1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalValue.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  // However, vectors of zeroes which are floating point represent +0.0's.
57  if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
58    if (const VectorType *VT = dyn_cast<VectorType>(CAZ->getType()))
59      if (VT->getElementType()->isFloatingPointTy())
60        // As it's a CAZ, we know it's the zero bit-pattern (ie, +0.0) in each element.
61        return false;
62
63  // Otherwise, just use +0.0.
64  return isNullValue();
65}
66
67// Return true iff this constant is positive zero (floating point), negative
68// zero (floating point), or a null value.
69bool Constant::isZeroValue() const {
70  // Floating point values have an explicit -0.0 value.
71  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
72    return CFP->isZero();
73
74  // Otherwise, just use +0.0.
75  return isNullValue();
76}
77
78bool Constant::isNullValue() const {
79  // 0 is null.
80  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
81    return CI->isZero();
82
83  // +0.0 is null.
84  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
85    return CFP->isZero() && !CFP->isNegative();
86
87  // constant zero is zero for aggregates and cpnull is null for pointers.
88  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
89}
90
91bool Constant::isAllOnesValue() const {
92  // Check for -1 integers
93  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
94    return CI->isMinusOne();
95
96  // Check for FP which are bitcasted from -1 integers
97  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
98    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
99
100  // Check for constant vectors which are splats of -1 values.
101  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
102    if (Constant *Splat = CV->getSplatValue())
103      return Splat->isAllOnesValue();
104
105  // Check for constant vectors which are splats of -1 values.
106  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
107    if (Constant *Splat = CV->getSplatValue())
108      return Splat->isAllOnesValue();
109
110  return false;
111}
112
113// Constructor to create a '0' constant of arbitrary type...
114Constant *Constant::getNullValue(Type *Ty) {
115  switch (Ty->getTypeID()) {
116  case Type::IntegerTyID:
117    return ConstantInt::get(Ty, 0);
118  case Type::HalfTyID:
119    return ConstantFP::get(Ty->getContext(),
120                           APFloat::getZero(APFloat::IEEEhalf));
121  case Type::FloatTyID:
122    return ConstantFP::get(Ty->getContext(),
123                           APFloat::getZero(APFloat::IEEEsingle));
124  case Type::DoubleTyID:
125    return ConstantFP::get(Ty->getContext(),
126                           APFloat::getZero(APFloat::IEEEdouble));
127  case Type::X86_FP80TyID:
128    return ConstantFP::get(Ty->getContext(),
129                           APFloat::getZero(APFloat::x87DoubleExtended));
130  case Type::FP128TyID:
131    return ConstantFP::get(Ty->getContext(),
132                           APFloat::getZero(APFloat::IEEEquad));
133  case Type::PPC_FP128TyID:
134    return ConstantFP::get(Ty->getContext(),
135                           APFloat(APFloat::PPCDoubleDouble,
136                                   APInt::getNullValue(128)));
137  case Type::PointerTyID:
138    return ConstantPointerNull::get(cast<PointerType>(Ty));
139  case Type::StructTyID:
140  case Type::ArrayTyID:
141  case Type::VectorTyID:
142    return ConstantAggregateZero::get(Ty);
143  default:
144    // Function, Label, or Opaque type?
145    llvm_unreachable("Cannot create a null constant of that type!");
146  }
147}
148
149Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
150  Type *ScalarTy = Ty->getScalarType();
151
152  // Create the base integer constant.
153  Constant *C = ConstantInt::get(Ty->getContext(), V);
154
155  // Convert an integer to a pointer, if necessary.
156  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
157    C = ConstantExpr::getIntToPtr(C, PTy);
158
159  // Broadcast a scalar to a vector, if necessary.
160  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
161    C = ConstantVector::getSplat(VTy->getNumElements(), C);
162
163  return C;
164}
165
166Constant *Constant::getAllOnesValue(Type *Ty) {
167  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
168    return ConstantInt::get(Ty->getContext(),
169                            APInt::getAllOnesValue(ITy->getBitWidth()));
170
171  if (Ty->isFloatingPointTy()) {
172    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
173                                          !Ty->isPPC_FP128Ty());
174    return ConstantFP::get(Ty->getContext(), FL);
175  }
176
177  VectorType *VTy = cast<VectorType>(Ty);
178  return ConstantVector::getSplat(VTy->getNumElements(),
179                                  getAllOnesValue(VTy->getElementType()));
180}
181
182/// getAggregateElement - For aggregates (struct/array/vector) return the
183/// constant that corresponds to the specified element if possible, or null if
184/// not.  This can return null if the element index is a ConstantExpr, or if
185/// 'this' is a constant expr.
186Constant *Constant::getAggregateElement(unsigned Elt) const {
187  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
188    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
189
190  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
191    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
192
193  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
194    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
195
196  if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
197    return CAZ->getElementValue(Elt);
198
199  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
200    return UV->getElementValue(Elt);
201
202  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
203    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
204  return 0;
205}
206
207Constant *Constant::getAggregateElement(Constant *Elt) const {
208  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
209  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
210    return getAggregateElement(CI->getZExtValue());
211  return 0;
212}
213
214
215void Constant::destroyConstantImpl() {
216  // When a Constant is destroyed, there may be lingering
217  // references to the constant by other constants in the constant pool.  These
218  // constants are implicitly dependent on the module that is being deleted,
219  // but they don't know that.  Because we only find out when the CPV is
220  // deleted, we must now notify all of our users (that should only be
221  // Constants) that they are, in fact, invalid now and should be deleted.
222  //
223  while (!use_empty()) {
224    Value *V = use_back();
225#ifndef NDEBUG      // Only in -g mode...
226    if (!isa<Constant>(V)) {
227      dbgs() << "While deleting: " << *this
228             << "\n\nUse still stuck around after Def is destroyed: "
229             << *V << "\n\n";
230    }
231#endif
232    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
233    cast<Constant>(V)->destroyConstant();
234
235    // The constant should remove itself from our use list...
236    assert((use_empty() || use_back() != V) && "Constant not removed!");
237  }
238
239  // Value has no outstanding references it is safe to delete it now...
240  delete this;
241}
242
243/// canTrap - Return true if evaluation of this constant could trap.  This is
244/// true for things like constant expressions that could divide by zero.
245bool Constant::canTrap() const {
246  assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
247  // The only thing that could possibly trap are constant exprs.
248  const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
249  if (!CE) return false;
250
251  // ConstantExpr traps if any operands can trap.
252  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
253    if (CE->getOperand(i)->canTrap())
254      return true;
255
256  // Otherwise, only specific operations can trap.
257  switch (CE->getOpcode()) {
258  default:
259    return false;
260  case Instruction::UDiv:
261  case Instruction::SDiv:
262  case Instruction::FDiv:
263  case Instruction::URem:
264  case Instruction::SRem:
265  case Instruction::FRem:
266    // Div and rem can trap if the RHS is not known to be non-zero.
267    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268      return true;
269    return false;
270  }
271}
272
273/// isThreadDependent - Return true if the value can vary between threads.
274bool Constant::isThreadDependent() const {
275  SmallPtrSet<const Constant*, 64> Visited;
276  SmallVector<const Constant*, 64> WorkList;
277  WorkList.push_back(this);
278  Visited.insert(this);
279
280  while (!WorkList.empty()) {
281    const Constant *C = WorkList.pop_back_val();
282
283    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
284      if (GV->isThreadLocal())
285        return true;
286    }
287
288    for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
289      const Constant *D = dyn_cast<Constant>(C->getOperand(I));
290      if (!D)
291        continue;
292      if (Visited.insert(D))
293        WorkList.push_back(D);
294    }
295  }
296
297  return false;
298}
299
300/// isConstantUsed - Return true if the constant has users other than constant
301/// exprs and other dangling things.
302bool Constant::isConstantUsed() const {
303  for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
304    const Constant *UC = dyn_cast<Constant>(*UI);
305    if (UC == 0 || isa<GlobalValue>(UC))
306      return true;
307
308    if (UC->isConstantUsed())
309      return true;
310  }
311  return false;
312}
313
314
315
316/// getRelocationInfo - This method classifies the entry according to
317/// whether or not it may generate a relocation entry.  This must be
318/// conservative, so if it might codegen to a relocatable entry, it should say
319/// so.  The return values are:
320///
321///  NoRelocation: This constant pool entry is guaranteed to never have a
322///     relocation applied to it (because it holds a simple constant like
323///     '4').
324///  LocalRelocation: This entry has relocations, but the entries are
325///     guaranteed to be resolvable by the static linker, so the dynamic
326///     linker will never see them.
327///  GlobalRelocations: This entry may have arbitrary relocations.
328///
329/// FIXME: This really should not be in IR.
330Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
331  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
332    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
333      return LocalRelocation;  // Local to this file/library.
334    return GlobalRelocations;    // Global reference.
335  }
336
337  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
338    return BA->getFunction()->getRelocationInfo();
339
340  // While raw uses of blockaddress need to be relocated, differences between
341  // two of them don't when they are for labels in the same function.  This is a
342  // common idiom when creating a table for the indirect goto extension, so we
343  // handle it efficiently here.
344  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
345    if (CE->getOpcode() == Instruction::Sub) {
346      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
347      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
348      if (LHS && RHS &&
349          LHS->getOpcode() == Instruction::PtrToInt &&
350          RHS->getOpcode() == Instruction::PtrToInt &&
351          isa<BlockAddress>(LHS->getOperand(0)) &&
352          isa<BlockAddress>(RHS->getOperand(0)) &&
353          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
354            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
355        return NoRelocation;
356    }
357
358  PossibleRelocationsTy Result = NoRelocation;
359  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
360    Result = std::max(Result,
361                      cast<Constant>(getOperand(i))->getRelocationInfo());
362
363  return Result;
364}
365
366/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
367/// it.  This involves recursively eliminating any dead users of the
368/// constantexpr.
369static bool removeDeadUsersOfConstant(const Constant *C) {
370  if (isa<GlobalValue>(C)) return false; // Cannot remove this
371
372  while (!C->use_empty()) {
373    const Constant *User = dyn_cast<Constant>(C->use_back());
374    if (!User) return false; // Non-constant usage;
375    if (!removeDeadUsersOfConstant(User))
376      return false; // Constant wasn't dead
377  }
378
379  const_cast<Constant*>(C)->destroyConstant();
380  return true;
381}
382
383
384/// removeDeadConstantUsers - If there are any dead constant users dangling
385/// off of this constant, remove them.  This method is useful for clients
386/// that want to check to see if a global is unused, but don't want to deal
387/// with potentially dead constants hanging off of the globals.
