NVPTXAsmPrinter.cpp revision 7454fc2e87ef5638f3644b86a4350a44513e5185
1//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to NVPTX assembly language.
12//
13//===----------------------------------------------------------------------===//
14
15#include "NVPTXAsmPrinter.h"
16#include "NVPTX.h"
17#include "NVPTXInstrInfo.h"
18#include "NVPTXTargetMachine.h"
19#include "NVPTXRegisterInfo.h"
20#include "NVPTXUtilities.h"
21#include "MCTargetDesc/NVPTXMCAsmInfo.h"
22#include "NVPTXNumRegisters.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Module.h"
28#include "llvm/CodeGen/Analysis.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/MC/MCStreamer.h"
33#include "llvm/MC/MCSymbol.h"
34#include "llvm/Target/Mangler.h"
35#include "llvm/Target/TargetLoweringObjectFile.h"
36#include "llvm/Support/TargetRegistry.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/FormattedStream.h"
39#include "llvm/DerivedTypes.h"
40#include "llvm/Support/TimeValue.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Support/Path.h"
44#include "llvm/Assembly/Writer.h"
45#include "cl_common_defines.h"
46#include <sstream>
47using namespace llvm;
48
49
50#include "NVPTXGenAsmWriter.inc"
51
52bool RegAllocNilUsed = true;
53
54#define DEPOTNAME "__local_depot"
55
56static cl::opt<bool>
57EmitLineNumbers("nvptx-emit-line-numbers",
58                cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
59                cl::init(true));
60
61namespace llvm  {
62bool InterleaveSrcInPtx = false;
63}
64
65static cl::opt<bool, true>InterleaveSrc("nvptx-emit-src",
66                                        cl::ZeroOrMore,
67                       cl::desc("NVPTX Specific: Emit source line in ptx file"),
68                                        cl::location(llvm::InterleaveSrcInPtx));
69
70
71
72
73// @TODO: This is a copy from AsmPrinter.cpp.  The function is static, so we
74// cannot just link to the existing version.
75/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
76///
77using namespace nvptx;
78const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
79  MCContext &Ctx = AP.OutContext;
80
81  if (CV->isNullValue() || isa<UndefValue>(CV))
82    return MCConstantExpr::Create(0, Ctx);
83
84  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
85    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
86
87  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
88    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
89
90  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
91    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
92
93  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
94  if (CE == 0)
95    llvm_unreachable("Unknown constant value to lower!");
96
97
98  switch (CE->getOpcode()) {
99  default:
100    // If the code isn't optimized, there may be outstanding folding
101    // opportunities. Attempt to fold the expression using DataLayout as a
102    // last resort before giving up.
103    if (Constant *C =
104        ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
105      if (C != CE)
106        return LowerConstant(C, AP);
107
108    // Otherwise report the problem to the user.
109    {
110        std::string S;
111        raw_string_ostream OS(S);
112        OS << "Unsupported expression in static initializer: ";
113        WriteAsOperand(OS, CE, /*PrintType=*/false,
114                       !AP.MF ? 0 : AP.MF->getFunction()->getParent());
115        report_fatal_error(OS.str());
116    }
117  case Instruction::GetElementPtr: {
118    const DataLayout &TD = *AP.TM.getDataLayout();
119    // Generate a symbolic expression for the byte address
120    const Constant *PtrVal = CE->getOperand(0);
121    SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
122    int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
123
124    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
125    if (Offset == 0)
126      return Base;
127
128    // Truncate/sext the offset to the pointer size.
129    if (TD.getPointerSizeInBits() != 64) {
130      int SExtAmount = 64-TD.getPointerSizeInBits();
131      Offset = (Offset << SExtAmount) >> SExtAmount;
132    }
133
134    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
135                                   Ctx);
136  }
137
138  case Instruction::Trunc:
139    // We emit the value and depend on the assembler to truncate the generated
140    // expression properly.  This is important for differences between
141    // blockaddress labels.  Since the two labels are in the same function, it
142    // is reasonable to treat their delta as a 32-bit value.
143    // FALL THROUGH.
144  case Instruction::BitCast:
145    return LowerConstant(CE->getOperand(0), AP);
146
147  case Instruction::IntToPtr: {
148    const DataLayout &TD = *AP.TM.getDataLayout();
149    // Handle casts to pointers by changing them into casts to the appropriate
150    // integer type.  This promotes constant folding and simplifies this code.
151    Constant *Op = CE->getOperand(0);
152    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
153                                      false/*ZExt*/);
154    return LowerConstant(Op, AP);
155  }
156
157  case Instruction::PtrToInt: {
158    const DataLayout &TD = *AP.TM.getDataLayout();
159    // Support only foldable casts to/from pointers that can be eliminated by
160    // changing the pointer to the appropriately sized integer type.
161    Constant *Op = CE->getOperand(0);
162    Type *Ty = CE->getType();
163
164    const MCExpr *OpExpr = LowerConstant(Op, AP);
165
166    // We can emit the pointer value into this slot if the slot is an
167    // integer slot equal to the size of the pointer.
168    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
169      return OpExpr;
170
171    // Otherwise the pointer is smaller than the resultant integer, mask off
172    // the high bits so we are sure to get a proper truncation if the input is
173    // a constant expr.
174    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
175    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
176    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
177  }
178
179  // The MC library also has a right-shift operator, but it isn't consistently
180  // signed or unsigned between different targets.
181  case Instruction::Add:
182  case Instruction::Sub:
183  case Instruction::Mul:
184  case Instruction::SDiv:
185  case Instruction::SRem:
186  case Instruction::Shl:
187  case Instruction::And:
188  case Instruction::Or:
189  case Instruction::Xor: {
190    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
191    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
192    switch (CE->getOpcode()) {
193    default: llvm_unreachable("Unknown binary operator constant cast expr");
194    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
195    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
196    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
197    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
198    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
199    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
200    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
201    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
202    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
203    }
204  }
205  }
206}
207
208
209void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI)
210{
211  if (!EmitLineNumbers)
212    return;
213  if (ignoreLoc(MI))
214    return;
215
216  DebugLoc curLoc = MI.getDebugLoc();
217
218  if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
219    return;
220
221  if (prevDebugLoc == curLoc)
222    return;
223
224  prevDebugLoc = curLoc;
225
226  if (curLoc.isUnknown())
227    return;
228
229
230  const MachineFunction *MF = MI.getParent()->getParent();
231  //const TargetMachine &TM = MF->getTarget();
232
233  const LLVMContext &ctx = MF->getFunction()->getContext();
234  DIScope Scope(curLoc.getScope(ctx));
235
236  if (!Scope.Verify())
237    return;
238
239  StringRef fileName(Scope.getFilename());
240  StringRef dirName(Scope.getDirectory());
241  SmallString<128> FullPathName = dirName;
242  if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
243    sys::path::append(FullPathName, fileName);
244    fileName = FullPathName.str();
245  }
246
247  if (filenameMap.find(fileName.str()) == filenameMap.end())
248    return;
249
250
251  // Emit the line from the source file.
