JITEmitter.cpp revision 95da605e15a6f108b551ecc6772823ea53de3007
1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a MachineCodeEmitter object that is used by the JIT to
11// write machine code to memory and remember where relocatable values are.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "JIT.h"
17#include "JITDebugRegisterer.h"
18#include "JITDwarfEmitter.h"
19#include "llvm/ADT/OwningPtr.h"
20#include "llvm/Constants.h"
21#include "llvm/Module.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Analysis/DebugInfo.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineRelocation.h"
30#include "llvm/ExecutionEngine/GenericValue.h"
31#include "llvm/ExecutionEngine/JITEventListener.h"
32#include "llvm/ExecutionEngine/JITMemoryManager.h"
33#include "llvm/CodeGen/MachineCodeInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetJITInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/ManagedStatic.h"
41#include "llvm/Support/MutexGuard.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Disassembler.h"
45#include "llvm/System/Memory.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm/ADT/ValueMap.h"
52#include <algorithm>
53#ifndef NDEBUG
54#include <iomanip>
55#endif
56using namespace llvm;
57
58STATISTIC(NumBytes, "Number of bytes of machine code compiled");
59STATISTIC(NumRelos, "Number of relocations applied");
60STATISTIC(NumRetries, "Number of retries with more memory");
61
62
63// A declaration may stop being a declaration once it's fully read from bitcode.
64// This function returns true if F is fully read and is still a declaration.
65static bool isNonGhostDeclaration(const Function *F) {
66  return F->isDeclaration() && !F->isMaterializable();
67}
68
69//===----------------------------------------------------------------------===//
70// JIT lazy compilation code.
71//
72namespace {
73  class JITEmitter;
74  class JITResolverState;
75
76  template<typename ValueTy>
77  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
78    typedef JITResolverState *ExtraData;
79    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
80      assert(false && "The JIT doesn't know how to handle a"
81             " RAUW on a value it has emitted.");
82    }
83  };
84
85  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
86    typedef JITResolverState *ExtraData;
87    static void onDelete(JITResolverState *JRS, Function *F);
88  };
89
90  class JITResolverState {
91  public:
92    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
93      FunctionToLazyStubMapTy;
94    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
95    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
96                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
97    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
98  private:
99    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
100    /// particular function so that we can reuse them if necessary.
101    FunctionToLazyStubMapTy FunctionToLazyStubMap;
102
103    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
104    /// site corresponds to, and vice versa.
105    CallSiteToFunctionMapTy CallSiteToFunctionMap;
106    FunctionToCallSitesMapTy FunctionToCallSitesMap;
107
108    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
109    /// particular GlobalVariable so that we can reuse them if necessary.
110    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
111
112    /// Instance of the JIT this ResolverState serves.
113    JIT *TheJIT;
114
115  public:
116    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
117                                 FunctionToCallSitesMap(this),
118                                 TheJIT(jit) {}
119
120    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
121      const MutexGuard& locked) {
122      assert(locked.holds(TheJIT->lock));
123      return FunctionToLazyStubMap;
124    }
125
126    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
127      assert(locked.holds(TheJIT->lock));
128      return GlobalToIndirectSymMap;
129    }
130
131    pair<void *, Function *> LookupFunctionFromCallSite(
132        const MutexGuard &locked, void *CallSite) const {
133      assert(locked.holds(TheJIT->lock));
134
135      // The address given to us for the stub may not be exactly right, it might be
136      // a little bit after the stub.  As such, use upper_bound to find it.
137      CallSiteToFunctionMapTy::const_iterator I =
138        CallSiteToFunctionMap.upper_bound(CallSite);
139      assert(I != CallSiteToFunctionMap.begin() &&
140             "This is not a known call site!");
141      --I;
142      return *I;
143    }
144
145    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
146      assert(locked.holds(TheJIT->lock));
147
148      bool Inserted = CallSiteToFunctionMap.insert(
149          std::make_pair(CallSite, F)).second;
150      (void)Inserted;
151      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
152      FunctionToCallSitesMap[F].insert(CallSite);
153    }
154
155    // Returns the Function of the stub if a stub was erased, or NULL if there
156    // was no stub.  This function uses the call-site->function map to find a
157    // relevant function, but asserts that only stubs and not other call sites
158    // will be passed in.
159    Function *EraseStub(const MutexGuard &locked, void *Stub);
160
161    void EraseAllCallSitesFor(const MutexGuard &locked, Function *F) {
162      assert(locked.holds(TheJIT->lock));
163      EraseAllCallSitesForPrelocked(F);
164    }
165    void EraseAllCallSitesForPrelocked(Function *F);
166
167    // Erases _all_ call sites regardless of their function.  This is used to
168    // unregister the stub addresses from the StubToResolverMap in
169    // ~JITResolver().
170    void EraseAllCallSitesPrelocked();
171  };
172
173  /// JITResolver - Keep track of, and resolve, call sites for functions that
174  /// have not yet been compiled.
175  class JITResolver {
176    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
177    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
178    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
179
180    /// LazyResolverFn - The target lazy resolver function that we actually
181    /// rewrite instructions to use.
182    TargetJITInfo::LazyResolverFn LazyResolverFn;
183
184    JITResolverState state;
185
186    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
187    /// for external functions.  TODO: Of course, external functions don't need
188    /// a lazy stub.  It's actually here to make it more likely that far calls
189    /// succeed, but no single stub can guarantee that.  I'll remove this in a
190    /// subsequent checkin when I actually fix far calls.
191    std::map<void*, void*> ExternalFnToStubMap;
192
193    /// revGOTMap - map addresses to indexes in the GOT
194    std::map<void*, unsigned> revGOTMap;
195    unsigned nextGOTIndex;
196
197    JITEmitter &JE;
198
199    /// Instance of JIT corresponding to this Resolver.
200    JIT *TheJIT;
201
202  public:
203    explicit JITResolver(JIT &jit, JITEmitter &je)
204      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
205      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
206    }
207
208    ~JITResolver();
209
210    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
211    /// lazy-compilation stub if it has already been created.
212    void *getLazyFunctionStubIfAvailable(Function *F);
213
214    /// getLazyFunctionStub - This returns a pointer to a function's
215    /// lazy-compilation stub, creating one on demand as needed.
