JITEmitter.cpp revision 32ca55f3bc64c1a4424ac2e4710cf4cbcaceea43
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "llvm/Constant.h"
18#include "llvm/Module.h"
19#include "llvm/Type.h"
20#include "llvm/CodeGen/MachineCodeEmitter.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineRelocation.h"
25#include "llvm/ExecutionEngine/GenericValue.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetJITInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/System/Memory.h"
31#include <algorithm>
32#include <iostream>
33#include <list>
34using namespace llvm;
35
36namespace {
37  Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
38  Statistic<> NumRelos("jit", "Number of relocations applied");
39  JIT *TheJIT = 0;
40}
41
42
43//===----------------------------------------------------------------------===//
44// JITMemoryManager code.
45//
46namespace {
47  /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
48  /// sane way.  This splits a large block of MAP_NORESERVE'd memory into two
49  /// sections, one for function stubs, one for the functions themselves.  We
50  /// have to do this because we may need to emit a function stub while in the
51  /// middle of emitting a function, and we don't know how large the function we
52  /// are emitting is.  This never bothers to release the memory, because when
53  /// we are ready to destroy the JIT, the program exits.
54  class JITMemoryManager {
55    std::list<sys::MemoryBlock> Blocks; // List of blocks allocated by the JIT
56    unsigned char *FunctionBase; // Start of the function body area
57    unsigned char *CurStubPtr, *CurFunctionPtr;
58    unsigned char *GOTBase;      // Target Specific reserved memory
59
60    // centralize memory block allocation
61    sys::MemoryBlock getNewMemoryBlock(unsigned size);
62  public:
63    JITMemoryManager(bool useGOT);
64    ~JITMemoryManager();
65
66    inline unsigned char *allocateStub(unsigned StubSize);
67    inline unsigned char *startFunctionBody();
68    inline void endFunctionBody(unsigned char *FunctionEnd);
69
70    unsigned char *getGOTBase() const {
71      return GOTBase;
72    }
73    bool isManagingGOT() const {
74      return GOTBase != NULL;
75    }
76  };
77}
78
79JITMemoryManager::JITMemoryManager(bool useGOT) {
80  // Allocate a 16M block of memory for functions
81  sys::MemoryBlock FunBlock = getNewMemoryBlock(16 << 20);
82
83  Blocks.push_front(FunBlock);
84
85  FunctionBase = reinterpret_cast<unsigned char*>(FunBlock.base());
86
87  // Allocate stubs backwards from the base, allocate functions forward
88  // from the base.
89  CurStubPtr = CurFunctionPtr = FunctionBase + 512*1024;// Use 512k for stubs
90
91  // Allocate the GOT.
92  GOTBase = NULL;
93  if (useGOT) GOTBase = (unsigned char*)malloc(sizeof(void*) * 8192);
94}
95
96JITMemoryManager::~JITMemoryManager() {
97  for (std::list<sys::MemoryBlock>::iterator ib = Blocks.begin(),
98       ie = Blocks.end(); ib != ie; ++ib)
99    sys::Memory::ReleaseRWX(*ib);
100  Blocks.clear();
101}
102
103unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
104  CurStubPtr -= StubSize;
105  if (CurStubPtr < FunctionBase) {
106    // FIXME: allocate a new block
107    std::cerr << "JIT ran out of memory for function stubs!\n";
108    abort();
109  }
110  return CurStubPtr;
111}
112
113unsigned char *JITMemoryManager::startFunctionBody() {
114  // Round up to an even multiple of 8 bytes, this should eventually be target
115  // specific.
116  return (unsigned char*)(((intptr_t)CurFunctionPtr + 7) & ~7);
117}
118
119void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) {
120  assert(FunctionEnd > CurFunctionPtr);
121  CurFunctionPtr = FunctionEnd;
122}
123
124sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
125  const sys::MemoryBlock* BOld = 0;
126  if (Blocks.size())
127    BOld = &Blocks.front();
128  //never allocate less than 1 MB
129  sys::MemoryBlock B;
130  try {
131    B = sys::Memory::AllocateRWX(std::max(((unsigned)1 << 20), size), BOld);
132  } catch (std::string& err) {
133    std::cerr << "Allocation failed when allocating new memory in the JIT\n";
134    std::cerr << err << "\n";
135    abort();
136  }
137  Blocks.push_front(B);
138  return B;
139}
140
141//===----------------------------------------------------------------------===//
142// JIT lazy compilation code.