252  if (llvm::InterleaveSrcInPtx)
253    this->emitSrcInText(fileName.str(), curLoc.getLine());
254
255  std::stringstream temp;
256  temp << "\t.loc " << filenameMap[fileName.str()]
257       << " " << curLoc.getLine() << " " << curLoc.getCol();
258  OutStreamer.EmitRawText(Twine(temp.str().c_str()));
259}
260
261void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
262  SmallString<128> Str;
263  raw_svector_ostream OS(Str);
264  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
265    emitLineNumberAsDotLoc(*MI);
266  printInstruction(MI, OS);
267  OutStreamer.EmitRawText(OS.str());
268}
269
270void NVPTXAsmPrinter::printReturnValStr(const Function *F,
271                                        raw_ostream &O)
272{
273  const DataLayout *TD = TM.getDataLayout();
274  const TargetLowering *TLI = TM.getTargetLowering();
275
276  Type *Ty = F->getReturnType();
277
278  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
279
280  if (Ty->getTypeID() == Type::VoidTyID)
281    return;
282
283  O << " (";
284
285  if (isABI) {
286    if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
287      unsigned size = 0;
288      if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
289        size = ITy->getBitWidth();
290        if (size < 32) size = 32;
291      } else {
292        assert(Ty->isFloatingPointTy() &&
293               "Floating point type expected here");
294        size = Ty->getPrimitiveSizeInBits();
295      }
296
297      O << ".param .b" << size << " func_retval0";
298    }
299    else if (isa<PointerType>(Ty)) {
300      O << ".param .b" << TLI->getPointerTy().getSizeInBits()
301            << " func_retval0";
302    } else {
303      if ((Ty->getTypeID() == Type::StructTyID) ||
304          isa<VectorType>(Ty)) {
305        SmallVector<EVT, 16> vtparts;
306        ComputeValueVTs(*TLI, Ty, vtparts);
307        unsigned totalsz = 0;
308        for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
309          unsigned elems = 1;
310          EVT elemtype = vtparts[i];
311          if (vtparts[i].isVector()) {
312            elems = vtparts[i].getVectorNumElements();
313            elemtype = vtparts[i].getVectorElementType();
314          }
315          for (unsigned j=0, je=elems; j!=je; ++j) {
316            unsigned sz = elemtype.getSizeInBits();
317            if (elemtype.isInteger() && (sz < 8)) sz = 8;
318            totalsz += sz/8;
319          }
320        }
321        unsigned retAlignment = 0;
322        if (!llvm::getAlign(*F, 0, retAlignment))
323          retAlignment = TD->getABITypeAlignment(Ty);
324        O << ".param .align "
325            << retAlignment
326            << " .b8 func_retval0["
327            << totalsz << "]";
328      } else
329        assert(false &&
330               "Unknown return type");
331    }
332  } else {
333    SmallVector<EVT, 16> vtparts;
334    ComputeValueVTs(*TLI, Ty, vtparts);
335    unsigned idx = 0;
336    for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
337      unsigned elems = 1;
338      EVT elemtype = vtparts[i];
339      if (vtparts[i].isVector()) {
340        elems = vtparts[i].getVectorNumElements();
341        elemtype = vtparts[i].getVectorElementType();
342      }
343
344      for (unsigned j=0, je=elems; j!=je; ++j) {
345        unsigned sz = elemtype.getSizeInBits();
346        if (elemtype.isInteger() && (sz < 32)) sz = 32;
347        O << ".reg .b" << sz << " func_retval" << idx;
348        if (j<je-1) O << ", ";
349        ++idx;
350      }
351      if (i < e-1)
352        O << ", ";
353    }
354  }
355  O << ") ";
356  return;
357}
358
359void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
360                                        raw_ostream &O) {
361  const Function *F = MF.getFunction();
362  printReturnValStr(F, O);
363}
364
365void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
366  SmallString<128> Str;
367  raw_svector_ostream O(Str);
368
369  // Set up
370  MRI = &MF->getRegInfo();
371  F = MF->getFunction();
372  emitLinkageDirective(F,O);
373  if (llvm::isKernelFunction(*F))
374    O << ".entry ";
375  else {
376    O << ".func ";
377    printReturnValStr(*MF, O);
378  }
379
380  O << *CurrentFnSym;
381
382  emitFunctionParamList(*MF, O);
383
384  if (llvm::isKernelFunction(*F))
385    emitKernelFunctionDirectives(*F, O);
386
387  OutStreamer.EmitRawText(O.str());
388
389  prevDebugLoc = DebugLoc();
390}
391
392void NVPTXAsmPrinter::EmitFunctionBodyStart() {
393  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
394  unsigned numRegClasses = TRI.getNumRegClasses();
395  VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses+1];
396  OutStreamer.EmitRawText(StringRef("{\n"));
397  setAndEmitFunctionVirtualRegisters(*MF);
398
399  SmallString<128> Str;
400  raw_svector_ostream O(Str);
401  emitDemotedVars(MF->getFunction(), O);
402  OutStreamer.EmitRawText(O.str());
403}
404
405void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
406  OutStreamer.EmitRawText(StringRef("}\n"));
407  delete []VRidGlobal2LocalMap;
408}
409
410
411void
412NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F,
413                                              raw_ostream &O) const {
414  // If the NVVM IR has some of reqntid* specified, then output
415  // the reqntid directive, and set the unspecified ones to 1.
416  // If none of reqntid* is specified, don't output reqntid directive.
417  unsigned reqntidx, reqntidy, reqntidz;
418  bool specified = false;
419  if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1;
420  else specified = true;
421  if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1;
422  else specified = true;
423  if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1;
424  else specified = true;
425
426  if (specified)
427    O << ".reqntid " << reqntidx << ", "
428    << reqntidy << ", " << reqntidz << "\n";
429
430  // If the NVVM IR has some of maxntid* specified, then output
431  // the maxntid directive, and set the unspecified ones to 1.
432  // If none of maxntid* is specified, don't output maxntid directive.
433  unsigned maxntidx, maxntidy, maxntidz;
434  specified = false;
435  if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1;
436  else specified = true;
437  if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1;
438  else specified = true;
439  if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1;
440  else specified = true;
441
442  if (specified)
443    O << ".maxntid " << maxntidx << ", "
444    << maxntidy << ", " << maxntidz << "\n";
445
446  unsigned mincta;
447  if (llvm::getMinCTASm(F, mincta))
448    O << ".minnctapersm " << mincta << "\n";
449}
450
451void
452NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec,
453                                        raw_ostream &O) {
454  const TargetRegisterClass * RC = MRI->getRegClass(vr);
455  unsigned id = RC->getID();
456
457  std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[id];
458  unsigned mapped_vr = regmap[vr];
459
460  if (!isVec) {
461    O << getNVPTXRegClassStr(RC) << mapped_vr;
462    return;
463  }
464  // Vector virtual register
465  if (getNVPTXVectorSize(RC) == 4)
466    O << "{"
467    << getNVPTXRegClassStr(RC) << mapped_vr << "_0, "
468    << getNVPTXRegClassStr(RC) << mapped_vr << "_1, "
469    << getNVPTXRegClassStr(RC) << mapped_vr << "_2, "
470    << getNVPTXRegClassStr(RC) << mapped_vr << "_3"
471    << "}";
472  else if (getNVPTXVectorSize(RC) == 2)
473    O << "{"
474    << getNVPTXRegClassStr(RC) << mapped_vr << "_0, "
475    << getNVPTXRegClassStr(RC) << mapped_vr << "_1"
476    << "}";
477  else
478    llvm_unreachable("Unsupported vector size");
479}
480
481void
482NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec,
483                                     raw_ostream &O) {
484  getVirtualRegisterName(vr, isVec, O);
485}
486
487void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO,
488                                                const char *Modifier,
489                                                raw_ostream &O) {
490  static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'};
491  int Imm = (int)MO.getImm();
492  if(0 == strcmp(Modifier, "vecelem"))
493    O << "_" << vecelem[Imm];
494  else if(0 == strcmp(Modifier, "vecv4comm1")) {
495    if((Imm < 0) || (Imm > 3))
496      O << "//";
497  }
498  else if(0 == strcmp(Modifier, "vecv4comm2")) {
499    if((Imm < 4) || (Imm > 7))
500      O << "//";
501  }
502  else if(0 == strcmp(Modifier, "vecv4pos")) {
503    if(Imm < 0) Imm = 0;
504    O << "_" << vecelem[Imm%4];
505  }
506  else if(0 == strcmp(Modifier, "vecv2comm1")) {
507    if((Imm < 0) || (Imm > 1))
508      O << "//";
509  }
510  else if(0 == strcmp(Modifier, "vecv2comm2")) {
511    if((Imm < 2) || (Imm > 3))
512      O << "//";
513  }
514  else if(0 == strcmp(Modifier, "vecv2pos")) {
515    if(Imm < 0) Imm = 0;
516    O << "_" << vecelem[Imm%2];
517  }
518  else
519    llvm_unreachable("Unknown Modifier on immediate operand");
520}
521
522void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
523                                   raw_ostream &O, const char *Modifier) {
524  const MachineOperand &MO = MI->getOperand(opNum);
525  switch (MO.getType()) {
