ExecutionEngine.cpp revision 9f2f142d255bc96f109dd5c6524a485937b1f3a1
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ExecutionEngine/ExecutionEngine.h"
22#include "llvm/ExecutionEngine/GenericValue.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/MutexGuard.h"
25#include "llvm/System/DynamicLibrary.h"
26#include "llvm/Target/TargetData.h"
27#include <math.h>
28using namespace llvm;
29
30STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
31STATISTIC(NumGlobals  , "Number of global vars initialized");
32
33ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
34ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
35
36ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
37  LazyCompilationDisabled = false;
38  Modules.push_back(P);
39  assert(P && "ModuleProvider is null?");
40}
41
42ExecutionEngine::~ExecutionEngine() {
43  clearAllGlobalMappings();
44  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
45    delete Modules[i];
46}
47
48/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
49/// Release module from ModuleProvider.
50Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
51                                              std::string *ErrInfo) {
52  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
53        E = Modules.end(); I != E; ++I) {
54    ModuleProvider *MP = *I;
55    if (MP == P) {
56      Modules.erase(I);
57      return MP->releaseModule(ErrInfo);
58    }
59  }
60  return NULL;
61}
62
63/// FindFunctionNamed - Search all of the active modules to find the one that
64/// defines FnName.  This is very slow operation and shouldn't be used for
65/// general code.
66Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
67  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
68    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
69      return F;
70  }
71  return 0;
72}
73
74
75/// addGlobalMapping - Tell the execution engine that the specified global is
76/// at the specified location.  This is used internally as functions are JIT'd
77/// and as global variables are laid out in memory.  It can and should also be
78/// used by clients of the EE that want to have an LLVM global overlay
79/// existing data in memory.
80void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
81  MutexGuard locked(lock);
82
83  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
84  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
85  CurVal = Addr;
86
87  // If we are using the reverse mapping, add it too
88  if (!state.getGlobalAddressReverseMap(locked).empty()) {
89    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
90    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
91    V = GV;
92  }
93}
94
95/// clearAllGlobalMappings - Clear all global mappings and start over again
96/// use in dynamic compilation scenarios when you want to move globals
97void ExecutionEngine::clearAllGlobalMappings() {
98  MutexGuard locked(lock);
99
100  state.getGlobalAddressMap(locked).clear();
101  state.getGlobalAddressReverseMap(locked).clear();
102}
103
104/// updateGlobalMapping - Replace an existing mapping for GV with a new
105/// address.  This updates both maps as required.  If "Addr" is null, the
106/// entry for the global is removed from the mappings.
107void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
108  MutexGuard locked(lock);
109
110  // Deleting from the mapping?
111  if (Addr == 0) {
112    state.getGlobalAddressMap(locked).erase(GV);
113    if (!state.getGlobalAddressReverseMap(locked).empty())
114      state.getGlobalAddressReverseMap(locked).erase(Addr);
115    return;
116  }
117
118  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
119  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
120    state.getGlobalAddressReverseMap(locked).erase(CurVal);
121  CurVal = Addr;
122
123  // If we are using the reverse mapping, add it too
124  if (!state.getGlobalAddressReverseMap(locked).empty()) {
125    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
126    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
127    V = GV;
128  }
129}
130
131/// getPointerToGlobalIfAvailable - This returns the address of the specified
132/// global value if it is has already been codegen'd, otherwise it returns null.
133///
134void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
135  MutexGuard locked(lock);
136
137  std::map<const GlobalValue*, void*>::iterator I =
138  state.getGlobalAddressMap(locked).find(GV);
139  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
140}
141
142/// getGlobalValueAtAddress - Return the LLVM global value object that starts
143/// at the specified address.
144///
145const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
146  MutexGuard locked(lock);
147
148  // If we haven't computed the reverse mapping yet, do so first.
