ExecutionEngine.cpp revision 3069cbf7b3ef9a31bbb8e434686b7259052c364a
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Module.h"
21#include "llvm/ExecutionEngine/GenericValue.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MutexGuard.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/DynamicLibrary.h"
30#include "llvm/Support/Host.h"
31#include "llvm/Target/TargetData.h"
32#include <cmath>
33#include <cstring>
34using namespace llvm;
35
36STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
37STATISTIC(NumGlobals  , "Number of global vars initialized");
38
39ExecutionEngine *(*ExecutionEngine::JITCtor)(
40  Module *M,
41  std::string *ErrorStr,
42  JITMemoryManager *JMM,
43  CodeGenOpt::Level OptLevel,
44  bool GVsWithCode,
45  CodeModel::Model CMM,
46  StringRef MArch,
47  StringRef MCPU,
48  const SmallVectorImpl<std::string>& MAttrs) = 0;
49ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
50  Module *M,
51  std::string *ErrorStr,
52  JITMemoryManager *JMM,
53  CodeGenOpt::Level OptLevel,
54  bool GVsWithCode,
55  CodeModel::Model CMM,
56  StringRef MArch,
57  StringRef MCPU,
58  const SmallVectorImpl<std::string>& MAttrs) = 0;
59ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
60                                                std::string *ErrorStr) = 0;
61
62ExecutionEngine::ExecutionEngine(Module *M)
63  : EEState(*this),
64    LazyFunctionCreator(0),
65    ExceptionTableRegister(0),
66    ExceptionTableDeregister(0) {
67  CompilingLazily         = false;
68  GVCompilationDisabled   = false;
69  SymbolSearchingDisabled = false;
70  Modules.push_back(M);
71  assert(M && "Module is null?");
72}
73
74ExecutionEngine::~ExecutionEngine() {
75  clearAllGlobalMappings();
76  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
77    delete Modules[i];
78}
79
80void ExecutionEngine::DeregisterAllTables() {
81  if (ExceptionTableDeregister) {
82    for (std::vector<void*>::iterator it = AllExceptionTables.begin(),
83           ie = AllExceptionTables.end(); it != ie; ++it)
84      ExceptionTableDeregister(*it);
85    AllExceptionTables.clear();
86  }
87}
88
89namespace {
90/// \brief Helper class which uses a value handler to automatically deletes the
91/// memory block when the GlobalVariable is destroyed.
92class GVMemoryBlock : public CallbackVH {
93  GVMemoryBlock(const GlobalVariable *GV)
94    : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
95
96public:
97  /// \brief Returns the address the GlobalVariable should be written into.  The
98  /// GVMemoryBlock object prefixes that.
99  static char *Create(const GlobalVariable *GV, const TargetData& TD) {
100    const Type *ElTy = GV->getType()->getElementType();
101    size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
102    void *RawMemory = ::operator new(
103      TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
104                                   TD.getPreferredAlignment(GV))
105      + GVSize);
106    new(RawMemory) GVMemoryBlock(GV);
107    return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
108  }
109
110  virtual void deleted() {
111    // We allocated with operator new and with some extra memory hanging off the
112    // end, so don't just delete this.  I'm not sure if this is actually
113    // required.
114    this->~GVMemoryBlock();
115    ::operator delete(this);
116  }
117};
118}  // anonymous namespace
119
120char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
121  return GVMemoryBlock::Create(GV, *getTargetData());
122}
123
124bool ExecutionEngine::removeModule(Module *M) {
125  for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
126        E = Modules.end(); I != E; ++I) {
127    Module *Found = *I;
128    if (Found == M) {
129      Modules.erase(I);
130      clearGlobalMappingsFromModule(M);
131      return true;
132    }
133  }
134  return false;
135}
136
137Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
138  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
139    if (Function *F = Modules[i]->getFunction(FnName))
140      return F;
141  }
142  return 0;
143}
144
145
146void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
147                                          const GlobalValue *ToUnmap) {
148  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
149  void *OldVal;
150
151  // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
152  // GlobalAddressMap.
