X86InstrInfo.cpp revision 0518970dc88e20ee40aa5eb555209180f052a4d9
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86MachineFunctionInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/MC/MCInst.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include <limits>
36
37#define GET_INSTRINFO_CTOR
38#include "X86GenInstrInfo.inc"
39
40using namespace llvm;
41
42static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44         cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47                  cl::desc("Print instructions that the allocator wants to"
48                           " fuse, but the X86 backend currently can't"),
49                  cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52                 cl::desc("Re-materialize load from stub in PIC mode"),
53                 cl::init(false), cl::Hidden);
54
55enum {
56  // Select which memory operand is being unfolded.
57  // (stored in bits 0 - 7)
58  TB_INDEX_0    = 0,
59  TB_INDEX_1    = 1,
60  TB_INDEX_2    = 2,
61  TB_INDEX_MASK = 0xff,
62
63  // Minimum alignment required for load/store.
64  // Used for RegOp->MemOp conversion.
65  // (stored in bits 8 - 15)
66  TB_ALIGN_SHIFT = 8,
67  TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
68  TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
69  TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
70  TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT,
71
72  // Do not insert the reverse map (MemOp -> RegOp) into the table.
73  // This may be needed because there is a many -> one mapping.
74  TB_NO_REVERSE   = 1 << 16,
75
76  // Do not insert the forward map (RegOp -> MemOp) into the table.
77  // This is needed for Native Client, which prohibits branch
78  // instructions from using a memory operand.
79  TB_NO_FORWARD   = 1 << 17,
80
81  TB_FOLDED_LOAD  = 1 << 18,
82  TB_FOLDED_STORE = 1 << 19
83};
84
85X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
86  : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
87                     ? X86::ADJCALLSTACKDOWN64
88                     : X86::ADJCALLSTACKDOWN32),
89                    (tm.getSubtarget<X86Subtarget>().is64Bit()
90                     ? X86::ADJCALLSTACKUP64
91                     : X86::ADJCALLSTACKUP32)),
92    TM(tm), RI(tm, *this) {
93
94  static const unsigned OpTbl2Addr[][3] = {
95    { X86::ADC32ri,     X86::ADC32mi,    0 },
96    { X86::ADC32ri8,    X86::ADC32mi8,   0 },
97    { X86::ADC32rr,     X86::ADC32mr,    0 },
98    { X86::ADC64ri32,   X86::ADC64mi32,  0 },
99    { X86::ADC64ri8,    X86::ADC64mi8,   0 },
100    { X86::ADC64rr,     X86::ADC64mr,    0 },
101    { X86::ADD16ri,     X86::ADD16mi,    0 },
102    { X86::ADD16ri8,    X86::ADD16mi8,   0 },
103    { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
104    { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
105    { X86::ADD16rr,     X86::ADD16mr,    0 },
106    { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
107    { X86::ADD32ri,     X86::ADD32mi,    0 },
108    { X86::ADD32ri8,    X86::ADD32mi8,   0 },
109    { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
110    { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
111    { X86::ADD32rr,     X86::ADD32mr,    0 },
112    { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
113    { X86::ADD64ri32,   X86::ADD64mi32,  0 },
114    { X86::ADD64ri8,    X86::ADD64mi8,   0 },
115    { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
116    { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
117    { X86::ADD64rr,     X86::ADD64mr,    0 },
118    { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
119    { X86::ADD8ri,      X86::ADD8mi,     0 },
120    { X86::ADD8rr,      X86::ADD8mr,     0 },
121    { X86::AND16ri,     X86::AND16mi,    0 },
122    { X86::AND16ri8,    X86::AND16mi8,   0 },
123    { X86::AND16rr,     X86::AND16mr,    0 },
124    { X86::AND32ri,     X86::AND32mi,    0 },
125    { X86::AND32ri8,    X86::AND32mi8,   0 },
126    { X86::AND32rr,     X86::AND32mr,    0 },
127    { X86::AND64ri32,   X86::AND64mi32,  0 },
128    { X86::AND64ri8,    X86::AND64mi8,   0 },
129    { X86::AND64rr,     X86::AND64mr,    0 },
130    { X86::AND8ri,      X86::AND8mi,     0 },
131    { X86::AND8rr,      X86::AND8mr,     0 },
132    { X86::DEC16r,      X86::DEC16m,     0 },
133    { X86::DEC32r,      X86::DEC32m,     0 },
134    { X86::DEC64_16r,   X86::DEC64_16m,  0 },
135    { X86::DEC64_32r,   X86::DEC64_32m,  0 },
136    { X86::DEC64r,      X86::DEC64m,     0 },
137    { X86::DEC8r,       X86::DEC8m,      0 },
138    { X86::INC16r,      X86::INC16m,     0 },
139    { X86::INC32r,      X86::INC32m,     0 },
140    { X86::INC64_16r,   X86::INC64_16m,  0 },
141    { X86::INC64_32r,   X86::INC64_32m,  0 },
142    { X86::INC64r,      X86::INC64m,     0 },
143    { X86::INC8r,       X86::INC8m,      0 },
144    { X86::NEG16r,      X86::NEG16m,     0 },
145    { X86::NEG32r,      X86::NEG32m,     0 },
146    { X86::NEG64r,      X86::NEG64m,     0 },
147    { X86::NEG8r,       X86::NEG8m,      0 },
148    { X86::NOT16r,      X86::NOT16m,     0 },
149    { X86::NOT32r,      X86::NOT32m,     0 },
150    { X86::NOT64r,      X86::NOT64m,     0 },
151    { X86::NOT8r,       X86::NOT8m,      0 },
152    { X86::OR16ri,      X86::OR16mi,     0 },
153    { X86::OR16ri8,     X86::OR16mi8,    0 },
154    { X86::OR16rr,      X86::OR16mr,     0 },
155    { X86::OR32ri,      X86::OR32mi,     0 },
156    { X86::OR32ri8,     X86::OR32mi8,    0 },
157    { X86::OR32rr,      X86::OR32mr,     0 },
158    { X86::OR64ri32,    X86::OR64mi32,   0 },
159    { X86::OR64ri8,     X86::OR64mi8,    0 },
160    { X86::OR64rr,      X86::OR64mr,     0 },
161    { X86::OR8ri,       X86::OR8mi,      0 },
162    { X86::OR8rr,       X86::OR8mr,      0 },
163    { X86::ROL16r1,     X86::ROL16m1,    0 },
164    { X86::ROL16rCL,    X86::ROL16mCL,   0 },
165    { X86::ROL16ri,     X86::ROL16mi,    0 },
166    { X86::ROL32r1,     X86::ROL32m1,    0 },
167    { X86::ROL32rCL,    X86::ROL32mCL,   0 },
168    { X86::ROL32ri,     X86::ROL32mi,    0 },
169    { X86::ROL64r1,     X86::ROL64m1,    0 },
170    { X86::ROL64rCL,    X86::ROL64mCL,   0 },
171    { X86::ROL64ri,     X86::ROL64mi,    0 },
172    { X86::ROL8r1,      X86::ROL8m1,     0 },
173    { X86::ROL8rCL,     X86::ROL8mCL,    0 },
174    { X86::ROL8ri,      X86::ROL8mi,     0 },
175    { X86::ROR16r1,     X86::ROR16m1,    0 },
176    { X86::ROR16rCL,    X86::ROR16mCL,   0 },
177    { X86::ROR16ri,     X86::ROR16mi,    0 },
178    { X86::ROR32r1,     X86::ROR32m1,    0 },
179    { X86::ROR32rCL,    X86::ROR32mCL,   0 },
180    { X86::ROR32ri,     X86::ROR32mi,    0 },
181    { X86::ROR64r1,     X86::ROR64m1,    0 },
182    { X86::ROR64rCL,    X86::ROR64mCL,   0 },
183    { X86::ROR64ri,     X86::ROR64mi,    0 },
184    { X86::ROR8r1,      X86::ROR8m1,     0 },
185    { X86::ROR8rCL,     X86::ROR8mCL,    0 },
186    { X86::ROR8ri,      X86::ROR8mi,     0 },
187    { X86::SAR16r1,     X86::SAR16m1,    0 },
188    { X86::SAR16rCL,    X86::SAR16mCL,   0 },
189    { X86::SAR16ri,     X86::SAR16mi,    0 },
190    { X86::SAR32r1,     X86::SAR32m1,    0 },
191    { X86::SAR32rCL,    X86::SAR32mCL,   0 },
192    { X86::SAR32ri,     X86::SAR32mi,    0 },
193    { X86::SAR64r1,     X86::SAR64m1,    0 },
194    { X86::SAR64rCL,    X86::SAR64mCL,   0 },
195    { X86::SAR64ri,     X86::SAR64mi,    0 },
196    { X86::SAR8r1,      X86::SAR8m1,     0 },
197    { X86::SAR8rCL,     X86::SAR8mCL,    0 },
198    { X86::SAR8ri,      X86::SAR8mi,     0 },
199    { X86::SBB32ri,     X86::SBB32mi,    0 },
200    { X86::SBB32ri8,    X86::SBB32mi8,   0 },
201    { X86::SBB32rr,     X86::SBB32mr,    0 },
202    { X86::SBB64ri32,   X86::SBB64mi32,  0 },
203    { X86::SBB64ri8,    X86::SBB64mi8,   0 },
204    { X86::SBB64rr,     X86::SBB64mr,    0 },
205    { X86::SHL16rCL,    X86::SHL16mCL,   0 },
206    { X86::SHL16ri,     X86::SHL16mi,    0 },
207    { X86::SHL32rCL,    X86::SHL32mCL,   0 },
208    { X86::SHL32ri,     X86::SHL32mi,    0 },
209    { X86::SHL64rCL,    X86::SHL64mCL,   0 },
210    { X86::SHL64ri,     X86::SHL64mi,    0 },
211    { X86::SHL8rCL,     X86::SHL8mCL,    0 },
212    { X86::SHL8ri,      X86::SHL8mi,     0 },
213    { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
214    { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
215    { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
216    { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
217    { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
218    { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
219    { X86::SHR16r1,     X86::SHR16m1,    0 },
220    { X86::SHR16rCL,    X86::SHR16mCL,   0 },
221    { X86::SHR16ri,     X86::SHR16mi,    0 },
222    { X86::SHR32r1,     X86::SHR32m1,    0 },
223    { X86::SHR32rCL,    X86::SHR32mCL,   0 },
224    { X86::SHR32ri,     X86::SHR32mi,    0 },
225    { X86::SHR64r1,     X86::SHR64m1,    0 },
226    { X86::SHR64rCL,    X86::SHR64mCL,   0 },
227    { X86::SHR64ri,     X86::SHR64mi,    0 },
228    { X86::SHR8r1,      X86::SHR8m1,     0 },
229    { X86::SHR8rCL,     X86::SHR8mCL,    0 },
230    { X86::SHR8ri,      X86::SHR8mi,     0 },
231    { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
232    { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
233    { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
234    { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
235    { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
236    { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
237    { X86::SUB16ri,     X86::SUB16mi,    0 },
238    { X86::SUB16ri8,    X86::SUB16mi8,   0 },
239    { X86::SUB16rr,     X86::SUB16mr,    0 },
240    { X86::SUB32ri,     X86::SUB32mi,    0 },
241    { X86::SUB32ri8,    X86::SUB32mi8,   0 },
242    { X86::SUB32rr,     X86::SUB32mr,    0 },
243    { X86::SUB64ri32,   X86::SUB64mi32,  0 },
244    { X86::SUB64ri8,    X86::SUB64mi8,   0 },
245    { X86::SUB64rr,     X86::SUB64mr,    0 },
246    { X86::SUB8ri,      X86::SUB8mi,     0 },
247    { X86::SUB8rr,      X86::SUB8mr,     0 },
248    { X86::XOR16ri,     X86::XOR16mi,    0 },
249    { X86::XOR16ri8,    X86::XOR16mi8,   0 },
250    { X86::XOR16rr,     X86::XOR16mr,    0 },
251    { X86::XOR32ri,     X86::XOR32mi,    0 },
252    { X86::XOR32ri8,    X86::XOR32mi8,   0 },
253    { X86::XOR32rr,     X86::XOR32mr,    0 },
254    { X86::XOR64ri32,   X86::XOR64mi32,  0 },
255    { X86::XOR64ri8,    X86::XOR64mi8,   0 },
256    { X86::XOR64rr,     X86::XOR64mr,    0 },
257    { X86::XOR8ri,      X86::XOR8mi,     0 },
258    { X86::XOR8rr,      X86::XOR8mr,     0 }
259  };
260
261  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
262    unsigned RegOp = OpTbl2Addr[i][0];
263    unsigned MemOp = OpTbl2Addr[i][1];
264    unsigned Flags = OpTbl2Addr[i][2];
265    AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
266                  RegOp, MemOp,
267                  // Index 0, folded load and store, no alignment requirement.
268                  Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
269  }
270
271  static const unsigned OpTbl0[][3] = {
272    { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
273    { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
274    { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
275    { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
276    { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
277    { X86::WINCALL64r,  X86::WINCALL64m,    TB_FOLDED_LOAD },
278    { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
279    { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
280    { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
281    { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
282    { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
283    { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
284    { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
285    { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
286    { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
287    { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
288    { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
289    { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
290    { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
291    { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
292    { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
293    { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
294    { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
295    { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
296    { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
297    { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
298    { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
299    { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
300    { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
301    { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
302    { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
303    { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
304    { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
305    { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
306    { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
307    { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
308    { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
309    { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
310    { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
311    { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