143//
144namespace {
145  class JITResolverState {
146  private:
147    /// FunctionToStubMap - Keep track of the stub created for a particular
148    /// function so that we can reuse them if necessary.
149    std::map<Function*, void*> FunctionToStubMap;
150
151    /// StubToFunctionMap - Keep track of the function that each stub
152    /// corresponds to.
153    std::map<void*, Function*> StubToFunctionMap;
154
155  public:
156    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
157      assert(locked.holds(TheJIT->lock));
158      return FunctionToStubMap;
159    }
160
161    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
162      assert(locked.holds(TheJIT->lock));
163      return StubToFunctionMap;
164    }
165  };
166
167  /// JITResolver - Keep track of, and resolve, call sites for functions that
168  /// have not yet been compiled.
169  class JITResolver {
170    /// MCE - The MachineCodeEmitter to use to emit stubs with.
171    MachineCodeEmitter &MCE;
172
173    /// LazyResolverFn - The target lazy resolver function that we actually
174    /// rewrite instructions to use.
175    TargetJITInfo::LazyResolverFn LazyResolverFn;
176
177    JITResolverState state;
178
179    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
180    /// external functions.
181    std::map<void*, void*> ExternalFnToStubMap;
182
183    //map addresses to indexes in the GOT
184    std::map<void*, unsigned> revGOTMap;
185    unsigned nextGOTIndex;
186
187  public:
188    JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) {
189      LazyResolverFn =
190        TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
191    }
192
193    /// getFunctionStub - This returns a pointer to a function stub, creating
194    /// one on demand as needed.
195    void *getFunctionStub(Function *F);
196
197    /// getExternalFunctionStub - Return a stub for the function at the
198    /// specified address, created lazily on demand.
199    void *getExternalFunctionStub(void *FnAddr);
200
201    /// AddCallbackAtLocation - If the target is capable of rewriting an
202    /// instruction without the use of a stub, record the location of the use so
203    /// we know which function is being used at the location.
204    void *AddCallbackAtLocation(Function *F, void *Location) {
205      MutexGuard locked(TheJIT->lock);
206      /// Get the target-specific JIT resolver function.
207      state.getStubToFunctionMap(locked)[Location] = F;
208      return (void*)LazyResolverFn;
209    }
210
211    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
212    /// and address.  This function only manages slots, it does not manage the
213    /// contents of the slots or the memory associated with the GOT.
214    unsigned getGOTIndexForAddr(void* addr);
215
216    /// JITCompilerFn - This function is called to resolve a stub to a compiled
217    /// address.  If the LLVM Function corresponding to the stub has not yet
218    /// been compiled, this function compiles it first.
219    static void *JITCompilerFn(void *Stub);
220  };
221}
222
223/// getJITResolver - This function returns the one instance of the JIT resolver.
224///
225static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
226  static JITResolver TheJITResolver(*MCE);
227  return TheJITResolver;
228}
229
230/// getFunctionStub - This returns a pointer to a function stub, creating
231/// one on demand as needed.
232void *JITResolver::getFunctionStub(Function *F) {
233  MutexGuard locked(TheJIT->lock);
234
235  // If we already have a stub for this function, recycle it.
236  void *&Stub = state.getFunctionToStubMap(locked)[F];
237  if (Stub) return Stub;
238
239  // Call the lazy resolver function unless we already KNOW it is an external
240  // function, in which case we just skip the lazy resolution step.
241  void *Actual = (void*)LazyResolverFn;
242  if (F->isExternal() && F->hasExternalLinkage())
243    Actual = TheJIT->getPointerToFunction(F);
244
245  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
246  // resolver function.
247  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);
248
249  if (Actual != (void*)LazyResolverFn) {
250    // If we are getting the stub for an external function, we really want the
251    // address of the stub in the GlobalAddressMap for the JIT, not the address
252    // of the external function.
253    TheJIT->updateGlobalMapping(F, Stub);
254  }
255
256  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
257                  << F->getName() << "'\n");
258
259  // Finally, keep track of the stub-to-Function mapping so that the
260  // JITCompilerFn knows which function to compile!