153  if (I == GlobalAddressMap.end())
154    OldVal = 0;
155  else {
156    OldVal = I->second;
157    GlobalAddressMap.erase(I);
158  }
159
160  GlobalAddressReverseMap.erase(OldVal);
161  return OldVal;
162}
163
164void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
165  MutexGuard locked(lock);
166
167  DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
168        << "\' to [" << Addr << "]\n";);
169  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
170  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
171  CurVal = Addr;
172
173  // If we are using the reverse mapping, add it too.
174  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
175    AssertingVH<const GlobalValue> &V =
176      EEState.getGlobalAddressReverseMap(locked)[Addr];
177    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
178    V = GV;
179  }
180}
181
182void ExecutionEngine::clearAllGlobalMappings() {
183  MutexGuard locked(lock);
184
185  EEState.getGlobalAddressMap(locked).clear();
186  EEState.getGlobalAddressReverseMap(locked).clear();
187}
188
189void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
190  MutexGuard locked(lock);
191
192  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
193    EEState.RemoveMapping(locked, FI);
194  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
195       GI != GE; ++GI)
196    EEState.RemoveMapping(locked, GI);
197}
198
199void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
200  MutexGuard locked(lock);
201
202  ExecutionEngineState::GlobalAddressMapTy &Map =
203    EEState.getGlobalAddressMap(locked);
204
205  // Deleting from the mapping?
206  if (Addr == 0)
207    return EEState.RemoveMapping(locked, GV);
208
209  void *&CurVal = Map[GV];
210  void *OldVal = CurVal;
211
212  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
213    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
214  CurVal = Addr;
215
216  // If we are using the reverse mapping, add it too.
217  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
218    AssertingVH<const GlobalValue> &V =
219      EEState.getGlobalAddressReverseMap(locked)[Addr];
220    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
221    V = GV;
222  }
223  return OldVal;
224}
225
226void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
227  MutexGuard locked(lock);
228
229  ExecutionEngineState::GlobalAddressMapTy::iterator I =
230    EEState.getGlobalAddressMap(locked).find(GV);
231  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
232}
233
234const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
235  MutexGuard locked(lock);
236
237  // If we haven't computed the reverse mapping yet, do so first.
238  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
239    for (ExecutionEngineState::GlobalAddressMapTy::iterator
240         I = EEState.getGlobalAddressMap(locked).begin(),
241         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
242      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
243                                                          I->second, I->first));
244  }
245
246  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
247    EEState.getGlobalAddressReverseMap(locked).find(Addr);
248  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
249}
250
251namespace {
252class ArgvArray {
253  char *Array;
254  std::vector<char*> Values;
255public:
256  ArgvArray() : Array(NULL) {}
257  ~ArgvArray() { clear(); }
258  void clear() {
259    delete[] Array;
260    Array = NULL;
261    for (size_t I = 0, E = Values.size(); I != E; ++I) {
262      delete[] Values[I];
263    }
264    Values.clear();
265  }
266  /// Turn a vector of strings into a nice argv style array of pointers to null
267  /// terminated strings.
268  void *reset(LLVMContext &C, ExecutionEngine *EE,
269              const std::vector<std::string> &InputArgv);
270};
271}  // anonymous namespace
272void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
273                       const std::vector<std::string> &InputArgv) {
274  clear();  // Free the old contents.
275  unsigned PtrSize = EE->getTargetData()->getPointerSize();
276  Array = new char[(InputArgv.size()+1)*PtrSize];
277
278  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
279  const Type *SBytePtr = Type::getInt8PtrTy(C);
280
281  for (unsigned i = 0; i != InputArgv.size(); ++i) {
282    unsigned Size = InputArgv[i].size()+1;
283    char *Dest = new char[Size];
284    Values.push_back(Dest);
285    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
286
287    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
288    Dest[Size-1] = 0;
289
290    // Endian safe: Array[i] = (PointerTy)Dest;
291    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
292                           SBytePtr);
293  }
294
295  // Null terminate it
296  EE->StoreValueToMemory(PTOGV(0),
297                         (GenericValue*)(Array+InputArgv.size()*PtrSize),
298                         SBytePtr);
299  return Array;
300}
301
302void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
303                                                       bool isDtors) {
304  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
305  GlobalVariable *GV = module->getNamedGlobal(Name);
306
307  // If this global has internal linkage, or if it has a use, then it must be
308  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
309  // this is the case, don't execute any of the global ctors, __main will do
310  // it.