312    { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
313    { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
314    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
315    { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
316    { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
317    { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
318    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
319    { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
320    { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
321    { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
322    { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
323    { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
324    { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
325    { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
326    { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
327    { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
328    { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
329    { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
330    { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
331    { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
332    { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
333    { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
334    { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
335    { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
336    { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
337    { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
338    { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
339    { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
340    { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
341    { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
342    { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
343    { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
344    { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
345    { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
346    { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
347    { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
348    { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
349    { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
350    // AVX 128-bit versions of foldable instructions
351    { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
352    { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
353    { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
354    { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
355    { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
356    { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
357    { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
358    { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
359    { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
360    { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
361    { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
362    { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
363    // AVX 256-bit foldable instructions
364    { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
365    { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
366    { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
367    { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
368    { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
369  };
370
371  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
372    unsigned RegOp      = OpTbl0[i][0];
373    unsigned MemOp      = OpTbl0[i][1];
374    unsigned Flags      = OpTbl0[i][2];
375    AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
376                  RegOp, MemOp, TB_INDEX_0 | Flags);
377  }
378
379  static const unsigned OpTbl1[][3] = {
380    { X86::CMP16rr,         X86::CMP16rm,             0 },
381    { X86::CMP32rr,         X86::CMP32rm,             0 },
382    { X86::CMP64rr,         X86::CMP64rm,             0 },
383    { X86::CMP8rr,          X86::CMP8rm,              0 },
384    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
385    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
386    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
387    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
388    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
389    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
390    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
391    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
392    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
393    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
394    { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
395    { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
396    { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
397    { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
398    { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
399    { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
400    { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
401    { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
402    { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
403    { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
404    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm,      TB_ALIGN_16 },
405    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm,      TB_ALIGN_16 },
406    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm,      TB_ALIGN_16 },
407    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm,      TB_ALIGN_16 },
408    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm,      TB_ALIGN_16 },
409    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm,      0 },
410    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
411    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
412    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
413    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
414    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
415    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
416    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
417    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
418    { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
419    { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
420    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
421    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
422    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
423    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
424    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
425    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
426    { X86::MOV16rr,         X86::MOV16rm,             0 },
427    { X86::MOV32rr,         X86::MOV32rm,             0 },
428    { X86::MOV64rr,         X86::MOV64rm,             0 },
429    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
430    { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
431    { X86::MOV8rr,          X86::MOV8rm,              0 },
432    { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
433    { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
434    { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
435    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
436    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
437    { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
438    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
439    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
440    { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
441    { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
442    { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
443    { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
444    { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
445    { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
446    { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
447    { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
448    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
449    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
450    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
451    { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
452    { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
453    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
454    { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
455    { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
456    { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
457    { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
458    { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
459    { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
460    { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
461    { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
462    { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
463    { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
464    { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
465    { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
466    { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
467    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
468    { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
469    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
470    { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
471    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
472    { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
473    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
474    { X86::SQRTSDr,         X86::SQRTSDm,             0 },
475    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
476    { X86::SQRTSSr,         X86::SQRTSSm,             0 },
477    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
478    { X86::TEST16rr,        X86::TEST16rm,            0 },
479    { X86::TEST32rr,        X86::TEST32rm,            0 },
480    { X86::TEST64rr,        X86::TEST64rm,            0 },
481    { X86::TEST8rr,         X86::TEST8rm,             0 },
482    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
483    { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
484    { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
485    // AVX 128-bit versions of foldable instructions
486    { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
487    { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
488    { X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm,     TB_ALIGN_16 },
489    { X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm,     TB_ALIGN_16 },
490    { X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm,     TB_ALIGN_16 },
491    { X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm,     TB_ALIGN_16 },
492    { X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm,     TB_ALIGN_16 },
493    { X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm,     0 },
494    { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
495    { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
496    { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
497    { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
498    { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
499    { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
500    { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
501    { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
502    { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
503    { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
504    { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
505    { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
506    { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
507    { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
508    { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
509    { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
510    { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
511    { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
512    { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
513    { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
514    { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
515    { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
516    { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
517    { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
518    { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
519    { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
520    { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
521    { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
522    { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
523    { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
524    { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
525    { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
526    { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
527    { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
528    { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
529    // AVX 256-bit foldable instructions
530    { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
531    { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
532    { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_16 },
533    { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
534    { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