216    void *getLazyFunctionStub(Function *F);
217
218    /// getExternalFunctionStub - Return a stub for the function at the
219    /// specified address, created lazily on demand.
220    void *getExternalFunctionStub(void *FnAddr);
221
222    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
223    /// specified GV address.
224    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
225
226    void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
227                           SmallVectorImpl<void*> &Ptrs);
228
229    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
230    /// an address.  This function only manages slots, it does not manage the
231    /// contents of the slots or the memory associated with the GOT.
232    unsigned getGOTIndexForAddr(void *addr);
233
234    /// JITCompilerFn - This function is called to resolve a stub to a compiled
235    /// address.  If the LLVM Function corresponding to the stub has not yet
236    /// been compiled, this function compiles it first.
237    static void *JITCompilerFn(void *Stub);
238  };
239
240  class StubToResolverMapTy {
241    /// Map a stub address to a specific instance of a JITResolver so that
242    /// lazily-compiled functions can find the right resolver to use.
243    ///
244    /// Guarded by Lock.
245    std::map<void*, JITResolver*> Map;
246
247    /// Guards Map from concurrent accesses.
248    mutable sys::Mutex Lock;
249
250  public:
251    /// Registers a Stub to be resolved by Resolver.
252    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
253      MutexGuard guard(Lock);
254      Map.insert(std::make_pair(Stub, Resolver));
255    }
256    /// Unregisters the Stub when it's invalidated.
257    void UnregisterStubResolver(void *Stub) {
258      MutexGuard guard(Lock);
259      Map.erase(Stub);
260    }
261    /// Returns the JITResolver instance that owns the Stub.
262    JITResolver *getResolverFromStub(void *Stub) const {
263      MutexGuard guard(Lock);
264      // The address given to us for the stub may not be exactly right, it might
265      // be a little bit after the stub.  As such, use upper_bound to find it.
266      // This is the same trick as in LookupFunctionFromCallSite from
267      // JITResolverState.
268      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
269      assert(I != Map.begin() && "This is not a known stub!");
270      --I;
271      return I->second;
272    }
273    /// True if any stubs refer to the given resolver. Only used in an assert().
274    /// O(N)
275    bool ResolverHasStubs(JITResolver* Resolver) const {
276      MutexGuard guard(Lock);
277      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
278             E = Map.end(); I != E; ++I) {
279        if (I->second == Resolver)
280          return true;
281      }
282      return false;
283    }
284  };
285  /// This needs to be static so that a lazy call stub can access it with no
286  /// context except the address of the stub.
287  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
288
289  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
290  /// used to output functions to memory for execution.
291  class JITEmitter : public JITCodeEmitter {
292    JITMemoryManager *MemMgr;
293
294    // When outputting a function stub in the context of some other function, we
295    // save BufferBegin/BufferEnd/CurBufferPtr here.
296    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
297
298    // When reattempting to JIT a function after running out of space, we store
299    // the estimated size of the function we're trying to JIT here, so we can
300    // ask the memory manager for at least this much space.  When we
301    // successfully emit the function, we reset this back to zero.
302    uintptr_t SizeEstimate;
303
304    /// Relocations - These are the relocations that the function needs, as
305    /// emitted.
306    std::vector<MachineRelocation> Relocations;
307
308    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
309    /// It is filled in by the StartMachineBasicBlock callback and queried by
310    /// the getMachineBasicBlockAddress callback.
311    std::vector<uintptr_t> MBBLocations;
312
313    /// ConstantPool - The constant pool for the current function.
314    ///
315    MachineConstantPool *ConstantPool;
316
317    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
318    ///
319    void *ConstantPoolBase;
320
321    /// ConstPoolAddresses - Addresses of individual constant pool entries.
322    ///
323    SmallVector<uintptr_t, 8> ConstPoolAddresses;
324
325    /// JumpTable - The jump tables for the current function.
326    ///
327    MachineJumpTableInfo *JumpTable;
328
329    /// JumpTableBase - A pointer to the first entry in the jump table.
330    ///
331    void *JumpTableBase;
332
333    /// Resolver - This contains info about the currently resolved functions.
334    JITResolver Resolver;
335
336    /// DE - The dwarf emitter for the jit.
337    OwningPtr<JITDwarfEmitter> DE;
338
339    /// DR - The debug registerer for the jit.
340    OwningPtr<JITDebugRegisterer> DR;
341
342    /// LabelLocations - This vector is a mapping from Label ID's to their
343    /// address.
344    std::vector<uintptr_t> LabelLocations;
345
346    /// MMI - Machine module info for exception informations
347    MachineModuleInfo* MMI;
348
349    // CurFn - The llvm function being emitted.  Only valid during
350    // finishFunction().
351    const Function *CurFn;
352
353    /// Information about emitted code, which is passed to the
354    /// JITEventListeners.  This is reset in startFunction and used in
355    /// finishFunction.
356    JITEvent_EmittedFunctionDetails EmissionDetails;
357
358    struct EmittedCode {
359      void *FunctionBody;  // Beginning of the function's allocation.
360      void *Code;  // The address the function's code actually starts at.
361      void *ExceptionTable;
362      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
363    };
364    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
365      typedef JITEmitter *ExtraData;
366      static void onDelete(JITEmitter *, const Function*);
367      static void onRAUW(JITEmitter *, const Function*, const Function*);
368    };
369    ValueMap<const Function *, EmittedCode,
370             EmittedFunctionConfig> EmittedFunctions;
371
372    DILocation PrevDLT;
373
374    /// Instance of the JIT
375    JIT *TheJIT;
376
377  public:
378    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
379      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
380        EmittedFunctions(this), PrevDLT(NULL), TheJIT(&jit) {
381      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
382      if (jit.getJITInfo().needsGOT()) {
383        MemMgr->AllocateGOT();
384        DEBUG(dbgs() << "JIT is managing a GOT\n");
385      }
386
387      if (DwarfExceptionHandling || JITEmitDebugInfo) {
388        DE.reset(new JITDwarfEmitter(jit));
389      }
390      if (JITEmitDebugInfo) {
391        DR.reset(new JITDebugRegisterer(TM));
392      }
393    }
394    ~JITEmitter() {
395      delete MemMgr;
396    }
397
398    /// classof - Methods for support type inquiry through isa, cast, and
399    /// dyn_cast:
400    ///
401    static inline bool classof(const JITEmitter*) { return true; }
402    static inline bool classof(const MachineCodeEmitter*) { return true; }
403
404    JITResolver &getJITResolver() { return Resolver; }
405
406    virtual void startFunction(MachineFunction &F);
407    virtual bool finishFunction(MachineFunction &F);
408
409    void emitConstantPool(MachineConstantPool *MCP);
410    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
411    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
412
413    void startGVStub(const GlobalValue* GV,
414                     unsigned StubSize, unsigned Alignment = 1);
415    void startGVStub(void *Buffer, unsigned StubSize);
416    void finishGVStub();
417    virtual void *allocIndirectGV(const GlobalValue *GV,
418                                  const uint8_t *Buffer, size_t Size,
419                                  unsigned Alignment);
420
421    /// allocateSpace - Reserves space in the current block if any, or
422    /// allocate a new one of the given size.