261  state.getStubToFunctionMap(locked)[Stub] = F;
262  return Stub;
263}
264
265/// getExternalFunctionStub - Return a stub for the function at the
266/// specified address, created lazily on demand.
267void *JITResolver::getExternalFunctionStub(void *FnAddr) {
268  // If we already have a stub for this function, recycle it.
269  void *&Stub = ExternalFnToStubMap[FnAddr];
270  if (Stub) return Stub;
271
272  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE);
273  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub
274        << "] for external function at '" << FnAddr << "'\n");
275  return Stub;
276}
277
278unsigned JITResolver::getGOTIndexForAddr(void* addr) {
279  unsigned idx = revGOTMap[addr];
280  if (!idx) {
281    idx = ++nextGOTIndex;
282    revGOTMap[addr] = idx;
283    DEBUG(std::cerr << "Adding GOT entry " << idx
284          << " for addr " << addr << "\n");
285    //    ((void**)MemMgr.getGOTBase())[idx] = addr;
286  }
287  return idx;
288}
289
290/// JITCompilerFn - This function is called when a lazy compilation stub has
291/// been entered.  It looks up which function this stub corresponds to, compiles
292/// it if necessary, then returns the resultant function pointer.
293void *JITResolver::JITCompilerFn(void *Stub) {
294  JITResolver &JR = getJITResolver();
295
296  MutexGuard locked(TheJIT->lock);
297
298  // The address given to us for the stub may not be exactly right, it might be
299  // a little bit after the stub.  As such, use upper_bound to find it.
300  std::map<void*, Function*>::iterator I =
301    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
302  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
303         "This is not a known stub!");
304  Function *F = (--I)->second;
305
306  // We might like to remove the stub from the StubToFunction map.
307  // We can't do that! Multiple threads could be stuck, waiting to acquire the
308  // lock above. As soon as the 1st function finishes compiling the function,
309  // the next one will be released, and needs to be able to find the function it
310  // needs to call.
311  //JR.state.getStubToFunctionMap(locked).erase(I);
312
313  DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
314                  << "' In stub ptr = " << Stub << " actual ptr = "
315                  << I->first << "\n");
316
317  void *Result = TheJIT->getPointerToFunction(F);
318
319  // We don't need to reuse this stub in the future, as F is now compiled.
320  JR.state.getFunctionToStubMap(locked).erase(F);
321
322  // FIXME: We could rewrite all references to this stub if we knew them.
323
324  // What we will do is set the compiled function address to map to the
325  // same GOT entry as the stub so that later clients may update the GOT
326  // if they see it still using the stub address.
327  // Note: this is done so the Resolver doesn't have to manage GOT memory
328  // Do this without allocating map space if the target isn't using a GOT
329  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
330    JR.revGOTMap[Result] = JR.revGOTMap[Stub];
331
332  return Result;
333}
334
335
336// getPointerToFunctionOrStub - If the specified function has been
337// code-gen'd, return a pointer to the function.  If not, compile it, or use
338// a stub to implement lazy compilation if available.
339//
340void *JIT::getPointerToFunctionOrStub(Function *F) {
341  // If we have already code generated the function, just return the address.
342  if (void *Addr = getPointerToGlobalIfAvailable(F))
343    return Addr;
344
345  // Get a stub if the target supports it
346  return getJITResolver(MCE).getFunctionStub(F);
347}
348
349
350
351//===----------------------------------------------------------------------===//
352// JITEmitter code.
353//
354namespace {
355  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
356  /// used to output functions to memory for execution.
357  class JITEmitter : public MachineCodeEmitter {
358    JITMemoryManager MemMgr;
359
360    // When outputting a function stub in the context of some other function, we
361    // save BufferBegin/BufferEnd/CurBufferPtr here.
362    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
363
364    /// Relocations - These are the relocations that the function needs, as
365    /// emitted.
366    std::vector<MachineRelocation> Relocations;
367
368    /// ConstantPool - The constant pool for the current function.
369    ///
370    MachineConstantPool *ConstantPool;
371
372    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
373    ///
374    void *ConstantPoolBase;
375
376    /// ConstantPool - The constant pool for the current function.
377    ///
378    MachineJumpTableInfo *JumpTable;
379
380    /// JumpTableBase - A pointer to the first entry in the jump table.