388void Constant::removeDeadConstantUsers() const {
389  Value::const_use_iterator I = use_begin(), E = use_end();
390  Value::const_use_iterator LastNonDeadUser = E;
391  while (I != E) {
392    const Constant *User = dyn_cast<Constant>(*I);
393    if (User == 0) {
394      LastNonDeadUser = I;
395      ++I;
396      continue;
397    }
398
399    if (!removeDeadUsersOfConstant(User)) {
400      // If the constant wasn't dead, remember that this was the last live use
401      // and move on to the next constant.
402      LastNonDeadUser = I;
403      ++I;
404      continue;
405    }
406
407    // If the constant was dead, then the iterator is invalidated.
408    if (LastNonDeadUser == E) {
409      I = use_begin();
410      if (I == E) break;
411    } else {
412      I = LastNonDeadUser;
413      ++I;
414    }
415  }
416}
417
418
419
420//===----------------------------------------------------------------------===//
421//                                ConstantInt
422//===----------------------------------------------------------------------===//
423
424void ConstantInt::anchor() { }
425
426ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
427  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
428  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
429}
430
431ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
432  LLVMContextImpl *pImpl = Context.pImpl;
433  if (!pImpl->TheTrueVal)
434    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
435  return pImpl->TheTrueVal;
436}
437
438ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
439  LLVMContextImpl *pImpl = Context.pImpl;
440  if (!pImpl->TheFalseVal)
441    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
442  return pImpl->TheFalseVal;
443}
444
445Constant *ConstantInt::getTrue(Type *Ty) {
446  VectorType *VTy = dyn_cast<VectorType>(Ty);
447  if (!VTy) {
448    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
449    return ConstantInt::getTrue(Ty->getContext());
450  }
451  assert(VTy->getElementType()->isIntegerTy(1) &&
452         "True must be vector of i1 or i1.");
453  return ConstantVector::getSplat(VTy->getNumElements(),
454                                  ConstantInt::getTrue(Ty->getContext()));
455}
456
457Constant *ConstantInt::getFalse(Type *Ty) {
458  VectorType *VTy = dyn_cast<VectorType>(Ty);
459  if (!VTy) {
460    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
461    return ConstantInt::getFalse(Ty->getContext());
462  }
463  assert(VTy->getElementType()->isIntegerTy(1) &&
464         "False must be vector of i1 or i1.");
465  return ConstantVector::getSplat(VTy->getNumElements(),
466                                  ConstantInt::getFalse(Ty->getContext()));
467}
468
469
470// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
471// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
472// operator== and operator!= to ensure that the DenseMap doesn't attempt to
473// compare APInt's of different widths, which would violate an APInt class
474// invariant which generates an assertion.
475ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
476  // Get the corresponding integer type for the bit width of the value.
477  IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
478  // get an existing value or the insertion position
479  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
480  ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
481  if (!Slot) Slot = new ConstantInt(ITy, V);
482  return Slot;
483}
484
485Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
486  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
487
488  // For vectors, broadcast the value.
489  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
490    return ConstantVector::getSplat(VTy->getNumElements(), C);
491
492  return C;
493}
494
495ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
496                              bool isSigned) {
497  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
498}
499
500ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
501  return get(Ty, V, true);
502}
503
504Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
505  return get(Ty, V, true);
506}
507
508Constant *ConstantInt::get(Type *Ty, const APInt& V) {
509  ConstantInt *C = get(Ty->getContext(), V);
510  assert(C->getType() == Ty->getScalarType() &&
511         "ConstantInt type doesn't match the type implied by its value!");
512
513  // For vectors, broadcast the value.
514  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
515    return ConstantVector::getSplat(VTy->getNumElements(), C);
516
517  return C;
518}
519
520ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
521                              uint8_t radix) {
522  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
523}
524
525//===----------------------------------------------------------------------===//
526//                                ConstantFP
527//===----------------------------------------------------------------------===//
528
529static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
530  if (Ty->isHalfTy())
531    return &APFloat::IEEEhalf;
532  if (Ty->isFloatTy())
533    return &APFloat::IEEEsingle;
534  if (Ty->isDoubleTy())
535    return &APFloat::IEEEdouble;
536  if (Ty->isX86_FP80Ty())
537    return &APFloat::x87DoubleExtended;
538  else if (Ty->isFP128Ty())
539    return &APFloat::IEEEquad;
540
541  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
542  return &APFloat::PPCDoubleDouble;
543}
544
545void ConstantFP::anchor() { }
546
547/// get() - This returns a constant fp for the specified value in the
548/// specified type.  This should only be used for simple constant values like
549/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
550Constant *ConstantFP::get(Type *Ty, double V) {
551  LLVMContext &Context = Ty->getContext();
552
553  APFloat FV(V);
554  bool ignored;
555  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
556             APFloat::rmNearestTiesToEven, &ignored);
557  Constant *C = get(Context, FV);
558
559  // For vectors, broadcast the value.
560  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
561    return ConstantVector::getSplat(VTy->getNumElements(), C);
562
563  return C;
564}
565
566
567Constant *ConstantFP::get(Type *Ty, StringRef Str) {
568  LLVMContext &Context = Ty->getContext();
569
570  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
571  Constant *C = get(Context, FV);
572
573  // For vectors, broadcast the value.
574  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
575    return ConstantVector::getSplat(VTy->getNumElements(), C);
576
577  return C;
578}
579
580
581ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
582  LLVMContext &Context = Ty->getContext();
583  APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
584  apf.changeSign();
585  return get(Context, apf);
586}
587
588
589Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
590  Type *ScalarTy = Ty->getScalarType();
591  if (ScalarTy->isFloatingPointTy()) {
592    Constant *C = getNegativeZero(ScalarTy);
593    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
594      return ConstantVector::getSplat(VTy->getNumElements(), C);
595    return C;
596  }
597
598  return Constant::getNullValue(Ty);
599}
600
601
602// ConstantFP accessors.
603ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
604  DenseMapAPFloatKeyInfo::KeyTy Key(V);
605
606  LLVMContextImpl* pImpl = Context.pImpl;
607
608  ConstantFP *&Slot = pImpl->FPConstants[Key];
609
610  if (!Slot) {
611    Type *Ty;
612    if (&V.getSemantics() == &APFloat::IEEEhalf)
613      Ty = Type::getHalfTy(Context);
614    else if (&V.getSemantics() == &APFloat::IEEEsingle)
615      Ty = Type::getFloatTy(Context);
616    else if (&V.getSemantics() == &APFloat::IEEEdouble)
617      Ty = Type::getDoubleTy(Context);
618    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
619      Ty = Type::getX86_FP80Ty(Context);
620    else if (&V.getSemantics() == &APFloat::IEEEquad)
621      Ty = Type::getFP128Ty(Context);
622    else {
623      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
624             "Unknown FP format");
625      Ty = Type::getPPC_FP128Ty(Context);
626    }
627    Slot = new ConstantFP(Ty, V);
628  }
629
630  return Slot;
631}
632
633ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
634  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
635  return ConstantFP::get(Ty->getContext(),
636                         APFloat::getInf(Semantics, Negative));
637}
638
639ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
640  : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
641  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
642         "FP type Mismatch");
643}
644
645bool ConstantFP::isExactlyValue(const APFloat &V) const {
646  return Val.bitwiseIsEqual(V);
647}
648
649//===----------------------------------------------------------------------===//
650//                   ConstantAggregateZero Implementation
651//===----------------------------------------------------------------------===//
652
653/// getSequentialElement - If this CAZ has array or vector type, return a zero
654/// with the right element type.
655Constant *ConstantAggregateZero::getSequentialElement() const {
656  return Constant::getNullValue(getType()->getSequentialElementType());
657}
658
659/// getStructElement - If this CAZ has struct type, return a zero with the
660/// right element type for the specified element.
661Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
662  return Constant::getNullValue(getType()->getStructElementType(Elt));
663}
664
665/// getElementValue - Return a zero of the right value for the specified GEP
666/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
667Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
668  if (isa<SequentialType>(getType()))
669    return getSequentialElement();
670  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
671}
672
673/// getElementValue - Return a zero of the right value for the specified GEP
674/// index.
675Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
676  if (isa<SequentialType>(getType()))
677    return getSequentialElement();
678  return getStructElement(Idx);
679}
680
681
682//===----------------------------------------------------------------------===//
683//                         UndefValue Implementation
684//===----------------------------------------------------------------------===//
685
686/// getSequentialElement - If this undef has array or vector type, return an
687/// undef with the right element type.
688UndefValue *UndefValue::getSequentialElement() const {
689  return UndefValue::get(getType()->getSequentialElementType());
690}
691
692/// getStructElement - If this undef has struct type, return a zero with the
693/// right element type for the specified element.
694UndefValue *UndefValue::getStructElement(unsigned Elt) const {
695  return UndefValue::get(getType()->getStructElementType(Elt));
696}
697
698/// getElementValue - Return an undef of the right value for the specified GEP
699/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
700UndefValue *UndefValue::getElementValue(Constant *C) const {
701  if (isa<SequentialType>(getType()))
702    return getSequentialElement();
703  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
704}
705
706/// getElementValue - Return an undef of the right value for the specified GEP
707/// index.
708UndefValue *UndefValue::getElementValue(unsigned Idx) const {
709  if (isa<SequentialType>(getType()))
710    return getSequentialElement();
711  return getStructElement(Idx);
712}
713
714
715
716//===----------------------------------------------------------------------===//
717//                            ConstantXXX Classes
718//===----------------------------------------------------------------------===//
719
720template <typename ItTy, typename EltTy>
721static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
722  for (; Start != End; ++Start)
723    if (*Start != Elt)
724      return false;
725  return true;
726}
727
728ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
729  : Constant(T, ConstantArrayVal,
730             OperandTraits<ConstantArray>::op_end(this) - V.size(),
731             V.size()) {
732  assert(V.size() == T->getNumElements() &&
733         "Invalid initializer vector for constant array");
734  for (unsigned i = 0, e = V.size(); i != e; ++i)
735    assert(V[i]->getType() == T->getElementType() &&
736           "Initializer for array element doesn't match array element type!");
737  std::copy(V.begin(), V.end(), op_begin());
738}
739
740Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
741  // Empty arrays are canonicalized to ConstantAggregateZero.
742  if (V.empty())
743    return ConstantAggregateZero::get(Ty);
744
745  for (unsigned i = 0, e = V.size(); i != e; ++i) {
746    assert(V[i]->getType() == Ty->getElementType() &&
747           "Wrong type in array element initializer");
748  }
749  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
750
751  // If this is an all-zero array, return a ConstantAggregateZero object.  If
752  // all undef, return an UndefValue, if "all simple", then return a
753  // ConstantDataArray.