311  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
312
313  // Should be an array of '{ int, void ()* }' structs.  The first value is
314  // the init priority, which we ignore.
315  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
316  if (!InitList) return;
317  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
318    ConstantStruct *CS =
319      dyn_cast<ConstantStruct>(InitList->getOperand(i));
320    if (!CS) continue;
321    if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
322
323    Constant *FP = CS->getOperand(1);
324    if (FP->isNullValue())
325      break;  // Found a null terminator, exit.
326
327    // Strip off constant expression casts.
328    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
329      if (CE->isCast())
330        FP = CE->getOperand(0);
331
332    // Execute the ctor/dtor function!
333    if (Function *F = dyn_cast<Function>(FP))
334      runFunction(F, std::vector<GenericValue>());
335
336    // FIXME: It is marginally lame that we just do nothing here if we see an
337    // entry we don't recognize. It might not be unreasonable for the verifier
338    // to not even allow this and just assert here.
339  }
340}
341
342void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
343  // Execute global ctors/dtors for each module in the program.
344  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
345    runStaticConstructorsDestructors(Modules[i], isDtors);
346}
347
348#ifndef NDEBUG
349/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
350static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
351  unsigned PtrSize = EE->getTargetData()->getPointerSize();
352  for (unsigned i = 0; i < PtrSize; ++i)
353    if (*(i + (uint8_t*)Loc))
354      return false;
355  return true;
356}
357#endif
358
359int ExecutionEngine::runFunctionAsMain(Function *Fn,
360                                       const std::vector<std::string> &argv,
361                                       const char * const * envp) {
362  std::vector<GenericValue> GVArgs;
363  GenericValue GVArgc;
364  GVArgc.IntVal = APInt(32, argv.size());
365
366  // Check main() type
367  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
368  const FunctionType *FTy = Fn->getFunctionType();
369  const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
370
371  // Check the argument types.
372  if (NumArgs > 3)
373    report_fatal_error("Invalid number of arguments of main() supplied");
374  if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
375    report_fatal_error("Invalid type for third argument of main() supplied");
376  if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
377    report_fatal_error("Invalid type for second argument of main() supplied");
378  if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
379    report_fatal_error("Invalid type for first argument of main() supplied");
380  if (!FTy->getReturnType()->isIntegerTy() &&
381      !FTy->getReturnType()->isVoidTy())
382    report_fatal_error("Invalid return type of main() supplied");
383
384  ArgvArray CArgv;
385  ArgvArray CEnv;
386  if (NumArgs) {
387    GVArgs.push_back(GVArgc); // Arg #0 = argc.
388    if (NumArgs > 1) {
389      // Arg #1 = argv.
390      GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
391      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
392             "argv[0] was null after CreateArgv");
393      if (NumArgs > 2) {
394        std::vector<std::string> EnvVars;
395        for (unsigned i = 0; envp[i]; ++i)
396          EnvVars.push_back(envp[i]);
397        // Arg #2 = envp.
398        GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
399      }
400    }
401  }
402
403  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
404}
405
406ExecutionEngine *ExecutionEngine::create(Module *M,
407                                         bool ForceInterpreter,
408                                         std::string *ErrorStr,
409                                         CodeGenOpt::Level OptLevel,
410                                         bool GVsWithCode) {
411  return EngineBuilder(M)
412      .setEngineKind(ForceInterpreter
413                     ? EngineKind::Interpreter
414                     : EngineKind::JIT)
415      .setErrorStr(ErrorStr)
416      .setOptLevel(OptLevel)
417      .setAllocateGVsWithCode(GVsWithCode)
418      .create();
419}
420
421ExecutionEngine *EngineBuilder::create() {
422  // Make sure we can resolve symbols in the program as well. The zero arg
423  // to the function tells DynamicLibrary to load the program, not a library.
424  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
425    return 0;
426
427  // If the user specified a memory manager but didn't specify which engine to
428  // create, we assume they only want the JIT, and we fail if they only want
429  // the interpreter.