423    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
424
425    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
426    /// this method does not allocate memory in the current output buffer,
427    /// because a global may live longer than the current function.
428    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
429
430    virtual void addRelocation(const MachineRelocation &MR) {
431      Relocations.push_back(MR);
432    }
433
434    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
435      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
436        MBBLocations.resize((MBB->getNumber()+1)*2);
437      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
438      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
439                   << (void*) getCurrentPCValue() << "]\n");
440    }
441
442    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
443    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
444
445    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
446      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
447             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
448      return MBBLocations[MBB->getNumber()];
449    }
450
451    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
452    /// given function.  Increase the minimum allocation size so that we get
453    /// more memory next time.
454    void retryWithMoreMemory(MachineFunction &F);
455
456    /// deallocateMemForFunction - Deallocate all memory for the specified
457    /// function body.
458    void deallocateMemForFunction(const Function *F);
459
460    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
461
462    virtual void emitLabel(uint64_t LabelID) {
463      if (LabelLocations.size() <= LabelID)
464        LabelLocations.resize((LabelID+1)*2);
465      LabelLocations[LabelID] = getCurrentPCValue();
466    }
467
468    virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
469      assert(LabelLocations.size() > (unsigned)LabelID &&
470             LabelLocations[LabelID] && "Label not emitted!");
471      return LabelLocations[LabelID];
472    }
473
474    virtual void setModuleInfo(MachineModuleInfo* Info) {
475      MMI = Info;
476      if (DE.get()) DE->setModuleInfo(Info);
477    }
478
479    void setMemoryExecutable() {
480      MemMgr->setMemoryExecutable();
481    }
482
483    JITMemoryManager *getMemMgr() const { return MemMgr; }
484
485  private:
486    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
487                             bool MayNeedFarStub);
488    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
489    unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
490    unsigned addSizeOfGlobalsInConstantVal(
491      const Constant *C, unsigned Size,
492      SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
493      SmallVectorImpl<const GlobalVariable*> &Worklist);
494    unsigned addSizeOfGlobalsInInitializer(
495      const Constant *Init, unsigned Size,
496      SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
497      SmallVectorImpl<const GlobalVariable*> &Worklist);
498    unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
499  };
500}
501
502void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
503  JRS->EraseAllCallSitesForPrelocked(F);
504}
505
506Function *JITResolverState::EraseStub(const MutexGuard &locked, void *Stub) {
507  CallSiteToFunctionMapTy::iterator C2F_I =
508    CallSiteToFunctionMap.find(Stub);
509  if (C2F_I == CallSiteToFunctionMap.end()) {
510    // Not a stub.
511    return NULL;
512  }
513
514  StubToResolverMap->UnregisterStubResolver(Stub);
515
516  Function *const F = C2F_I->second;
517#ifndef NDEBUG
518  void *RealStub = FunctionToLazyStubMap.lookup(F);
519  assert(RealStub == Stub &&
520         "Call-site that wasn't a stub passed in to EraseStub");
521#endif
522  FunctionToLazyStubMap.erase(F);
523  CallSiteToFunctionMap.erase(C2F_I);
524
525  // Remove the stub from the function->call-sites map, and remove the whole
526  // entry from the map if that was the last call site.
527  FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
528  assert(F2C_I != FunctionToCallSitesMap.end() &&
529         "FunctionToCallSitesMap broken");
530  bool Erased = F2C_I->second.erase(Stub);
531  (void)Erased;
532  assert(Erased && "FunctionToCallSitesMap broken");
533  if (F2C_I->second.empty())
534    FunctionToCallSitesMap.erase(F2C_I);
535
536  return F;
537}
538
539void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
540  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
541  if (F2C == FunctionToCallSitesMap.end())
542    return;
543  StubToResolverMapTy &S2RMap = *StubToResolverMap;
544  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
545         E = F2C->second.end(); I != E; ++I) {
546    S2RMap.UnregisterStubResolver(*I);
547    bool Erased = CallSiteToFunctionMap.erase(*I);
548    (void)Erased;
549    assert(Erased && "Missing call site->function mapping");
550  }
551  FunctionToCallSitesMap.erase(F2C);
552}
553
554void JITResolverState::EraseAllCallSitesPrelocked() {
555  StubToResolverMapTy &S2RMap = *StubToResolverMap;
556  for (CallSiteToFunctionMapTy::const_iterator
557         I = CallSiteToFunctionMap.begin(),
558         E = CallSiteToFunctionMap.end(); I != E; ++I) {
559    S2RMap.UnregisterStubResolver(I->first);
560  }
561  CallSiteToFunctionMap.clear();
562  FunctionToCallSitesMap.clear();
563}
564
565JITResolver::~JITResolver() {
566  // No need to lock because we're in the destructor, and state isn't shared.
567  state.EraseAllCallSitesPrelocked();
568  assert(!StubToResolverMap->ResolverHasStubs(this) &&
569         "Resolver destroyed with stubs still alive.");
570}
571
572/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
573/// if it has already been created.
574void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
575  MutexGuard locked(TheJIT->lock);
576
577  // If we already have a stub for this function, recycle it.
578  return state.getFunctionToLazyStubMap(locked).lookup(F);
579}
580
581/// getFunctionStub - This returns a pointer to a function stub, creating
582/// one on demand as needed.
583void *JITResolver::getLazyFunctionStub(Function *F) {
584  MutexGuard locked(TheJIT->lock);
585
586  // If we already have a lazy stub for this function, recycle it.