754  Constant *C = V[0];
755  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
756    return UndefValue::get(Ty);
757
758  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
759    return ConstantAggregateZero::get(Ty);
760
761  // Check to see if all of the elements are ConstantFP or ConstantInt and if
762  // the element type is compatible with ConstantDataVector.  If so, use it.
763  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
764    // We speculatively build the elements here even if it turns out that there
765    // is a constantexpr or something else weird in the array, since it is so
766    // uncommon for that to happen.
767    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
768      if (CI->getType()->isIntegerTy(8)) {
769        SmallVector<uint8_t, 16> Elts;
770        for (unsigned i = 0, e = V.size(); i != e; ++i)
771          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
772            Elts.push_back(CI->getZExtValue());
773          else
774            break;
775        if (Elts.size() == V.size())
776          return ConstantDataArray::get(C->getContext(), Elts);
777      } else if (CI->getType()->isIntegerTy(16)) {
778        SmallVector<uint16_t, 16> Elts;
779        for (unsigned i = 0, e = V.size(); i != e; ++i)
780          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
781            Elts.push_back(CI->getZExtValue());
782          else
783            break;
784        if (Elts.size() == V.size())
785          return ConstantDataArray::get(C->getContext(), Elts);
786      } else if (CI->getType()->isIntegerTy(32)) {
787        SmallVector<uint32_t, 16> Elts;
788        for (unsigned i = 0, e = V.size(); i != e; ++i)
789          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
790            Elts.push_back(CI->getZExtValue());
791          else
792            break;
793        if (Elts.size() == V.size())
794          return ConstantDataArray::get(C->getContext(), Elts);
795      } else if (CI->getType()->isIntegerTy(64)) {
796        SmallVector<uint64_t, 16> Elts;
797        for (unsigned i = 0, e = V.size(); i != e; ++i)
798          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
799            Elts.push_back(CI->getZExtValue());
800          else
801            break;
802        if (Elts.size() == V.size())
803          return ConstantDataArray::get(C->getContext(), Elts);
804      }
805    }
806
807    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
808      if (CFP->getType()->isFloatTy()) {
809        SmallVector<float, 16> Elts;
810        for (unsigned i = 0, e = V.size(); i != e; ++i)
811          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
812            Elts.push_back(CFP->getValueAPF().convertToFloat());
813          else
814            break;
815        if (Elts.size() == V.size())
816          return ConstantDataArray::get(C->getContext(), Elts);
817      } else if (CFP->getType()->isDoubleTy()) {
818        SmallVector<double, 16> Elts;
819        for (unsigned i = 0, e = V.size(); i != e; ++i)
820          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
821            Elts.push_back(CFP->getValueAPF().convertToDouble());
822          else
823            break;
824        if (Elts.size() == V.size())
825          return ConstantDataArray::get(C->getContext(), Elts);
826      }
827    }
828  }
829
830  // Otherwise, we really do want to create a ConstantArray.
831  return pImpl->ArrayConstants.getOrCreate(Ty, V);
832}
833
834/// getTypeForElements - Return an anonymous struct type to use for a constant
835/// with the specified set of elements.  The list must not be empty.
836StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
837                                               ArrayRef<Constant*> V,
838                                               bool Packed) {
839  unsigned VecSize = V.size();
840  SmallVector<Type*, 16> EltTypes(VecSize);
841  for (unsigned i = 0; i != VecSize; ++i)
842    EltTypes[i] = V[i]->getType();
843
844  return StructType::get(Context, EltTypes, Packed);
845}
846
847
848StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
849                                               bool Packed) {
850  assert(!V.empty() &&
851         "ConstantStruct::getTypeForElements cannot be called on empty list");
852  return getTypeForElements(V[0]->getContext(), V, Packed);
853}
854
855
856ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
857  : Constant(T, ConstantStructVal,
858             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
859             V.size()) {
860  assert(V.size() == T->getNumElements() &&
861         "Invalid initializer vector for constant structure");
862  for (unsigned i = 0, e = V.size(); i != e; ++i)
863    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
864           "Initializer for struct element doesn't match struct element type!");
865  std::copy(V.begin(), V.end(), op_begin());
866}
867
868// ConstantStruct accessors.
869Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
870  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
871         "Incorrect # elements specified to ConstantStruct::get");
872
873  // Create a ConstantAggregateZero value if all elements are zeros.
874  bool isZero = true;
875  bool isUndef = false;
876
877  if (!V.empty()) {
878    isUndef = isa<UndefValue>(V[0]);
879    isZero = V[0]->isNullValue();
880    if (isUndef || isZero) {
881      for (unsigned i = 0, e = V.size(); i != e; ++i) {
882        if (!V[i]->isNullValue())
883          isZero = false;
884        if (!isa<UndefValue>(V[i]))
885          isUndef = false;
886      }
887    }
888  }
889  if (isZero)
890    return ConstantAggregateZero::get(ST);
891  if (isUndef)
892    return UndefValue::get(ST);
893
894  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
895}
896
897Constant *ConstantStruct::get(StructType *T, ...) {
898  va_list ap;
899  SmallVector<Constant*, 8> Values;
900  va_start(ap, T);
901  while (Constant *Val = va_arg(ap, llvm::Constant*))
902    Values.push_back(Val);
903  va_end(ap);
904  return get(T, Values);
905}
906
907ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
908  : Constant(T, ConstantVectorVal,
909             OperandTraits<ConstantVector>::op_end(this) - V.size(),
910             V.size()) {
911  for (size_t i = 0, e = V.size(); i != e; i++)
912    assert(V[i]->getType() == T->getElementType() &&
913           "Initializer for vector element doesn't match vector element type!");
914  std::copy(V.begin(), V.end(), op_begin());
915}
916
917// ConstantVector accessors.
918Constant *ConstantVector::get(ArrayRef<Constant*> V) {
919  assert(!V.empty() && "Vectors can't be empty");
920  VectorType *T = VectorType::get(V.front()->getType(), V.size());
921  LLVMContextImpl *pImpl = T->getContext().pImpl;
922
923  // If this is an all-undef or all-zero vector, return a
924  // ConstantAggregateZero or UndefValue.
925  Constant *C = V[0];
926  bool isZero = C->isNullValue();
927  bool isUndef = isa<UndefValue>(C);
928
929  if (isZero || isUndef) {
930    for (unsigned i = 1, e = V.size(); i != e; ++i)
931      if (V[i] != C) {
932        isZero = isUndef = false;
933        break;
934      }
935  }
936
937  if (isZero)
938    return ConstantAggregateZero::get(T);
939  if (isUndef)
940    return UndefValue::get(T);
941
942  // Check to see if all of the elements are ConstantFP or ConstantInt and if
943  // the element type is compatible with ConstantDataVector.  If so, use it.
944  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
945    // We speculatively build the elements here even if it turns out that there
946    // is a constantexpr or something else weird in the array, since it is so
947    // uncommon for that to happen.
948    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
949      if (CI->getType()->isIntegerTy(8)) {
950        SmallVector<uint8_t, 16> Elts;
951        for (unsigned i = 0, e = V.size(); i != e; ++i)
952          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
953            Elts.push_back(CI->getZExtValue());
954          else
955            break;
956        if (Elts.size() == V.size())
957          return ConstantDataVector::get(C->getContext(), Elts);
958      } else if (CI->getType()->isIntegerTy(16)) {
959        SmallVector<uint16_t, 16> Elts;
960        for (unsigned i = 0, e = V.size(); i != e; ++i)
961          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
962            Elts.push_back(CI->getZExtValue());
963          else
964            break;
965        if (Elts.size() == V.size())
966          return ConstantDataVector::get(C->getContext(), Elts);
967      } else if (CI->getType()->isIntegerTy(32)) {
968        SmallVector<uint32_t, 16> Elts;
969        for (unsigned i = 0, e = V.size(); i != e; ++i)
970          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
971            Elts.push_back(CI->getZExtValue());
972          else
973            break;
974        if (Elts.size() == V.size())
975          return ConstantDataVector::get(C->getContext(), Elts);
976      } else if (CI->getType()->isIntegerTy(64)) {
977        SmallVector<uint64_t, 16> Elts;
978        for (unsigned i = 0, e = V.size(); i != e; ++i)
979          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
980            Elts.push_back(CI->getZExtValue());
981          else
982            break;
983        if (Elts.size() == V.size())
984          return ConstantDataVector::get(C->getContext(), Elts);
985      }
986    }
987
988    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
989      if (CFP->getType()->isFloatTy()) {
990        SmallVector<float, 16> Elts;
991        for (unsigned i = 0, e = V.size(); i != e; ++i)
992          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
993            Elts.push_back(CFP->getValueAPF().convertToFloat());
994          else
995            break;
996        if (Elts.size() == V.size())
997          return ConstantDataVector::get(C->getContext(), Elts);
998      } else if (CFP->getType()->isDoubleTy()) {
999        SmallVector<double, 16> Elts;
1000        for (unsigned i = 0, e = V.size(); i != e; ++i)
1001          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1002            Elts.push_back(CFP->getValueAPF().convertToDouble());
1003          else
1004            break;
1005        if (Elts.size() == V.size())
1006          return ConstantDataVector::get(C->getContext(), Elts);
1007      }
1008    }
1009  }
1010
1011  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1012  // the operand list constants a ConstantExpr or something else strange.
1013  return pImpl->VectorConstants.getOrCreate(T, V);
1014}
1015
1016Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1017  // If this splat is compatible with ConstantDataVector, use it instead of
1018  // ConstantVector.
1019  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1020      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1021    return ConstantDataVector::getSplat(NumElts, V);
1022
1023  SmallVector<Constant*, 32> Elts(NumElts, V);
1024  return get(Elts);
1025}
1026
1027
1028// Utility function for determining if a ConstantExpr is a CastOp or not. This
1029// can't be inline because we don't want to #include Instruction.h into
1030// Constant.h
1031bool ConstantExpr::isCast() const {
1032  return Instruction::isCast(getOpcode());
1033}
1034
1035bool ConstantExpr::isCompare() const {
1036  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1037}
1038
1039bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1040  if (getOpcode() != Instruction::GetElementPtr) return false;
1041
1042  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1043  User::const_op_iterator OI = llvm::next(this->op_begin());
1044
1045  // Skip the first index, as it has no static limit.