526  case MachineOperand::MO_Register:
527    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
528      if (MO.getReg() == NVPTX::VRDepot)
529        O << DEPOTNAME << getFunctionNumber();
530      else
531        O << getRegisterName(MO.getReg());
532    } else {
533      if (!Modifier)
534        emitVirtualRegister(MO.getReg(), false, O);
535      else {
536        if (strcmp(Modifier, "vecfull") == 0)
537          emitVirtualRegister(MO.getReg(), true, O);
538        else
539          llvm_unreachable(
540                 "Don't know how to handle the modifier on virtual register.");
541      }
542    }
543    return;
544
545  case MachineOperand::MO_Immediate:
546    if (!Modifier)
547      O << MO.getImm();
548    else if (strstr(Modifier, "vec") == Modifier)
549      printVecModifiedImmediate(MO, Modifier, O);
550    else
551      llvm_unreachable("Don't know how to handle modifier on immediate operand");
552    return;
553
554  case MachineOperand::MO_FPImmediate:
555    printFPConstant(MO.getFPImm(), O);
556    break;
557
558  case MachineOperand::MO_GlobalAddress:
559    O << *Mang->getSymbol(MO.getGlobal());
560    break;
561
562  case MachineOperand::MO_ExternalSymbol: {
563    const char * symbname = MO.getSymbolName();
564    if (strstr(symbname, ".PARAM") == symbname) {
565      unsigned index;
566      sscanf(symbname+6, "%u[];", &index);
567      printParamName(index, O);
568    }
569    else if (strstr(symbname, ".HLPPARAM") == symbname) {
570      unsigned index;
571      sscanf(symbname+9, "%u[];", &index);
572      O << *CurrentFnSym << "_param_" << index << "_offset";
573    }
574    else
575      O << symbname;
576    break;
577  }
578
579  case MachineOperand::MO_MachineBasicBlock:
580    O << *MO.getMBB()->getSymbol();
581    return;
582
583  default:
584    llvm_unreachable("Operand type not supported.");
585  }
586}
587
588void NVPTXAsmPrinter::
589printImplicitDef(const MachineInstr *MI, raw_ostream &O) const {
590#ifndef __OPTIMIZE__
591  O << "\t// Implicit def :";
592  //printOperand(MI, 0);
593  O << "\n";
594#endif
595}
596
597void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
598                                      raw_ostream &O, const char *Modifier) {
599  printOperand(MI, opNum, O);
600
601  if (Modifier && !strcmp(Modifier, "add")) {
602    O << ", ";
603    printOperand(MI, opNum+1, O);
604  } else {
605    if (MI->getOperand(opNum+1).isImm() &&
606        MI->getOperand(opNum+1).getImm() == 0)
607      return; // don't print ',0' or '+0'
608    O << "+";
609    printOperand(MI, opNum+1, O);
610  }
611}
612
613void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum,
614                                    raw_ostream &O, const char *Modifier)
615{
616  if (Modifier) {
617    const MachineOperand &MO = MI->getOperand(opNum);
618    int Imm = (int)MO.getImm();
619    if (!strcmp(Modifier, "volatile")) {
620      if (Imm)
621        O << ".volatile";
622    } else if (!strcmp(Modifier, "addsp")) {
623      switch (Imm) {
624      case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break;
625      case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break;
626      case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break;
627      case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break;
628      case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break;
629      case NVPTX::PTXLdStInstCode::GENERIC:
630        if (!nvptxSubtarget.hasGenericLdSt())
631          O << ".global";
632        break;
633      default:
634        llvm_unreachable("Wrong Address Space");
635      }
636    }
637    else if (!strcmp(Modifier, "sign")) {
638      if (Imm==NVPTX::PTXLdStInstCode::Signed)
639        O << "s";
640      else if (Imm==NVPTX::PTXLdStInstCode::Unsigned)
641        O << "u";
642      else
643        O << "f";
644    }
645    else if (!strcmp(Modifier, "vec")) {
646      if (Imm==NVPTX::PTXLdStInstCode::V2)
647        O << ".v2";
648      else if (Imm==NVPTX::PTXLdStInstCode::V4)
649        O << ".v4";
650    }
651    else
652      llvm_unreachable("Unknown Modifier");
653  }
654  else
655    llvm_unreachable("Empty Modifier");
656}
657
658void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) {
659
660  emitLinkageDirective(F,O);
661  if (llvm::isKernelFunction(*F))
662    O << ".entry ";
663  else
664    O << ".func ";
665  printReturnValStr(F, O);
666  O << *CurrentFnSym << "\n";
667  emitFunctionParamList(F, O);
668  O << ";\n";
669}
670
671static bool usedInGlobalVarDef(const Constant *C)
672{
673  if (!C)
674    return false;
675
676  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
677    if (GV->getName().str() == "llvm.used")
678      return false;
679    return true;
680  }
681
682  for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
683      ui!=ue; ++ui) {
684    const Constant *C = dyn_cast<Constant>(*ui);
685    if (usedInGlobalVarDef(C))
686      return true;
687  }
688  return false;
689}
690
691static bool usedInOneFunc(const User *U, Function const *&oneFunc)
692{
693  if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
694    if (othergv->getName().str() == "llvm.used")
695      return true;
696  }
697
698  if (const Instruction *instr = dyn_cast<Instruction>(U)) {
699    if (instr->getParent() && instr->getParent()->getParent()) {
700      const Function *curFunc = instr->getParent()->getParent();
701      if (oneFunc && (curFunc != oneFunc))
702        return false;
703      oneFunc = curFunc;
704      return true;
705    }
706    else
707      return false;
708  }
709
710  if (const MDNode *md = dyn_cast<MDNode>(U))
711    if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
712        (md->getName().str() == "llvm.dbg.sp")))
713      return true;
714
715
716  for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end();
717      ui!=ue; ++ui) {
718    if (usedInOneFunc(*ui, oneFunc) == false)
719      return false;
720  }
721  return true;
722}
723
724/* Find out if a global variable can be demoted to local scope.
725 * Currently, this is valid for CUDA shared variables, which have local
726 * scope and global lifetime. So the conditions to check are :
727 * 1. Is the global variable in shared address space?
728 * 2. Does it have internal linkage?
729 * 3. Is the global variable referenced only in one function?
730 */
731static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
732  if (gv->hasInternalLinkage() == false)
733    return false;
734  const PointerType *Pty = gv->getType();
735  if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
736    return false;
737
738  const Function *oneFunc = 0;
739
740  bool flag = usedInOneFunc(gv, oneFunc);
741  if (flag == false)
742    return false;
743  if (!oneFunc)
744    return false;
745  f = oneFunc;
746  return true;
747}
748
749static bool useFuncSeen(const Constant *C,
750                        llvm::DenseMap<const Function *, bool> &seenMap) {
751  for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
752      ui!=ue; ++ui) {
753    if (const Constant *cu = dyn_cast<Constant>(*ui)) {
754      if (useFuncSeen(cu, seenMap))
755        return true;
756    } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
757      const BasicBlock *bb = I->getParent();
758      if (!bb) continue;
759      const Function *caller = bb->getParent();
760      if (!caller) continue;
761      if (seenMap.find(caller) != seenMap.end())
762        return true;
763    }
764  }
765  return false;
766}
767
768void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) {
769  llvm::DenseMap<const Function *, bool> seenMap;
770  for (Module::const_iterator FI=M.begin(), FE=M.end();
771      FI!=FE; ++FI) {
772    const Function *F = FI;
773
774    if (F->isDeclaration()) {
775      if (F->use_empty())
776        continue;
777      if (F->getIntrinsicID())
778        continue;
779      CurrentFnSym = Mang->getSymbol(F);
780      emitDeclaration(F, O);
781      continue;
782    }
783    for (Value::const_use_iterator iter=F->use_begin(),
784        iterEnd=F->use_end(); iter!=iterEnd; ++iter) {
785      if (const Constant *C = dyn_cast<Constant>(*iter)) {
786        if (usedInGlobalVarDef(C)) {
787          // The use is in the initialization of a global variable
788          // that is a function pointer, so print a declaration
789          // for the original function
790          CurrentFnSym = Mang->getSymbol(F);
791          emitDeclaration(F, O);
792          break;
793        }
794        // Emit a declaration of this function if the function that
795        // uses this constant expr has already been seen.
796        if (useFuncSeen(C, seenMap)) {
797          CurrentFnSym = Mang->getSymbol(F);
798          emitDeclaration(F, O);
799          break;
800        }
801      }
802
803      if (!isa<Instruction>(*iter)) continue;
804      const Instruction *instr = cast<Instruction>(*iter);
805      const BasicBlock *bb = instr->getParent();
806      if (!bb) continue;
807      const Function *caller = bb->getParent();
808      if (!caller) continue;
809
810      // If a caller has already been seen, then the caller is
811      // appearing in the module before the callee. so print out
812      // a declaration for the callee.