587  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
588  if (Stub) return Stub;
589
590  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
591  // must resolve the symbol now.
592  void *Actual = TheJIT->isCompilingLazily()
593    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
594
595  // If this is an external declaration, attempt to resolve the address now
596  // to place in the stub.
597  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
598    Actual = TheJIT->getPointerToFunction(F);
599
600    // If we resolved the symbol to a null address (eg. a weak external)
601    // don't emit a stub. Return a null pointer to the application.
602    if (!Actual) return 0;
603  }
604
605  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
606  JE.startGVStub(F, SL.Size, SL.Alignment);
607  // Codegen a new stub, calling the lazy resolver or the actual address of the
608  // external function, if it was resolved.
609  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
610  JE.finishGVStub();
611
612  if (Actual != (void*)(intptr_t)LazyResolverFn) {
613    // If we are getting the stub for an external function, we really want the
614    // address of the stub in the GlobalAddressMap for the JIT, not the address
615    // of the external function.
616    TheJIT->updateGlobalMapping(F, Stub);
617  }
618
619  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
620        << F->getName() << "'\n");
621
622  if (TheJIT->isCompilingLazily()) {
623    // Register this JITResolver as the one corresponding to this call site so
624    // JITCompilerFn will be able to find it.
625    StubToResolverMap->RegisterStubResolver(Stub, this);
626
627    // Finally, keep track of the stub-to-Function mapping so that the
628    // JITCompilerFn knows which function to compile!
629    state.AddCallSite(locked, Stub, F);
630  } else if (!Actual) {
631    // If we are JIT'ing non-lazily but need to call a function that does not
632    // exist yet, add it to the JIT's work list so that we can fill in the
633    // stub address later.
634    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
635           "'Actual' should have been set above.");
636    TheJIT->addPendingFunction(F);
637  }
638
639  return Stub;
640}
641
642/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
643/// GV address.
644void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
645  MutexGuard locked(TheJIT->lock);
646
647  // If we already have a stub for this global variable, recycle it.
648  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
649  if (IndirectSym) return IndirectSym;
650
651  // Otherwise, codegen a new indirect symbol.
652  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
653                                                                JE);
654
655  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
656        << "] for GV '" << GV->getName() << "'\n");
657
658  return IndirectSym;
659}
660
661/// getExternalFunctionStub - Return a stub for the function at the
662/// specified address, created lazily on demand.
663void *JITResolver::getExternalFunctionStub(void *FnAddr) {
664  // If we already have a stub for this function, recycle it.
665  void *&Stub = ExternalFnToStubMap[FnAddr];
666  if (Stub) return Stub;
667
668  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
669  JE.startGVStub(0, SL.Size, SL.Alignment);
670  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
671  JE.finishGVStub();
672
673  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
674               << "] for external function at '" << FnAddr << "'\n");
675  return Stub;
676}
677
678unsigned JITResolver::getGOTIndexForAddr(void* addr) {
679  unsigned idx = revGOTMap[addr];
680  if (!idx) {
681    idx = ++nextGOTIndex;
682    revGOTMap[addr] = idx;
683    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
684                 << addr << "]\n");
685  }
686  return idx;
687}
688
689void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
690                                    SmallVectorImpl<void*> &Ptrs) {
691  MutexGuard locked(TheJIT->lock);
692
693  const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked);
694  GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
695
696  for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end();
697       i != e; ++i){
698    Function *F = i->first;
699    if (F->isDeclaration() && F->hasExternalLinkage()) {
700      GVs.push_back(i->first);
701      Ptrs.push_back(i->second);
702    }
703  }
704  for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
705       i != e; ++i) {
706    GVs.push_back(i->first);
707    Ptrs.push_back(i->second);
708  }
709}
710
711/// JITCompilerFn - This function is called when a lazy compilation stub has
712/// been entered.  It looks up which function this stub corresponds to, compiles
713/// it if necessary, then returns the resultant function pointer.
714void *JITResolver::JITCompilerFn(void *Stub) {
715  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
716  assert(JR && "Unable to find the corresponding JITResolver to the call site");
717
718  Function* F = 0;
719  void* ActualPtr = 0;
720
721  {
722    // Only lock for getting the Function. The call getPointerToFunction made
723    // in this function might trigger function materializing, which requires
724    // JIT lock to be unlocked.
725    MutexGuard locked(JR->TheJIT->lock);
726
727    // The address given to us for the stub may not be exactly right, it might
728    // be a little bit after the stub.  As such, use upper_bound to find it.
729    pair<void*, Function*> I =
730      JR->state.LookupFunctionFromCallSite(locked, Stub);
731    F = I.second;
732    ActualPtr = I.first;
733  }
734
735  // If we have already code generated the function, just return the address.
736  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
737
738  if (!Result) {
739    // Otherwise we don't have it, do lazy compilation now.
740
741    // If lazy compilation is disabled, emit a useful error message and abort.
742    if (!JR->TheJIT->isCompilingLazily()) {
743      llvm_report_error("LLVM JIT requested to do lazy compilation of function '"
744                        + F->getName() + "' when lazy compiles are disabled!");
745    }
746
747    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
748          << "' In stub ptr = " << Stub << " actual ptr = "
749          << ActualPtr << "\n");
750
751    Result = JR->TheJIT->getPointerToFunction(F);
752  }
753
754  // Reacquire the lock to update the GOT map.
755  MutexGuard locked(JR->TheJIT->lock);
756
757  // We might like to remove the call site from the CallSiteToFunction map, but
758  // we can't do that! Multiple threads could be stuck, waiting to acquire the
759  // lock above. As soon as the 1st function finishes compiling the function,
760  // the next one will be released, and needs to be able to find the function it
761  // needs to call.
762
763  // FIXME: We could rewrite all references to this stub if we knew them.
764
765  // What we will do is set the compiled function address to map to the
766  // same GOT entry as the stub so that later clients may update the GOT
767  // if they see it still using the stub address.
768  // Note: this is done so the Resolver doesn't have to manage GOT memory
769  // Do this without allocating map space if the target isn't using a GOT
770  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
771    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
772
773  return Result;
774}
775
776//===----------------------------------------------------------------------===//
777// JITEmitter code.
778//
779void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
780                                     bool MayNeedFarStub) {
781  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
782    return TheJIT->getOrEmitGlobalVariable(GV);
783
784  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
785    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
786
787  // If we have already compiled the function, return a pointer to its body.