1046  ++GEPI;
1047  ++OI;
1048
1049  // The remaining indices must be compile-time known integers within the
1050  // bounds of the corresponding notional static array types.
1051  for (; GEPI != E; ++GEPI, ++OI) {
1052    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1053    if (!CI) return false;
1054    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1055      if (CI->getValue().getActiveBits() > 64 ||
1056          CI->getZExtValue() >= ATy->getNumElements())
1057        return false;
1058  }
1059
1060  // All the indices checked out.
1061  return true;
1062}
1063
1064bool ConstantExpr::hasIndices() const {
1065  return getOpcode() == Instruction::ExtractValue ||
1066         getOpcode() == Instruction::InsertValue;
1067}
1068
1069ArrayRef<unsigned> ConstantExpr::getIndices() const {
1070  if (const ExtractValueConstantExpr *EVCE =
1071        dyn_cast<ExtractValueConstantExpr>(this))
1072    return EVCE->Indices;
1073
1074  return cast<InsertValueConstantExpr>(this)->Indices;
1075}
1076
1077unsigned ConstantExpr::getPredicate() const {
1078  assert(isCompare());
1079  return ((const CompareConstantExpr*)this)->predicate;
1080}
1081
1082/// getWithOperandReplaced - Return a constant expression identical to this
1083/// one, but with the specified operand set to the specified value.
1084Constant *
1085ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1086  assert(Op->getType() == getOperand(OpNo)->getType() &&
1087         "Replacing operand with value of different type!");
1088  if (getOperand(OpNo) == Op)
1089    return const_cast<ConstantExpr*>(this);
1090
1091  SmallVector<Constant*, 8> NewOps;
1092  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1093    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1094
1095  return getWithOperands(NewOps);
1096}
1097
1098/// getWithOperands - This returns the current constant expression with the
1099/// operands replaced with the specified values.  The specified array must
1100/// have the same number of operands as our current one.
1101Constant *ConstantExpr::
1102getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1103  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1104  bool AnyChange = Ty != getType();
1105  for (unsigned i = 0; i != Ops.size(); ++i)
1106    AnyChange |= Ops[i] != getOperand(i);
1107
1108  if (!AnyChange)  // No operands changed, return self.
1109    return const_cast<ConstantExpr*>(this);
1110
1111  switch (getOpcode()) {
1112  case Instruction::Trunc:
1113  case Instruction::ZExt:
1114  case Instruction::SExt:
1115  case Instruction::FPTrunc:
1116  case Instruction::FPExt:
1117  case Instruction::UIToFP:
1118  case Instruction::SIToFP:
1119  case Instruction::FPToUI:
1120  case Instruction::FPToSI:
1121  case Instruction::PtrToInt:
1122  case Instruction::IntToPtr:
1123  case Instruction::BitCast:
1124    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1125  case Instruction::Select:
1126    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1127  case Instruction::InsertElement:
1128    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1129  case Instruction::ExtractElement:
1130    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1131  case Instruction::InsertValue:
1132    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1133  case Instruction::ExtractValue:
1134    return ConstantExpr::getExtractValue(Ops[0], getIndices());
1135  case Instruction::ShuffleVector:
1136    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1137  case Instruction::GetElementPtr:
1138    return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1139                                      cast<GEPOperator>(this)->isInBounds());
1140  case Instruction::ICmp:
1141  case Instruction::FCmp:
1142    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1143  default:
1144    assert(getNumOperands() == 2 && "Must be binary operator?");
1145    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1146  }
1147}
1148
1149
1150//===----------------------------------------------------------------------===//
1151//                      isValueValidForType implementations
1152
1153bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1154  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1155  if (Ty->isIntegerTy(1))
1156    return Val == 0 || Val == 1;
1157  if (NumBits >= 64)
1158    return true; // always true, has to fit in largest type
1159  uint64_t Max = (1ll << NumBits) - 1;
1160  return Val <= Max;
1161}
1162
1163bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1164  unsigned NumBits = Ty->getIntegerBitWidth();
1165  if (Ty->isIntegerTy(1))
1166    return Val == 0 || Val == 1 || Val == -1;
1167  if (NumBits >= 64)
1168    return true; // always true, has to fit in largest type
1169  int64_t Min = -(1ll << (NumBits-1));
1170  int64_t Max = (1ll << (NumBits-1)) - 1;
1171  return (Val >= Min && Val <= Max);
1172}
1173
1174bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1175  // convert modifies in place, so make a copy.
1176  APFloat Val2 = APFloat(Val);
1177  bool losesInfo;
1178  switch (Ty->getTypeID()) {
1179  default:
1180    return false;         // These can't be represented as floating point!
1181
1182  // FIXME rounding mode needs to be more flexible
1183  case Type::HalfTyID: {
1184    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1185      return true;
1186    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1187    return !losesInfo;
1188  }
1189  case Type::FloatTyID: {
1190    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1191      return true;
1192    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1193    return !losesInfo;
1194  }
1195  case Type::DoubleTyID: {
1196    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1197        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1198        &Val2.getSemantics() == &APFloat::IEEEdouble)
1199      return true;
1200    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1201    return !losesInfo;
1202  }
1203  case Type::X86_FP80TyID:
1204    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1205           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1206           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1207           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1208  case Type::FP128TyID:
1209    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1210           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1211           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1212           &Val2.getSemantics() == &APFloat::IEEEquad;
1213  case Type::PPC_FP128TyID:
1214    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1215           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1216           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1217           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1218  }
1219}
1220
1221
1222//===----------------------------------------------------------------------===//
1223//                      Factory Function Implementation
1224
1225ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1226  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1227         "Cannot create an aggregate zero of non-aggregate type!");
1228
1229  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1230  if (Entry == 0)
1231    Entry = new ConstantAggregateZero(Ty);
1232
1233  return Entry;
1234}
1235
1236/// destroyConstant - Remove the constant from the constant table.
1237///
1238void ConstantAggregateZero::destroyConstant() {
1239  getContext().pImpl->CAZConstants.erase(getType());
1240  destroyConstantImpl();
1241}
1242
1243/// destroyConstant - Remove the constant from the constant table...
1244///
1245void ConstantArray::destroyConstant() {
1246  getType()->getContext().pImpl->ArrayConstants.remove(this);
1247  destroyConstantImpl();
1248}
1249
1250
1251//---- ConstantStruct::get() implementation...
1252//
1253
1254// destroyConstant - Remove the constant from the constant table...
1255//
1256void ConstantStruct::destroyConstant() {
1257  getType()->getContext().pImpl->StructConstants.remove(this);
1258  destroyConstantImpl();
1259}
1260
1261// destroyConstant - Remove the constant from the constant table...
1262//
1263void ConstantVector::destroyConstant() {
1264  getType()->getContext().pImpl->VectorConstants.remove(this);
1265  destroyConstantImpl();
1266}
1267
1268/// getSplatValue - If this is a splat vector constant, meaning that all of
1269/// the elements have the same value, return that value. Otherwise return 0.
1270Constant *Constant::getSplatValue() const {
1271  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1272  if (isa<ConstantAggregateZero>(this))
1273    return getNullValue(this->getType()->getVectorElementType());
1274  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1275    return CV->getSplatValue();
1276  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1277    return CV->getSplatValue();
1278  return 0;
1279}
1280
1281/// getSplatValue - If this is a splat constant, where all of the
1282/// elements have the same value, return that value. Otherwise return null.
1283Constant *ConstantVector::getSplatValue() const {
1284  // Check out first element.
1285  Constant *Elt = getOperand(0);
1286  // Then make sure all remaining elements point to the same value.
1287  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1288    if (getOperand(I) != Elt)
1289      return 0;
1290  return Elt;
1291}
1292
1293/// If C is a constant integer then return its value, otherwise C must be a
1294/// vector of constant integers, all equal, and the common value is returned.
1295const APInt &Constant::getUniqueInteger() const {
1296  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1297    return CI->getValue();
1298  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1299  const Constant *C = this->getAggregateElement(0U);
1300  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1301  return cast<ConstantInt>(C)->getValue();
1302}
1303
1304
1305//---- ConstantPointerNull::get() implementation.
1306//
1307
1308ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1309  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1310  if (Entry == 0)
1311    Entry = new ConstantPointerNull(Ty);
1312
1313  return Entry;
1314}
1315
1316// destroyConstant - Remove the constant from the constant table...
1317//
1318void ConstantPointerNull::destroyConstant() {
1319  getContext().pImpl->CPNConstants.erase(getType());
1320  // Free the constant and any dangling references to it.
1321  destroyConstantImpl();
1322}
1323
1324
1325//---- UndefValue::get() implementation.
1326//
1327
1328UndefValue *UndefValue::get(Type *Ty) {
1329  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1330  if (Entry == 0)
1331    Entry = new UndefValue(Ty);
1332
1333  return Entry;
1334}
1335
1336// destroyConstant - Remove the constant from the constant table.
1337//
1338void UndefValue::destroyConstant() {
1339  // Free the constant and any dangling references to it.
1340  getContext().pImpl->UVConstants.erase(getType());
1341  destroyConstantImpl();
1342}
1343
1344//---- BlockAddress::get() implementation.
1345//
1346
1347BlockAddress *BlockAddress::get(BasicBlock *BB) {
1348  assert(BB->getParent() != 0 && "Block must have a parent");
1349  return get(BB->getParent(), BB);
1350}
1351
1352BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1353  BlockAddress *&BA =
1354    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1355  if (BA == 0)
1356    BA = new BlockAddress(F, BB);
1357
1358  assert(BA->getFunction() == F && "Basic block moved between functions");
1359  return BA;
1360}
1361
1362BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1363: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1364           &Op<0>(), 2) {
1365  setOperand(0, F);
1366  setOperand(1, BB);
1367  BB->AdjustBlockAddressRefCount(1);
1368}
1369
1370
1371// destroyConstant - Remove the constant from the constant table.
1372//
1373void BlockAddress::destroyConstant() {
1374  getFunction()->getType()->getContext().pImpl
1375    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1376  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1377  destroyConstantImpl();
1378}
1379
1380void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1381  // This could be replacing either the Basic Block or the Function.  In either
1382  // case, we have to remove the map entry.
1383  Function *NewF = getFunction();
1384  BasicBlock *NewBB = getBasicBlock();
1385
1386  if (U == &Op<0>())
1387    NewF = cast<Function>(To);
1388  else
1389    NewBB = cast<BasicBlock>(To);
1390
1391  // See if the 'new' entry already exists, if not, just update this in place
1392  // and return early.
