ExecutionEngine.cpp revision f70c22b019494723d0e706f93d6542dfaa6e73a5
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "Interpreter/Interpreter.h"
17#include "JIT/JIT.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/IntrinsicLowering.h"
21#include "llvm/Module.h"
22#include "llvm/ModuleProvider.h"
23#include "llvm/ExecutionEngine/ExecutionEngine.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/Target/TargetData.h"
26#include "Support/Debug.h"
27#include "Support/Statistic.h"
28#include "Support/DynamicLinker.h"
29using namespace llvm;
30
31namespace {
32  Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
33  Statistic<> NumGlobals  ("lli", "Number of global vars initialized");
34}
35
36ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
37  CurMod(*P->getModule()), MP(P) {
38  assert(P && "ModuleProvider is null?");
39}
40
41ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
42  assert(M && "Module is null?");
43}
44
45ExecutionEngine::~ExecutionEngine() {
46  delete MP;
47}
48
49/// getGlobalValueAtAddress - Return the LLVM global value object that starts
50/// at the specified address.
51///
52const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
53  // If we haven't computed the reverse mapping yet, do so first.
54  if (GlobalAddressReverseMap.empty()) {
55    for (std::map<const GlobalValue*, void *>::iterator I =
56           GlobalAddressMap.begin(), E = GlobalAddressMap.end(); I != E; ++I)
57      GlobalAddressReverseMap.insert(std::make_pair(I->second, I->first));
58  }
59
60  std::map<void *, const GlobalValue*>::iterator I =
61    GlobalAddressReverseMap.find(Addr);
62  return I != GlobalAddressReverseMap.end() ? I->second : 0;
63}
64
65// CreateArgv - Turn a vector of strings into a nice argv style array of
66// pointers to null terminated strings.
67//
68static void *CreateArgv(ExecutionEngine *EE,
69                        const std::vector<std::string> &InputArgv) {
70  unsigned PtrSize = EE->getTargetData().getPointerSize();
71  char *Result = new char[(InputArgv.size()+1)*PtrSize];
72
73  DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
74  const Type *SBytePtr = PointerType::get(Type::SByteTy);
75
76  for (unsigned i = 0; i != InputArgv.size(); ++i) {
77    unsigned Size = InputArgv[i].size()+1;
78    char *Dest = new char[Size];
79    DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
80
81    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
82    Dest[Size-1] = 0;
83
84    // Endian safe: Result[i] = (PointerTy)Dest;
85    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
86                           SBytePtr);
87  }
88
89  // Null terminate it
90  EE->StoreValueToMemory(PTOGV(0),
91                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
92                         SBytePtr);
93  return Result;
94}
95
96/// runFunctionAsMain - This is a helper function which wraps runFunction to
97/// handle the common task of starting up main with the specified argc, argv,
98/// and envp parameters.
99int ExecutionEngine::runFunctionAsMain(Function *Fn,
100                                       const std::vector<std::string> &argv,
101                                       const char * const * envp) {
102  std::vector<GenericValue> GVArgs;
103  GenericValue GVArgc;
104  GVArgc.IntVal = argv.size();
105  GVArgs.push_back(GVArgc); // Arg #0 = argc.
106  GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
107  assert(((char **)GVTOP(GVArgs[1]))[0] && "argv[0] was null after CreateArgv");
108
109  std::vector<std::string> EnvVars;
110  for (unsigned i = 0; envp[i]; ++i)
111    EnvVars.push_back(envp[i]);
112  GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
113  return runFunction(Fn, GVArgs).IntVal;
114}
115
116
117
118/// If possible, create a JIT, unless the caller specifically requests an
119/// Interpreter or there's an error. If even an Interpreter cannot be created,
120/// NULL is returned.
121///
122ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
123                                         bool ForceInterpreter,
124                                         IntrinsicLowering *IL) {
125  ExecutionEngine *EE = 0;
126
127  // Unless the interpreter was explicitly selected, try making a JIT.
128  if (!ForceInterpreter)
129    EE = JIT::create(MP, IL);
130
131  // If we can't make a JIT, make an interpreter instead.
132  if (EE == 0) {
133    try {
134      Module *M = MP->materializeModule();
135      try {
136        EE = Interpreter::create(M, IL);
137      } catch (...) {
138        std::cerr << "Error creating the interpreter!\n";
139      }
140    } catch (...) {
141      std::cerr << "Error reading the bytecode file!\n";
142    }
143  }
144
145  if (EE == 0) delete IL;
146  return EE;
147}
148
149/// getPointerToGlobal - This returns the address of the specified global
150/// value.  This may involve code generation if it's a function.