813      if (seenMap.find(caller) != seenMap.end()) {
814        CurrentFnSym = Mang->getSymbol(F);
815        emitDeclaration(F, O);
816        break;
817      }
818    }
819    seenMap[F] = true;
820  }
821}
822
823void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
824  DebugInfoFinder DbgFinder;
825  DbgFinder.processModule(M);
826
827  unsigned i=1;
828  for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
829      E = DbgFinder.compile_unit_end(); I != E; ++I) {
830    DICompileUnit DIUnit(*I);
831    StringRef Filename(DIUnit.getFilename());
832    StringRef Dirname(DIUnit.getDirectory());
833    SmallString<128> FullPathName = Dirname;
834    if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
835      sys::path::append(FullPathName, Filename);
836      Filename = FullPathName.str();
837    }
838    if (filenameMap.find(Filename.str()) != filenameMap.end())
839      continue;
840    filenameMap[Filename.str()] = i;
841    OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
842    ++i;
843  }
844
845  for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
846      E = DbgFinder.subprogram_end(); I != E; ++I) {
847    DISubprogram SP(*I);
848    StringRef Filename(SP.getFilename());
849    StringRef Dirname(SP.getDirectory());
850    SmallString<128> FullPathName = Dirname;
851    if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
852      sys::path::append(FullPathName, Filename);
853      Filename = FullPathName.str();
854    }
855    if (filenameMap.find(Filename.str()) != filenameMap.end())
856      continue;
857    filenameMap[Filename.str()] = i;
858    ++i;
859  }
860}
861
862bool NVPTXAsmPrinter::doInitialization (Module &M) {
863
864  SmallString<128> Str1;
865  raw_svector_ostream OS1(Str1);
866
867  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
868  MMI->AnalyzeModule(M);
869
870  // We need to call the parent's one explicitly.
871  //bool Result = AsmPrinter::doInitialization(M);
872
873  // Initialize TargetLoweringObjectFile.
874  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
875          .Initialize(OutContext, TM);
876
877  Mang = new Mangler(OutContext, *TM.getDataLayout());
878
879  // Emit header before any dwarf directives are emitted below.
880  emitHeader(M, OS1);
881  OutStreamer.EmitRawText(OS1.str());
882
883
884  // Already commented out
885  //bool Result = AsmPrinter::doInitialization(M);
886
887
888  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
889    recordAndEmitFilenames(M);
890
891  SmallString<128> Str2;
892  raw_svector_ostream OS2(Str2);
893
894  emitDeclarations(M, OS2);
895
896  // Print out module-level global variables here.
897  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
898      I != E; ++I)
899    printModuleLevelGV(I, OS2);
900
901  OS2 << '\n';
902
903  OutStreamer.EmitRawText(OS2.str());
904  return false;  // success
905}
906
907void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) {
908  O << "//\n";
909  O << "// Generated by LLVM NVPTX Back-End\n";
910  O << "//\n";
911  O << "\n";
912
913  unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
914  O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
915
916  O << ".target ";
917  O << nvptxSubtarget.getTargetName();
918
919  if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
920    O << ", texmode_independent";
921  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
922    if (!nvptxSubtarget.hasDouble())
923      O << ", map_f64_to_f32";
924  }
925
926  if (MAI->doesSupportDebugInformation())
927    O << ", debug";
928
929  O << "\n";
930
931  O << ".address_size ";
932  if (nvptxSubtarget.is64Bit())
933    O << "64";
934  else
935    O << "32";
936  O << "\n";
937
938  O << "\n";
939}
940
941bool NVPTXAsmPrinter::doFinalization(Module &M) {
942  // XXX Temproarily remove global variables so that doFinalization() will not
943  // emit them again (global variables are emitted at beginning).
944
945  Module::GlobalListType &global_list = M.getGlobalList();
946  int i, n = global_list.size();
947  GlobalVariable **gv_array = new GlobalVariable* [n];
948
949  // first, back-up GlobalVariable in gv_array
950  i = 0;
951  for (Module::global_iterator I = global_list.begin(), E = global_list.end();
952      I != E; ++I)
953    gv_array[i++] = &*I;
954
955  // second, empty global_list
956  while (!global_list.empty())
957    global_list.remove(global_list.begin());
958
959  // call doFinalization
960  bool ret = AsmPrinter::doFinalization(M);
961
962  // now we restore global variables
963  for (i = 0; i < n; i ++)
964    global_list.insert(global_list.end(), gv_array[i]);
965
966  delete[] gv_array;
967  return ret;
968
969
970  //bool Result = AsmPrinter::doFinalization(M);
971  // Instead of calling the parents doFinalization, we may
972  // clone parents doFinalization and customize here.
973  // Currently, we if NVISA out the EmitGlobals() in
974  // parent's doFinalization, which is too intrusive.
975  //
976  // Same for the doInitialization.
977  //return Result;
978}
979
980// This function emits appropriate linkage directives for
981// functions and global variables.
982//
983// extern function declaration            -> .extern
984// extern function definition             -> .visible
985// external global variable with init     -> .visible
986// external without init                  -> .extern
987// appending                              -> not allowed, assert.
988
989void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O)
990{
991  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
992    if (V->hasExternalLinkage()) {
993      if (isa<GlobalVariable>(V)) {
994        const GlobalVariable *GVar = cast<GlobalVariable>(V);
995        if (GVar) {
996          if (GVar->hasInitializer())
997            O << ".visible ";
998          else
999            O << ".extern ";
1000        }
1001      } else if (V->isDeclaration())
1002        O << ".extern ";
1003      else
1004        O << ".visible ";
1005    } else if (V->hasAppendingLinkage()) {
1006      std::string msg;
1007      msg.append("Error: ");
1008      msg.append("Symbol ");
1009      if (V->hasName())
1010        msg.append(V->getName().str());
1011      msg.append("has unsupported appending linkage type");
1012      llvm_unreachable(msg.c_str());
1013    }
1014  }
1015}
1016
1017
1018void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O,
1019                                         bool processDemoted) {
1020
1021  // Skip meta data
1022  if (GVar->hasSection()) {
1023    if (GVar->getSection() == "llvm.metadata")
1024      return;
1025  }
1026
1027  const DataLayout *TD = TM.getDataLayout();
1028
1029  // GlobalVariables are always constant pointers themselves.
1030  const PointerType *PTy = GVar->getType();
1031  Type *ETy = PTy->getElementType();
1032
1033  if (GVar->hasExternalLinkage()) {
1034    if (GVar->hasInitializer())
1035      O << ".visible ";
1036    else
1037      O << ".extern ";
1038  }
1039
1040  if (llvm::isTexture(*GVar)) {
1041    O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1042    return;
1043  }
1044
1045  if (llvm::isSurface(*GVar)) {
1046    O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1047    return;
1048  }
1049
1050  if (GVar->isDeclaration()) {
1051    // (extern) declarations, no definition or initializer
1052    // Currently the only known declaration is for an automatic __local
1053    // (.shared) promoted to global.
1054    emitPTXGlobalVariable(GVar, O);
1055    O << ";\n";
1056    return;
1057  }
1058
1059  if (llvm::isSampler(*GVar)) {
1060    O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1061
1062    Constant *Initializer = NULL;
1063    if (GVar->hasInitializer())
1064      Initializer = GVar->getInitializer();
1065    ConstantInt *CI = NULL;
1066    if (Initializer)
1067      CI = dyn_cast<ConstantInt>(Initializer);
1068    if (CI) {
1069      unsigned sample=CI->getZExtValue();
1070
1071      O << " = { ";
1072
1073      for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >>
1074          __CLK_ADDRESS_BASE) ; i < 3 ; i++) {
1075        O << "addr_mode_" << i << " = ";
1076        switch (addr) {
1077        case 0: O << "wrap"; break;
1078        case 1: O << "clamp_to_border"; break;
1079        case 2: O << "clamp_to_edge"; break;
1080        case 3: O << "wrap"; break;
1081        case 4: O << "mirror"; break;
1082        }
1083        O <<", ";
1084      }
1085      O << "filter_mode = ";
1086      switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) {
1087      case 0: O << "nearest"; break;
1088      case 1: O << "linear";  break;
1089      case 2: assert ( 0 && "Anisotropic filtering is not supported");
1090      default: O << "nearest"; break;
1091      }
1092      if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) {
1093        O << ", force_unnormalized_coords = 1";
1094      }
1095      O << " }";
1096    }
1097
1098    O << ";\n";
1099    return;
1100  }
1101
1102  if (GVar->hasPrivateLinkage()) {
1103
1104    if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1105      return;
1106
1107    // FIXME - need better way (e.g. Metadata) to avoid generating this global
1108    if (!strncmp(GVar->getName().data(), "filename", 8))
1109      return;
1110    if (GVar->use_empty())
1111      return;
1112  }
1113
1114  const Function *demotedFunc = 0;
1115  if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1116    O << "// " << GVar->getName().str() << " has been demoted\n";
1117    if (localDecls.find(demotedFunc) != localDecls.end())
1118      localDecls[demotedFunc].push_back(GVar);
1119    else {
1120      std::vector<GlobalVariable *> temp;
1121      temp.push_back(GVar);
1122      localDecls[demotedFunc] = temp;
1123    }
1124    return;
1125  }
1126
1127  O << ".";
1128  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1129  if (GVar->getAlignment() == 0)
1130    O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1131  else
1132    O << " .align " << GVar->getAlignment();
1133
1134
1135  if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1136    O << " .";
1137    O << getPTXFundamentalTypeStr(ETy, false);
1138    O << " ";
1139    O << *Mang->getSymbol(GVar);
1140
1141    // Ptx allows variable initilization only for constant and global state
1142    // spaces.