1393  BlockAddress *&NewBA =
1394    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1395  if (NewBA == 0) {
1396    getBasicBlock()->AdjustBlockAddressRefCount(-1);
1397
1398    // Remove the old entry, this can't cause the map to rehash (just a
1399    // tombstone will get added).
1400    getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1401                                                            getBasicBlock()));
1402    NewBA = this;
1403    setOperand(0, NewF);
1404    setOperand(1, NewBB);
1405    getBasicBlock()->AdjustBlockAddressRefCount(1);
1406    return;
1407  }
1408
1409  // Otherwise, I do need to replace this with an existing value.
1410  assert(NewBA != this && "I didn't contain From!");
1411
1412  // Everyone using this now uses the replacement.
1413  replaceAllUsesWith(NewBA);
1414
1415  destroyConstant();
1416}
1417
1418//---- ConstantExpr::get() implementations.
1419//
1420
1421/// This is a utility function to handle folding of casts and lookup of the
1422/// cast in the ExprConstants map. It is used by the various get* methods below.
1423static inline Constant *getFoldedCast(
1424  Instruction::CastOps opc, Constant *C, Type *Ty) {
1425  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1426  // Fold a few common cases
1427  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1428    return FC;
1429
1430  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1431
1432  // Look up the constant in the table first to ensure uniqueness.
1433  ExprMapKeyType Key(opc, C);
1434
1435  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1436}
1437
1438Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1439  Instruction::CastOps opc = Instruction::CastOps(oc);
1440  assert(Instruction::isCast(opc) && "opcode out of range");
1441  assert(C && Ty && "Null arguments to getCast");
1442  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1443
1444  switch (opc) {
1445  default:
1446    llvm_unreachable("Invalid cast opcode");
1447  case Instruction::Trunc:    return getTrunc(C, Ty);
1448  case Instruction::ZExt:     return getZExt(C, Ty);
1449  case Instruction::SExt:     return getSExt(C, Ty);
1450  case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1451  case Instruction::FPExt:    return getFPExtend(C, Ty);
1452  case Instruction::UIToFP:   return getUIToFP(C, Ty);
1453  case Instruction::SIToFP:   return getSIToFP(C, Ty);
1454  case Instruction::FPToUI:   return getFPToUI(C, Ty);
1455  case Instruction::FPToSI:   return getFPToSI(C, Ty);
1456  case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1457  case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1458  case Instruction::BitCast:  return getBitCast(C, Ty);
1459  }
1460}
1461
1462Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1463  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1464    return getBitCast(C, Ty);
1465  return getZExt(C, Ty);
1466}
1467
1468Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1469  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1470    return getBitCast(C, Ty);
1471  return getSExt(C, Ty);
1472}
1473
1474Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1475  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1476    return getBitCast(C, Ty);
1477  return getTrunc(C, Ty);
1478}
1479
1480Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1481  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1482  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1483          "Invalid cast");
1484
1485  if (Ty->isIntOrIntVectorTy())
1486    return getPtrToInt(S, Ty);
1487  return getBitCast(S, Ty);
1488}
1489
1490Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1491                                       bool isSigned) {
1492  assert(C->getType()->isIntOrIntVectorTy() &&
1493         Ty->isIntOrIntVectorTy() && "Invalid cast");
1494  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1495  unsigned DstBits = Ty->getScalarSizeInBits();
1496  Instruction::CastOps opcode =
1497    (SrcBits == DstBits ? Instruction::BitCast :
1498     (SrcBits > DstBits ? Instruction::Trunc :
1499      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1500  return getCast(opcode, C, Ty);
1501}
1502
1503Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1504  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1505         "Invalid cast");
1506  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1507  unsigned DstBits = Ty->getScalarSizeInBits();
1508  if (SrcBits == DstBits)
1509    return C; // Avoid a useless cast
1510  Instruction::CastOps opcode =
1511    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1512  return getCast(opcode, C, Ty);
1513}
1514
1515Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1516#ifndef NDEBUG
1517  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1518  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1519#endif
1520  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1521  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1522  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1523  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1524         "SrcTy must be larger than DestTy for Trunc!");
1525
1526  return getFoldedCast(Instruction::Trunc, C, Ty);
1527}
1528
1529Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1530#ifndef NDEBUG
1531  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1532  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1533#endif
1534  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1535  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1536  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1537  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1538         "SrcTy must be smaller than DestTy for SExt!");
1539
1540  return getFoldedCast(Instruction::SExt, C, Ty);
1541}
1542
1543Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1544#ifndef NDEBUG
1545  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1546  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1547#endif
1548  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1549  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1550  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1551  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1552         "SrcTy must be smaller than DestTy for ZExt!");
1553
1554  return getFoldedCast(Instruction::ZExt, C, Ty);
1555}
1556
1557Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1558#ifndef NDEBUG
1559  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1560  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1561#endif
1562  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1563  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1564         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1565         "This is an illegal floating point truncation!");
1566  return getFoldedCast(Instruction::FPTrunc, C, Ty);
1567}
1568
1569Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1570#ifndef NDEBUG
1571  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1572  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1573#endif
1574  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1575  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1576         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1577         "This is an illegal floating point extension!");
1578  return getFoldedCast(Instruction::FPExt, C, Ty);
1579}
1580
1581Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1582#ifndef NDEBUG
1583  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1584  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1585#endif
1586  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1587  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1588         "This is an illegal uint to floating point cast!");
1589  return getFoldedCast(Instruction::UIToFP, C, Ty);
1590}
1591
1592Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1593#ifndef NDEBUG
1594  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1595  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1596#endif
1597  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1598  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1599         "This is an illegal sint to floating point cast!");
1600  return getFoldedCast(Instruction::SIToFP, C, Ty);
1601}
1602
1603Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1604#ifndef NDEBUG
1605  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1606  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1607#endif
1608  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1609  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1610         "This is an illegal floating point to uint cast!");
1611  return getFoldedCast(Instruction::FPToUI, C, Ty);
1612}
1613
1614Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1615#ifndef NDEBUG
1616  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1617  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1618#endif
1619  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1620  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1621         "This is an illegal floating point to sint cast!");
1622  return getFoldedCast(Instruction::FPToSI, C, Ty);
1623}
1624
1625Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1626  assert(C->getType()->getScalarType()->isPointerTy() &&
1627         "PtrToInt source must be pointer or pointer vector");
1628  assert(DstTy->getScalarType()->isIntegerTy() &&
1629         "PtrToInt destination must be integer or integer vector");
1630  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1631  if (isa<VectorType>(C->getType()))
1632    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1633           "Invalid cast between a different number of vector elements");
1634  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1635}
1636
1637Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1638  assert(C->getType()->getScalarType()->isIntegerTy() &&
1639         "IntToPtr source must be integer or integer vector");
1640  assert(DstTy->getScalarType()->isPointerTy() &&
1641         "IntToPtr destination must be a pointer or pointer vector");
1642  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1643  if (isa<VectorType>(C->getType()))
1644    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1645           "Invalid cast between a different number of vector elements");
1646  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1647}
1648
1649Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1650  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1651         "Invalid constantexpr bitcast!");
1652
1653  // It is common to ask for a bitcast of a value to its own type, handle this
1654  // speedily.
1655  if (C->getType() == DstTy) return C;
1656
1657  return getFoldedCast(Instruction::BitCast, C, DstTy);
1658}
1659
1660Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1661                            unsigned Flags) {
1662  // Check the operands for consistency first.
1663  assert(Opcode >= Instruction::BinaryOpsBegin &&
1664         Opcode <  Instruction::BinaryOpsEnd   &&
1665         "Invalid opcode in binary constant expression");
1666  assert(C1->getType() == C2->getType() &&
1667         "Operand types in binary constant expression should match");
1668
1669#ifndef NDEBUG
1670  switch (Opcode) {
1671  case Instruction::Add:
1672  case Instruction::Sub:
1673  case Instruction::Mul:
1674    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1675    assert(C1->getType()->isIntOrIntVectorTy() &&
1676           "Tried to create an integer operation on a non-integer type!");
1677    break;
1678  case Instruction::FAdd:
1679  case Instruction::FSub:
1680  case Instruction::FMul:
1681    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1682    assert(C1->getType()->isFPOrFPVectorTy() &&
1683           "Tried to create a floating-point operation on a "
1684           "non-floating-point type!");
1685    break;
1686  case Instruction::UDiv:
1687  case Instruction::SDiv:
1688    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1689    assert(C1->getType()->isIntOrIntVectorTy() &&
1690           "Tried to create an arithmetic operation on a non-arithmetic type!");
1691    break;
1692  case Instruction::FDiv:
1693    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694    assert(C1->getType()->isFPOrFPVectorTy() &&
1695           "Tried to create an arithmetic operation on a non-arithmetic type!");
1696    break;
1697  case Instruction::URem:
1698  case Instruction::SRem:
1699    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1700    assert(C1->getType()->isIntOrIntVectorTy() &&
1701           "Tried to create an arithmetic operation on a non-arithmetic type!");
1702    break;
1703  case Instruction::FRem:
1704    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1705    assert(C1->getType()->isFPOrFPVectorTy() &&
1706           "Tried to create an arithmetic operation on a non-arithmetic type!");
1707    break;
1708  case Instruction::And:
1709  case Instruction::Or:
1710  case Instruction::Xor:
1711    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1712    assert(C1->getType()->isIntOrIntVectorTy() &&
1713           "Tried to create a logical operation on a non-integral type!");
1714    break;
1715  case Instruction::Shl:
1716  case Instruction::LShr:
1717  case Instruction::AShr:
1718    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719    assert(C1->getType()->isIntOrIntVectorTy() &&
1720           "Tried to create a shift operation on a non-integer type!");
1721    break;
1722  default:
1723    break;
1724  }
1725#endif
1726
1727  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1728    return FC;          // Fold a few common cases.
1729
1730  Constant *ArgVec[] = { C1, C2 };
1731  ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1732
1733  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1734  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1735}
1736
1737Constant *ConstantExpr::getSizeOf(Type* Ty) {
1738  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1739  // Note that a non-inbounds gep is used, as null isn't within any object.
1740  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1741  Constant *GEP = getGetElementPtr(
1742                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1743  return getPtrToInt(GEP,
1744                     Type::getInt64Ty(Ty->getContext()));
1745}
1746
1747Constant *ConstantExpr::getAlignOf(Type* Ty) {
1748  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1749  // Note that a non-inbounds gep is used, as null isn't within any object.