381    ///
382    void *JumpTableBase;
383public:
384    JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) {
385      TheJIT = &jit;
386      DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n");
387    }
388
389    virtual void startFunction(MachineFunction &F);
390    virtual bool finishFunction(MachineFunction &F);
391
392    void emitConstantPool(MachineConstantPool *MCP);
393    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
394    virtual void emitJumpTableInfo(MachineJumpTableInfo *MJTI,
395                                   std::map<MachineBasicBlock*,uint64_t> &MBBM);
396
397    virtual void startFunctionStub(unsigned StubSize);
398    virtual void* finishFunctionStub(const Function *F);
399
400    virtual void addRelocation(const MachineRelocation &MR) {
401      Relocations.push_back(MR);
402    }
403
404    virtual uint64_t getConstantPoolEntryAddress(unsigned Entry);
405    virtual uint64_t getJumpTableEntryAddress(unsigned Entry);
406
407  private:
408    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
409  };
410}
411
412MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
413  return new JITEmitter(jit);
414}
415
416void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
417                                     bool DoesntNeedStub) {
418  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
419    /// FIXME: If we straightened things out, this could actually emit the
420    /// global immediately instead of queuing it for codegen later!
421    return TheJIT->getOrEmitGlobalVariable(GV);
422  }
423
424  // If we have already compiled the function, return a pointer to its body.
425  Function *F = cast<Function>(V);
426  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
427  if (ResultPtr) return ResultPtr;
428
429  if (F->hasExternalLinkage() && F->isExternal()) {
430    // If this is an external function pointer, we can force the JIT to
431    // 'compile' it, which really just adds it to the map.
432    if (DoesntNeedStub)
433      return TheJIT->getPointerToFunction(F);
434
435    return getJITResolver(this).getFunctionStub(F);
436  }
437
438  // Okay, the function has not been compiled yet, if the target callback
439  // mechanism is capable of rewriting the instruction directly, prefer to do
440  // that instead of emitting a stub.
441  if (DoesntNeedStub)
442    return getJITResolver(this).AddCallbackAtLocation(F, Reference);
443
444  // Otherwise, we have to emit a lazy resolving stub.
445  return getJITResolver(this).getFunctionStub(F);
446}
447
448void JITEmitter::startFunction(MachineFunction &F) {
449  BufferBegin = CurBufferPtr = MemMgr.startFunctionBody();
450
451  /// FIXME: implement out of space handling correctly!
452  BufferEnd = (unsigned char*)(intptr_t)~0ULL;
453
454  emitConstantPool(F.getConstantPool());
455  initJumpTableInfo(F.getJumpTableInfo());
456
457  // About to start emitting the machine code for the function.
458  // FIXME: align it?
459  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
460}
461
462bool JITEmitter::finishFunction(MachineFunction &F) {
463  MemMgr.endFunctionBody(CurBufferPtr);
464  NumBytes += getCurrentPCOffset();
465
466  if (!Relocations.empty()) {
467    NumRelos += Relocations.size();
468
469    // Resolve the relocations to concrete pointers.
470    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
471      MachineRelocation &MR = Relocations[i];
472      void *ResultPtr;
473      if (MR.isString()) {
474        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
475
476        // If the target REALLY wants a stub for this function, emit it now.
477        if (!MR.doesntNeedFunctionStub())
478          ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr);
479      } else if (MR.isGlobalValue())
480        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
481                                       BufferBegin+MR.getMachineCodeOffset(),
482                                       MR.doesntNeedFunctionStub());
483      else //ConstantPoolIndex
484        ResultPtr =
485       (void*)(intptr_t)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
486
487      MR.setResultPointer(ResultPtr);
488
489      // if we are managing the GOT and the relocation wants an index,
490      // give it one
491      if (MemMgr.isManagingGOT() && !MR.isConstantPoolIndex() &&
492          MR.isGOTRelative()) {
493        unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr);
494        MR.setGOTIndex(idx);
495        if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
496          DEBUG(std::cerr << "GOT was out of date for " << ResultPtr
497                << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
498                << "\n");
499          ((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
500        }
501      }
502    }
503
504    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
505                                  Relocations.size(), MemMgr.getGOTBase());
506  }
507
508  //Update the GOT entry for F to point to the new code.