149  if (state.getGlobalAddressReverseMap(locked).empty()) {
150    for (std::map<const GlobalValue*, void *>::iterator
151         I = state.getGlobalAddressMap(locked).begin(),
152         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
153      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
154                                                                     I->first));
155  }
156
157  std::map<void *, const GlobalValue*>::iterator I =
158    state.getGlobalAddressReverseMap(locked).find(Addr);
159  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
160}
161
162// CreateArgv - Turn a vector of strings into a nice argv style array of
163// pointers to null terminated strings.
164//
165static void *CreateArgv(ExecutionEngine *EE,
166                        const std::vector<std::string> &InputArgv) {
167  unsigned PtrSize = EE->getTargetData()->getPointerSize();
168  char *Result = new char[(InputArgv.size()+1)*PtrSize];
169
170  DOUT << "ARGV = " << (void*)Result << "\n";
171  const Type *SBytePtr = PointerType::get(Type::Int8Ty);
172
173  for (unsigned i = 0; i != InputArgv.size(); ++i) {
174    unsigned Size = InputArgv[i].size()+1;
175    char *Dest = new char[Size];
176    DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
177
178    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
179    Dest[Size-1] = 0;
180
181    // Endian safe: Result[i] = (PointerTy)Dest;
182    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
183                           SBytePtr);
184  }
185
186  // Null terminate it
187  EE->StoreValueToMemory(PTOGV(0),
188                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
189                         SBytePtr);
190  return Result;
191}
192
193
194/// runStaticConstructorsDestructors - This method is used to execute all of
195/// the static constructors or destructors for a program, depending on the
196/// value of isDtors.
197void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
198  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
199
200  // Execute global ctors/dtors for each module in the program.
201  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
202    GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
203
204    // If this global has internal linkage, or if it has a use, then it must be
205    // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
206    // this is the case, don't execute any of the global ctors, __main will do
207    // it.
208    if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
209
210    // Should be an array of '{ int, void ()* }' structs.  The first value is
211    // the init priority, which we ignore.
212    ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
213    if (!InitList) continue;
214    for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
215      if (ConstantStruct *CS =
216          dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
217        if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
218
219        Constant *FP = CS->getOperand(1);
220        if (FP->isNullValue())
221          break;  // Found a null terminator, exit.
222
223        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
224          if (CE->isCast())
225            FP = CE->getOperand(0);
226        if (Function *F = dyn_cast<Function>(FP)) {
227          // Execute the ctor/dtor function!
228          runFunction(F, std::vector<GenericValue>());
229        }
230      }
231  }
232}
233
234/// runFunctionAsMain - This is a helper function which wraps runFunction to
235/// handle the common task of starting up main with the specified argc, argv,
236/// and envp parameters.
237int ExecutionEngine::runFunctionAsMain(Function *Fn,
238                                       const std::vector<std::string> &argv,
239                                       const char * const * envp) {
240  std::vector<GenericValue> GVArgs;
241  GenericValue GVArgc;
242  GVArgc.IntVal = APInt(32, argv.size());
243
244  // Check main() type
245  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
246  const FunctionType *FTy = Fn->getFunctionType();
247  const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty));
248  switch (NumArgs) {
249  case 3:
250   if (FTy->getParamType(2) != PPInt8Ty) {
251     cerr << "Invalid type for third argument of main() supplied\n";
252     abort();
253   }
254   // FALLS THROUGH
255  case 2:
256   if (FTy->getParamType(1) != PPInt8Ty) {
257     cerr << "Invalid type for second argument of main() supplied\n";
258     abort();
259   }
260   // FALLS THROUGH
261  case 1:
262   if (FTy->getParamType(0) != Type::Int32Ty) {
263     cerr << "Invalid type for first argument of main() supplied\n";
264     abort();
265   }
266   // FALLS THROUGH
267  case 0:
268   if (FTy->getReturnType() != Type::Int32Ty &&
269       FTy->getReturnType() != Type::VoidTy) {
270     cerr << "Invalid return type of main() supplied\n";
271     abort();
272   }
273   break;
274  default:
275   cerr << "Invalid number of arguments of main() supplied\n";
276   abort();