788  Function *F = cast<Function>(V);
789
790  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
791  if (FnStub) {
792    // Return the function stub if it's already created.  We do this first so
793    // that we're returning the same address for the function as any previous
794    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
795    // close enough to call.
796    return FnStub;
797  }
798
799  // If we know the target can handle arbitrary-distance calls, try to
800  // return a direct pointer.
801  if (!MayNeedFarStub) {
802    // If we have code, go ahead and return that.
803    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
804    if (ResultPtr) return ResultPtr;
805
806    // If this is an external function pointer, we can force the JIT to
807    // 'compile' it, which really just adds it to the map.
808    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
809      return TheJIT->getPointerToFunction(F);
810  }
811
812  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
813  // so.  Note that it's possible to return null from getLazyFunctionStub in the
814  // case of a weak extern that fails to resolve.
815  return Resolver.getLazyFunctionStub(F);
816}
817
818void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
819  // Make sure GV is emitted first, and create a stub containing the fully
820  // resolved address.
821  void *GVAddress = getPointerToGlobal(V, Reference, false);
822  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
823  return StubAddr;
824}
825
826void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
827  if (!DL.isUnknown()) {
828    DILocation CurDLT = EmissionDetails.MF->getDILocation(DL);
829
830    if (BeforePrintingInsn) {
831      if (CurDLT.getScope().getNode() != 0
832          && PrevDLT.getNode() != CurDLT.getNode()) {
833        JITEvent_EmittedFunctionDetails::LineStart NextLine;
834        NextLine.Address = getCurrentPCValue();
835        NextLine.Loc = DL;
836        EmissionDetails.LineStarts.push_back(NextLine);
837      }
838
839      PrevDLT = CurDLT;
840    }
841  }
842}
843
844static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
845                                           const TargetData *TD) {
846  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
847  if (Constants.empty()) return 0;
848
849  unsigned Size = 0;
850  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
851    MachineConstantPoolEntry CPE = Constants[i];
852    unsigned AlignMask = CPE.getAlignment() - 1;
853    Size = (Size + AlignMask) & ~AlignMask;
854    const Type *Ty = CPE.getType();
855    Size += TD->getTypeAllocSize(Ty);
856  }
857  return Size;
858}
859
860static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI, JIT *jit) {
861  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
862  if (JT.empty()) return 0;
863
864  unsigned NumEntries = 0;
865  for (unsigned i = 0, e = JT.size(); i != e; ++i)
866    NumEntries += JT[i].MBBs.size();
867
868  return NumEntries * MJTI->getEntrySize(*jit->getTargetData());
869}
870
871static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
872  if (Alignment == 0) Alignment = 1;
873  // Since we do not know where the buffer will be allocated, be pessimistic.
874  return Size + Alignment;
875}
876
877/// addSizeOfGlobal - add the size of the global (plus any alignment padding)
878/// into the running total Size.
879
880unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
881  const Type *ElTy = GV->getType()->getElementType();
882  size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
883  size_t GVAlign =
884      (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
885  DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
886  DEBUG(GV->dump());
887  // Assume code section ends with worst possible alignment, so first
888  // variable needs maximal padding.
889  if (Size==0)
890    Size = 1;
891  Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
892  Size += GVSize;
893  return Size;
894}
895
896/// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
897/// but are referenced from the constant; put them in SeenGlobals and the
898/// Worklist, and add their size into the running total Size.
899
900unsigned JITEmitter::addSizeOfGlobalsInConstantVal(
901    const Constant *C,
902    unsigned Size,
903    SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
904    SmallVectorImpl<const GlobalVariable*> &Worklist) {
905  // If its undefined, return the garbage.
906  if (isa<UndefValue>(C))
907    return Size;
908
909  // If the value is a ConstantExpr
910  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
911    Constant *Op0 = CE->getOperand(0);
912    switch (CE->getOpcode()) {
913    case Instruction::GetElementPtr:
914    case Instruction::Trunc:
915    case Instruction::ZExt:
916    case Instruction::SExt:
917    case Instruction::FPTrunc:
918    case Instruction::FPExt:
919    case Instruction::UIToFP:
920    case Instruction::SIToFP:
921    case Instruction::FPToUI:
922    case Instruction::FPToSI:
923    case Instruction::PtrToInt:
924    case Instruction::IntToPtr:
925    case Instruction::BitCast: {
926      Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist);
927      break;
928    }
929    case Instruction::Add:
930    case Instruction::FAdd:
931    case Instruction::Sub:
932    case Instruction::FSub:
933    case Instruction::Mul:
934    case Instruction::FMul:
935    case Instruction::UDiv:
936    case Instruction::SDiv:
937    case Instruction::URem:
938    case Instruction::SRem:
939    case Instruction::And:
940    case Instruction::Or:
941    case Instruction::Xor: {
942      Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist);
943      Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size,
944                                           SeenGlobals, Worklist);
945      break;
946    }
947    default: {
948       std::string msg;
949       raw_string_ostream Msg(msg);
950       Msg << "ConstantExpr not handled: " << *CE;
951       llvm_report_error(Msg.str());
952    }
953    }
954  }
955
956  if (C->getType()->getTypeID() == Type::PointerTyID)
957    if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
958      if (SeenGlobals.insert(GV)) {
959        Worklist.push_back(GV);
960        Size = addSizeOfGlobal(GV, Size);
961      }
962
963  return Size;
964}
965
966/// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
967/// but are referenced from the given initializer.
968
969unsigned JITEmitter::addSizeOfGlobalsInInitializer(
970    const Constant *Init,
971    unsigned Size,
972    SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
973    SmallVectorImpl<const GlobalVariable*> &Worklist) {
974  if (!isa<UndefValue>(Init) &&
975      !isa<ConstantVector>(Init) &&
976      !isa<ConstantAggregateZero>(Init) &&
977      !isa<ConstantArray>(Init) &&
978      !isa<ConstantStruct>(Init) &&
979      Init->getType()->isFirstClassType())
980    Size = addSizeOfGlobalsInConstantVal(Init, Size, SeenGlobals, Worklist);
981  return Size;
982}
983
984/// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
985/// globals; then walk the initializers of those globals looking for more.
986/// If their size has not been considered yet, add it into the running total
987/// Size.