1750  Type *AligningTy =
1751    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1752  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1753  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1754  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1755  Constant *Indices[2] = { Zero, One };
1756  Constant *GEP = getGetElementPtr(NullPtr, Indices);
1757  return getPtrToInt(GEP,
1758                     Type::getInt64Ty(Ty->getContext()));
1759}
1760
1761Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1762  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1763                                           FieldNo));
1764}
1765
1766Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1767  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1768  // Note that a non-inbounds gep is used, as null isn't within any object.
1769  Constant *GEPIdx[] = {
1770    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1771    FieldNo
1772  };
1773  Constant *GEP = getGetElementPtr(
1774                Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1775  return getPtrToInt(GEP,
1776                     Type::getInt64Ty(Ty->getContext()));
1777}
1778
1779Constant *ConstantExpr::getCompare(unsigned short Predicate,
1780                                   Constant *C1, Constant *C2) {
1781  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1782
1783  switch (Predicate) {
1784  default: llvm_unreachable("Invalid CmpInst predicate");
1785  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1786  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1787  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1788  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1789  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1790  case CmpInst::FCMP_TRUE:
1791    return getFCmp(Predicate, C1, C2);
1792
1793  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1794  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1795  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1796  case CmpInst::ICMP_SLE:
1797    return getICmp(Predicate, C1, C2);
1798  }
1799}
1800
1801Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1802  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1803
1804  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1805    return SC;        // Fold common cases
1806
1807  Constant *ArgVec[] = { C, V1, V2 };
1808  ExprMapKeyType Key(Instruction::Select, ArgVec);
1809
1810  LLVMContextImpl *pImpl = C->getContext().pImpl;
1811  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1812}
1813
1814Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1815                                         bool InBounds) {
1816  assert(C->getType()->isPtrOrPtrVectorTy() &&
1817         "Non-pointer type for constant GetElementPtr expression");
1818
1819  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1820    return FC;          // Fold a few common cases.
1821
1822  // Get the result type of the getelementptr!
1823  Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1824  assert(Ty && "GEP indices invalid!");
1825  unsigned AS = C->getType()->getPointerAddressSpace();
1826  Type *ReqTy = Ty->getPointerTo(AS);
1827  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1828    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1829
1830  // Look up the constant in the table first to ensure uniqueness
1831  std::vector<Constant*> ArgVec;
1832  ArgVec.reserve(1 + Idxs.size());
1833  ArgVec.push_back(C);
1834  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1835    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1836           "getelementptr index type missmatch");
1837    assert((!Idxs[i]->getType()->isVectorTy() ||
1838            ReqTy->getVectorNumElements() ==
1839            Idxs[i]->getType()->getVectorNumElements()) &&
1840           "getelementptr index type missmatch");
1841    ArgVec.push_back(cast<Constant>(Idxs[i]));
1842  }
1843  const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1844                           InBounds ? GEPOperator::IsInBounds : 0);
1845
1846  LLVMContextImpl *pImpl = C->getContext().pImpl;
1847  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1848}
1849
1850Constant *
1851ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1852  assert(LHS->getType() == RHS->getType());
1853  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1854         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1855
1856  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1857    return FC;          // Fold a few common cases...
1858
1859  // Look up the constant in the table first to ensure uniqueness
1860  Constant *ArgVec[] = { LHS, RHS };
1861  // Get the key type with both the opcode and predicate
1862  const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1863
1864  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1865  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1866    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1867
1868  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1869  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1870}
1871
1872Constant *
1873ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1874  assert(LHS->getType() == RHS->getType());
1875  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1876
1877  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1878    return FC;          // Fold a few common cases...
1879
1880  // Look up the constant in the table first to ensure uniqueness
1881  Constant *ArgVec[] = { LHS, RHS };
1882  // Get the key type with both the opcode and predicate
1883  const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1884
1885  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1886  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1887    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1888
1889  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1890  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1891}
1892
1893Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1894  assert(Val->getType()->isVectorTy() &&
1895         "Tried to create extractelement operation on non-vector type!");
1896  assert(Idx->getType()->isIntegerTy(32) &&
1897         "Extractelement index must be i32 type!");
1898
1899  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1900    return FC;          // Fold a few common cases.
1901
1902  // Look up the constant in the table first to ensure uniqueness
1903  Constant *ArgVec[] = { Val, Idx };
1904  const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1905
1906  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1907  Type *ReqTy = Val->getType()->getVectorElementType();
1908  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1909}
1910
1911Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1912                                         Constant *Idx) {
1913  assert(Val->getType()->isVectorTy() &&
1914         "Tried to create insertelement operation on non-vector type!");
1915  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1916         "Insertelement types must match!");
1917  assert(Idx->getType()->isIntegerTy(32) &&
1918         "Insertelement index must be i32 type!");
1919
1920  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1921    return FC;          // Fold a few common cases.
1922  // Look up the constant in the table first to ensure uniqueness
1923  Constant *ArgVec[] = { Val, Elt, Idx };
1924  const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1925
1926  LLVMContextImpl *pImpl = Val->getContext().pImpl;
1927  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1928}
1929
1930Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1931                                         Constant *Mask) {
1932  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1933         "Invalid shuffle vector constant expr operands!");
1934
1935  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1936    return FC;          // Fold a few common cases.
1937
1938  unsigned NElts = Mask->getType()->getVectorNumElements();
1939  Type *EltTy = V1->getType()->getVectorElementType();
1940  Type *ShufTy = VectorType::get(EltTy, NElts);
1941
1942  // Look up the constant in the table first to ensure uniqueness
1943  Constant *ArgVec[] = { V1, V2, Mask };
1944  const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1945
1946  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1947  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1948}
1949
1950Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1951                                       ArrayRef<unsigned> Idxs) {
1952  assert(ExtractValueInst::getIndexedType(Agg->getType(),
1953                                          Idxs) == Val->getType() &&
1954         "insertvalue indices invalid!");
1955  assert(Agg->getType()->isFirstClassType() &&
1956         "Non-first-class type for constant insertvalue expression");
1957  Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1958  assert(FC && "insertvalue constant expr couldn't be folded!");
1959  return FC;
1960}
1961
1962Constant *ConstantExpr::getExtractValue(Constant *Agg,
1963                                        ArrayRef<unsigned> Idxs) {
1964  assert(Agg->getType()->isFirstClassType() &&
1965         "Tried to create extractelement operation on non-first-class type!");
1966
1967  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1968  (void)ReqTy;
1969  assert(ReqTy && "extractvalue indices invalid!");
1970
1971  assert(Agg->getType()->isFirstClassType() &&
1972         "Non-first-class type for constant extractvalue expression");
1973  Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1974  assert(FC && "ExtractValue constant expr couldn't be folded!");
1975  return FC;
1976}
1977
1978Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1979  assert(C->getType()->isIntOrIntVectorTy() &&
1980         "Cannot NEG a nonintegral value!");
1981  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1982                C, HasNUW, HasNSW);
1983}
1984
1985Constant *ConstantExpr::getFNeg(Constant *C) {
1986  assert(C->getType()->isFPOrFPVectorTy() &&
1987         "Cannot FNEG a non-floating-point value!");
1988  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1989}
1990
1991Constant *ConstantExpr::getNot(Constant *C) {
1992  assert(C->getType()->isIntOrIntVectorTy() &&
1993         "Cannot NOT a nonintegral value!");
1994  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1995}
1996
1997Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1998                               bool HasNUW, bool HasNSW) {
1999  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2000                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2001  return get(Instruction::Add, C1, C2, Flags);
2002}
2003
2004Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2005  return get(Instruction::FAdd, C1, C2);
2006}
2007
2008Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2009                               bool HasNUW, bool HasNSW) {
2010  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2011                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2012  return get(Instruction::Sub, C1, C2, Flags);
2013}
2014
2015Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2016  return get(Instruction::FSub, C1, C2);
2017}
2018
2019Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2020                               bool HasNUW, bool HasNSW) {
2021  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2022                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2023  return get(Instruction::Mul, C1, C2, Flags);
2024}
2025
2026Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2027  return get(Instruction::FMul, C1, C2);
2028}
2029
2030Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2031  return get(Instruction::UDiv, C1, C2,
2032             isExact ? PossiblyExactOperator::IsExact : 0);
2033}
2034
2035Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2036  return get(Instruction::SDiv, C1, C2,
2037             isExact ? PossiblyExactOperator::IsExact : 0);
2038}
2039
2040Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2041  return get(Instruction::FDiv, C1, C2);
2042}
2043
2044Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2045  return get(Instruction::URem, C1, C2);
2046}
2047
2048Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2049  return get(Instruction::SRem, C1, C2);
2050}
2051
2052Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2053  return get(Instruction::FRem, C1, C2);
2054}
2055
2056Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2057  return get(Instruction::And, C1, C2);
2058}
2059
2060Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2061  return get(Instruction::Or, C1, C2);
2062}
2063
2064Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2065  return get(Instruction::Xor, C1, C2);
2066}
2067
2068Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2069                               bool HasNUW, bool HasNSW) {
2070  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2071                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2072  return get(Instruction::Shl, C1, C2, Flags);
2073}
2074
2075Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2076  return get(Instruction::LShr, C1, C2,
2077             isExact ? PossiblyExactOperator::IsExact : 0);
2078}
2079
2080Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2081  return get(Instruction::AShr, C1, C2,
2082             isExact ? PossiblyExactOperator::IsExact : 0);
2083}
2084
2085/// getBinOpIdentity - Return the identity for the given binary operation,
2086/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2087/// returns null if the operator doesn't have an identity.
2088Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2089  switch (Opcode) {
2090  default:
2091    // Doesn't have an identity.
2092    return 0;
2093
2094  case Instruction::Add:
2095  case Instruction::Or:
2096  case Instruction::Xor:
2097    return Constant::getNullValue(Ty);
2098
2099  case Instruction::Mul:
2100    return ConstantInt::get(Ty, 1);
2101
2102  case Instruction::And:
2103    return Constant::getAllOnesValue(Ty);
2104  }
2105}
2106
2107/// getBinOpAbsorber - Return the absorbing element for the given binary
2108/// operation, i.e. a constant C such that X op C = C and C op X = C for
2109/// every X.  For example, this returns zero for integer multiplication.
2110/// It returns null if the operator doesn't have an absorbing element.
2111Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2112  switch (Opcode) {
2113  default:
2114    // Doesn't have an absorber.
2115    return 0;
2116
2117  case Instruction::Or:
2118    return Constant::getAllOnesValue(Ty);
2119
2120  case Instruction::And:
2121  case Instruction::Mul:
2122    return Constant::getNullValue(Ty);
2123  }
2124}
2125
2126// destroyConstant - Remove the constant from the constant table...