277  }
278
279  if (NumArgs) {
280    GVArgs.push_back(GVArgc); // Arg #0 = argc.
281    if (NumArgs > 1) {
282      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
283      assert(((char **)GVTOP(GVArgs[1]))[0] &&
284             "argv[0] was null after CreateArgv");
285      if (NumArgs > 2) {
286        std::vector<std::string> EnvVars;
287        for (unsigned i = 0; envp[i]; ++i)
288          EnvVars.push_back(envp[i]);
289        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
290      }
291    }
292  }
293  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
294}
295
296/// If possible, create a JIT, unless the caller specifically requests an
297/// Interpreter or there's an error. If even an Interpreter cannot be created,
298/// NULL is returned.
299///
300ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
301                                         bool ForceInterpreter,
302                                         std::string *ErrorStr) {
303  ExecutionEngine *EE = 0;
304
305  // Unless the interpreter was explicitly selected, try making a JIT.
306  if (!ForceInterpreter && JITCtor)
307    EE = JITCtor(MP, ErrorStr);
308
309  // If we can't make a JIT, make an interpreter instead.
310  if (EE == 0 && InterpCtor)
311    EE = InterpCtor(MP, ErrorStr);
312
313  if (EE) {
314    // Make sure we can resolve symbols in the program as well. The zero arg
315    // to the function tells DynamicLibrary to load the program, not a library.
316    if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) {
317      delete EE;
318      return 0;
319    }
320  }
321
322  return EE;
323}
324
325ExecutionEngine *ExecutionEngine::create(Module *M) {
326  return create(new ExistingModuleProvider(M));
327}
328
329/// getPointerToGlobal - This returns the address of the specified global
330/// value.  This may involve code generation if it's a function.
331///
332void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
333  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
334    return getPointerToFunction(F);
335
336  MutexGuard locked(lock);
337  void *p = state.getGlobalAddressMap(locked)[GV];
338  if (p)
339    return p;
340
341  // Global variable might have been added since interpreter started.
342  if (GlobalVariable *GVar =
343          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
344    EmitGlobalVariable(GVar);
345  else
346    assert(0 && "Global hasn't had an address allocated yet!");
347  return state.getGlobalAddressMap(locked)[GV];
348}
349
350/// This function converts a Constant* into a GenericValue. The interesting
351/// part is if C is a ConstantExpr.
352/// @brief Get a GenericValue for a Constant*
353GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
354  // If its undefined, return the garbage.
355  if (isa<UndefValue>(C))
356    return GenericValue();
357
358  // If the value is a ConstantExpr
359  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
360    Constant *Op0 = CE->getOperand(0);
361    switch (CE->getOpcode()) {
362    case Instruction::GetElementPtr: {
363      // Compute the index
364      GenericValue Result = getConstantValue(Op0);
365      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
366      uint64_t Offset =
367        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
368
369      char* tmp = (char*) Result.PointerVal;
370      Result = PTOGV(tmp + Offset);
371      return Result;
372    }
373    case Instruction::Trunc: {
374      GenericValue GV = getConstantValue(Op0);
375      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
376      GV.IntVal = GV.IntVal.trunc(BitWidth);
377      return GV;
378    }
379    case Instruction::ZExt: {
380      GenericValue GV = getConstantValue(Op0);
381      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
382      GV.IntVal = GV.IntVal.zext(BitWidth);
383      return GV;
384    }
385    case Instruction::SExt: {
386      GenericValue GV = getConstantValue(Op0);
387      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
388      GV.IntVal = GV.IntVal.sext(BitWidth);
389      return GV;
390    }
391    case Instruction::FPTrunc: {
392      // FIXME long double
393      GenericValue GV = getConstantValue(Op0);
394      GV.FloatVal = float(GV.DoubleVal);
395      return GV;
396    }
397    case Instruction::FPExt:{
398      // FIXME long double
399      GenericValue GV = getConstantValue(Op0);
400      GV.DoubleVal = double(GV.FloatVal);
401      return GV;
402    }
403    case Instruction::UIToFP: {
404      GenericValue GV = getConstantValue(Op0);
405      if (CE->getType() == Type::FloatTy)
406        GV.FloatVal = float(GV.IntVal.roundToDouble());