151///
152void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
153  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
154    return getPointerToFunction(F);
155
156  assert(GlobalAddressMap[GV] && "Global hasn't had an address allocated yet?");
157  return GlobalAddressMap[GV];
158}
159
160/// FIXME: document
161///
162GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
163  GenericValue Result;
164
165  if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
166    switch (CE->getOpcode()) {
167    case Instruction::GetElementPtr: {
168      Result = getConstantValue(CE->getOperand(0));
169      std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
170      uint64_t Offset =
171        TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
172
173      Result.LongVal += Offset;
174      return Result;
175    }
176    case Instruction::Cast: {
177      // We only need to handle a few cases here.  Almost all casts will
178      // automatically fold, just the ones involving pointers won't.
179      //
180      Constant *Op = CE->getOperand(0);
181      GenericValue GV = getConstantValue(Op);
182
183      // Handle cast of pointer to pointer...
184      if (Op->getType()->getTypeID() == C->getType()->getTypeID())
185        return GV;
186
187      // Handle a cast of pointer to any integral type...
188      if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
189        return GV;
190
191      // Handle cast of integer to a pointer...
192      if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral())
193        switch (Op->getType()->getTypeID()) {
194        case Type::BoolTyID:    return PTOGV((void*)(uintptr_t)GV.BoolVal);
195        case Type::SByteTyID:   return PTOGV((void*)( intptr_t)GV.SByteVal);
196        case Type::UByteTyID:   return PTOGV((void*)(uintptr_t)GV.UByteVal);
197        case Type::ShortTyID:   return PTOGV((void*)( intptr_t)GV.ShortVal);
198        case Type::UShortTyID:  return PTOGV((void*)(uintptr_t)GV.UShortVal);
199        case Type::IntTyID:     return PTOGV((void*)( intptr_t)GV.IntVal);
200        case Type::UIntTyID:    return PTOGV((void*)(uintptr_t)GV.UIntVal);
201        case Type::LongTyID:    return PTOGV((void*)( intptr_t)GV.LongVal);
202        case Type::ULongTyID:   return PTOGV((void*)(uintptr_t)GV.ULongVal);
203        default: assert(0 && "Unknown integral type!");
204        }
205      break;
206    }
207
208    case Instruction::Add:
209      if (CE->getOperand(0)->getType() == Type::LongTy ||
210          CE->getOperand(0)->getType() == Type::ULongTy)
211        Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
212                         getConstantValue(CE->getOperand(1)).LongVal;
213      else
214        break;
215      return Result;
216
217    default:
218      break;
219    }
220    std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
221    abort();
222  }
223
224  switch (C->getType()->getTypeID()) {
225#define GET_CONST_VAL(TY, CLASS) \
226  case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break
227    GET_CONST_VAL(Bool   , ConstantBool);
228    GET_CONST_VAL(UByte  , ConstantUInt);
229    GET_CONST_VAL(SByte  , ConstantSInt);
230    GET_CONST_VAL(UShort , ConstantUInt);
231    GET_CONST_VAL(Short  , ConstantSInt);
232    GET_CONST_VAL(UInt   , ConstantUInt);
233    GET_CONST_VAL(Int    , ConstantSInt);
234    GET_CONST_VAL(ULong  , ConstantUInt);
235    GET_CONST_VAL(Long   , ConstantSInt);
236    GET_CONST_VAL(Float  , ConstantFP);
237    GET_CONST_VAL(Double , ConstantFP);
238#undef GET_CONST_VAL
239  case Type::PointerTyID:
240    if (isa<ConstantPointerNull>(C)) {
241      Result.PointerVal = 0;
242    } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){
243      if (Function *F =
244          const_cast<Function*>(dyn_cast<Function>(CPR->getValue())))
245        Result = PTOGV(getPointerToFunctionOrStub(F));
246      else
247        Result = PTOGV(getOrEmitGlobalVariable(
248                           cast<GlobalVariable>(CPR->getValue())));
249
250    } else {
251      assert(0 && "Unknown constant pointer type!");
252    }
253    break;
254  default:
255    std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n";
256    abort();
257  }
258  return Result;
259}
260
261/// FIXME: document
262///
263void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
264                                         const Type *Ty) {
265  if (getTargetData().isLittleEndian()) {
266    switch (Ty->getTypeID()) {
267    case Type::BoolTyID:
268    case Type::UByteTyID:
269    case Type::SByteTyID:   Ptr->Untyped[0] = Val.UByteVal; break;
270    case Type::UShortTyID:
271    case Type::ShortTyID:   Ptr->Untyped[0] = Val.UShortVal & 255;
272                            Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
273                            break;
274    Store4BytesLittleEndian:
275    case Type::FloatTyID:
276    case Type::UIntTyID:
277    case Type::IntTyID:     Ptr->Untyped[0] =  Val.UIntVal        & 255;
278                            Ptr->Untyped[1] = (Val.UIntVal >>  8) & 255;
279                            Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
280                            Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
281                            break;
282    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
283                              goto Store4BytesLittleEndian;
284    case Type::DoubleTyID:
285    case Type::ULongTyID:
286    case Type::LongTyID:    Ptr->Untyped[0] =  Val.ULongVal        & 255;
287                            Ptr->Untyped[1] = (Val.ULongVal >>  8) & 255;
288                            Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255;
289                            Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255;
290                            Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255;
291                            Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255;
292                            Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255;
293                            Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255;