430  if (JMM) {
431    if (WhichEngine & EngineKind::JIT)
432      WhichEngine = EngineKind::JIT;
433    else {
434      if (ErrorStr)
435        *ErrorStr = "Cannot create an interpreter with a memory manager.";
436      return 0;
437    }
438  }
439
440  // Unless the interpreter was explicitly selected or the JIT is not linked,
441  // try making a JIT.
442  if (WhichEngine & EngineKind::JIT) {
443    if (UseMCJIT && ExecutionEngine::MCJITCtor) {
444      ExecutionEngine *EE =
445        ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
446                                   AllocateGVsWithCode, CMModel,
447                                   MArch, MCPU, MAttrs);
448      if (EE) return EE;
449    } else if (ExecutionEngine::JITCtor) {
450      ExecutionEngine *EE =
451        ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
452                                 AllocateGVsWithCode, CMModel,
453                                 MArch, MCPU, MAttrs);
454      if (EE) return EE;
455    }
456  }
457
458  // If we can't make a JIT and we didn't request one specifically, try making
459  // an interpreter instead.
460  if (WhichEngine & EngineKind::Interpreter) {
461    if (ExecutionEngine::InterpCtor)
462      return ExecutionEngine::InterpCtor(M, ErrorStr);
463    if (ErrorStr)
464      *ErrorStr = "Interpreter has not been linked in.";
465    return 0;
466  }
467
468  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
469    if (ErrorStr)
470      *ErrorStr = "JIT has not been linked in.";
471  }
472
473  return 0;
474}
475
476void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
477  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
478    return getPointerToFunction(F);
479
480  MutexGuard locked(lock);
481  if (void *P = EEState.getGlobalAddressMap(locked)[GV])
482    return P;
483
484  // Global variable might have been added since interpreter started.
485  if (GlobalVariable *GVar =
486          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
487    EmitGlobalVariable(GVar);
488  else
489    llvm_unreachable("Global hasn't had an address allocated yet!");
490
491  return EEState.getGlobalAddressMap(locked)[GV];
492}
493
494/// \brief Converts a Constant* into a GenericValue, including handling of
495/// ConstantExpr values.
496GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
497  // If its undefined, return the garbage.
498  if (isa<UndefValue>(C)) {
499    GenericValue Result;
500    switch (C->getType()->getTypeID()) {
501    case Type::IntegerTyID:
502    case Type::X86_FP80TyID:
503    case Type::FP128TyID:
504    case Type::PPC_FP128TyID:
505      // Although the value is undefined, we still have to construct an APInt
506      // with the correct bit width.
507      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
508      break;
509    default:
510      break;
511    }
512    return Result;
513  }
514
515  // Otherwise, if the value is a ConstantExpr...
516  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
517    Constant *Op0 = CE->getOperand(0);
518    switch (CE->getOpcode()) {
519    case Instruction::GetElementPtr: {
520      // Compute the index
521      GenericValue Result = getConstantValue(Op0);
522      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
523      uint64_t Offset =
524        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
525
526      char* tmp = (char*) Result.PointerVal;
527      Result = PTOGV(tmp + Offset);
528      return Result;
529    }
530    case Instruction::Trunc: {
531      GenericValue GV = getConstantValue(Op0);
532      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
533      GV.IntVal = GV.IntVal.trunc(BitWidth);
534      return GV;
535    }
536    case Instruction::ZExt: {
537      GenericValue GV = getConstantValue(Op0);
538      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
539      GV.IntVal = GV.IntVal.zext(BitWidth);
540      return GV;
541    }
542    case Instruction::SExt: {
543      GenericValue GV = getConstantValue(Op0);
544      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
545      GV.IntVal = GV.IntVal.sext(BitWidth);
546      return GV;
547    }
548    case Instruction::FPTrunc: {
549      // FIXME long double
550      GenericValue GV = getConstantValue(Op0);
551      GV.FloatVal = float(GV.DoubleVal);
552      return GV;
553    }
554    case Instruction::FPExt:{
555      // FIXME long double
556      GenericValue GV = getConstantValue(Op0);
557      GV.DoubleVal = double(GV.FloatVal);
558      return GV;
559    }
560    case Instruction::UIToFP: {
561      GenericValue GV = getConstantValue(Op0);
562      if (CE->getType()->isFloatTy())
563        GV.FloatVal = float(GV.IntVal.roundToDouble());
564      else if (CE->getType()->isDoubleTy())
565        GV.DoubleVal = GV.IntVal.roundToDouble();
566      else if (CE->getType()->isX86_FP80Ty()) {
567        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
568        (void)apf.convertFromAPInt(GV.IntVal,
569                                   false,
570                                   APFloat::rmNearestTiesToEven);