2127//
2128void ConstantExpr::destroyConstant() {
2129  getType()->getContext().pImpl->ExprConstants.remove(this);
2130  destroyConstantImpl();
2131}
2132
2133const char *ConstantExpr::getOpcodeName() const {
2134  return Instruction::getOpcodeName(getOpcode());
2135}
2136
2137
2138
2139GetElementPtrConstantExpr::
2140GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2141                          Type *DestTy)
2142  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2143                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2144                 - (IdxList.size()+1), IdxList.size()+1) {
2145  OperandList[0] = C;
2146  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2147    OperandList[i+1] = IdxList[i];
2148}
2149
2150//===----------------------------------------------------------------------===//
2151//                       ConstantData* implementations
2152
2153void ConstantDataArray::anchor() {}
2154void ConstantDataVector::anchor() {}
2155
2156/// getElementType - Return the element type of the array/vector.
2157Type *ConstantDataSequential::getElementType() const {
2158  return getType()->getElementType();
2159}
2160
2161StringRef ConstantDataSequential::getRawDataValues() const {
2162  return StringRef(DataElements, getNumElements()*getElementByteSize());
2163}
2164
2165/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2166/// formed with a vector or array of the specified element type.
2167/// ConstantDataArray only works with normal float and int types that are
2168/// stored densely in memory, not with things like i42 or x86_f80.
2169bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2170  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2171  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2172    switch (IT->getBitWidth()) {
2173    case 8:
2174    case 16:
2175    case 32:
2176    case 64:
2177      return true;
2178    default: break;
2179    }
2180  }
2181  return false;
2182}
2183
2184/// getNumElements - Return the number of elements in the array or vector.
2185unsigned ConstantDataSequential::getNumElements() const {
2186  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2187    return AT->getNumElements();
2188  return getType()->getVectorNumElements();
2189}
2190
2191
2192/// getElementByteSize - Return the size in bytes of the elements in the data.
2193uint64_t ConstantDataSequential::getElementByteSize() const {
2194  return getElementType()->getPrimitiveSizeInBits()/8;
2195}
2196
2197/// getElementPointer - Return the start of the specified element.
2198const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2199  assert(Elt < getNumElements() && "Invalid Elt");
2200  return DataElements+Elt*getElementByteSize();
2201}
2202
2203
2204/// isAllZeros - return true if the array is empty or all zeros.
2205static bool isAllZeros(StringRef Arr) {
2206  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2207    if (*I != 0)
2208      return false;
2209  return true;
2210}
2211
2212/// getImpl - This is the underlying implementation of all of the
2213/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2214/// the correct element type.  We take the bytes in as a StringRef because
2215/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2216Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2217  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2218  // If the elements are all zero or there are no elements, return a CAZ, which
2219  // is more dense and canonical.
2220  if (isAllZeros(Elements))
2221    return ConstantAggregateZero::get(Ty);
2222
2223  // Do a lookup to see if we have already formed one of these.
2224  StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2225    Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2226
2227  // The bucket can point to a linked list of different CDS's that have the same
2228  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2229  // of i8, or a 1-element array of i32.  They'll both end up in the same
2230  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2231  ConstantDataSequential **Entry = &Slot.getValue();
2232  for (ConstantDataSequential *Node = *Entry; Node != 0;
2233       Entry = &Node->Next, Node = *Entry)
2234    if (Node->getType() == Ty)
2235      return Node;
2236
2237  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2238  // and return it.
2239  if (isa<ArrayType>(Ty))
2240    return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2241
2242  assert(isa<VectorType>(Ty));
2243  return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2244}
2245
2246void ConstantDataSequential::destroyConstant() {
2247  // Remove the constant from the StringMap.
2248  StringMap<ConstantDataSequential*> &CDSConstants =
2249    getType()->getContext().pImpl->CDSConstants;
2250
2251  StringMap<ConstantDataSequential*>::iterator Slot =
2252    CDSConstants.find(getRawDataValues());
2253
2254  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2255
2256  ConstantDataSequential **Entry = &Slot->getValue();
2257
2258  // Remove the entry from the hash table.
2259  if ((*Entry)->Next == 0) {
2260    // If there is only one value in the bucket (common case) it must be this
2261    // entry, and removing the entry should remove the bucket completely.
2262    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2263    getContext().pImpl->CDSConstants.erase(Slot);
2264  } else {
2265    // Otherwise, there are multiple entries linked off the bucket, unlink the
2266    // node we care about but keep the bucket around.
2267    for (ConstantDataSequential *Node = *Entry; ;
2268         Entry = &Node->Next, Node = *Entry) {
2269      assert(Node && "Didn't find entry in its uniquing hash table!");
2270      // If we found our entry, unlink it from the list and we're done.
2271      if (Node == this) {
2272        *Entry = Node->Next;
2273        break;
2274      }
2275    }
2276  }
2277
2278  // If we were part of a list, make sure that we don't delete the list that is
2279  // still owned by the uniquing map.
2280  Next = 0;
2281
2282  // Finally, actually delete it.
2283  destroyConstantImpl();
2284}
2285
2286/// get() constructors - Return a constant with array type with an element
2287/// count and element type matching the ArrayRef passed in.  Note that this
2288/// can return a ConstantAggregateZero object.
2289Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2290  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2291  const char *Data = reinterpret_cast<const char *>(Elts.data());
2292  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2293}
2294Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2295  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2296  const char *Data = reinterpret_cast<const char *>(Elts.data());
2297  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2298}
2299Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2300  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2301  const char *Data = reinterpret_cast<const char *>(Elts.data());
2302  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2303}
2304Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2305  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2306  const char *Data = reinterpret_cast<const char *>(Elts.data());
2307  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2308}
2309Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2310  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2311  const char *Data = reinterpret_cast<const char *>(Elts.data());
2312  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2313}
2314Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2315  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2316  const char *Data = reinterpret_cast<const char *>(Elts.data());
2317  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2318}
2319
2320/// getString - This method constructs a CDS and initializes it with a text
2321/// string. The default behavior (AddNull==true) causes a null terminator to
2322/// be placed at the end of the array (increasing the length of the string by
2323/// one more than the StringRef would normally indicate.  Pass AddNull=false
2324/// to disable this behavior.
2325Constant *ConstantDataArray::getString(LLVMContext &Context,
2326                                       StringRef Str, bool AddNull) {
2327  if (!AddNull) {
2328    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2329    return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2330               Str.size()));
2331  }
2332
2333  SmallVector<uint8_t, 64> ElementVals;
2334  ElementVals.append(Str.begin(), Str.end());
2335  ElementVals.push_back(0);
2336  return get(Context, ElementVals);
2337}
2338
2339/// get() constructors - Return a constant with vector type with an element
2340/// count and element type matching the ArrayRef passed in.  Note that this
2341/// can return a ConstantAggregateZero object.
2342Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2343  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2344  const char *Data = reinterpret_cast<const char *>(Elts.data());
2345  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2346}
2347Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2348  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2349  const char *Data = reinterpret_cast<const char *>(Elts.data());
2350  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2351}
2352Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2353  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2354  const char *Data = reinterpret_cast<const char *>(Elts.data());
2355  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2356}
2357Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2358  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2359  const char *Data = reinterpret_cast<const char *>(Elts.data());
2360  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2361}
2362Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2363  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2364  const char *Data = reinterpret_cast<const char *>(Elts.data());
2365  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2366}
2367Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2368  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2369  const char *Data = reinterpret_cast<const char *>(Elts.data());
2370  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2371}
2372
2373Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2374  assert(isElementTypeCompatible(V->getType()) &&
2375         "Element type not compatible with ConstantData");
2376  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2377    if (CI->getType()->isIntegerTy(8)) {
2378      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2379      return get(V->getContext(), Elts);
2380    }
2381    if (CI->getType()->isIntegerTy(16)) {
2382      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2383      return get(V->getContext(), Elts);
2384    }
2385    if (CI->getType()->isIntegerTy(32)) {
2386      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2387      return get(V->getContext(), Elts);
2388    }
2389    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2390    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2391    return get(V->getContext(), Elts);
2392  }
2393
2394  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2395    if (CFP->getType()->isFloatTy()) {
2396      SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2397      return get(V->getContext(), Elts);
2398    }
2399    if (CFP->getType()->isDoubleTy()) {
2400      SmallVector<double, 16> Elts(NumElts,
2401                                   CFP->getValueAPF().convertToDouble());
2402      return get(V->getContext(), Elts);
2403    }
2404  }
2405  return ConstantVector::getSplat(NumElts, V);
2406}
2407
2408
2409/// getElementAsInteger - If this is a sequential container of integers (of
2410/// any size), return the specified element in the low bits of a uint64_t.
2411uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2412  assert(isa<IntegerType>(getElementType()) &&
2413         "Accessor can only be used when element is an integer");
2414  const char *EltPtr = getElementPointer(Elt);
2415
2416  // The data is stored in host byte order, make sure to cast back to the right
2417  // type to load with the right endianness.
2418  switch (getElementType()->getIntegerBitWidth()) {
2419  default: llvm_unreachable("Invalid bitwidth for CDS");
2420  case 8:
2421    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2422  case 16:
2423    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2424  case 32:
2425    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2426  case 64:
2427    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2428  }
2429}
2430
2431/// getElementAsAPFloat - If this is a sequential container of floating point
2432/// type, return the specified element as an APFloat.
2433APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2434  const char *EltPtr = getElementPointer(Elt);
2435
2436  switch (getElementType()->getTypeID()) {
2437  default:
2438    llvm_unreachable("Accessor can only be used when element is float/double!");
2439  case Type::FloatTyID: {
2440      const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2441      return APFloat(*const_cast<float *>(FloatPrt));
2442    }
2443  case Type::DoubleTyID: {
2444      const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2445      return APFloat(*const_cast<double *>(DoublePtr));
2446    }
2447  }
2448}
2449
2450/// getElementAsFloat - If this is an sequential container of floats, return
2451/// the specified element as a float.
2452float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2453  assert(getElementType()->isFloatTy() &&
2454         "Accessor can only be used when element is a 'float'");
2455  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2456  return *const_cast<float *>(EltPtr);
2457}
2458
2459/// getElementAsDouble - If this is an sequential container of doubles, return
2460/// the specified element as a float.
2461double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2462  assert(getElementType()->isDoubleTy() &&
2463         "Accessor can only be used when element is a 'float'");
2464  const double *EltPtr =
2465      reinterpret_cast<const double *>(getElementPointer(Elt));
2466  return *const_cast<double *>(EltPtr);
2467}
2468
2469/// getElementAsConstant - Return a Constant for a specified index's element.