1143    if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1144        (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
1145        (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
1146        && GVar->hasInitializer()) {
1147      Constant *Initializer = GVar->getInitializer();
1148      if (!Initializer->isNullValue()) {
1149        O << " = " ;
1150        printScalarConstant(Initializer, O);
1151      }
1152    }
1153  } else {
1154    unsigned int ElementSize =0;
1155
1156    // Although PTX has direct support for struct type and array type and
1157    // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1158    // targets that support these high level field accesses. Structs, arrays
1159    // and vectors are lowered into arrays of bytes.
1160    switch (ETy->getTypeID()) {
1161    case Type::StructTyID:
1162    case Type::ArrayTyID:
1163    case Type::VectorTyID:
1164      ElementSize = TD->getTypeStoreSize(ETy);
1165      // Ptx allows variable initilization only for constant and
1166      // global state spaces.
1167      if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1168          (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
1169          (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
1170          && GVar->hasInitializer()) {
1171        Constant *Initializer = GVar->getInitializer();
1172        if (!isa<UndefValue>(Initializer) &&
1173            !Initializer->isNullValue()) {
1174          AggBuffer aggBuffer(ElementSize, O, *this);
1175          bufferAggregateConstant(Initializer, &aggBuffer);
1176          if (aggBuffer.numSymbols) {
1177            if (nvptxSubtarget.is64Bit()) {
1178              O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ;
1179              O << ElementSize/8;
1180            }
1181            else {
1182              O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ;
1183              O << ElementSize/4;
1184            }
1185            O << "]";
1186          }
1187          else {
1188            O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
1189            O << ElementSize;
1190            O << "]";
1191          }
1192          O << " = {" ;
1193          aggBuffer.print();
1194          O << "}";
1195        }
1196        else {
1197          O << " .b8 " << *Mang->getSymbol(GVar) ;
1198          if (ElementSize) {
1199            O <<"[" ;
1200            O << ElementSize;
1201            O << "]";
1202          }
1203        }
1204      }
1205      else {
1206        O << " .b8 " << *Mang->getSymbol(GVar);
1207        if (ElementSize) {
1208          O <<"[" ;
1209          O << ElementSize;
1210          O << "]";
1211        }
1212      }
1213      break;
1214    default:
1215      assert( 0 && "type not supported yet");
1216    }
1217
1218  }
1219  O << ";\n";
1220}
1221
1222void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1223  if (localDecls.find(f) == localDecls.end())
1224    return;
1225
1226  std::vector<GlobalVariable *> &gvars = localDecls[f];
1227
1228  for (unsigned i=0, e=gvars.size(); i!=e; ++i) {
1229    O << "\t// demoted variable\n\t";
1230    printModuleLevelGV(gvars[i], O, true);
1231  }
1232}
1233
1234void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1235                                          raw_ostream &O) const {
1236  switch (AddressSpace) {
1237  case llvm::ADDRESS_SPACE_LOCAL:
1238    O << "local" ;
1239    break;
1240  case llvm::ADDRESS_SPACE_GLOBAL:
1241    O << "global" ;
1242    break;
1243  case llvm::ADDRESS_SPACE_CONST:
1244    // This logic should be consistent with that in
1245    // getCodeAddrSpace() (NVPTXISelDATToDAT.cpp)
1246    if (nvptxSubtarget.hasGenericLdSt())
1247      O << "global" ;
1248    else
1249      O << "const" ;
1250    break;
1251  case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
1252    O << "const" ;
1253    break;
1254  case llvm::ADDRESS_SPACE_SHARED:
1255    O << "shared" ;
1256    break;
1257  default:
1258    llvm_unreachable("unexpected address space");
1259  }
1260}
1261
1262std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty,
1263                                                      bool useB4PTR) const {
1264  switch (Ty->getTypeID()) {
1265  default:
1266    llvm_unreachable("unexpected type");
1267    break;
1268  case Type::IntegerTyID: {
1269    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1270    if (NumBits == 1)
1271      return "pred";
1272    else if (NumBits <= 64) {
1273      std::string name = "u";
1274      return name + utostr(NumBits);
1275    } else {
1276      llvm_unreachable("Integer too large");
1277      break;
1278    }
1279    break;
1280  }
1281  case Type::FloatTyID:
1282    return "f32";
1283  case Type::DoubleTyID:
1284    return "f64";
1285  case Type::PointerTyID:
1286    if (nvptxSubtarget.is64Bit())
1287      if (useB4PTR) return "b64";
1288      else return "u64";
1289    else
1290      if (useB4PTR) return "b32";
1291      else return "u32";
1292  }
1293  llvm_unreachable("unexpected type");
1294  return NULL;
1295}
1296
1297void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar,
1298                                            raw_ostream &O) {
1299
1300  const DataLayout *TD = TM.getDataLayout();
1301
1302  // GlobalVariables are always constant pointers themselves.
1303  const PointerType *PTy = GVar->getType();
1304  Type *ETy = PTy->getElementType();
1305
1306  O << ".";
1307  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1308  if (GVar->getAlignment() == 0)
1309    O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1310  else
1311    O << " .align " << GVar->getAlignment();
1312
1313  if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1314    O << " .";
1315    O << getPTXFundamentalTypeStr(ETy);
1316    O << " ";
1317    O << *Mang->getSymbol(GVar);
1318    return;
1319  }
1320
1321  int64_t ElementSize =0;
1322
1323  // Although PTX has direct support for struct type and array type and LLVM IR
1324  // is very similar to PTX, the LLVM CodeGen does not support for targets that
1325  // support these high level field accesses. Structs and arrays are lowered
1326  // into arrays of bytes.
1327  switch (ETy->getTypeID()) {
1328  case Type::StructTyID:
1329  case Type::ArrayTyID:
1330  case Type::VectorTyID:
1331    ElementSize = TD->getTypeStoreSize(ETy);
1332    O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
1333    if (ElementSize) {
1334      O << itostr(ElementSize) ;
1335    }
1336    O << "]";
1337    break;
1338  default:
1339    assert( 0 && "type not supported yet");
1340  }
1341  return ;
1342}
1343
1344
1345static unsigned int
1346getOpenCLAlignment(const DataLayout *TD,
1347                   Type *Ty) {
1348  if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
1349    return TD->getPrefTypeAlignment(Ty);
1350
1351  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1352  if (ATy)
1353    return getOpenCLAlignment(TD, ATy->getElementType());
1354
1355  const VectorType *VTy = dyn_cast<VectorType>(Ty);
1356  if (VTy) {
1357    Type *ETy = VTy->getElementType();
1358    unsigned int numE = VTy->getNumElements();
1359    unsigned int alignE = TD->getPrefTypeAlignment(ETy);
1360    if (numE == 3)
1361      return 4*alignE;
1362    else
1363      return numE*alignE;
1364  }
1365
1366  const StructType *STy = dyn_cast<StructType>(Ty);
1367  if (STy) {
1368    unsigned int alignStruct = 1;
1369    // Go through each element of the struct and find the
1370    // largest alignment.
1371    for (unsigned i=0, e=STy->getNumElements(); i != e; i++) {
1372      Type *ETy = STy->getElementType(i);
1373      unsigned int align = getOpenCLAlignment(TD, ETy);
1374      if (align > alignStruct)
1375        alignStruct = align;
1376    }
1377    return alignStruct;
1378  }
1379
1380  const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
1381  if (FTy)
1382    return TD->getPointerPrefAlignment();
1383  return TD->getPrefTypeAlignment(Ty);
1384}
1385
1386void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1387                                     int paramIndex, raw_ostream &O) {
1388  if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1389      (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
1390    O << *CurrentFnSym << "_param_" << paramIndex;
1391  else {
1392    std::string argName = I->getName();
1393    const char *p = argName.c_str();
1394    while (*p) {
1395      if (*p == '.')