535    // AVX2 foldable instructions
536    { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_16 },
537    { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_16 },
538    { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_16 },
539    { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_16 },
540    { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_16 },
541    { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_16 }
542  };
543
544  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
545    unsigned RegOp = OpTbl1[i][0];
546    unsigned MemOp = OpTbl1[i][1];
547    unsigned Flags = OpTbl1[i][2];
548    AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
549                  RegOp, MemOp,
550                  // Index 1, folded load
551                  Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
552  }
553
554  static const unsigned OpTbl2[][3] = {
555    { X86::ADC32rr,         X86::ADC32rm,       0 },
556    { X86::ADC64rr,         X86::ADC64rm,       0 },
557    { X86::ADD16rr,         X86::ADD16rm,       0 },
558    { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
559    { X86::ADD32rr,         X86::ADD32rm,       0 },
560    { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
561    { X86::ADD64rr,         X86::ADD64rm,       0 },
562    { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
563    { X86::ADD8rr,          X86::ADD8rm,        0 },
564    { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
565    { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
566    { X86::ADDSDrr,         X86::ADDSDrm,       0 },
567    { X86::ADDSSrr,         X86::ADDSSrm,       0 },
568    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
569    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
570    { X86::AND16rr,         X86::AND16rm,       0 },
571    { X86::AND32rr,         X86::AND32rm,       0 },
572    { X86::AND64rr,         X86::AND64rm,       0 },
573    { X86::AND8rr,          X86::AND8rm,        0 },
574    { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
575    { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
576    { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
577    { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
578    { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
579    { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
580    { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
581    { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
582    { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
583    { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
584    { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
585    { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
586    { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
587    { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
588    { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
589    { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
590    { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
591    { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
592    { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
593    { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
594    { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
595    { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
596    { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
597    { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
598    { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
599    { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
600    { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
601    { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
602    { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
603    { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
604    { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
605    { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
606    { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
607    { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
608    { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
609    { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
610    { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
611    { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
612    { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
613    { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
614    { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
615    { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
616    { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
617    { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
618    { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
619    { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
620    { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
621    { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
622    { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
623    { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
624    { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
625    { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
626    { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
627    { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
628    { X86::CMPSDrr,         X86::CMPSDrm,       0 },
629    { X86::CMPSSrr,         X86::CMPSSrm,       0 },
630    { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
631    { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
632    { X86::DIVSDrr,         X86::DIVSDrm,       0 },
633    { X86::DIVSSrr,         X86::DIVSSrm,       0 },
634    { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
635    { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
636    { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
637    { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
638    { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
639    { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
640    { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
641    { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
642    { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
643    { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
644    { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
645    { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
646    { X86::IMUL16rr,        X86::IMUL16rm,      0 },
647    { X86::IMUL32rr,        X86::IMUL32rm,      0 },
648    { X86::IMUL64rr,        X86::IMUL64rm,      0 },
649    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
650    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
651    { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
652    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
653    { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
654    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
655    { X86::MAXSDrr,         X86::MAXSDrm,       0 },
656    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
657    { X86::MAXSSrr,         X86::MAXSSrm,       0 },
658    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
659    { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
660    { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
661    { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
662    { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
663    { X86::MINSDrr,         X86::MINSDrm,       0 },
664    { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
665    { X86::MINSSrr,         X86::MINSSrm,       0 },
666    { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
667    { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
668    { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
669    { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
670    { X86::MULSDrr,         X86::MULSDrm,       0 },
671    { X86::MULSSrr,         X86::MULSSrm,       0 },
672    { X86::OR16rr,          X86::OR16rm,        0 },
673    { X86::OR32rr,          X86::OR32rm,        0 },
674    { X86::OR64rr,          X86::OR64rm,        0 },
675    { X86::OR8rr,           X86::OR8rm,         0 },
676    { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
677    { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
678    { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
679    { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
680    { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
681    { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
682    { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
683    { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
684    { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
685    { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
686    { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
687    { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
688    { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
689    { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
690    { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
691    { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
692    { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
693    { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
694    { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
695    { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
696    { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
697    { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
698    { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
699    { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
700    { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
701    { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
702    { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
703    { X86::PHADDDrr128,     X86::PHADDDrm128,   TB_ALIGN_16 },
704    { X86::PHADDWrr128,     X86::PHADDWrm128,   TB_ALIGN_16 },
705    { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
706    { X86::PHSUBDrr128,     X86::PHSUBDrm128,   TB_ALIGN_16 },
707    { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
708    { X86::PHSUBWrr128,     X86::PHSUBWrm128,   TB_ALIGN_16 },
709    { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
710    { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
711    { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
712    { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
713    { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
714    { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
715    { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
716    { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
717    { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
718    { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
719    { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
720    { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
721    { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
722    { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
723    { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
724    { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
725    { X86::PSHUFBrr128,     X86::PSHUFBrm128,   TB_ALIGN_16 },
726    { X86::PSIGNBrr128,     X86::PSIGNBrm128,   TB_ALIGN_16 },
727    { X86::PSIGNWrr128,     X86::PSIGNWrm128,   TB_ALIGN_16 },
728    { X86::PSIGNDrr128,     X86::PSIGNDrm128,   TB_ALIGN_16 },
729    { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
730    { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
731    { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
732    { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
733    { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
734    { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
735    { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
736    { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
737    { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
738    { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
739    { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
740    { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
741    { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
742    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
743    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
744    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
745    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
746    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
747    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
748    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
749    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
750    { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
751    { X86::SBB32rr,         X86::SBB32rm,       0 },
752    { X86::SBB64rr,         X86::SBB64rm,       0 },
753    { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
754    { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
755    { X86::SUB16rr,         X86::SUB16rm,       0 },
756    { X86::SUB32rr,         X86::SUB32rm,       0 },
757    { X86::SUB64rr,         X86::SUB64rm,       0 },
758    { X86::SUB8rr,          X86::SUB8rm,        0 },
759    { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
760    { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
761    { X86::SUBSDrr,         X86::SUBSDrm,       0 },
762    { X86::SUBSSrr,         X86::SUBSSrm,       0 },
763    // FIXME: TEST*rr -> swapped operand of TEST*mr.