407      else if (CE->getType() == Type::DoubleTy)
408        GV.DoubleVal = GV.IntVal.roundToDouble();
409      else if (CE->getType() == Type::X86_FP80Ty) {
410        const uint64_t zero[] = {0, 0};
411        APFloat apf = APFloat(APInt(80, 2, zero));
412        (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),
413                               GV.IntVal.getBitWidth(), false,
414                               APFloat::rmNearestTiesToEven);
415        GV.IntVal = apf.convertToAPInt();
416      }
417      return GV;
418    }
419    case Instruction::SIToFP: {
420      GenericValue GV = getConstantValue(Op0);
421      if (CE->getType() == Type::FloatTy)
422        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
423      else if (CE->getType() == Type::DoubleTy)
424        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
425      else if (CE->getType() == Type::X86_FP80Ty) {
426        const uint64_t zero[] = { 0, 0};
427        APFloat apf = APFloat(APInt(80, 2, zero));
428        (void)apf.convertFromZeroExtendedInteger(GV.IntVal.getRawData(),
429                               GV.IntVal.getBitWidth(), true,
430                               APFloat::rmNearestTiesToEven);
431        GV.IntVal = apf.convertToAPInt();
432      }
433      return GV;
434    }
435    case Instruction::FPToUI: // double->APInt conversion handles sign
436    case Instruction::FPToSI: {
437      GenericValue GV = getConstantValue(Op0);
438      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
439      if (Op0->getType() == Type::FloatTy)
440        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
441      else if (Op0->getType() == Type::DoubleTy)
442        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
443      else if (Op0->getType() == Type::X86_FP80Ty) {
444        APFloat apf = APFloat(GV.IntVal);
445        uint64_t v;
446        (void)apf.convertToInteger(&v, BitWidth,
447                                   CE->getOpcode()==Instruction::FPToSI,
448                                   APFloat::rmTowardZero);
449        GV.IntVal = v; // endian?
450      }
451      return GV;
452    }
453    case Instruction::PtrToInt: {
454      GenericValue GV = getConstantValue(Op0);
455      uint32_t PtrWidth = TD->getPointerSizeInBits();
456      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
457      return GV;
458    }
459    case Instruction::IntToPtr: {
460      GenericValue GV = getConstantValue(Op0);
461      uint32_t PtrWidth = TD->getPointerSizeInBits();
462      if (PtrWidth != GV.IntVal.getBitWidth())
463        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
464      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
465      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
466      return GV;
467    }
468    case Instruction::BitCast: {
469      GenericValue GV = getConstantValue(Op0);
470      const Type* DestTy = CE->getType();
471      switch (Op0->getType()->getTypeID()) {
472        default: assert(0 && "Invalid bitcast operand");
473        case Type::IntegerTyID:
474          assert(DestTy->isFloatingPoint() && "invalid bitcast");
475          if (DestTy == Type::FloatTy)
476            GV.FloatVal = GV.IntVal.bitsToFloat();
477          else if (DestTy == Type::DoubleTy)
478            GV.DoubleVal = GV.IntVal.bitsToDouble();
479          break;
480        case Type::FloatTyID:
481          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
482          GV.IntVal.floatToBits(GV.FloatVal);
483          break;
484        case Type::DoubleTyID:
485          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
486          GV.IntVal.doubleToBits(GV.DoubleVal);
487          break;
488        case Type::PointerTyID:
489          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
490          break; // getConstantValue(Op0)  above already converted it
491      }
492      return GV;
493    }
494    case Instruction::Add:
495    case Instruction::Sub:
496    case Instruction::Mul:
497    case Instruction::UDiv:
498    case Instruction::SDiv:
499    case Instruction::URem:
500    case Instruction::SRem:
501    case Instruction::And:
502    case Instruction::Or:
503    case Instruction::Xor: {
504      GenericValue LHS = getConstantValue(Op0);
505      GenericValue RHS = getConstantValue(CE->getOperand(1));
506      GenericValue GV;
507      switch (CE->getOperand(0)->getType()->getTypeID()) {
508      default: assert(0 && "Bad add type!"); abort();
509      case Type::IntegerTyID:
510        switch (CE->getOpcode()) {
511          default: assert(0 && "Invalid integer opcode");
512          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
513          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