294                            break;
295    default:
296      std::cout << "Cannot store value of type " << Ty << "!\n";
297    }
298  } else {
299    switch (Ty->getTypeID()) {
300    case Type::BoolTyID:
301    case Type::UByteTyID:
302    case Type::SByteTyID:   Ptr->Untyped[0] = Val.UByteVal; break;
303    case Type::UShortTyID:
304    case Type::ShortTyID:   Ptr->Untyped[1] = Val.UShortVal & 255;
305                            Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
306                            break;
307    Store4BytesBigEndian:
308    case Type::FloatTyID:
309    case Type::UIntTyID:
310    case Type::IntTyID:     Ptr->Untyped[3] =  Val.UIntVal        & 255;
311                            Ptr->Untyped[2] = (Val.UIntVal >>  8) & 255;
312                            Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
313                            Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
314                            break;
315    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
316                              goto Store4BytesBigEndian;
317    case Type::DoubleTyID:
318    case Type::ULongTyID:
319    case Type::LongTyID:    Ptr->Untyped[7] =  Val.ULongVal        & 255;
320                            Ptr->Untyped[6] = (Val.ULongVal >>  8) & 255;
321                            Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255;
322                            Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255;
323                            Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255;
324                            Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255;
325                            Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255;
326                            Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255;
327                            break;
328    default:
329      std::cout << "Cannot store value of type " << Ty << "!\n";
330    }
331  }
332}
333
334/// FIXME: document
335///
336GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
337                                                  const Type *Ty) {
338  GenericValue Result;
339  if (getTargetData().isLittleEndian()) {
340    switch (Ty->getTypeID()) {
341    case Type::BoolTyID:
342    case Type::UByteTyID:
343    case Type::SByteTyID:   Result.UByteVal = Ptr->Untyped[0]; break;
344    case Type::UShortTyID:
345    case Type::ShortTyID:   Result.UShortVal = (unsigned)Ptr->Untyped[0] |
346                                              ((unsigned)Ptr->Untyped[1] << 8);
347                            break;
348    Load4BytesLittleEndian:
349    case Type::FloatTyID:
350    case Type::UIntTyID:
351    case Type::IntTyID:     Result.UIntVal = (unsigned)Ptr->Untyped[0] |
352                                            ((unsigned)Ptr->Untyped[1] <<  8) |
353                                            ((unsigned)Ptr->Untyped[2] << 16) |
354                                            ((unsigned)Ptr->Untyped[3] << 24);
355                            break;
356    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
357                              goto Load4BytesLittleEndian;
358    case Type::DoubleTyID:
359    case Type::ULongTyID:
360    case Type::LongTyID:    Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
361                                             ((uint64_t)Ptr->Untyped[1] <<  8) |
362                                             ((uint64_t)Ptr->Untyped[2] << 16) |
363                                             ((uint64_t)Ptr->Untyped[3] << 24) |
364                                             ((uint64_t)Ptr->Untyped[4] << 32) |
365                                             ((uint64_t)Ptr->Untyped[5] << 40) |
366                                             ((uint64_t)Ptr->Untyped[6] << 48) |
367                                             ((uint64_t)Ptr->Untyped[7] << 56);
368                            break;
369    default:
370      std::cout << "Cannot load value of type " << *Ty << "!\n";
371      abort();
372    }
373  } else {
374    switch (Ty->getTypeID()) {
375    case Type::BoolTyID:
376    case Type::UByteTyID:
377    case Type::SByteTyID:   Result.UByteVal = Ptr->Untyped[0]; break;
378    case Type::UShortTyID:
379    case Type::ShortTyID:   Result.UShortVal = (unsigned)Ptr->Untyped[1] |
380                                              ((unsigned)Ptr->Untyped[0] << 8);
381                            break;
382    Load4BytesBigEndian:
383    case Type::FloatTyID:
384    case Type::UIntTyID:
385    case Type::IntTyID:     Result.UIntVal = (unsigned)Ptr->Untyped[3] |
386                                            ((unsigned)Ptr->Untyped[2] <<  8) |
387                                            ((unsigned)Ptr->Untyped[1] << 16) |
388                                            ((unsigned)Ptr->Untyped[0] << 24);
389                            break;
390    case Type::PointerTyID: if (getTargetData().getPointerSize() == 4)
391                              goto Load4BytesBigEndian;
392    case Type::DoubleTyID:
393    case Type::ULongTyID:
394    case Type::LongTyID:    Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
395                                             ((uint64_t)Ptr->Untyped[6] <<  8) |
396                                             ((uint64_t)Ptr->Untyped[5] << 16) |
397                                             ((uint64_t)Ptr->Untyped[4] << 24) |
398                                             ((uint64_t)Ptr->Untyped[3] << 32) |
399                                             ((uint64_t)Ptr->Untyped[2] << 40) |
400                                             ((uint64_t)Ptr->Untyped[1] << 48) |
401                                             ((uint64_t)Ptr->Untyped[0] << 56);
402                            break;
403    default:
404      std::cout << "Cannot load value of type " << *Ty << "!\n";
405      abort();
406    }
407  }
408  return Result;
409}
410
411// InitializeMemory - Recursive function to apply a Constant value into the
412// specified memory location...