509  if(MemMgr.isManagingGOT()) {
510    unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin);
511    if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
512      DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin
513            << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n");
514      ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
515    }
516  }
517
518  DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)BufferBegin
519                  << "] Function: " << F.getFunction()->getName()
520                  << ": " << getCurrentPCOffset() << " bytes of text, "
521                  << Relocations.size() << " relocations\n");
522  Relocations.clear();
523  return false;
524}
525
526void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
527  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
528  if (Constants.empty()) return;
529
530  unsigned Size = Constants.back().Offset;
531  Size += TheJIT->getTargetData().getTypeSize(Constants.back().Val->getType());
532
533  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
534  ConstantPool = MCP;
535
536  if (ConstantPoolBase == 0) return;  // Buffer overflow.
537
538  // Initialize the memory for all of the constant pool entries.
539  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
540    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
541    TheJIT->InitializeMemory(Constants[i].Val, CAddr);
542  }
543}
544
545void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
546  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
547  if (JT.empty()) return;
548
549  unsigned NumEntries = 0;
550  for (unsigned i = 0, e = JT.size(); i != e; ++i)
551    NumEntries += JT[i].MBBs.size();
552
553  unsigned EntrySize = MJTI->getEntrySize();
554
555  // Just allocate space for all the jump tables now.  We will fix up the actual
556  // MBB entries in the tables after we emit the code for each block, since then
557  // we will know the final locations of the MBBs in memory.
558  JumpTable = MJTI;
559  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
560}
561
562void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI,
563                                   std::map<MachineBasicBlock*,uint64_t> &MBBM){
564  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
565  if (JT.empty() || JumpTableBase == 0) return;
566
567  unsigned Offset = 0;
568  assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
569
570  // For each jump table, map each target in the jump table to the address of
571  // an emitted MachineBasicBlock.
572  intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
573
574  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
575    const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
576    // Store the address of the basic block for this jump table slot in the
577    // memory we allocated for the jump table in 'initJumpTableInfo'
578    for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
579      *SlotPtr++ = (intptr_t)MBBM[MBBs[mi]];
580  }
581}
582
583void JITEmitter::startFunctionStub(unsigned StubSize) {
584  SavedBufferBegin = BufferBegin;
585  SavedBufferEnd = BufferEnd;
586  SavedCurBufferPtr = CurBufferPtr;
587
588  BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize);
589  BufferEnd = BufferBegin+StubSize+1;
590}
591
592void *JITEmitter::finishFunctionStub(const Function *F) {
593  NumBytes += getCurrentPCOffset();
594  std::swap(SavedBufferBegin, BufferBegin);
595  BufferEnd = SavedBufferEnd;
596  CurBufferPtr = SavedCurBufferPtr;
597  return SavedBufferBegin;
598}
599
600// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
601// in the constant pool that was last emitted with the 'emitConstantPool'
602// method.
603//
604uint64_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) {
605  assert(ConstantNum < ConstantPool->getConstants().size() &&
606         "Invalid ConstantPoolIndex!");
607  return (intptr_t)ConstantPoolBase +
608         ConstantPool->getConstants()[ConstantNum].Offset;
609}
610
611// getJumpTableEntryAddress - Return the address of the JumpTable with index
612// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
613//
614uint64_t JITEmitter::getJumpTableEntryAddress(unsigned Index) {
615  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
616  assert(Index < JT.size() && "Invalid jump table index!");
617
618  unsigned Offset = 0;
619  unsigned EntrySize = JumpTable->getEntrySize();
620
621  for (unsigned i = 0; i < Index; ++i)
622    Offset += JT[i].MBBs.size() * EntrySize;
623
624  return (intptr_t)((char *)JumpTableBase + Offset);
625}
626
627// getPointerToNamedFunction - This function is used as a global wrapper to
628// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
629// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
630// need to resolve function(s) that are being mis-codegenerated, so we need to
631// resolve their addresses at runtime, and this is the way to do it.
632extern "C" {
633  void *getPointerToNamedFunction(const char *Name) {
634    Module &M = TheJIT->getModule();
635    if (Function *F = M.getNamedFunction(Name))
636      return TheJIT->getPointerToFunction(F);
637    return TheJIT->getPointerToNamedFunction(Name);
638  }
639}
640