764    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
765    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
766    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
767    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
768    { X86::XOR16rr,         X86::XOR16rm,       0 },
769    { X86::XOR32rr,         X86::XOR32rm,       0 },
770    { X86::XOR64rr,         X86::XOR64rm,       0 },
771    { X86::XOR8rr,          X86::XOR8rm,        0 },
772    { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
773    { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
774    // AVX 128-bit versions of foldable instructions
775    { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
776    { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
777    { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
778    { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
779    { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
780    { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
781    { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
782    { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
783    { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
784    { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
785    { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
786    { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
787    { X86::VCVTTSD2SI64rr,    X86::VCVTTSD2SI64rm,     0 },
788    { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 },
789    { X86::VCVTTSD2SIrr,      X86::VCVTTSD2SIrm,       0 },
790    { X86::Int_VCVTTSD2SIrr,  X86::Int_VCVTTSD2SIrm,   0 },
791    { X86::VCVTTSS2SI64rr,    X86::VCVTTSS2SI64rm,     0 },
792    { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 },
793    { X86::VCVTTSS2SIrr,      X86::VCVTTSS2SIrm,       0 },
794    { X86::Int_VCVTTSS2SIrr,  X86::Int_VCVTTSS2SIrm,   0 },
795    { X86::VCVTSD2SI64rr,     X86::VCVTSD2SI64rm,      0 },
796    { X86::VCVTSD2SIrr,       X86::VCVTSD2SIrm,        0 },
797    { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQrm,       TB_ALIGN_16 },
798    { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 },
799    { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
800    { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
801    { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
802    { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 },
803    { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 },
804    { X86::VADDSDrr,          X86::VADDSDrm,           0 },
805    { X86::VADDSSrr,          X86::VADDSSrm,           0 },
806    { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 },
807    { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 },
808    { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 },
809    { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 },
810    { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 },
811    { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 },
812    { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 },
813    { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 },
814    { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
815    { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
816    { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 },
817    { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 },
818    { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
819    { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
820    { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
821    { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
822    { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
823    { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
824    { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
825    { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
826    { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
827    { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
828    { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
829    { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
830    { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
831    { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
832    { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
833    { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
834    { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
835    { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
836    { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
837    { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
838    { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
839    { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
840    { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
841    { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
842    { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
843    { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
844    { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
845    { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
846    { X86::VMINSDrr,          X86::VMINSDrm,           0 },
847    { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
848    { X86::VMINSSrr,          X86::VMINSSrm,           0 },
849    { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
850    { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
851    { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
852    { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
853    { X86::VMULSDrr,          X86::VMULSDrm,           0 },
854    { X86::VMULSSrr,          X86::VMULSSrm,           0 },
855    { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 },
856    { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 },
857    { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 },
858    { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 },
859    { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        TB_ALIGN_16 },
860    { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 },
861    { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 },
862    { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 },
863    { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 },
864    { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 },
865    { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 },
866    { X86::VPADDUSBrr,        X86::VPADDUSBrm,         TB_ALIGN_16 },
867    { X86::VPADDUSWrr,        X86::VPADDUSWrm,         TB_ALIGN_16 },
868    { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 },
869    { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      TB_ALIGN_16 },
870    { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 },
871    { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 },
872    { X86::VPAVGBrr,          X86::VPAVGBrm,           TB_ALIGN_16 },
873    { X86::VPAVGWrr,          X86::VPAVGWrm,           TB_ALIGN_16 },
874    { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 },
875    { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 },
876    { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         TB_ALIGN_16 },
877    { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 },
878    { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 },
879    { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 },
880    { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         TB_ALIGN_16 },
881    { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 },
882    { X86::VPHADDDrr128,      X86::VPHADDDrm128,       TB_ALIGN_16 },
883    { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      TB_ALIGN_16 },
884    { X86::VPHADDWrr128,      X86::VPHADDWrm128,       TB_ALIGN_16 },
885    { X86::VPHSUBDrr128,      X86::VPHSUBDrm128,       TB_ALIGN_16 },
886    { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      TB_ALIGN_16 },
887    { X86::VPHSUBWrr128,      X86::VPHSUBWrm128,       TB_ALIGN_16 },
888    { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 },
889    { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    TB_ALIGN_16 },
890    { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 },
891    { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 },
892    { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 },
893    { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 },
894    { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 },
895    { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 },
896    { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     TB_ALIGN_16 },
897    { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 },
898    { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 },
899    { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 },
900    { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 },
901    { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 },
902    { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 },
903    { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 },
904    { X86::VPSHUFBrr128,      X86::VPSHUFBrm128,       TB_ALIGN_16 },
905    { X86::VPSIGNBrr128,      X86::VPSIGNBrm128,       TB_ALIGN_16 },
906    { X86::VPSIGNWrr128,      X86::VPSIGNWrm128,       TB_ALIGN_16 },
907    { X86::VPSIGNDrr128,      X86::VPSIGNDrm128,       TB_ALIGN_16 },
908    { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 },
909    { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 },
910    { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 },
911    { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 },
912    { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 },
913    { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 },
914    { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 },
915    { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 },
916    { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 },
917    { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 },
918    { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 },
919    { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 },
920    { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 },
921    { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 },
922    { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 },
923    { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 },
924    { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 },
925    { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 },
926    { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 },
927    { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 },
928    { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 },
929    { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 },
930    { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 },
931    { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 },
932    { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 },
933    { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 },
934    { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
935    { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
936    { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 },
937    { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 },
938    { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 },
939    { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 },
940    { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 },
941    { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 },
942    // AVX2 foldable instructions
943    { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       TB_ALIGN_16 },
944    { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       TB_ALIGN_16 },
945    { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       TB_ALIGN_16 },
946    { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       TB_ALIGN_16 },
947    { X86::VPADDBYrr,         X86::VPADDBYrm,          TB_ALIGN_16 },
948    { X86::VPADDDYrr,         X86::VPADDDYrm,          TB_ALIGN_16 },
949    { X86::VPADDQYrr,         X86::VPADDQYrm,          TB_ALIGN_16 },
950    { X86::VPADDSBYrr,        X86::VPADDSBYrm,         TB_ALIGN_16 },
951    { X86::VPADDSWYrr,        X86::VPADDSWYrm,         TB_ALIGN_16 },
952    { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        TB_ALIGN_16 },
953    { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        TB_ALIGN_16 },
954    { X86::VPADDWYrr,         X86::VPADDWYrm,          TB_ALIGN_16 },
955    { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      TB_ALIGN_16 },
956    { X86::VPANDNYrr,         X86::VPANDNYrm,          TB_ALIGN_16 },
957    { X86::VPANDYrr,          X86::VPANDYrm,           TB_ALIGN_16 },
958    { X86::VPAVGBYrr,         X86::VPAVGBYrm,          TB_ALIGN_16 },
959    { X86::VPAVGWYrr,         X86::VPAVGWYrm,          TB_ALIGN_16 },
960    { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        TB_ALIGN_16 },
961    { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        TB_ALIGN_16 },
962    { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        TB_ALIGN_16 },
963    { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        TB_ALIGN_16 },
964    { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        TB_ALIGN_16 },
965    { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        TB_ALIGN_16 },
966    { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        TB_ALIGN_16 },
967    { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        TB_ALIGN_16 },
968    { X86::VPHADDDrr256,      X86::VPHADDDrm256,       TB_ALIGN_16 },
969    { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      TB_ALIGN_16 },
970    { X86::VPHADDWrr256,      X86::VPHADDWrm256,       TB_ALIGN_16 },
971    { X86::VPHSUBDrr256,      X86::VPHSUBDrm256,       TB_ALIGN_16 },
972    { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      TB_ALIGN_16 },
973    { X86::VPHSUBWrr256,      X86::VPHSUBWrm256,       TB_ALIGN_16 },
974    { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    TB_ALIGN_16 },
975    { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        TB_ALIGN_16 },
976    { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         TB_ALIGN_16 },
977    { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         TB_ALIGN_16 },
978    { X86::VPMINSWYrr,        X86::VPMINSWYrm,         TB_ALIGN_16 },
979    { X86::VPMINUBYrr,        X86::VPMINUBYrm,         TB_ALIGN_16 },
980    { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       TB_ALIGN_16 },
981    { X86::VPMULDQYrr,        X86::VPMULDQYrm,         TB_ALIGN_16 },
982    { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     TB_ALIGN_16 },
983    { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        TB_ALIGN_16 },
984    { X86::VPMULHWYrr,        X86::VPMULHWYrm,         TB_ALIGN_16 },
985    { X86::VPMULLDYrr,        X86::VPMULLDYrm,         TB_ALIGN_16 },
986    { X86::VPMULLWYrr,        X86::VPMULLWYrm,         TB_ALIGN_16 },
987    { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        TB_ALIGN_16 },
988    { X86::VPORYrr,           X86::VPORYrm,            TB_ALIGN_16 },
989    { X86::VPSADBWYrr,        X86::VPSADBWYrm,         TB_ALIGN_16 },
990    { X86::VPSHUFBrr256,      X86::VPSHUFBrm256,       TB_ALIGN_16 },
991    { X86::VPSIGNBrr256,      X86::VPSIGNBrm256,       TB_ALIGN_16 },
992    { X86::VPSIGNWrr256,      X86::VPSIGNWrm256,       TB_ALIGN_16 },
993    { X86::VPSIGNDrr256,      X86::VPSIGNDrm256,       TB_ALIGN_16 },
994    { X86::VPSLLDYrr,         X86::VPSLLDYrm,          TB_ALIGN_16 },
995    { X86::VPSLLQYrr,         X86::VPSLLQYrm,          TB_ALIGN_16 },
996    { X86::VPSLLWYrr,         X86::VPSLLWYrm,          TB_ALIGN_16 },
997    { X86::VPSLLVDrr,         X86::VPSLLVDrm,          TB_ALIGN_16 },
998    { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         TB_ALIGN_16 },
999    { X86::VPSLLVQrr,         X86::VPSLLVQrm,          TB_ALIGN_16 },
1000    { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         TB_ALIGN_16 },
1001    { X86::VPSRADYrr,         X86::VPSRADYrm,          TB_ALIGN_16 },
1002    { X86::VPSRAWYrr,         X86::VPSRAWYrm,          TB_ALIGN_16 },
1003    { X86::VPSRAVDrr,         X86::VPSRAVDrm,          TB_ALIGN_16 },
1004    { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         TB_ALIGN_16 },
1005    { X86::VPSRLDYrr,         X86::VPSRLDYrm,          TB_ALIGN_16 },
1006    { X86::VPSRLQYrr,         X86::VPSRLQYrm,          TB_ALIGN_16 },
1007    { X86::VPSRLWYrr,         X86::VPSRLWYrm,          TB_ALIGN_16 },
1008    { X86::VPSRLVDrr,         X86::VPSRLVDrm,          TB_ALIGN_16 },
1009    { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         TB_ALIGN_16 },
1010    { X86::VPSRLVQrr,         X86::VPSRLVQrm,          TB_ALIGN_16 },
1011    { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         TB_ALIGN_16 },
1012    { X86::VPSUBBYrr,         X86::VPSUBBYrm,          TB_ALIGN_16 },
1013    { X86::VPSUBDYrr,         X86::VPSUBDYrm,          TB_ALIGN_16 },
1014    { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         TB_ALIGN_16 },
1015    { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         TB_ALIGN_16 },
1016    { X86::VPSUBWYrr,         X86::VPSUBWYrm,          TB_ALIGN_16 },
1017    { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      TB_ALIGN_16 },
1018    { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      TB_ALIGN_16 },
1019    { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     TB_ALIGN_16 },
1020    { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      TB_ALIGN_16 },
1021    { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      TB_ALIGN_16 },
1022    { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      TB_ALIGN_16 },
1023    { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     TB_ALIGN_16 },
1024    { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      TB_ALIGN_16 },
1025    { X86::VPXORYrr,          X86::VPXORYrm,           TB_ALIGN_16 },
1026    // FIXME: add AVX 256-bit foldable instructions
1027  };
1028
1029  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
1030    unsigned RegOp = OpTbl2[i][0];
1031    unsigned MemOp = OpTbl2[i][1];
1032    unsigned Flags = OpTbl2[i][2];
1033    AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
1034                  RegOp, MemOp,
1035                  // Index 2, folded load
1036                  Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
1037  }
1038}
1039
1040void
1041X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
1042                            MemOp2RegOpTableType &M2RTable,
1043                            unsigned RegOp, unsigned MemOp, unsigned Flags) {
1044    if ((Flags & TB_NO_FORWARD) == 0) {
1045      assert(!R2MTable.count(RegOp) && "Duplicate entry!");
1046      R2MTable[RegOp] = std::make_pair(MemOp, Flags);
1047    }
1048    if ((Flags & TB_NO_REVERSE) == 0) {
1049      assert(!M2RTable.count(MemOp) &&
1050           "Duplicated entries in unfolding maps?");
1051      M2RTable[MemOp] = std::make_pair(RegOp, Flags);
1052    }
1053}
1054
1055bool
1056X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1057                                    unsigned &SrcReg, unsigned &DstReg,
1058                                    unsigned &SubIdx) const {
1059  switch (MI.getOpcode()) {
1060  default: break;
1061  case X86::MOVSX16rr8:
1062  case X86::MOVZX16rr8:
1063  case X86::MOVSX32rr8:
1064  case X86::MOVZX32rr8:
1065  case X86::MOVSX64rr8:
1066  case X86::MOVZX64rr8:
1067    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
1068      // It's not always legal to reference the low 8-bit of the larger
1069      // register in 32-bit mode.