571        GV.IntVal = apf.bitcastToAPInt();
572      }
573      return GV;
574    }
575    case Instruction::SIToFP: {
576      GenericValue GV = getConstantValue(Op0);
577      if (CE->getType()->isFloatTy())
578        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
579      else if (CE->getType()->isDoubleTy())
580        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
581      else if (CE->getType()->isX86_FP80Ty()) {
582        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
583        (void)apf.convertFromAPInt(GV.IntVal,
584                                   true,
585                                   APFloat::rmNearestTiesToEven);
586        GV.IntVal = apf.bitcastToAPInt();
587      }
588      return GV;
589    }
590    case Instruction::FPToUI: // double->APInt conversion handles sign
591    case Instruction::FPToSI: {
592      GenericValue GV = getConstantValue(Op0);
593      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
594      if (Op0->getType()->isFloatTy())
595        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
596      else if (Op0->getType()->isDoubleTy())
597        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
598      else if (Op0->getType()->isX86_FP80Ty()) {
599        APFloat apf = APFloat(GV.IntVal);
600        uint64_t v;
601        bool ignored;
602        (void)apf.convertToInteger(&v, BitWidth,
603                                   CE->getOpcode()==Instruction::FPToSI,
604                                   APFloat::rmTowardZero, &ignored);
605        GV.IntVal = v; // endian?
606      }
607      return GV;
608    }
609    case Instruction::PtrToInt: {
610      GenericValue GV = getConstantValue(Op0);
611      uint32_t PtrWidth = TD->getPointerSizeInBits();
612      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
613      return GV;
614    }
615    case Instruction::IntToPtr: {
616      GenericValue GV = getConstantValue(Op0);
617      uint32_t PtrWidth = TD->getPointerSizeInBits();
618      if (PtrWidth != GV.IntVal.getBitWidth())
619        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
620      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
621      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
622      return GV;
623    }
624    case Instruction::BitCast: {
625      GenericValue GV = getConstantValue(Op0);
626      const Type* DestTy = CE->getType();
627      switch (Op0->getType()->getTypeID()) {
628        default: llvm_unreachable("Invalid bitcast operand");
629        case Type::IntegerTyID:
630          assert(DestTy->isFloatingPointTy() && "invalid bitcast");
631          if (DestTy->isFloatTy())
632            GV.FloatVal = GV.IntVal.bitsToFloat();
633          else if (DestTy->isDoubleTy())
634            GV.DoubleVal = GV.IntVal.bitsToDouble();
635          break;
636        case Type::FloatTyID:
637          assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
638          GV.IntVal = APInt::floatToBits(GV.FloatVal);
639          break;
640        case Type::DoubleTyID:
641          assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
642          GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
643          break;
644        case Type::PointerTyID:
645          assert(DestTy->isPointerTy() && "Invalid bitcast");
646          break; // getConstantValue(Op0)  above already converted it
647      }
648      return GV;
649    }
650    case Instruction::Add:
651    case Instruction::FAdd:
652    case Instruction::Sub:
653    case Instruction::FSub:
654    case Instruction::Mul:
655    case Instruction::FMul:
656    case Instruction::UDiv:
657    case Instruction::SDiv:
658    case Instruction::URem:
659    case Instruction::SRem:
660    case Instruction::And:
661    case Instruction::Or:
662    case Instruction::Xor: {
663      GenericValue LHS = getConstantValue(Op0);
664      GenericValue RHS = getConstantValue(CE->getOperand(1));
665      GenericValue GV;
666      switch (CE->getOperand(0)->getType()->getTypeID()) {
667      default: llvm_unreachable("Bad add type!");
668      case Type::IntegerTyID:
669        switch (CE->getOpcode()) {
670          default: llvm_unreachable("Invalid integer opcode");
671          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
672          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
673          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
674          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
675          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
676          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
677          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
678          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
679          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
680          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
681        }
682        break;
683      case Type::FloatTyID:
684        switch (CE->getOpcode()) {
685          default: llvm_unreachable("Invalid float opcode");