514          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
515          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
516          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
517          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
518          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
519          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
520          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
521          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
522        }
523        break;
524      case Type::FloatTyID:
525        switch (CE->getOpcode()) {
526          default: assert(0 && "Invalid float opcode"); abort();
527          case Instruction::Add:
528            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
529          case Instruction::Sub:
530            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
531          case Instruction::Mul:
532            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
533          case Instruction::FDiv:
534            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
535          case Instruction::FRem:
536            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
537        }
538        break;
539      case Type::DoubleTyID:
540        switch (CE->getOpcode()) {
541          default: assert(0 && "Invalid double opcode"); abort();
542          case Instruction::Add:
543            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
544          case Instruction::Sub:
545            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
546          case Instruction::Mul:
547            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
548          case Instruction::FDiv:
549            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
550          case Instruction::FRem:
551            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
552        }
553        break;
554      case Type::X86_FP80TyID:
555      case Type::PPC_FP128TyID:
556      case Type::FP128TyID: {
557        APFloat apfLHS = APFloat(LHS.IntVal);
558        switch (CE->getOpcode()) {
559          default: assert(0 && "Invalid long double opcode"); abort();
560          case Instruction::Add:
561            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
562            GV.IntVal = apfLHS.convertToAPInt();
563            break;
564          case Instruction::Sub:
565            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
566            GV.IntVal = apfLHS.convertToAPInt();
567            break;
568          case Instruction::Mul:
569            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
570            GV.IntVal = apfLHS.convertToAPInt();
571            break;
572          case Instruction::FDiv:
573            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
574            GV.IntVal = apfLHS.convertToAPInt();
575            break;
576          case Instruction::FRem:
577            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
578            GV.IntVal = apfLHS.convertToAPInt();
579            break;
580          }
581        }
582        break;
583      }
584      return GV;
585    }
586    default:
587      break;
588    }
589    cerr << "ConstantExpr not handled: " << *CE << "\n";
590    abort();
591  }
592
593  GenericValue Result;
594  switch (C->getType()->getTypeID()) {
595  case Type::FloatTyID:
596    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
597    break;
598  case Type::DoubleTyID:
599    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
600    break;
601  case Type::X86_FP80TyID:
602  case Type::FP128TyID:
603  case Type::PPC_FP128TyID:
604    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt();
605    break;
606  case Type::IntegerTyID:
607    Result.IntVal = cast<ConstantInt>(C)->getValue();
608    break;
609  case Type::PointerTyID:
610    if (isa<ConstantPointerNull>(C))
611      Result.PointerVal = 0;
612    else if (const Function *F = dyn_cast<Function>(C))
613      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
614    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
615      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
616    else
617      assert(0 && "Unknown constant pointer type!");
618    break;
619  default:
620    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
621    abort();
622  }
623  return Result;
624}
625
626/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
627/// is the address of the memory at which to store Val, cast to GenericValue *.
628/// It is not a pointer to a GenericValue containing the address at which to
629/// store Val.