413//
414void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
415  if (Init->getType()->isFirstClassType()) {
416    GenericValue Val = getConstantValue(Init);
417    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
418    return;
419  } else if (isa<ConstantAggregateZero>(Init)) {
420    unsigned Size = getTargetData().getTypeSize(Init->getType());
421    memset(Addr, 0, Size);
422    return;
423  }
424
425  switch (Init->getType()->getTypeID()) {
426  case Type::ArrayTyID: {
427    const ConstantArray *CPA = cast<ConstantArray>(Init);
428    const std::vector<Use> &Val = CPA->getValues();
429    unsigned ElementSize =
430      getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType());
431    for (unsigned i = 0; i < Val.size(); ++i)
432      InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize);
433    return;
434  }
435
436  case Type::StructTyID: {
437    const ConstantStruct *CPS = cast<ConstantStruct>(Init);
438    const StructLayout *SL =
439      getTargetData().getStructLayout(cast<StructType>(CPS->getType()));
440    const std::vector<Use> &Val = CPS->getValues();
441    for (unsigned i = 0; i < Val.size(); ++i)
442      InitializeMemory(cast<Constant>(Val[i].get()),
443                       (char*)Addr+SL->MemberOffsets[i]);
444    return;
445  }
446
447  default:
448    std::cerr << "Bad Type: " << Init->getType() << "\n";
449    assert(0 && "Unknown constant type to initialize memory with!");
450  }
451}
452
453/// EmitGlobals - Emit all of the global variables to memory, storing their
454/// addresses into GlobalAddress.  This must make sure to copy the contents of
455/// their initializers into the memory.
456///
457void ExecutionEngine::emitGlobals() {
458  const TargetData &TD = getTargetData();
459
460  // Loop over all of the global variables in the program, allocating the memory
461  // to hold them.
462  for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
463       I != E; ++I)
464    if (!I->isExternal()) {
465      // Get the type of the global...
466      const Type *Ty = I->getType()->getElementType();
467
468      // Allocate some memory for it!
469      unsigned Size = TD.getTypeSize(Ty);
470      addGlobalMapping(I, new char[Size]);
471    } else {
472      // External variable reference. Try to use the dynamic loader to
473      // get a pointer to it.
474      if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str()))
475        addGlobalMapping(I, SymAddr);
476      else {
477        std::cerr << "Could not resolve external global address: "
478                  << I->getName() << "\n";
479        abort();
480      }
481    }
482
483  // Now that all of the globals are set up in memory, loop through them all and
484  // initialize their contents.
485  for (Module::giterator I = getModule().gbegin(), E = getModule().gend();
486       I != E; ++I)
487    if (!I->isExternal())
488      EmitGlobalVariable(I);
489}
490
491// EmitGlobalVariable - This method emits the specified global variable to the
492// address specified in GlobalAddresses, or allocates new memory if it's not
493// already in the map.
494void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
495  void *GA = getPointerToGlobalIfAvailable(GV);
496  DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
497
498  const Type *ElTy = GV->getType()->getElementType();
499  if (GA == 0) {
500    // If it's not already specified, allocate memory for the global.
501    GA = new char[getTargetData().getTypeSize(ElTy)];
502    addGlobalMapping(GV, GA);
503  }
504
505  InitializeMemory(GV->getInitializer(), GA);
506  NumInitBytes += getTargetData().getTypeSize(ElTy);
507  ++NumGlobals;
508}
509