1396        O << "_";
1397      else
1398        O << *p;
1399      p++;
1400    }
1401  }
1402}
1403
1404void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
1405  Function::const_arg_iterator I, E;
1406  int i = 0;
1407
1408  if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1409      (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
1410    O << *CurrentFnSym << "_param_" << paramIndex;
1411    return;
1412  }
1413
1414  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
1415    if (i==paramIndex) {
1416      printParamName(I, paramIndex, O);
1417      return;
1418    }
1419  }
1420  llvm_unreachable("paramIndex out of bound");
1421}
1422
1423void NVPTXAsmPrinter::emitFunctionParamList(const Function *F,
1424                                            raw_ostream &O) {
1425  const DataLayout *TD = TM.getDataLayout();
1426  const AttrListPtr &PAL = F->getAttributes();
1427  const TargetLowering *TLI = TM.getTargetLowering();
1428  Function::const_arg_iterator I, E;
1429  unsigned paramIndex = 0;
1430  bool first = true;
1431  bool isKernelFunc = llvm::isKernelFunction(*F);
1432  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
1433  MVT thePointerTy = TLI->getPointerTy();
1434
1435  O << "(\n";
1436
1437  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1438    const Type *Ty = I->getType();
1439
1440    if (!first)
1441      O << ",\n";
1442
1443    first = false;
1444
1445    // Handle image/sampler parameters
1446    if (llvm::isSampler(*I) || llvm::isImage(*I)) {
1447      if (llvm::isImage(*I)) {
1448        std::string sname = I->getName();
1449        if (llvm::isImageWriteOnly(*I))
1450          O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex;
1451        else // Default image is read_only
1452          O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex;
1453      }
1454      else // Should be llvm::isSampler(*I)
1455        O << "\t.param .samplerref " << *CurrentFnSym << "_param_"
1456        << paramIndex;
1457      continue;
1458    }
1459
1460    if (PAL.getParamAttributes(paramIndex+1).
1461          hasAttribute(Attributes::ByVal) == false) {
1462      // Just a scalar
1463      const PointerType *PTy = dyn_cast<PointerType>(Ty);
1464      if (isKernelFunc) {
1465        if (PTy) {
1466          // Special handling for pointer arguments to kernel
1467          O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1468
1469          if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
1470            Type *ETy = PTy->getElementType();
1471            int addrSpace = PTy->getAddressSpace();
1472            switch(addrSpace) {
1473            default:
1474              O << ".ptr ";
1475              break;
1476            case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
1477              O << ".ptr .const ";
1478              break;
1479            case llvm::ADDRESS_SPACE_SHARED:
1480              O << ".ptr .shared ";
1481              break;
1482            case llvm::ADDRESS_SPACE_GLOBAL:
1483            case llvm::ADDRESS_SPACE_CONST:
1484              O << ".ptr .global ";
1485              break;
1486            }
1487            O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " ";
1488          }
1489          printParamName(I, paramIndex, O);
1490          continue;
1491        }
1492
1493        // non-pointer scalar to kernel func
1494        O << "\t.param ."
1495            << getPTXFundamentalTypeStr(Ty) << " ";
1496        printParamName(I, paramIndex, O);
1497        continue;
1498      }
1499      // Non-kernel function, just print .param .b<size> for ABI
1500      // and .reg .b<size> for non ABY
1501      unsigned sz = 0;
1502      if (isa<IntegerType>(Ty)) {
1503        sz = cast<IntegerType>(Ty)->getBitWidth();
1504        if (sz < 32) sz = 32;
1505      }
1506      else if (isa<PointerType>(Ty))
1507        sz = thePointerTy.getSizeInBits();
1508      else
1509        sz = Ty->getPrimitiveSizeInBits();
1510      if (isABI)
1511        O << "\t.param .b" << sz << " ";
1512      else
1513        O << "\t.reg .b" << sz << " ";
1514      printParamName(I, paramIndex, O);
1515      continue;
1516    }
1517
1518    // param has byVal attribute. So should be a pointer
1519    const PointerType *PTy = dyn_cast<PointerType>(Ty);
1520    assert(PTy &&
1521           "Param with byval attribute should be a pointer type");
1522    Type *ETy = PTy->getElementType();
1523
1524    if (isABI || isKernelFunc) {
1525      // Just print .param .b8 .align <a> .param[size];
1526      // <a> = PAL.getparamalignment
1527      // size = typeallocsize of element type
1528      unsigned align = PAL.getParamAlignment(paramIndex+1);
1529      if (align == 0)
1530        align = TD->getABITypeAlignment(ETy);
1531
1532      unsigned sz = TD->getTypeAllocSize(ETy);
1533      O << "\t.param .align " << align
1534          << " .b8 ";
1535      printParamName(I, paramIndex, O);
1536      O << "[" << sz << "]";
1537      continue;
1538    } else {
1539      // Split the ETy into constituent parts and
1540      // print .param .b<size> <name> for each part.
1541      // Further, if a part is vector, print the above for
1542      // each vector element.
1543      SmallVector<EVT, 16> vtparts;
1544      ComputeValueVTs(*TLI, ETy, vtparts);
1545      for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
1546        unsigned elems = 1;
1547        EVT elemtype = vtparts[i];
1548        if (vtparts[i].isVector()) {
1549          elems = vtparts[i].getVectorNumElements();
1550          elemtype = vtparts[i].getVectorElementType();
1551        }
1552
1553        for (unsigned j=0,je=elems; j!=je; ++j) {
1554          unsigned sz = elemtype.getSizeInBits();
1555          if (elemtype.isInteger() && (sz < 32)) sz = 32;
1556          O << "\t.reg .b" << sz << " ";
1557          printParamName(I, paramIndex, O);
1558          if (j<je-1) O << ",\n";
1559          ++paramIndex;
1560        }
1561        if (i<e-1)
1562          O << ",\n";
1563      }
1564      --paramIndex;
1565      continue;
1566    }
1567  }
1568
1569  O << "\n)\n";
1570}
1571
1572void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1573                                            raw_ostream &O) {
1574  const Function *F = MF.getFunction();
1575  emitFunctionParamList(F, O);
1576}
1577
1578
1579void NVPTXAsmPrinter::
1580setAndEmitFunctionVirtualRegisters(const MachineFunction &MF) {
1581  SmallString<128> Str;
1582  raw_svector_ostream O(Str);
1583
1584  // Map the global virtual register number to a register class specific
1585  // virtual register number starting from 1 with that class.
1586  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
1587  //unsigned numRegClasses = TRI->getNumRegClasses();
1588
1589  // Emit the Fake Stack Object
1590  const MachineFrameInfo *MFI = MF.getFrameInfo();
1591  int NumBytes = (int) MFI->getStackSize();
1592  if (NumBytes) {
1593    O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t"
1594        << DEPOTNAME
1595        << getFunctionNumber() << "[" << NumBytes << "];\n";
1596    if (nvptxSubtarget.is64Bit()) {
1597      O << "\t.reg .b64 \t%SP;\n";
1598      O << "\t.reg .b64 \t%SPL;\n";
1599    }
1600    else {
1601      O << "\t.reg .b32 \t%SP;\n";
1602      O << "\t.reg .b32 \t%SPL;\n";
1603    }
1604  }
1605
1606  // Go through all virtual registers to establish the mapping between the
1607  // global virtual
1608  // register number and the per class virtual register number.
1609  // We use the per class virtual register number in the ptx output.
1610  unsigned int numVRs = MRI->getNumVirtRegs();
1611  for (unsigned i=0; i< numVRs; i++) {
1612    unsigned int vr = TRI->index2VirtReg(i);
1613    const TargetRegisterClass *RC = MRI->getRegClass(vr);
1614    std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[RC->getID()];
1615    int n = regmap.size();
1616    regmap.insert(std::make_pair(vr, n+1));
1617  }
1618
1619  // Emit register declarations
1620  // @TODO: Extract out the real register usage
1621  O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1622  O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1623  O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1624  O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1625  O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
1626  O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1627  O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
1628
1629  // Emit declaration of the virtual registers or 'physical' registers for
1630  // each register class
1631  //for (unsigned i=0; i< numRegClasses; i++) {
1632  //    std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[i];
1633  //    const TargetRegisterClass *RC = TRI->getRegClass(i);
1634  //    std::string rcname = getNVPTXRegClassName(RC);
1635  //    std::string rcStr = getNVPTXRegClassStr(RC);
1636  //    //int n = regmap.size();
1637  //    if (!isNVPTXVectorRegClass(RC)) {
1638  //      O << "\t.reg " << rcname << " \t" << rcStr << "<"
1639  //        << NVPTXNumRegisters << ">;\n";
1640  //    }
1641
1642  // Only declare those registers that may be used. And do not emit vector
1643  // registers as
1644  // they are all elementized to scalar registers.