1070      return false;
1071  case X86::MOVSX32rr16:
1072  case X86::MOVZX32rr16:
1073  case X86::MOVSX64rr16:
1074  case X86::MOVZX64rr16:
1075  case X86::MOVSX64rr32:
1076  case X86::MOVZX64rr32: {
1077    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
1078      // Be conservative.
1079      return false;
1080    SrcReg = MI.getOperand(1).getReg();
1081    DstReg = MI.getOperand(0).getReg();
1082    switch (MI.getOpcode()) {
1083    default:
1084      llvm_unreachable(0);
1085      break;
1086    case X86::MOVSX16rr8:
1087    case X86::MOVZX16rr8:
1088    case X86::MOVSX32rr8:
1089    case X86::MOVZX32rr8:
1090    case X86::MOVSX64rr8:
1091    case X86::MOVZX64rr8:
1092      SubIdx = X86::sub_8bit;
1093      break;
1094    case X86::MOVSX32rr16:
1095    case X86::MOVZX32rr16:
1096    case X86::MOVSX64rr16:
1097    case X86::MOVZX64rr16:
1098      SubIdx = X86::sub_16bit;
1099      break;
1100    case X86::MOVSX64rr32:
1101    case X86::MOVZX64rr32:
1102      SubIdx = X86::sub_32bit;
1103      break;
1104    }
1105    return true;
1106  }
1107  }
1108  return false;
1109}
1110
1111/// isFrameOperand - Return true and the FrameIndex if the specified
1112/// operand and follow operands form a reference to the stack frame.
1113bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
1114                                  int &FrameIndex) const {
1115  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
1116      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
1117      MI->getOperand(Op+1).getImm() == 1 &&
1118      MI->getOperand(Op+2).getReg() == 0 &&
1119      MI->getOperand(Op+3).getImm() == 0) {
1120    FrameIndex = MI->getOperand(Op).getIndex();
1121    return true;
1122  }
1123  return false;
1124}
1125
1126static bool isFrameLoadOpcode(int Opcode) {
1127  switch (Opcode) {
1128  default: break;
1129  case X86::MOV8rm:
1130  case X86::MOV16rm:
1131  case X86::MOV32rm:
1132  case X86::MOV64rm:
1133  case X86::LD_Fp64m:
1134  case X86::MOVSSrm:
1135  case X86::MOVSDrm:
1136  case X86::MOVAPSrm:
1137  case X86::MOVAPDrm:
1138  case X86::MOVDQArm:
1139  case X86::VMOVSSrm:
1140  case X86::VMOVSDrm:
1141  case X86::VMOVAPSrm:
1142  case X86::VMOVAPDrm:
1143  case X86::VMOVDQArm:
1144  case X86::VMOVAPSYrm:
1145  case X86::VMOVAPDYrm:
1146  case X86::VMOVDQAYrm:
1147  case X86::MMX_MOVD64rm:
1148  case X86::MMX_MOVQ64rm:
1149    return true;
1150    break;
1151  }
1152  return false;
1153}
1154
1155static bool isFrameStoreOpcode(int Opcode) {
1156  switch (Opcode) {
1157  default: break;
1158  case X86::MOV8mr:
1159  case X86::MOV16mr:
1160  case X86::MOV32mr:
1161  case X86::MOV64mr:
1162  case X86::ST_FpP64m:
1163  case X86::MOVSSmr:
1164  case X86::MOVSDmr:
1165  case X86::MOVAPSmr:
1166  case X86::MOVAPDmr:
1167  case X86::MOVDQAmr:
1168  case X86::VMOVSSmr:
1169  case X86::VMOVSDmr:
1170  case X86::VMOVAPSmr:
1171  case X86::VMOVAPDmr:
1172  case X86::VMOVDQAmr:
1173  case X86::VMOVAPSYmr:
1174  case X86::VMOVAPDYmr:
1175  case X86::VMOVDQAYmr:
1176  case X86::MMX_MOVD64mr:
1177  case X86::MMX_MOVQ64mr:
1178  case X86::MMX_MOVNTQmr:
1179    return true;
1180  }
1181  return false;
1182}
1183
1184unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1185                                           int &FrameIndex) const {
1186  if (isFrameLoadOpcode(MI->getOpcode()))
1187    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
1188      return MI->getOperand(0).getReg();
1189  return 0;
1190}
1191
1192unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1193                                                 int &FrameIndex) const {
1194  if (isFrameLoadOpcode(MI->getOpcode())) {
1195    unsigned Reg;
1196    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
1197      return Reg;
1198    // Check for post-frame index elimination operations
1199    const MachineMemOperand *Dummy;
1200    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1201  }
1202  return 0;
1203}
1204
1205unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1206                                          int &FrameIndex) const {
1207  if (isFrameStoreOpcode(MI->getOpcode()))
1208    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
1209        isFrameOperand(MI, 0, FrameIndex))
1210      return MI->getOperand(X86::AddrNumOperands).getReg();
1211  return 0;
1212}
1213
1214unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1215                                                int &FrameIndex) const {
1216  if (isFrameStoreOpcode(MI->getOpcode())) {
1217    unsigned Reg;
1218    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
1219      return Reg;
1220    // Check for post-frame index elimination operations
1221    const MachineMemOperand *Dummy;
1222    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
1223  }
1224  return 0;
1225}
1226
1227/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
1228/// X86::MOVPC32r.
1229static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
1230  bool isPICBase = false;
1231  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1232         E = MRI.def_end(); I != E; ++I) {
1233    MachineInstr *DefMI = I.getOperand().getParent();
1234    if (DefMI->getOpcode() != X86::MOVPC32r)
1235      return false;
1236    assert(!isPICBase && "More than one PIC base?");
1237    isPICBase = true;
1238  }
1239  return isPICBase;
1240}
1241
1242bool
1243X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
1244                                                AliasAnalysis *AA) const {
1245  switch (MI->getOpcode()) {
1246  default: break;
1247    case X86::MOV8rm:
1248    case X86::MOV16rm:
1249    case X86::MOV32rm:
1250    case X86::MOV64rm:
1251    case X86::LD_Fp64m:
1252    case X86::MOVSSrm:
1253    case X86::MOVSDrm:
1254    case X86::MOVAPSrm:
1255    case X86::MOVUPSrm:
1256    case X86::MOVAPDrm:
1257    case X86::MOVDQArm:
1258    case X86::VMOVSSrm:
1259    case X86::VMOVSDrm:
1260    case X86::VMOVAPSrm:
1261    case X86::VMOVUPSrm:
1262    case X86::VMOVAPDrm:
1263    case X86::VMOVDQArm:
1264    case X86::VMOVAPSYrm:
1265    case X86::VMOVUPSYrm:
1266    case X86::VMOVAPDYrm:
1267    case X86::VMOVDQAYrm:
1268    case X86::MMX_MOVD64rm:
1269    case X86::MMX_MOVQ64rm:
1270    case X86::FsVMOVAPSrm:
1271    case X86::FsVMOVAPDrm:
1272    case X86::FsMOVAPSrm:
1273    case X86::FsMOVAPDrm: {
1274      // Loads from constant pools are trivially rematerializable.