988
989unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
990  unsigned Size = 0;
991  SmallPtrSet<const GlobalVariable*, 8> SeenGlobals;
992
993  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
994       MBB != E; ++MBB) {
995    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
996         I != E; ++I) {
997      const TargetInstrDesc &Desc = I->getDesc();
998      const MachineInstr &MI = *I;
999      unsigned NumOps = Desc.getNumOperands();
1000      for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
1001        const MachineOperand &MO = MI.getOperand(CurOp);
1002        if (MO.isGlobal()) {
1003          GlobalValue* V = MO.getGlobal();
1004          const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
1005          if (!GV)
1006            continue;
1007          // If seen in previous function, it will have an entry here.
1008          if (TheJIT->getPointerToGlobalIfAvailable(GV))
1009            continue;
1010          // If seen earlier in this function, it will have an entry here.
1011          // FIXME: it should be possible to combine these tables, by
1012          // assuming the addresses of the new globals in this module
1013          // start at 0 (or something) and adjusting them after codegen
1014          // complete.  Another possibility is to grab a marker bit in GV.
1015          if (SeenGlobals.insert(GV))
1016            // A variable as yet unseen.  Add in its size.
1017            Size = addSizeOfGlobal(GV, Size);
1018        }
1019      }
1020    }
1021  }
1022  DEBUG(dbgs() << "JIT: About to look through initializers\n");
1023  // Look for more globals that are referenced only from initializers.
1024  SmallVector<const GlobalVariable*, 8> Worklist(
1025    SeenGlobals.begin(), SeenGlobals.end());
1026  while (!Worklist.empty()) {
1027    const GlobalVariable* GV = Worklist.back();
1028    Worklist.pop_back();
1029    if (GV->hasInitializer())
1030      Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size,
1031                                           SeenGlobals, Worklist);
1032  }
1033
1034  return Size;
1035}
1036
1037void JITEmitter::startFunction(MachineFunction &F) {
1038  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
1039        << F.getFunction()->getName() << "\n");
1040
1041  uintptr_t ActualSize = 0;
1042  // Set the memory writable, if it's not already
1043  MemMgr->setMemoryWritable();
1044  if (MemMgr->NeedsExactSize()) {
1045    DEBUG(dbgs() << "JIT: ExactSize\n");
1046    const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
1047    MachineConstantPool *MCP = F.getConstantPool();
1048
1049    // Ensure the constant pool/jump table info is at least 4-byte aligned.
1050    ActualSize = RoundUpToAlign(ActualSize, 16);
1051
1052    // Add the alignment of the constant pool
1053    ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
1054
1055    // Add the constant pool size
1056    ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1057
1058    if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) {
1059      // Add the aligment of the jump table info
1060      ActualSize = RoundUpToAlign(ActualSize,
1061                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1062
1063      // Add the jump table size
1064      ActualSize += GetJumpTableSizeInBytes(MJTI, TheJIT);
1065    }
1066
1067    // Add the alignment for the function
1068    ActualSize = RoundUpToAlign(ActualSize,
1069                                std::max(F.getFunction()->getAlignment(), 8U));
1070
1071    // Add the function size
1072    ActualSize += TII->GetFunctionSizeInBytes(F);
1073
1074    DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n");
1075    // Add the size of the globals that will be allocated after this function.
1076    // These are all the ones referenced from this function that were not
1077    // previously allocated.
1078    ActualSize += GetSizeOfGlobalsInBytes(F);
1079    DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n");
1080  } else if (SizeEstimate > 0) {
1081    // SizeEstimate will be non-zero on reallocation attempts.
1082    ActualSize = SizeEstimate;
1083  }
1084
1085  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
1086                                                         ActualSize);
1087  BufferEnd = BufferBegin+ActualSize;
1088  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
1089
1090  // Ensure the constant pool/jump table info is at least 4-byte aligned.
1091  emitAlignment(16);
1092
1093  emitConstantPool(F.getConstantPool());
1094  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1095    initJumpTableInfo(MJTI);
1096
1097  // About to start emitting the machine code for the function.
1098  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
1099  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
1100  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
1101
1102  MBBLocations.clear();
1103
1104  EmissionDetails.MF = &F;
1105  EmissionDetails.LineStarts.clear();
1106}
1107
1108bool JITEmitter::finishFunction(MachineFunction &F) {
1109  if (CurBufferPtr == BufferEnd) {
1110    // We must call endFunctionBody before retrying, because
1111    // deallocateMemForFunction requires it.
1112    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1113    retryWithMoreMemory(F);
1114    return true;
1115  }
1116
1117  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1118    emitJumpTableInfo(MJTI);
1119
1120  // FnStart is the start of the text, not the start of the constant pool and
1121  // other per-function data.
1122  uint8_t *FnStart =
1123    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
1124
1125  // FnEnd is the end of the function's machine code.
1126  uint8_t *FnEnd = CurBufferPtr;
1127
1128  if (!Relocations.empty()) {
1129    CurFn = F.getFunction();
1130    NumRelos += Relocations.size();
1131
1132    // Resolve the relocations to concrete pointers.
1133    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
1134      MachineRelocation &MR = Relocations[i];
1135      void *ResultPtr = 0;
1136      if (!MR.letTargetResolve()) {
1137        if (MR.isExternalSymbol()) {
1138          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
1139                                                        false);
1140          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
1141                       << ResultPtr << "]\n");
1142
1143          // If the target REALLY wants a stub for this function, emit it now.
1144          if (MR.mayNeedFarStub()) {
1145            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1146          }
1147        } else if (MR.isGlobalValue()) {
1148          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1149                                         BufferBegin+MR.getMachineCodeOffset(),
1150                                         MR.mayNeedFarStub());
1151        } else if (MR.isIndirectSymbol()) {
1152          ResultPtr = getPointerToGVIndirectSym(
1153              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
1154        } else if (MR.isBasicBlock()) {
1155          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1156        } else if (MR.isConstantPoolIndex()) {
1157          ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1158        } else {
1159          assert(MR.isJumpTableIndex());
1160          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1161        }
1162
1163        MR.setResultPointer(ResultPtr);
1164      }
1165
1166      // if we are managing the GOT and the relocation wants an index,
1167      // give it one
1168      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1169        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1170        MR.setGOTIndex(idx);
1171        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1172          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
1173                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1174                       << "\n");
1175          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1176        }
1177      }
1178    }
1179
1180    CurFn = 0;
1181    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1182                                  Relocations.size(), MemMgr->getGOTBase());
1183  }
1184
1185  // Update the GOT entry for F to point to the new code.