686          case Instruction::FAdd:
687            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
688          case Instruction::FSub:
689            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
690          case Instruction::FMul:
691            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
692          case Instruction::FDiv:
693            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
694          case Instruction::FRem:
695            GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
696        }
697        break;
698      case Type::DoubleTyID:
699        switch (CE->getOpcode()) {
700          default: llvm_unreachable("Invalid double opcode");
701          case Instruction::FAdd:
702            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
703          case Instruction::FSub:
704            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
705          case Instruction::FMul:
706            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
707          case Instruction::FDiv:
708            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
709          case Instruction::FRem:
710            GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
711        }
712        break;
713      case Type::X86_FP80TyID:
714      case Type::PPC_FP128TyID:
715      case Type::FP128TyID: {
716        APFloat apfLHS = APFloat(LHS.IntVal);
717        switch (CE->getOpcode()) {
718          default: llvm_unreachable("Invalid long double opcode");
719          case Instruction::FAdd:
720            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
721            GV.IntVal = apfLHS.bitcastToAPInt();
722            break;
723          case Instruction::FSub:
724            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
725            GV.IntVal = apfLHS.bitcastToAPInt();
726            break;
727          case Instruction::FMul:
728            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
729            GV.IntVal = apfLHS.bitcastToAPInt();
730            break;
731          case Instruction::FDiv:
732            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
733            GV.IntVal = apfLHS.bitcastToAPInt();
734            break;
735          case Instruction::FRem:
736            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
737            GV.IntVal = apfLHS.bitcastToAPInt();
738            break;
739          }
740        }
741        break;
742      }
743      return GV;
744    }
745    default:
746      break;
747    }
748
749    SmallString<256> Msg;
750    raw_svector_ostream OS(Msg);
751    OS << "ConstantExpr not handled: " << *CE;
752    report_fatal_error(OS.str());
753  }
754
755  // Otherwise, we have a simple constant.
756  GenericValue Result;
757  switch (C->getType()->getTypeID()) {
758  case Type::FloatTyID:
759    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
760    break;
761  case Type::DoubleTyID:
762    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
763    break;
764  case Type::X86_FP80TyID:
765  case Type::FP128TyID:
766  case Type::PPC_FP128TyID:
767    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
768    break;
769  case Type::IntegerTyID:
770    Result.IntVal = cast<ConstantInt>(C)->getValue();
771    break;
772  case Type::PointerTyID:
773    if (isa<ConstantPointerNull>(C))
774      Result.PointerVal = 0;
775    else if (const Function *F = dyn_cast<Function>(C))
776      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
777    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
778      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
779    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
780      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
781                                                        BA->getBasicBlock())));
782    else
783      llvm_unreachable("Unknown constant pointer type!");
784    break;
785  default:
786    SmallString<256> Msg;
787    raw_svector_ostream OS(Msg);
788    OS << "ERROR: Constant unimplemented for type: " << *C->getType();
789    report_fatal_error(OS.str());
790  }
791
792  return Result;
793}
794
795/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
796/// with the integer held in IntVal.
797static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
798                             unsigned StoreBytes) {
799  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
800  uint8_t *Src = (uint8_t *)IntVal.getRawData();
801
802  if (sys::isLittleEndianHost()) {
803    // Little-endian host - the source is ordered from LSB to MSB.  Order the
804    // destination from LSB to MSB: Do a straight copy.
805    memcpy(Dst, Src, StoreBytes);
806  } else {
807    // Big-endian host - the source is an array of 64 bit words ordered from
808    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
809    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
810    while (StoreBytes > sizeof(uint64_t)) {
811      StoreBytes -= sizeof(uint64_t);
812      // May not be aligned so use memcpy.