2470/// Note that this has to compute a new constant to return, so it isn't as
2471/// efficient as getElementAsInteger/Float/Double.
2472Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2473  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2474    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2475
2476  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2477}
2478
2479/// isString - This method returns true if this is an array of i8.
2480bool ConstantDataSequential::isString() const {
2481  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2482}
2483
2484/// isCString - This method returns true if the array "isString", ends with a
2485/// nul byte, and does not contains any other nul bytes.
2486bool ConstantDataSequential::isCString() const {
2487  if (!isString())
2488    return false;
2489
2490  StringRef Str = getAsString();
2491
2492  // The last value must be nul.
2493  if (Str.back() != 0) return false;
2494
2495  // Other elements must be non-nul.
2496  return Str.drop_back().find(0) == StringRef::npos;
2497}
2498
2499/// getSplatValue - If this is a splat constant, meaning that all of the
2500/// elements have the same value, return that value. Otherwise return NULL.
2501Constant *ConstantDataVector::getSplatValue() const {
2502  const char *Base = getRawDataValues().data();
2503
2504  // Compare elements 1+ to the 0'th element.
2505  unsigned EltSize = getElementByteSize();
2506  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2507    if (memcmp(Base, Base+i*EltSize, EltSize))
2508      return 0;
2509
2510  // If they're all the same, return the 0th one as a representative.
2511  return getElementAsConstant(0);
2512}
2513
2514//===----------------------------------------------------------------------===//
2515//                replaceUsesOfWithOnConstant implementations
2516
2517/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2518/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2519/// etc.
2520///
2521/// Note that we intentionally replace all uses of From with To here.  Consider
2522/// a large array that uses 'From' 1000 times.  By handling this case all here,
2523/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2524/// single invocation handles all 1000 uses.  Handling them one at a time would
2525/// work, but would be really slow because it would have to unique each updated
2526/// array instance.
2527///
2528void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2529                                                Use *U) {
2530  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2531  Constant *ToC = cast<Constant>(To);
2532
2533  LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2534
2535  SmallVector<Constant*, 8> Values;
2536  LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2537  Lookup.first = cast<ArrayType>(getType());
2538  Values.reserve(getNumOperands());  // Build replacement array.
2539
2540  // Fill values with the modified operands of the constant array.  Also,
2541  // compute whether this turns into an all-zeros array.
2542  unsigned NumUpdated = 0;
2543
2544  // Keep track of whether all the values in the array are "ToC".
2545  bool AllSame = true;
2546  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2547    Constant *Val = cast<Constant>(O->get());
2548    if (Val == From) {
2549      Val = ToC;
2550      ++NumUpdated;
2551    }
2552    Values.push_back(Val);
2553    AllSame &= Val == ToC;
2554  }
2555
2556  Constant *Replacement = 0;
2557  if (AllSame && ToC->isNullValue()) {
2558    Replacement = ConstantAggregateZero::get(getType());
2559  } else if (AllSame && isa<UndefValue>(ToC)) {
2560    Replacement = UndefValue::get(getType());
2561  } else {
2562    // Check to see if we have this array type already.
2563    Lookup.second = makeArrayRef(Values);
2564    LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2565      pImpl->ArrayConstants.find(Lookup);
2566
2567    if (I != pImpl->ArrayConstants.map_end()) {
2568      Replacement = I->first;
2569    } else {
2570      // Okay, the new shape doesn't exist in the system yet.  Instead of
2571      // creating a new constant array, inserting it, replaceallusesof'ing the
2572      // old with the new, then deleting the old... just update the current one
2573      // in place!
2574      pImpl->ArrayConstants.remove(this);
2575
2576      // Update to the new value.  Optimize for the case when we have a single
2577      // operand that we're changing, but handle bulk updates efficiently.
2578      if (NumUpdated == 1) {
2579        unsigned OperandToUpdate = U - OperandList;
2580        assert(getOperand(OperandToUpdate) == From &&
2581               "ReplaceAllUsesWith broken!");
2582        setOperand(OperandToUpdate, ToC);
2583      } else {
2584        for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2585          if (getOperand(i) == From)
2586            setOperand(i, ToC);
2587      }
2588      pImpl->ArrayConstants.insert(this);
2589      return;
2590    }
2591  }
2592
2593  // Otherwise, I do need to replace this with an existing value.
2594  assert(Replacement != this && "I didn't contain From!");
2595
2596  // Everyone using this now uses the replacement.
2597  replaceAllUsesWith(Replacement);
2598
2599  // Delete the old constant!
2600  destroyConstant();
2601}
2602
2603void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2604                                                 Use *U) {
2605  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2606  Constant *ToC = cast<Constant>(To);
2607
2608  unsigned OperandToUpdate = U-OperandList;
2609  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2610
2611  SmallVector<Constant*, 8> Values;
2612  LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2613  Lookup.first = cast<StructType>(getType());
2614  Values.reserve(getNumOperands());  // Build replacement struct.
2615
2616  // Fill values with the modified operands of the constant struct.  Also,
2617  // compute whether this turns into an all-zeros struct.
2618  bool isAllZeros = false;
2619  bool isAllUndef = false;
2620  if (ToC->isNullValue()) {
2621    isAllZeros = true;
2622    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2623      Constant *Val = cast<Constant>(O->get());
2624      Values.push_back(Val);
2625      if (isAllZeros) isAllZeros = Val->isNullValue();
2626    }
2627  } else if (isa<UndefValue>(ToC)) {
2628    isAllUndef = true;
2629    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2630      Constant *Val = cast<Constant>(O->get());
2631      Values.push_back(Val);
2632      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2633    }
2634  } else {
2635    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2636      Values.push_back(cast<Constant>(O->get()));
2637  }
2638  Values[OperandToUpdate] = ToC;
2639
2640  LLVMContextImpl *pImpl = getContext().pImpl;
2641
2642  Constant *Replacement = 0;
2643  if (isAllZeros) {
2644    Replacement = ConstantAggregateZero::get(getType());
2645  } else if (isAllUndef) {
2646    Replacement = UndefValue::get(getType());
2647  } else {
2648    // Check to see if we have this struct type already.
2649    Lookup.second = makeArrayRef(Values);
2650    LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2651      pImpl->StructConstants.find(Lookup);
2652
2653    if (I != pImpl->StructConstants.map_end()) {
2654      Replacement = I->first;
2655    } else {
2656      // Okay, the new shape doesn't exist in the system yet.  Instead of
2657      // creating a new constant struct, inserting it, replaceallusesof'ing the
2658      // old with the new, then deleting the old... just update the current one
2659      // in place!
2660      pImpl->StructConstants.remove(this);
2661
2662      // Update to the new value.
2663      setOperand(OperandToUpdate, ToC);
2664      pImpl->StructConstants.insert(this);
2665      return;
2666    }
2667  }
2668
2669  assert(Replacement != this && "I didn't contain From!");
2670
2671  // Everyone using this now uses the replacement.
2672  replaceAllUsesWith(Replacement);
2673
2674  // Delete the old constant!
2675  destroyConstant();
2676}
2677
2678void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2679                                                 Use *U) {
2680  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2681
2682  SmallVector<Constant*, 8> Values;
2683  Values.reserve(getNumOperands());  // Build replacement array...
2684  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2685    Constant *Val = getOperand(i);
2686    if (Val == From) Val = cast<Constant>(To);
2687    Values.push_back(Val);
2688  }
2689
2690  Constant *Replacement = get(Values);
2691  assert(Replacement != this && "I didn't contain From!");
2692
2693  // Everyone using this now uses the replacement.
2694  replaceAllUsesWith(Replacement);
2695
2696  // Delete the old constant!
2697  destroyConstant();
2698}
2699
2700void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2701                                               Use *U) {
2702  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2703  Constant *To = cast<Constant>(ToV);
2704
2705  SmallVector<Constant*, 8> NewOps;
2706  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2707    Constant *Op = getOperand(i);
2708    NewOps.push_back(Op == From ? To : Op);
2709  }
2710
2711  Constant *Replacement = getWithOperands(NewOps);
2712  assert(Replacement != this && "I didn't contain From!");
2713
2714  // Everyone using this now uses the replacement.
2715  replaceAllUsesWith(Replacement);
2716
2717  // Delete the old constant!
2718  destroyConstant();
2719}
2720
2721Instruction *ConstantExpr::getAsInstruction() {
2722  SmallVector<Value*,4> ValueOperands;
2723  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2724    ValueOperands.push_back(cast<Value>(I));
2725
2726  ArrayRef<Value*> Ops(ValueOperands);
2727
2728  switch (getOpcode()) {
2729  case Instruction::Trunc:
2730  case Instruction::ZExt:
2731  case Instruction::SExt:
2732  case Instruction::FPTrunc:
2733  case Instruction::FPExt:
2734  case Instruction::UIToFP:
2735  case Instruction::SIToFP:
2736  case Instruction::FPToUI:
2737  case Instruction::FPToSI:
2738  case Instruction::PtrToInt:
2739  case Instruction::IntToPtr:
2740  case Instruction::BitCast:
2741    return CastInst::Create((Instruction::CastOps)getOpcode(),
2742                            Ops[0], getType());
2743  case Instruction::Select:
2744    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2745  case Instruction::InsertElement:
2746    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2747  case Instruction::ExtractElement:
2748    return ExtractElementInst::Create(Ops[0], Ops[1]);
2749  case Instruction::InsertValue:
2750    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2751  case Instruction::ExtractValue:
2752    return ExtractValueInst::Create(Ops[0], getIndices());
2753  case Instruction::ShuffleVector:
2754    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2755
2756  case Instruction::GetElementPtr:
2757    if (cast<GEPOperator>(this)->isInBounds())
2758      return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2759    else
2760      return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2761
2762  case Instruction::ICmp:
2763  case Instruction::FCmp:
2764    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2765                           getPredicate(), Ops[0], Ops[1]);
2766
2767  default:
2768    assert(getNumOperands() == 2 && "Must be binary operator?");
2769    BinaryOperator *BO =
2770      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2771                             Ops[0], Ops[1]);
2772    if (isa<OverflowingBinaryOperator>(BO)) {
2773      BO->setHasNoUnsignedWrap(SubclassOptionalData &
2774                               OverflowingBinaryOperator::NoUnsignedWrap);
2775      BO->setHasNoSignedWrap(SubclassOptionalData &
2776                             OverflowingBinaryOperator::NoSignedWrap);
2777    }
2778    if (isa<PossiblyExactOperator>(BO))
2779      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2780    return BO;
2781  }
2782}
2783