1186  if (MemMgr->isManagingGOT()) {
1187    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1188    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1189      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1190                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1191                   << "\n");
1192      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1193    }
1194  }
1195
1196  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1197  // global variables that were referenced in the relocations.
1198  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1199
1200  if (CurBufferPtr == BufferEnd) {
1201    retryWithMoreMemory(F);
1202    return true;
1203  } else {
1204    // Now that we've succeeded in emitting the function, reset the
1205    // SizeEstimate back down to zero.
1206    SizeEstimate = 0;
1207  }
1208
1209  BufferBegin = CurBufferPtr = 0;
1210  NumBytes += FnEnd-FnStart;
1211
1212  // Invalidate the icache if necessary.
1213  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1214
1215  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1216                                EmissionDetails);
1217
1218  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1219        << "] Function: " << F.getFunction()->getName()
1220        << ": " << (FnEnd-FnStart) << " bytes of text, "
1221        << Relocations.size() << " relocations\n");
1222
1223  Relocations.clear();
1224  ConstPoolAddresses.clear();
1225
1226  // Mark code region readable and executable if it's not so already.
1227  MemMgr->setMemoryExecutable();
1228
1229  DEBUG(
1230    if (sys::hasDisassembler()) {
1231      dbgs() << "JIT: Disassembled code:\n";
1232      dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1233                                       (uintptr_t)FnStart);
1234    } else {
1235      dbgs() << "JIT: Binary code:\n";
1236      uint8_t* q = FnStart;
1237      for (int i = 0; q < FnEnd; q += 4, ++i) {
1238        if (i == 4)
1239          i = 0;
1240        if (i == 0)
1241          dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
1242        bool Done = false;
1243        for (int j = 3; j >= 0; --j) {
1244          if (q + j >= FnEnd)
1245            Done = true;
1246          else
1247            dbgs() << (unsigned short)q[j];
1248        }
1249        if (Done)
1250          break;
1251        dbgs() << ' ';
1252        if (i == 3)
1253          dbgs() << '\n';
1254      }
1255      dbgs()<< '\n';
1256    }
1257        );
1258
1259  if (DwarfExceptionHandling || JITEmitDebugInfo) {
1260    uintptr_t ActualSize = 0;
1261    SavedBufferBegin = BufferBegin;
1262    SavedBufferEnd = BufferEnd;
1263    SavedCurBufferPtr = CurBufferPtr;
1264
1265    if (MemMgr->NeedsExactSize()) {
1266      ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1267    }
1268
1269    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1270                                                             ActualSize);
1271    BufferEnd = BufferBegin+ActualSize;
1272    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
1273    uint8_t *EhStart;
1274    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
1275                                                EhStart);
1276    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1277                              FrameRegister);
1278    uint8_t *EhEnd = CurBufferPtr;
1279    BufferBegin = SavedBufferBegin;
1280    BufferEnd = SavedBufferEnd;
1281    CurBufferPtr = SavedCurBufferPtr;
1282
1283    if (DwarfExceptionHandling) {
1284      TheJIT->RegisterTable(FrameRegister);
1285    }
1286
1287    if (JITEmitDebugInfo) {
1288      DebugInfo I;
1289      I.FnStart = FnStart;
1290      I.FnEnd = FnEnd;
1291      I.EhStart = EhStart;
1292      I.EhEnd = EhEnd;
1293      DR->RegisterFunction(F.getFunction(), I);
1294    }
1295  }
1296
1297  if (MMI)
1298    MMI->EndFunction();
1299
1300  return false;
1301}
1302
1303void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1304  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1305  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1306  ConstPoolAddresses.clear();
1307  ++NumRetries;
1308  deallocateMemForFunction(F.getFunction());
1309  // Try again with at least twice as much free space.
1310  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1311}
1312
1313/// deallocateMemForFunction - Deallocate all memory for the specified
1314/// function body.  Also drop any references the function has to stubs.
1315/// May be called while the Function is being destroyed inside ~Value().
1316void JITEmitter::deallocateMemForFunction(const Function *F) {
1317  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1318    Emitted = EmittedFunctions.find(F);
1319  if (Emitted != EmittedFunctions.end()) {
1320    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1321    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1322    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1323
1324    EmittedFunctions.erase(Emitted);
1325  }
1326
1327  // TODO: Do we need to unregister exception handling information from libgcc
1328  // here?
1329
1330  if (JITEmitDebugInfo) {
1331    DR->UnregisterFunction(F);
1332  }
1333}
1334
1335
1336void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1337  if (BufferBegin)
1338    return JITCodeEmitter::allocateSpace(Size, Alignment);
1339
1340  // create a new memory block if there is no active one.
1341  // care must be taken so that BufferBegin is invalidated when a
1342  // block is trimmed
1343  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1344  BufferEnd = BufferBegin+Size;
1345  return CurBufferPtr;
1346}
1347
1348void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1349  // Delegate this call through the memory manager.
1350  return MemMgr->allocateGlobal(Size, Alignment);
1351}
1352
1353void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1354  if (TheJIT->getJITInfo().hasCustomConstantPool())
1355    return;
1356
1357  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1358  if (Constants.empty()) return;
1359
1360  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1361  unsigned Align = MCP->getConstantPoolAlignment();
1362  ConstantPoolBase = allocateSpace(Size, Align);
1363  ConstantPool = MCP;
1364
1365  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1366
1367  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1368               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1369
1370  // Initialize the memory for all of the constant pool entries.
1371  unsigned Offset = 0;
1372  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1373    MachineConstantPoolEntry CPE = Constants[i];
1374    unsigned AlignMask = CPE.getAlignment() - 1;
1375    Offset = (Offset + AlignMask) & ~AlignMask;
1376
1377    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1378    ConstPoolAddresses.push_back(CAddr);
1379    if (CPE.isMachineConstantPoolEntry()) {
1380      // FIXME: add support to lower machine constant pool values into bytes!