1645  //if (n && !isNVPTXVectorRegClass(RC)) {
1646  //    if (RegAllocNilUsed) {
1647  //        O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1648  //          << ">;\n";
1649  //    }
1650  //    else {
1651  //        O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr)
1652  //          << "<" << 32 << ">;\n";
1653  //    }
1654  //}
1655  //}
1656
1657  OutStreamer.EmitRawText(O.str());
1658}
1659
1660
1661void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1662  APFloat APF = APFloat(Fp->getValueAPF());  // make a copy
1663  bool ignored;
1664  unsigned int numHex;
1665  const char *lead;
1666
1667  if (Fp->getType()->getTypeID()==Type::FloatTyID) {
1668    numHex = 8;
1669    lead = "0f";
1670    APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1671                &ignored);
1672  } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1673    numHex = 16;
1674    lead = "0d";
1675    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1676                &ignored);
1677  } else
1678    llvm_unreachable("unsupported fp type");
1679
1680  APInt API = APF.bitcastToAPInt();
1681  std::string hexstr(utohexstr(API.getZExtValue()));
1682  O << lead;
1683  if (hexstr.length() < numHex)
1684    O << std::string(numHex - hexstr.length(), '0');
1685  O << utohexstr(API.getZExtValue());
1686}
1687
1688void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) {
1689  if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1690    O << CI->getValue();
1691    return;
1692  }
1693  if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1694    printFPConstant(CFP, O);
1695    return;
1696  }
1697  if (isa<ConstantPointerNull>(CPV)) {
1698    O << "0";
1699    return;
1700  }
1701  if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1702    O << *Mang->getSymbol(GVar);
1703    return;
1704  }
1705  if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1706    Value *v = Cexpr->stripPointerCasts();
1707    if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1708      O << *Mang->getSymbol(GVar);
1709      return;
1710    } else {
1711      O << *LowerConstant(CPV, *this);
1712      return;
1713    }
1714  }
1715  llvm_unreachable("Not scalar type found in printScalarConstant()");
1716}
1717
1718
1719void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes,
1720                                   AggBuffer *aggBuffer) {
1721
1722  const DataLayout *TD = TM.getDataLayout();
1723
1724  if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1725    int s = TD->getTypeAllocSize(CPV->getType());
1726    if (s<Bytes)
1727      s = Bytes;
1728    aggBuffer->addZeros(s);
1729    return;
1730  }
1731
1732  unsigned char *ptr;
1733  switch (CPV->getType()->getTypeID()) {
1734
1735  case Type::IntegerTyID: {
1736    const Type *ETy = CPV->getType();
1737    if ( ETy == Type::getInt8Ty(CPV->getContext()) ){
1738      unsigned char c =
1739          (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1740      ptr = &c;
1741      aggBuffer->addBytes(ptr, 1, Bytes);
1742    } else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) {
1743      short int16 =
1744          (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1745      ptr = (unsigned char*)&int16;
1746      aggBuffer->addBytes(ptr, 2, Bytes);
1747    } else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) {
1748      if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1749        int int32 =(int)(constInt->getZExtValue());
1750        ptr = (unsigned char*)&int32;
1751        aggBuffer->addBytes(ptr, 4, Bytes);
1752        break;
1753      } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1754        if (ConstantInt *constInt =
1755            dyn_cast<ConstantInt>(ConstantFoldConstantExpression(
1756                Cexpr, TD))) {
1757          int int32 =(int)(constInt->getZExtValue());
1758          ptr = (unsigned char*)&int32;
1759          aggBuffer->addBytes(ptr, 4, Bytes);
1760          break;
1761        }
1762        if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1763          Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1764          aggBuffer->addSymbol(v);
1765          aggBuffer->addZeros(4);
1766          break;
1767        }
1768      }
1769      llvm_unreachable("unsupported integer const type");
1770    } else if (ETy == Type::getInt64Ty(CPV->getContext()) ) {
1771      if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1772        long long int64 =(long long)(constInt->getZExtValue());
1773        ptr = (unsigned char*)&int64;
1774        aggBuffer->addBytes(ptr, 8, Bytes);
1775        break;
1776      } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1777        if (ConstantInt *constInt = dyn_cast<ConstantInt>(
1778            ConstantFoldConstantExpression(Cexpr, TD))) {
1779          long long int64 =(long long)(constInt->getZExtValue());
1780          ptr = (unsigned char*)&int64;
1781          aggBuffer->addBytes(ptr, 8, Bytes);
1782          break;
1783        }
1784        if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1785          Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1786          aggBuffer->addSymbol(v);
1787          aggBuffer->addZeros(8);
1788          break;
1789        }
1790      }
1791      llvm_unreachable("unsupported integer const type");
1792    } else
1793      llvm_unreachable("unsupported integer const type");
1794    break;
1795  }
1796  case Type::FloatTyID:
1797  case Type::DoubleTyID: {
1798    ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1799    const Type* Ty = CFP->getType();
1800    if (Ty == Type::getFloatTy(CPV->getContext())) {
1801      float float32 = (float)CFP->getValueAPF().convertToFloat();
1802      ptr = (unsigned char*)&float32;
1803      aggBuffer->addBytes(ptr, 4, Bytes);
1804    } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1805      double float64 = CFP->getValueAPF().convertToDouble();
1806      ptr = (unsigned char*)&float64;
1807      aggBuffer->addBytes(ptr, 8, Bytes);
1808    }
1809    else {
1810      llvm_unreachable("unsupported fp const type");
1811    }
1812    break;
1813  }
1814  case Type::PointerTyID: {
1815    if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1816      aggBuffer->addSymbol(GVar);
1817    }
1818    else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1819      Value *v = Cexpr->stripPointerCasts();
1820      aggBuffer->addSymbol(v);
1821    }
1822    unsigned int s = TD->getTypeAllocSize(CPV->getType());
1823    aggBuffer->addZeros(s);
1824    break;
1825  }
1826
1827  case Type::ArrayTyID:
1828  case Type::VectorTyID:
1829  case Type::StructTyID: {
1830    if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
1831        isa<ConstantStruct>(CPV)) {
1832      int ElementSize = TD->getTypeAllocSize(CPV->getType());
1833      bufferAggregateConstant(CPV, aggBuffer);
1834      if ( Bytes > ElementSize )
1835        aggBuffer->addZeros(Bytes-ElementSize);
1836    }
1837    else if (isa<ConstantAggregateZero>(CPV))
1838      aggBuffer->addZeros(Bytes);
1839    else
1840      llvm_unreachable("Unexpected Constant type");
1841    break;
1842  }
1843
1844  default:
1845    llvm_unreachable("unsupported type");
1846  }
1847}
1848
1849void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV,
1850                                              AggBuffer *aggBuffer) {
1851  const DataLayout *TD = TM.getDataLayout();
1852  int Bytes;
1853
1854  // Old constants
1855  if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1856    if (CPV->getNumOperands())
1857      for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1858        bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1859    return;
1860  }
1861
1862  if (const ConstantDataSequential *CDS =
1863      dyn_cast<ConstantDataSequential>(CPV)) {
1864    if (CDS->getNumElements())
1865      for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1866        bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1867                     aggBuffer);
1868    return;
1869  }
1870
1871
1872  if (isa<ConstantStruct>(CPV)) {
1873    if (CPV->getNumOperands()) {
1874      StructType *ST = cast<StructType>(CPV->getType());
1875      for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1876        if ( i == (e - 1))
1877          Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
1878          TD->getTypeAllocSize(ST)
1879          - TD->getStructLayout(ST)->getElementOffset(i);
1880        else
1881          Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) -
1882          TD->getStructLayout(ST)->getElementOffset(i);
1883        bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes,
1884                     aggBuffer);
1885      }
1886    }
1887    return;
1888  }
1889  llvm_unreachable("unsupported constant type in printAggregateConstant()");
1890}
1891
1892// buildTypeNameMap - Run through symbol table looking for type names.