1275      if (MI->getOperand(1).isReg() &&
1276          MI->getOperand(2).isImm() &&
1277          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1278          MI->isInvariantLoad(AA)) {
1279        unsigned BaseReg = MI->getOperand(1).getReg();
1280        if (BaseReg == 0 || BaseReg == X86::RIP)
1281          return true;
1282        // Allow re-materialization of PIC load.
1283        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
1284          return false;
1285        const MachineFunction &MF = *MI->getParent()->getParent();
1286        const MachineRegisterInfo &MRI = MF.getRegInfo();
1287        bool isPICBase = false;
1288        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
1289               E = MRI.def_end(); I != E; ++I) {
1290          MachineInstr *DefMI = I.getOperand().getParent();
1291          if (DefMI->getOpcode() != X86::MOVPC32r)
1292            return false;
1293          assert(!isPICBase && "More than one PIC base?");
1294          isPICBase = true;
1295        }
1296        return isPICBase;
1297      }
1298      return false;
1299    }
1300
1301     case X86::LEA32r:
1302     case X86::LEA64r: {
1303       if (MI->getOperand(2).isImm() &&
1304           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
1305           !MI->getOperand(4).isReg()) {
1306         // lea fi#, lea GV, etc. are all rematerializable.
1307         if (!MI->getOperand(1).isReg())
1308           return true;
1309         unsigned BaseReg = MI->getOperand(1).getReg();
1310         if (BaseReg == 0)
1311           return true;
1312         // Allow re-materialization of lea PICBase + x.
1313         const MachineFunction &MF = *MI->getParent()->getParent();
1314         const MachineRegisterInfo &MRI = MF.getRegInfo();
1315         return regIsPICBase(BaseReg, MRI);
1316       }
1317       return false;
1318     }
1319  }
1320
1321  // All other instructions marked M_REMATERIALIZABLE are always trivially
1322  // rematerializable.
1323  return true;
1324}
1325
1326/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
1327/// would clobber the EFLAGS condition register. Note the result may be
1328/// conservative. If it cannot definitely determine the safety after visiting
1329/// a few instructions in each direction it assumes it's not safe.
1330static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
1331                                  MachineBasicBlock::iterator I) {
1332  MachineBasicBlock::iterator E = MBB.end();
1333
1334  // For compile time consideration, if we are not able to determine the
1335  // safety after visiting 4 instructions in each direction, we will assume
1336  // it's not safe.
1337  MachineBasicBlock::iterator Iter = I;
1338  for (unsigned i = 0; Iter != E && i < 4; ++i) {
1339    bool SeenDef = false;
1340    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1341      MachineOperand &MO = Iter->getOperand(j);
1342      if (!MO.isReg())
1343        continue;
1344      if (MO.getReg() == X86::EFLAGS) {
1345        if (MO.isUse())
1346          return false;
1347        SeenDef = true;
1348      }
1349    }
1350
1351    if (SeenDef)
1352      // This instruction defines EFLAGS, no need to look any further.
1353      return true;
1354    ++Iter;
1355    // Skip over DBG_VALUE.
1356    while (Iter != E && Iter->isDebugValue())
1357      ++Iter;
1358  }
1359
1360  // It is safe to clobber EFLAGS at the end of a block of no successor has it
1361  // live in.
1362  if (Iter == E) {
1363    for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
1364           SE = MBB.succ_end(); SI != SE; ++SI)
1365      if ((*SI)->isLiveIn(X86::EFLAGS))
1366        return false;
1367    return true;
1368  }
1369
1370  MachineBasicBlock::iterator B = MBB.begin();
1371  Iter = I;
1372  for (unsigned i = 0; i < 4; ++i) {
1373    // If we make it to the beginning of the block, it's safe to clobber
1374    // EFLAGS iff EFLAGS is not live-in.
1375    if (Iter == B)
1376      return !MBB.isLiveIn(X86::EFLAGS);
1377
1378    --Iter;
1379    // Skip over DBG_VALUE.
1380    while (Iter != B && Iter->isDebugValue())
1381      --Iter;
1382
1383    bool SawKill = false;
1384    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1385      MachineOperand &MO = Iter->getOperand(j);
1386      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1387        if (MO.isDef()) return MO.isDead();
1388        if (MO.isKill()) SawKill = true;
1389      }
1390    }
1391
1392    if (SawKill)
1393      // This instruction kills EFLAGS and doesn't redefine it, so
1394      // there's no need to look further.
1395      return true;
1396  }
1397
1398  // Conservative answer.
1399  return false;
1400}
1401
1402void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1403                                 MachineBasicBlock::iterator I,
1404                                 unsigned DestReg, unsigned SubIdx,
1405                                 const MachineInstr *Orig,
1406                                 const TargetRegisterInfo &TRI) const {
1407  DebugLoc DL = Orig->getDebugLoc();
1408
1409  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1410  // Re-materialize them as movri instructions to avoid side effects.
1411  bool Clone = true;
1412  unsigned Opc = Orig->getOpcode();
1413  switch (Opc) {
1414  default: break;
1415  case X86::MOV8r0:
1416  case X86::MOV16r0:
1417  case X86::MOV32r0:
1418  case X86::MOV64r0: {
1419    if (!isSafeToClobberEFLAGS(MBB, I)) {
1420      switch (Opc) {
1421      default: break;
1422      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1423      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1424      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1425      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1426      }
1427      Clone = false;
1428    }
1429    break;
1430  }
1431  }
1432
1433  if (Clone) {
1434    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1435    MBB.insert(I, MI);
1436  } else {
1437    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1438  }
1439
1440  MachineInstr *NewMI = prior(I);
1441  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1442}
1443
1444/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1445/// is not marked dead.
1446static bool hasLiveCondCodeDef(MachineInstr *MI) {
1447  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1448    MachineOperand &MO = MI->getOperand(i);
1449    if (MO.isReg() && MO.isDef() &&
1450        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1451      return true;
1452    }
1453  }
1454  return false;
1455}
1456
1457/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1458/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1459/// to a 32-bit superregister and then truncating back down to a 16-bit
1460/// subregister.
1461MachineInstr *
1462X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1463                                           MachineFunction::iterator &MFI,
1464                                           MachineBasicBlock::iterator &MBBI,
1465                                           LiveVariables *LV) const {
1466  MachineInstr *MI = MBBI;
1467  unsigned Dest = MI->getOperand(0).getReg();
1468  unsigned Src = MI->getOperand(1).getReg();
1469  bool isDead = MI->getOperand(0).isDead();
1470  bool isKill = MI->getOperand(1).isKill();
1471
1472  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1473    ? X86::LEA64_32r : X86::LEA32r;
1474  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1475  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1476  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1477
1478  // Build and insert into an implicit UNDEF value. This is OK because
1479  // well be shifting and then extracting the lower 16-bits.
1480  // This has the potential to cause partial register stall. e.g.
1481  //   movw    (%rbp,%rcx,2), %dx
1482  //   leal    -65(%rdx), %esi
1483  // But testing has shown this *does* help performance in 64-bit mode (at
1484  // least on modern x86 machines).
1485  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1486  MachineInstr *InsMI =
1487    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1488    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1489    .addReg(Src, getKillRegState(isKill));
1490
1491  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1492                                    get(Opc), leaOutReg);
1493  switch (MIOpc) {
1494  default:
1495    llvm_unreachable(0);
1496    break;
1497  case X86::SHL16ri: {
1498    unsigned ShAmt = MI->getOperand(2).getImm();
1499    MIB.addReg(0).addImm(1 << ShAmt)
1500       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1501    break;
1502  }
1503  case X86::INC16r:
1504  case X86::INC64_16r:
1505    addRegOffset(MIB, leaInReg, true, 1);
1506    break;
1507  case X86::DEC16r:
1508  case X86::DEC64_16r:
1509    addRegOffset(MIB, leaInReg, true, -1);
1510    break;
1511  case X86::ADD16ri:
1512  case X86::ADD16ri8:
1513  case X86::ADD16ri_DB:
1514  case X86::ADD16ri8_DB:
1515    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1516    break;
1517  case X86::ADD16rr:
1518  case X86::ADD16rr_DB: {
1519    unsigned Src2 = MI->getOperand(2).getReg();
1520    bool isKill2 = MI->getOperand(2).isKill();
1521    unsigned leaInReg2 = 0;
1522    MachineInstr *InsMI2 = 0;
1523    if (Src == Src2) {
1524      // ADD16rr %reg1028<kill>, %reg1028
1525      // just a single insert_subreg.