630///
631void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
632                                         const Type *Ty) {
633  switch (Ty->getTypeID()) {
634  case Type::IntegerTyID: {
635    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
636    GenericValue TmpVal = Val;
637    if (BitWidth <= 8)
638      *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue());
639    else if (BitWidth <= 16) {
640      *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue());
641    } else if (BitWidth <= 32) {
642      *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue());
643    } else if (BitWidth <= 64) {
644      *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue());
645    } else {
646      uint64_t *Dest = (uint64_t*)Ptr;
647      const uint64_t *Src = Val.IntVal.getRawData();
648      for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i)
649        Dest[i] = Src[i];
650    }
651    break;
652  }
653  case Type::FloatTyID:
654    *((float*)Ptr) = Val.FloatVal;
655    break;
656  case Type::DoubleTyID:
657    *((double*)Ptr) = Val.DoubleVal;
658    break;
659  case Type::X86_FP80TyID: {
660      uint16_t *Dest = (uint16_t*)Ptr;
661      const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
662      // This is endian dependent, but it will only work on x86 anyway.
663      Dest[0] = Src[4];
664      Dest[1] = Src[0];
665      Dest[2] = Src[1];
666      Dest[3] = Src[2];
667      Dest[4] = Src[3];
668      break;
669    }
670  case Type::PointerTyID:
671    *((PointerTy*)Ptr) = Val.PointerVal;
672    break;
673  default:
674    cerr << "Cannot store value of type " << *Ty << "!\n";
675  }
676}
677
678/// FIXME: document
679///
680void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
681                                                  GenericValue *Ptr,
682                                                  const Type *Ty) {
683  switch (Ty->getTypeID()) {
684  case Type::IntegerTyID: {
685    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
686    if (BitWidth <= 8)
687      Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr));
688    else if (BitWidth <= 16) {
689      Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr));
690    } else if (BitWidth <= 32) {
691      Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr));
692    } else if (BitWidth <= 64) {
693      Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr));
694    } else
695      Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr);
696    break;
697  }
698  case Type::FloatTyID:
699    Result.FloatVal = *((float*)Ptr);
700    break;
701  case Type::DoubleTyID:
702    Result.DoubleVal = *((double*)Ptr);
703    break;
704  case Type::PointerTyID:
705    Result.PointerVal = *((PointerTy*)Ptr);
706    break;
707  case Type::X86_FP80TyID: {
708    // This is endian dependent, but it will only work on x86 anyway.
709    uint16_t *p = (uint16_t*)Ptr;
710    union {
711      uint16_t x[8];
712      uint64_t y[2];
713    };
714    x[0] = p[1];
715    x[1] = p[2];
716    x[2] = p[3];
717    x[3] = p[4];
718    x[4] = p[0];
719    Result.IntVal = APInt(80, 2, y);
720    break;
721  }
722  default:
723    cerr << "Cannot load value of type " << *Ty << "!\n";
724    abort();
725  }
726}
727
728// InitializeMemory - Recursive function to apply a Constant value into the
729// specified memory location...
730//
731void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
732  if (isa<UndefValue>(Init)) {
733    return;
734  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
735    unsigned ElementSize =
736      getTargetData()->getABITypeSize(CP->getType()->getElementType());
737    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
738      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
739    return;
740  } else if (Init->getType()->isFirstClassType()) {
741    GenericValue Val = getConstantValue(Init);
742    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
743    return;
744  } else if (isa<ConstantAggregateZero>(Init)) {
745    memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType()));
746    return;
747  }
748
749  switch (Init->getType()->getTypeID()) {
750  case Type::ArrayTyID: {
751    const ConstantArray *CPA = cast<ConstantArray>(Init);
752    unsigned ElementSize =
753      getTargetData()->getABITypeSize(CPA->getType()->getElementType());
754    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
755      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
756    return;
757  }
758
759  case Type::StructTyID: {
760    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
761    const StructLayout *SL =
762      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
763    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
764      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
765    return;
766  }
767
768  default:
769    cerr << "Bad Type: " << *Init->getType() << "\n";
770    assert(0 && "Unknown constant type to initialize memory with!");
771  }
772}
773
774/// EmitGlobals - Emit all of the global variables to memory, storing their
775/// addresses into GlobalAddress.  This must make sure to copy the contents of
776/// their initializers into the memory.
777///
778void ExecutionEngine::emitGlobals() {
779  const TargetData *TD = getTargetData();
780
781  // Loop over all of the global variables in the program, allocating the memory
782  // to hold them.  If there is more than one module, do a prepass over globals
783  // to figure out how the different modules should link together.