1893//
1894
1895
1896bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
1897
1898  std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
1899
1900  if (PI != TypeNameMap.end() &&
1901      (!PI->second.compare("struct._image1d_t") ||
1902          !PI->second.compare("struct._image2d_t") ||
1903          !PI->second.compare("struct._image3d_t")))
1904    return true;
1905
1906  return false;
1907}
1908
1909/// PrintAsmOperand - Print out an operand for an inline asm expression.
1910///
1911bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1912                                      unsigned AsmVariant,
1913                                      const char *ExtraCode,
1914                                      raw_ostream &O) {
1915  if (ExtraCode && ExtraCode[0]) {
1916    if (ExtraCode[1] != 0) return true; // Unknown modifier.
1917
1918    switch (ExtraCode[0]) {
1919    default:
1920      // See if this is a generic print operand
1921      return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
1922    case 'r':
1923      break;
1924    }
1925  }
1926
1927  printOperand(MI, OpNo, O);
1928
1929  return false;
1930}
1931
1932bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
1933                                            unsigned OpNo,
1934                                            unsigned AsmVariant,
1935                                            const char *ExtraCode,
1936                                            raw_ostream &O) {
1937  if (ExtraCode && ExtraCode[0])
1938    return true;  // Unknown modifier
1939
1940  O << '[';
1941  printMemOperand(MI, OpNo, O);
1942  O << ']';
1943
1944  return false;
1945}
1946
1947bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI)
1948{
1949  switch(MI.getOpcode()) {
1950  default:
1951    return false;
1952  case NVPTX::CallArgBeginInst:  case NVPTX::CallArgEndInst0:
1953  case NVPTX::CallArgEndInst1:  case NVPTX::CallArgF32:
1954  case NVPTX::CallArgF64:  case NVPTX::CallArgI16:
1955  case NVPTX::CallArgI32:  case NVPTX::CallArgI32imm:
1956  case NVPTX::CallArgI64:  case NVPTX::CallArgI8:
1957  case NVPTX::CallArgParam:  case NVPTX::CallVoidInst:
1958  case NVPTX::CallVoidInstReg:  case NVPTX::Callseq_End:
1959  case NVPTX::CallVoidInstReg64:
1960  case NVPTX::DeclareParamInst:  case NVPTX::DeclareRetMemInst:
1961  case NVPTX::DeclareRetRegInst:  case NVPTX::DeclareRetScalarInst:
1962  case NVPTX::DeclareScalarParamInst:  case NVPTX::DeclareScalarRegInst:
1963  case NVPTX::StoreParamF32:  case NVPTX::StoreParamF64:
1964  case NVPTX::StoreParamI16:  case NVPTX::StoreParamI32:
1965  case NVPTX::StoreParamI64:  case NVPTX::StoreParamI8:
1966  case NVPTX::StoreParamS32I8:  case NVPTX::StoreParamU32I8:
1967  case NVPTX::StoreParamS32I16:  case NVPTX::StoreParamU32I16:
1968  case NVPTX::StoreParamScalar2F32:  case NVPTX::StoreParamScalar2F64:
1969  case NVPTX::StoreParamScalar2I16:  case NVPTX::StoreParamScalar2I32:
1970  case NVPTX::StoreParamScalar2I64:  case NVPTX::StoreParamScalar2I8:
1971  case NVPTX::StoreParamScalar4F32:  case NVPTX::StoreParamScalar4I16:
1972  case NVPTX::StoreParamScalar4I32:  case NVPTX::StoreParamScalar4I8:
1973  case NVPTX::StoreParamV2F32:  case NVPTX::StoreParamV2F64:
1974  case NVPTX::StoreParamV2I16:  case NVPTX::StoreParamV2I32:
1975  case NVPTX::StoreParamV2I64:  case NVPTX::StoreParamV2I8:
1976  case NVPTX::StoreParamV4F32:  case NVPTX::StoreParamV4I16:
1977  case NVPTX::StoreParamV4I32:  case NVPTX::StoreParamV4I8:
1978  case NVPTX::StoreRetvalF32:  case NVPTX::StoreRetvalF64:
1979  case NVPTX::StoreRetvalI16:  case NVPTX::StoreRetvalI32:
1980  case NVPTX::StoreRetvalI64:  case NVPTX::StoreRetvalI8:
1981  case NVPTX::StoreRetvalScalar2F32:  case NVPTX::StoreRetvalScalar2F64:
1982  case NVPTX::StoreRetvalScalar2I16:  case NVPTX::StoreRetvalScalar2I32:
1983  case NVPTX::StoreRetvalScalar2I64:  case NVPTX::StoreRetvalScalar2I8:
1984  case NVPTX::StoreRetvalScalar4F32:  case NVPTX::StoreRetvalScalar4I16:
1985  case NVPTX::StoreRetvalScalar4I32:  case NVPTX::StoreRetvalScalar4I8:
1986  case NVPTX::StoreRetvalV2F32:  case NVPTX::StoreRetvalV2F64:
1987  case NVPTX::StoreRetvalV2I16:  case NVPTX::StoreRetvalV2I32:
1988  case NVPTX::StoreRetvalV2I64:  case NVPTX::StoreRetvalV2I8:
1989  case NVPTX::StoreRetvalV4F32:  case NVPTX::StoreRetvalV4I16:
1990  case NVPTX::StoreRetvalV4I32:  case NVPTX::StoreRetvalV4I8:
1991  case NVPTX::LastCallArgF32:  case NVPTX::LastCallArgF64:
1992  case NVPTX::LastCallArgI16:  case NVPTX::LastCallArgI32:
1993  case NVPTX::LastCallArgI32imm:  case NVPTX::LastCallArgI64:
1994  case NVPTX::LastCallArgI8:  case NVPTX::LastCallArgParam:
1995  case NVPTX::LoadParamMemF32:  case NVPTX::LoadParamMemF64:
1996  case NVPTX::LoadParamMemI16:  case NVPTX::LoadParamMemI32:
1997  case NVPTX::LoadParamMemI64:  case NVPTX::LoadParamMemI8:
1998  case NVPTX::LoadParamRegF32:  case NVPTX::LoadParamRegF64:
1999  case NVPTX::LoadParamRegI16:  case NVPTX::LoadParamRegI32:
2000  case NVPTX::LoadParamRegI64:  case NVPTX::LoadParamRegI8:
2001  case NVPTX::LoadParamScalar2F32:  case NVPTX::LoadParamScalar2F64:
2002  case NVPTX::LoadParamScalar2I16:  case NVPTX::LoadParamScalar2I32:
2003  case NVPTX::LoadParamScalar2I64:  case NVPTX::LoadParamScalar2I8:
2004  case NVPTX::LoadParamScalar4F32:  case NVPTX::LoadParamScalar4I16:
2005  case NVPTX::LoadParamScalar4I32:  case NVPTX::LoadParamScalar4I8:
2006  case NVPTX::LoadParamV2F32:  case NVPTX::LoadParamV2F64:
2007  case NVPTX::LoadParamV2I16:  case NVPTX::LoadParamV2I32:
2008  case NVPTX::LoadParamV2I64:  case NVPTX::LoadParamV2I8:
2009  case NVPTX::LoadParamV4F32:  case NVPTX::LoadParamV4I16:
2010  case NVPTX::LoadParamV4I32:  case NVPTX::LoadParamV4I8:
2011  case NVPTX::PrototypeInst:   case NVPTX::DBG_VALUE:
2012    return true;
2013  }
2014  return false;
2015}
2016
2017// Force static initialization.
2018extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
2019  RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2020  RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2021}
2022
2023
2024void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2025  std::stringstream temp;
2026  LineReader * reader = this->getReader(filename.str());
2027  temp << "\n//";
2028  temp << filename.str();
2029  temp << ":";
2030  temp << line;
2031  temp << " ";
2032  temp << reader->readLine(line);
2033  temp << "\n";
2034  this->OutStreamer.EmitRawText(Twine(temp.str()));
2035}
2036
2037
2038LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
2039  if (reader == NULL)  {
2040    reader =  new LineReader(filename);
2041  }
2042
2043  if (reader->fileName() != filename) {
2044    delete reader;
2045    reader =  new LineReader(filename);
2046  }
2047
2048  return reader;
2049}
2050
2051
2052std::string
2053LineReader::readLine(unsigned lineNum) {
2054  if (lineNum < theCurLine) {
2055    theCurLine = 0;
2056    fstr.seekg(0,std::ios::beg);
2057  }
2058  while (theCurLine < lineNum) {
2059    fstr.getline(buff,500);
2060    theCurLine++;
2061  }
2062  return buff;
2063}
2064
2065// Force static initialization.
2066extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2067  RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2068  RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2069}
2070