1526      addRegReg(MIB, leaInReg, true, leaInReg, false);
1527    } else {
1528      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1529      // Build and insert into an implicit UNDEF value. This is OK because
1530      // well be shifting and then extracting the lower 16-bits.
1531      BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
1532      InsMI2 =
1533        BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1534        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1535        .addReg(Src2, getKillRegState(isKill2));
1536      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1537    }
1538    if (LV && isKill2 && InsMI2)
1539      LV->replaceKillInstruction(Src2, MI, InsMI2);
1540    break;
1541  }
1542  }
1543
1544  MachineInstr *NewMI = MIB;
1545  MachineInstr *ExtMI =
1546    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1547    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1548    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1549
1550  if (LV) {
1551    // Update live variables
1552    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1553    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1554    if (isKill)
1555      LV->replaceKillInstruction(Src, MI, InsMI);
1556    if (isDead)
1557      LV->replaceKillInstruction(Dest, MI, ExtMI);
1558  }
1559
1560  return ExtMI;
1561}
1562
1563/// convertToThreeAddress - This method must be implemented by targets that
1564/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1565/// may be able to convert a two-address instruction into a true
1566/// three-address instruction on demand.  This allows the X86 target (for
1567/// example) to convert ADD and SHL instructions into LEA instructions if they
1568/// would require register copies due to two-addressness.
1569///
1570/// This method returns a null pointer if the transformation cannot be
1571/// performed, otherwise it returns the new instruction.
1572///
1573MachineInstr *
1574X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1575                                    MachineBasicBlock::iterator &MBBI,
1576                                    LiveVariables *LV) const {
1577  MachineInstr *MI = MBBI;
1578  MachineFunction &MF = *MI->getParent()->getParent();
1579  // All instructions input are two-addr instructions.  Get the known operands.
1580  unsigned Dest = MI->getOperand(0).getReg();
1581  unsigned Src = MI->getOperand(1).getReg();
1582  bool isDead = MI->getOperand(0).isDead();
1583  bool isKill = MI->getOperand(1).isKill();
1584
1585  MachineInstr *NewMI = NULL;
1586  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1587  // we have better subtarget support, enable the 16-bit LEA generation here.
1588  // 16-bit LEA is also slow on Core2.
1589  bool DisableLEA16 = true;
1590  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1591
1592  unsigned MIOpc = MI->getOpcode();
1593  switch (MIOpc) {
1594  case X86::SHUFPSrri: {
1595    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1596    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1597
1598    unsigned B = MI->getOperand(1).getReg();
1599    unsigned C = MI->getOperand(2).getReg();
1600    if (B != C) return 0;
1601    unsigned A = MI->getOperand(0).getReg();
1602    unsigned M = MI->getOperand(3).getImm();
1603    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1604      .addReg(A, RegState::Define | getDeadRegState(isDead))
1605      .addReg(B, getKillRegState(isKill)).addImm(M);
1606    break;
1607  }
1608  case X86::SHUFPDrri: {
1609    assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
1610    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1611
1612    unsigned B = MI->getOperand(1).getReg();
1613    unsigned C = MI->getOperand(2).getReg();
1614    if (B != C) return 0;
1615    unsigned A = MI->getOperand(0).getReg();
1616    unsigned M = MI->getOperand(3).getImm();
1617
1618    // Convert to PSHUFD mask.
1619    M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
1620
1621    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1622      .addReg(A, RegState::Define | getDeadRegState(isDead))
1623      .addReg(B, getKillRegState(isKill)).addImm(M);
1624    break;
1625  }
1626  case X86::SHL64ri: {
1627    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1628    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1629    // the flags produced by a shift yet, so this is safe.
1630    unsigned ShAmt = MI->getOperand(2).getImm();
1631    if (ShAmt == 0 || ShAmt >= 4) return 0;
1632
1633    // LEA can't handle RSP.
1634    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1635        !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1636      return 0;
1637
1638    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1639      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1640      .addReg(0).addImm(1 << ShAmt)
1641      .addReg(Src, getKillRegState(isKill))
1642      .addImm(0).addReg(0);
1643    break;
1644  }
1645  case X86::SHL32ri: {
1646    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1647    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1648    // the flags produced by a shift yet, so this is safe.
1649    unsigned ShAmt = MI->getOperand(2).getImm();
1650    if (ShAmt == 0 || ShAmt >= 4) return 0;
1651
1652    // LEA can't handle ESP.
1653    if (TargetRegisterInfo::isVirtualRegister(Src) &&
1654        !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1655      return 0;
1656
1657    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1658    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1659      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1660      .addReg(0).addImm(1 << ShAmt)
1661      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1662    break;
1663  }
1664  case X86::SHL16ri: {
1665    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1666    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1667    // the flags produced by a shift yet, so this is safe.
1668    unsigned ShAmt = MI->getOperand(2).getImm();
1669    if (ShAmt == 0 || ShAmt >= 4) return 0;
1670
1671    if (DisableLEA16)
1672      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1673    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1674      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1675      .addReg(0).addImm(1 << ShAmt)
1676      .addReg(Src, getKillRegState(isKill))
1677      .addImm(0).addReg(0);
1678    break;
1679  }
1680  default: {
1681    // The following opcodes also sets the condition code register(s). Only
1682    // convert them to equivalent lea if the condition code register def's
1683    // are dead!
1684    if (hasLiveCondCodeDef(MI))
1685      return 0;
1686
1687    switch (MIOpc) {
1688    default: return 0;
1689    case X86::INC64r:
1690    case X86::INC32r:
1691    case X86::INC64_32r: {
1692      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1693      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1694        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1695
1696      // LEA can't handle RSP.
1697      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1698          !MF.getRegInfo().constrainRegClass(Src,
1699                            MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1700                                                   X86::GR32_NOSPRegisterClass))
1701        return 0;
1702
1703      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1704                              .addReg(Dest, RegState::Define |
1705                                      getDeadRegState(isDead)),
1706                              Src, isKill, 1);
1707      break;
1708    }
1709    case X86::INC16r:
1710    case X86::INC64_16r:
1711      if (DisableLEA16)
1712        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1713      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1714      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1715                           .addReg(Dest, RegState::Define |
1716                                   getDeadRegState(isDead)),
1717                           Src, isKill, 1);
1718      break;
1719    case X86::DEC64r:
1720    case X86::DEC32r:
1721    case X86::DEC64_32r: {
1722      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1723      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1724        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1725      // LEA can't handle RSP.
1726      if (TargetRegisterInfo::isVirtualRegister(Src) &&
1727          !MF.getRegInfo().constrainRegClass(Src,
1728                            MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1729                                                   X86::GR32_NOSPRegisterClass))
1730        return 0;
1731
1732      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1733                              .addReg(Dest, RegState::Define |
1734                                      getDeadRegState(isDead)),
1735                              Src, isKill, -1);
1736      break;
1737    }
1738    case X86::DEC16r:
1739    case X86::DEC64_16r:
1740      if (DisableLEA16)
1741        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1742      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1743      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1744                           .addReg(Dest, RegState::Define |
1745                                   getDeadRegState(isDead)),
1746                           Src, isKill, -1);
1747      break;
1748    case X86::ADD64rr:
1749    case X86::ADD64rr_DB:
1750    case X86::ADD32rr:
1751    case X86::ADD32rr_DB: {
1752      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1753      unsigned Opc;
1754      TargetRegisterClass *RC;
1755      if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1756        Opc = X86::LEA64r;
1757        RC = X86::GR64_NOSPRegisterClass;
1758      } else {
1759        Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1760        RC = X86::GR32_NOSPRegisterClass;
1761      }
1762
1763
1764      unsigned Src2 = MI->getOperand(2).getReg();
1765      bool isKill2 = MI->getOperand(2).isKill();
1766
1767      // LEA can't handle RSP.