1381      llvm_report_error("Initialize memory with machine specific constant pool"
1382                        "entry has not been implemented!");
1383    }
1384    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1385    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1386          dbgs().write_hex(CAddr) << "]\n");
1387
1388    const Type *Ty = CPE.Val.ConstVal->getType();
1389    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1390  }
1391}
1392
1393void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1394  if (TheJIT->getJITInfo().hasCustomJumpTables())
1395    return;
1396  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1397    return;
1398
1399  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1400  if (JT.empty()) return;
1401
1402  unsigned NumEntries = 0;
1403  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1404    NumEntries += JT[i].MBBs.size();
1405
1406  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1407
1408  // Just allocate space for all the jump tables now.  We will fix up the actual
1409  // MBB entries in the tables after we emit the code for each block, since then
1410  // we will know the final locations of the MBBs in memory.
1411  JumpTable = MJTI;
1412  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1413                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1414}
1415
1416void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1417  if (TheJIT->getJITInfo().hasCustomJumpTables())
1418    return;
1419
1420  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1421  if (JT.empty() || JumpTableBase == 0) return;
1422
1423
1424  switch (MJTI->getEntryKind()) {
1425  case MachineJumpTableInfo::EK_Inline:
1426    return;
1427  case MachineJumpTableInfo::EK_BlockAddress: {
1428    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1429    //     .word LBB123
1430    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1431           "Cross JIT'ing?");
1432
1433    // For each jump table, map each target in the jump table to the address of
1434    // an emitted MachineBasicBlock.
1435    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1436
1437    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1438      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1439      // Store the address of the basic block for this jump table slot in the
1440      // memory we allocated for the jump table in 'initJumpTableInfo'
1441      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1442        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1443    }
1444    break;
1445  }
1446
1447  case MachineJumpTableInfo::EK_Custom32:
1448  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1449  case MachineJumpTableInfo::EK_LabelDifference32: {
1450    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1451    // For each jump table, place the offset from the beginning of the table
1452    // to the target address.
1453    int *SlotPtr = (int*)JumpTableBase;
1454
1455    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1456      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1457      // Store the offset of the basic block for this jump table slot in the
1458      // memory we allocated for the jump table in 'initJumpTableInfo'
1459      uintptr_t Base = (uintptr_t)SlotPtr;
1460      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1461        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1462        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1463        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1464      }
1465    }
1466    break;
1467  }
1468  }
1469}
1470
1471void JITEmitter::startGVStub(const GlobalValue* GV,
1472                             unsigned StubSize, unsigned Alignment) {
1473  SavedBufferBegin = BufferBegin;
1474  SavedBufferEnd = BufferEnd;
1475  SavedCurBufferPtr = CurBufferPtr;
1476
1477  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1478  BufferEnd = BufferBegin+StubSize+1;
1479}
1480
1481void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1482  SavedBufferBegin = BufferBegin;
1483  SavedBufferEnd = BufferEnd;
1484  SavedCurBufferPtr = CurBufferPtr;
1485
1486  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1487  BufferEnd = BufferBegin+StubSize+1;
1488}
1489
1490void JITEmitter::finishGVStub() {
1491  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1492  NumBytes += getCurrentPCOffset();
1493  BufferBegin = SavedBufferBegin;
1494  BufferEnd = SavedBufferEnd;
1495  CurBufferPtr = SavedCurBufferPtr;
1496}
1497
1498void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1499                                  const uint8_t *Buffer, size_t Size,
1500                                  unsigned Alignment) {
1501  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1502  memcpy(IndGV, Buffer, Size);
1503  return IndGV;
1504}
1505
1506// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1507// in the constant pool that was last emitted with the 'emitConstantPool'
1508// method.
1509//
1510uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1511  assert(ConstantNum < ConstantPool->getConstants().size() &&
1512         "Invalid ConstantPoolIndex!");
1513  return ConstPoolAddresses[ConstantNum];
1514}
1515
1516// getJumpTableEntryAddress - Return the address of the JumpTable with index
1517// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1518//
1519uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1520  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1521  assert(Index < JT.size() && "Invalid jump table index!");
1522
1523  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1524
1525  unsigned Offset = 0;
1526  for (unsigned i = 0; i < Index; ++i)
1527    Offset += JT[i].MBBs.size();
1528
1529   Offset *= EntrySize;
1530
1531  return (uintptr_t)((char *)JumpTableBase + Offset);
1532}
1533
1534void JITEmitter::EmittedFunctionConfig::onDelete(
1535  JITEmitter *Emitter, const Function *F) {
1536  Emitter->deallocateMemForFunction(F);
1537}
1538void JITEmitter::EmittedFunctionConfig::onRAUW(
1539  JITEmitter *, const Function*, const Function*) {
1540  llvm_unreachable("The JIT doesn't know how to handle a"
1541                   " RAUW on a value it has emitted.");
1542}
1543
1544
1545//===----------------------------------------------------------------------===//
1546//  Public interface to this file
1547//===----------------------------------------------------------------------===//
1548
1549JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1550                                   TargetMachine &tm) {
1551  return new JITEmitter(jit, JMM, tm);
1552}
1553
1554// getPointerToFunctionOrStub - If the specified function has been
1555// code-gen'd, return a pointer to the function.  If not, compile it, or use
1556// a stub to implement lazy compilation if available.
1557//
1558void *JIT::getPointerToFunctionOrStub(Function *F) {
1559  // If we have already code generated the function, just return the address.
1560  if (void *Addr = getPointerToGlobalIfAvailable(F))
1561    return Addr;
1562
1563  // Get a stub if the target supports it.
1564  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1565  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1566  return JE->getJITResolver().getLazyFunctionStub(F);
1567}
1568
1569void JIT::updateFunctionStub(Function *F) {
1570  // Get the empty stub we generated earlier.
1571  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1572  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1573  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1574  void *Addr = getPointerToGlobalIfAvailable(F);
1575  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1576
1577  // Tell the target jit info to rewrite the stub at the specified address,
1578  // rather than creating a new one.
1579  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1580  JE->startGVStub(Stub, layout.Size);
1581  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1582  JE->finishGVStub();
1583}
1584
1585/// freeMachineCodeForFunction - release machine code memory for given Function.
1586///
1587void JIT::freeMachineCodeForFunction(Function *F) {
1588  // Delete translation for this from the ExecutionEngine, so it will get
1589  // retranslated next time it is used.
1590  updateGlobalMapping(F, 0);
1591
1592  // Free the actual memory for the function body and related stuff.
1593  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1594  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1595}
1596