813      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
814      Src += sizeof(uint64_t);
815    }
816
817    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
818  }
819}
820
821void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
822                                         GenericValue *Ptr, const Type *Ty) {
823  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
824
825  switch (Ty->getTypeID()) {
826  case Type::IntegerTyID:
827    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
828    break;
829  case Type::FloatTyID:
830    *((float*)Ptr) = Val.FloatVal;
831    break;
832  case Type::DoubleTyID:
833    *((double*)Ptr) = Val.DoubleVal;
834    break;
835  case Type::X86_FP80TyID:
836    memcpy(Ptr, Val.IntVal.getRawData(), 10);
837    break;
838  case Type::PointerTyID:
839    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
840    if (StoreBytes != sizeof(PointerTy))
841      memset(Ptr, 0, StoreBytes);
842
843    *((PointerTy*)Ptr) = Val.PointerVal;
844    break;
845  default:
846    dbgs() << "Cannot store value of type " << *Ty << "!\n";
847  }
848
849  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
850    // Host and target are different endian - reverse the stored bytes.
851    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
852}
853
854/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
855/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
856static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
857  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
858  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
859
860  if (sys::isLittleEndianHost())
861    // Little-endian host - the destination must be ordered from LSB to MSB.
862    // The source is ordered from LSB to MSB: Do a straight copy.
863    memcpy(Dst, Src, LoadBytes);
864  else {
865    // Big-endian - the destination is an array of 64 bit words ordered from
866    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
867    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
868    // a word.
869    while (LoadBytes > sizeof(uint64_t)) {
870      LoadBytes -= sizeof(uint64_t);
871      // May not be aligned so use memcpy.
872      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
873      Dst += sizeof(uint64_t);
874    }
875
876    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
877  }
878}
879
880/// FIXME: document
881///
882void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
883                                          GenericValue *Ptr,
884                                          const Type *Ty) {
885  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
886
887  switch (Ty->getTypeID()) {
888  case Type::IntegerTyID:
889    // An APInt with all words initially zero.
890    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
891    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
892    break;
893  case Type::FloatTyID:
894    Result.FloatVal = *((float*)Ptr);
895    break;
896  case Type::DoubleTyID:
897    Result.DoubleVal = *((double*)Ptr);
898    break;
899  case Type::PointerTyID:
900    Result.PointerVal = *((PointerTy*)Ptr);
901    break;
902  case Type::X86_FP80TyID: {
903    // This is endian dependent, but it will only work on x86 anyway.
904    // FIXME: Will not trap if loading a signaling NaN.
905    uint64_t y[2];
906    memcpy(y, Ptr, 10);
907    Result.IntVal = APInt(80, 2, y);
908    break;
909  }
910  default:
911    SmallString<256> Msg;
912    raw_svector_ostream OS(Msg);
913    OS << "Cannot load value of type " << *Ty << "!";
914    report_fatal_error(OS.str());
915  }
916}
917
918void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
919  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
920  DEBUG(Init->dump());
921  if (isa<UndefValue>(Init)) {
922    return;
923  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
924    unsigned ElementSize =
925      getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
926    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
927      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
928    return;
929  } else if (isa<ConstantAggregateZero>(Init)) {
930    memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
931    return;
932  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
933    unsigned ElementSize =
934      getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
935    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
936      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
937    return;
938  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
939    const StructLayout *SL =
940      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
941    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
942      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
943    return;
944  } else if (Init->getType()->isFirstClassType()) {
945    GenericValue Val = getConstantValue(Init);
946    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
947    return;
948  }
949
950  DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
951  llvm_unreachable("Unknown constant type to initialize memory with!");
952}
953
954/// EmitGlobals - Emit all of the global variables to memory, storing their
955/// addresses into GlobalAddress.  This must make sure to copy the contents of
956/// their initializers into the memory.
957void ExecutionEngine::emitGlobals() {
958  // Loop over all of the global variables in the program, allocating the memory
959  // to hold them.  If there is more than one module, do a prepass over globals
960  // to figure out how the different modules should link together.
961  std::map<std::pair<std::string, const Type*>,
962           const GlobalValue*> LinkedGlobalsMap;
963
964  if (Modules.size() != 1) {
965    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
966      Module &M = *Modules[m];
967      for (Module::const_global_iterator I = M.global_begin(),
968           E = M.global_end(); I != E; ++I) {
969        const GlobalValue *GV = I;
970        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
971            GV->hasAppendingLinkage() || !GV->hasName())
972          continue;// Ignore external globals and globals with internal linkage.