784  //
785  std::map<std::pair<std::string, const Type*>,
786           const GlobalValue*> LinkedGlobalsMap;
787
788  if (Modules.size() != 1) {
789    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
790      Module &M = *Modules[m]->getModule();
791      for (Module::const_global_iterator I = M.global_begin(),
792           E = M.global_end(); I != E; ++I) {
793        const GlobalValue *GV = I;
794        if (GV->hasInternalLinkage() || GV->isDeclaration() ||
795            GV->hasAppendingLinkage() || !GV->hasName())
796          continue;// Ignore external globals and globals with internal linkage.
797
798        const GlobalValue *&GVEntry =
799          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
800
801        // If this is the first time we've seen this global, it is the canonical
802        // version.
803        if (!GVEntry) {
804          GVEntry = GV;
805          continue;
806        }
807
808        // If the existing global is strong, never replace it.
809        if (GVEntry->hasExternalLinkage() ||
810            GVEntry->hasDLLImportLinkage() ||
811            GVEntry->hasDLLExportLinkage())
812          continue;
813
814        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
815        // symbol.
816        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
817          GVEntry = GV;
818      }
819    }
820  }
821
822  std::vector<const GlobalValue*> NonCanonicalGlobals;
823  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
824    Module &M = *Modules[m]->getModule();
825    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
826         I != E; ++I) {
827      // In the multi-module case, see what this global maps to.
828      if (!LinkedGlobalsMap.empty()) {
829        if (const GlobalValue *GVEntry =
830              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
831          // If something else is the canonical global, ignore this one.
832          if (GVEntry != &*I) {
833            NonCanonicalGlobals.push_back(I);
834            continue;
835          }
836        }
837      }
838
839      if (!I->isDeclaration()) {
840        // Get the type of the global.
841        const Type *Ty = I->getType()->getElementType();
842
843        // Allocate some memory for it!
844        unsigned Size = TD->getABITypeSize(Ty);
845        addGlobalMapping(I, new char[Size]);
846      } else {
847        // External variable reference. Try to use the dynamic loader to
848        // get a pointer to it.
849        if (void *SymAddr =
850            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
851          addGlobalMapping(I, SymAddr);
852        else {
853          cerr << "Could not resolve external global address: "
854               << I->getName() << "\n";
855          abort();
856        }
857      }
858    }
859
860    // If there are multiple modules, map the non-canonical globals to their
861    // canonical location.
862    if (!NonCanonicalGlobals.empty()) {
863      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
864        const GlobalValue *GV = NonCanonicalGlobals[i];
865        const GlobalValue *CGV =
866          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
867        void *Ptr = getPointerToGlobalIfAvailable(CGV);
868        assert(Ptr && "Canonical global wasn't codegen'd!");
869        addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
870      }
871    }
872
873    // Now that all of the globals are set up in memory, loop through them all
874    // and initialize their contents.
875    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
876         I != E; ++I) {
877      if (!I->isDeclaration()) {
878        if (!LinkedGlobalsMap.empty()) {
879          if (const GlobalValue *GVEntry =
880                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
881            if (GVEntry != &*I)  // Not the canonical variable.
882              continue;
883        }
884        EmitGlobalVariable(I);
885      }
886    }
887  }
888}
889
890// EmitGlobalVariable - This method emits the specified global variable to the
891// address specified in GlobalAddresses, or allocates new memory if it's not
892// already in the map.
893void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
894  void *GA = getPointerToGlobalIfAvailable(GV);
895  DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
896
897  const Type *ElTy = GV->getType()->getElementType();
898  size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
899  if (GA == 0) {
900    // If it's not already specified, allocate memory for the global.
901    GA = new char[GVSize];
902    addGlobalMapping(GV, GA);
903  }
904
905  InitializeMemory(GV->getInitializer(), GA);
906  NumInitBytes += (unsigned)GVSize;
907  ++NumGlobals;
908}
909