 if (GA == 0) { 1064 // If it's not already specified, allocate memory for the global. 1065 GA = getMemoryForGV(GV); 1066 addGlobalMapping(GV, GA); 1067 } 1068 1069 // Don't initialize if it's thread local, let the client do it. 1070 if (!GV->isThreadLocal()) 1071 InitializeMemory(GV->getInitializer(), GA); 1072 1073 const Type *ElTy = GV->getType()->getElementType(); 1074 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1075 NumInitBytes += (unsigned)GVSize; 1076 ++NumGlobals; 1077} 1078 1079ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1080 : EE(EE), GlobalAddressMap(this) { 1081} 1082 1083sys::Mutex * 1084ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1085 return &EES->EE.lock; 1086} 1087 1088void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1089 const GlobalValue *Old) { 1090 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1091 EES->GlobalAddressReverseMap.erase(OldVal); 1092} 1093 1094void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1095 const GlobalValue *, 1096 const GlobalValue *) { 1097 assert(false && "The ExecutionEngine doesn't know how to handle a" 1098 " RAUW on a value it has a global mapping for."); 1099} 1100