973
974        const GlobalValue *&GVEntry =
975          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
976
977        // If this is the first time we've seen this global, it is the canonical
978        // version.
979        if (!GVEntry) {
980          GVEntry = GV;
981          continue;
982        }
983
984        // If the existing global is strong, never replace it.
985        if (GVEntry->hasExternalLinkage() ||
986            GVEntry->hasDLLImportLinkage() ||
987            GVEntry->hasDLLExportLinkage())
988          continue;
989
990        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
991        // symbol.  FIXME is this right for common?
992        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
993          GVEntry = GV;
994      }
995    }
996  }
997
998  std::vector<const GlobalValue*> NonCanonicalGlobals;
999  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1000    Module &M = *Modules[m];
1001    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1002         I != E; ++I) {
1003      // In the multi-module case, see what this global maps to.
1004      if (!LinkedGlobalsMap.empty()) {
1005        if (const GlobalValue *GVEntry =
1006              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1007          // If something else is the canonical global, ignore this one.
1008          if (GVEntry != &*I) {
1009            NonCanonicalGlobals.push_back(I);
1010            continue;
1011          }
1012        }
1013      }
1014
1015      if (!I->isDeclaration()) {
1016        addGlobalMapping(I, getMemoryForGV(I));
1017      } else {
1018        // External variable reference. Try to use the dynamic loader to
1019        // get a pointer to it.
1020        if (void *SymAddr =
1021            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1022          addGlobalMapping(I, SymAddr);
1023        else {
1024          report_fatal_error("Could not resolve external global address: "
1025                            +I->getName());
1026        }
1027      }
1028    }
1029
1030    // If there are multiple modules, map the non-canonical globals to their
1031    // canonical location.
1032    if (!NonCanonicalGlobals.empty()) {
1033      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1034        const GlobalValue *GV = NonCanonicalGlobals[i];
1035        const GlobalValue *CGV =
1036          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1037        void *Ptr = getPointerToGlobalIfAvailable(CGV);
1038        assert(Ptr && "Canonical global wasn't codegen'd!");
1039        addGlobalMapping(GV, Ptr);
1040      }
1041    }
1042
1043    // Now that all of the globals are set up in memory, loop through them all
1044    // and initialize their contents.
1045    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1046         I != E; ++I) {
1047      if (!I->isDeclaration()) {
1048        if (!LinkedGlobalsMap.empty()) {
1049          if (const GlobalValue *GVEntry =
1050                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1051            if (GVEntry != &*I)  // Not the canonical variable.
1052              continue;
1053        }
1054        EmitGlobalVariable(I);
1055      }
1056    }
1057  }
1058}
1059
1060// EmitGlobalVariable - This method emits the specified global variable to the
1061// address specified in GlobalAddresses, or allocates new memory if it's not
1062// already in the map.
1063void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1064  void *GA = getPointerToGlobalIfAvailable(GV);
1065
1066  if (GA == 0) {
1067    // If it's not already specified, allocate memory for the global.
1068    GA = getMemoryForGV(GV);
1069    addGlobalMapping(GV, GA);
1070  }
1071
1072  // Don't initialize if it's thread local, let the client do it.
1073  if (!GV->isThreadLocal())
1074    InitializeMemory(GV->getInitializer(), GA);
1075
1076  const Type *ElTy = GV->getType()->getElementType();
1077  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1078  NumInitBytes += (unsigned)GVSize;
1079  ++NumGlobals;
1080}
1081
1082ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1083  : EE(EE), GlobalAddressMap(this) {
1084}
1085
1086sys::Mutex *
1087ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1088  return &EES->EE.lock;
1089}
1090
1091void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1092                                                      const GlobalValue *Old) {
1093  void *OldVal = EES->GlobalAddressMap.lookup(Old);
1094  EES->GlobalAddressReverseMap.erase(OldVal);
1095}
1096
1097void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1098                                                    const GlobalValue *,
1099                                                    const GlobalValue *) {
1100  assert(false && "The ExecutionEngine doesn't know how to handle a"
1101         " RAUW on a value it has a global mapping for.");
1102}
1103