1768      if (TargetRegisterInfo::isVirtualRegister(Src2) &&
1769          !MF.getRegInfo().constrainRegClass(Src2, RC))
1770        return 0;
1771
1772      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1773                        .addReg(Dest, RegState::Define |
1774                                getDeadRegState(isDead)),
1775                        Src, isKill, Src2, isKill2);
1776      if (LV && isKill2)
1777        LV->replaceKillInstruction(Src2, MI, NewMI);
1778      break;
1779    }
1780    case X86::ADD16rr:
1781    case X86::ADD16rr_DB: {
1782      if (DisableLEA16)
1783        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1784      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1785      unsigned Src2 = MI->getOperand(2).getReg();
1786      bool isKill2 = MI->getOperand(2).isKill();
1787      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1788                        .addReg(Dest, RegState::Define |
1789                                getDeadRegState(isDead)),
1790                        Src, isKill, Src2, isKill2);
1791      if (LV && isKill2)
1792        LV->replaceKillInstruction(Src2, MI, NewMI);
1793      break;
1794    }
1795    case X86::ADD64ri32:
1796    case X86::ADD64ri8:
1797    case X86::ADD64ri32_DB:
1798    case X86::ADD64ri8_DB:
1799      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1800      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1801                              .addReg(Dest, RegState::Define |
1802                                      getDeadRegState(isDead)),
1803                              Src, isKill, MI->getOperand(2).getImm());
1804      break;
1805    case X86::ADD32ri:
1806    case X86::ADD32ri8:
1807    case X86::ADD32ri_DB:
1808    case X86::ADD32ri8_DB: {
1809      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1810      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1811      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1812                              .addReg(Dest, RegState::Define |
1813                                      getDeadRegState(isDead)),
1814                                Src, isKill, MI->getOperand(2).getImm());
1815      break;
1816    }
1817    case X86::ADD16ri:
1818    case X86::ADD16ri8:
1819    case X86::ADD16ri_DB:
1820    case X86::ADD16ri8_DB:
1821      if (DisableLEA16)
1822        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1823      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1824      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1825                              .addReg(Dest, RegState::Define |
1826                                      getDeadRegState(isDead)),
1827                              Src, isKill, MI->getOperand(2).getImm());
1828      break;
1829    }
1830  }
1831  }
1832
1833  if (!NewMI) return 0;
1834
1835  if (LV) {  // Update live variables
1836    if (isKill)
1837      LV->replaceKillInstruction(Src, MI, NewMI);
1838    if (isDead)
1839      LV->replaceKillInstruction(Dest, MI, NewMI);
1840  }
1841
1842  MFI->insert(MBBI, NewMI);          // Insert the new inst
1843  return NewMI;
1844}
1845
1846/// commuteInstruction - We have a few instructions that must be hacked on to
1847/// commute them.
1848///
1849MachineInstr *
1850X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1851  switch (MI->getOpcode()) {
1852  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1853  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1854  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1855  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1856  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1857  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1858    unsigned Opc;
1859    unsigned Size;
1860    switch (MI->getOpcode()) {
1861    default: llvm_unreachable("Unreachable!");
1862    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1863    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1864    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1865    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1866    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1867    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1868    }
1869    unsigned Amt = MI->getOperand(3).getImm();
1870    if (NewMI) {
1871      MachineFunction &MF = *MI->getParent()->getParent();
1872      MI = MF.CloneMachineInstr(MI);
1873      NewMI = false;
1874    }
1875    MI->setDesc(get(Opc));
1876    MI->getOperand(3).setImm(Size-Amt);
1877    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1878  }
1879  case X86::CMOVB16rr:
1880  case X86::CMOVB32rr:
1881  case X86::CMOVB64rr:
1882  case X86::CMOVAE16rr:
1883  case X86::CMOVAE32rr:
1884  case X86::CMOVAE64rr:
1885  case X86::CMOVE16rr:
1886  case X86::CMOVE32rr:
1887  case X86::CMOVE64rr:
1888  case X86::CMOVNE16rr:
1889  case X86::CMOVNE32rr:
1890  case X86::CMOVNE64rr:
1891  case X86::CMOVBE16rr:
1892  case X86::CMOVBE32rr:
1893  case X86::CMOVBE64rr:
1894  case X86::CMOVA16rr:
1895  case X86::CMOVA32rr:
1896  case X86::CMOVA64rr:
1897  case X86::CMOVL16rr:
1898  case X86::CMOVL32rr:
1899  case X86::CMOVL64rr:
1900  case X86::CMOVGE16rr:
1901  case X86::CMOVGE32rr:
1902  case X86::CMOVGE64rr:
1903  case X86::CMOVLE16rr:
1904  case X86::CMOVLE32rr:
1905  case X86::CMOVLE64rr:
1906  case X86::CMOVG16rr:
1907  case X86::CMOVG32rr:
1908  case X86::CMOVG64rr:
1909  case X86::CMOVS16rr:
1910  case X86::CMOVS32rr:
1911  case X86::CMOVS64rr:
1912  case X86::CMOVNS16rr:
1913  case X86::CMOVNS32rr:
1914  case X86::CMOVNS64rr:
1915  case X86::CMOVP16rr:
1916  case X86::CMOVP32rr:
1917  case X86::CMOVP64rr:
1918  case X86::CMOVNP16rr:
1919  case X86::CMOVNP32rr:
1920  case X86::CMOVNP64rr:
1921  case X86::CMOVO16rr:
1922  case X86::CMOVO32rr:
1923  case X86::CMOVO64rr:
1924  case X86::CMOVNO16rr:
1925  case X86::CMOVNO32rr:
1926  case X86::CMOVNO64rr: {
1927    unsigned Opc = 0;
1928    switch (MI->getOpcode()) {
1929    default: break;
1930    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1931    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1932    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1933    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1934    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1935    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1936    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1937    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1938    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1939    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1940    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1941    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1942    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1943    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1944    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1945    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1946    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1947    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1948    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1949    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1950    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1951    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1952    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1953    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1954    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1955    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1956    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1957    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1958    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1959    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1960    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1961    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1962    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1963    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1964    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1965    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1966    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1967    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1968    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1969    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1970    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1971    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1972    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1973    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1974    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1975    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1976    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1977    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1978    }
1979    if (NewMI) {
1980      MachineFunction &MF = *MI->getParent()->getParent();
1981      MI = MF.CloneMachineInstr(MI);
1982      NewMI = false;
1983    }
1984    MI->setDesc(get(Opc));
1985    // Fallthrough intended.
1986  }
1987  default:
1988    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1989  }
1990}
1991
1992static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1993  switch (BrOpc) {
1994  default: return X86::COND_INVALID;
1995  case X86::JE_4:  return X86::COND_E;
1996  case X86::JNE_4: return X86::COND_NE;
1997  case X86::JL_4:  return X86::COND_L;
1998  case X86::JLE_4: return X86::COND_LE;
1999  case X86::JG_4:  return X86::COND_G;
2000  case X86::JGE_4: return X86::COND_GE;
2001  case X86::JB_4:  return X86::COND_B;
2002  case X86::JBE_4: return X86::COND_BE;
2003  case X86::JA_4:  return X86::COND_A;
2004  case X86::JAE_4: return X86::COND_AE;
2005  case X86::JS_4:  return X86::COND_S;
2006  case X86::JNS_4: return X86::COND_NS;
2007  case X86::JP_4:  return X86::COND_P;
2008  case X86::JNP_4: return X86::COND_NP;
2009  case X86::JO_4:  return X86::COND_O;
2010  case X86::JNO_4: return X86::COND_NO;
2011  }
2012}
2013
2014unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2015  switch (CC) {
2016  default: llvm_unreachable("Illegal condition code!");
2017  case X86::COND_E:  return X86::JE_4;
2018  case X86::COND_NE: return X86::JNE_4;
2019  case X86::COND_L:  return X86::JL_4;
2020  case X86::COND_LE: return X86::JLE_4;
2021  case X86::COND_G:  return X86::JG_4;
2022  case X86::COND_GE: return X86::JGE_4;
2023  case X86::COND_B:  return X86::JB_4;
2024  case X86::COND_BE: return X86::JBE_4;
2025  case X86::COND_A:  return X86::JA_4;
2026  case X86::COND_AE: return X86::JAE_4;
2027  case X86::COND_S:  return X86::JS_4;
2028  case X86::COND_NS: return X86::JNS_4;
2029  case X86::COND_P:  return X86::JP_4;
2030  case X86::COND_NP: return X86::JNP_4;
2031  case X86::COND_O:  return X86::JO_4;
2032  case X86::COND_NO: return X86::JNO_4;
2033  }
2034}
2035
2036/// GetOppositeBranchCondition - Return the inverse of the specified condition,
2037/// e.g. turning COND_E to COND_NE.
2038X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2039  switch (CC) {
2040  default: llvm_unreachable("Illegal condition code!");
2041  case X86::COND_E:  return X86::COND_NE;
2042  case X86::COND_NE: return X86::COND_E;
2043  case X86::COND_L:  return X86::COND_GE;
2044  case X86::COND_LE: return X86::COND_G;
2045  case X86::COND_G:  return X86::COND_LE;
2046  case X86::COND_GE: return X86::COND_L;
2047  case X86::COND_B:  return X86::COND_AE;
2048  case X86::COND_BE: return X86::COND_A;
2049  case X86::COND_A:  return X86::COND_BE;
2050  case X86::COND_AE: return X86::COND_B;
2051  case X86::COND_S:  return X86::COND_NS;
2052  case X86::COND_NS: return X86::COND_S;
2053  case X86::COND_P:  return X86::COND_NP;
2054  case X86::COND_NP: return X86::COND_P;
2055  case X86::COND_O:  return X86::COND_NO;
2056  case X86::COND_NO: return X86::COND_O;
2057  }
2058}
2059
2060bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
2061  if (!MI->isTerminator()) return false;
2062
2063  // Conditional branch is a special case.
2064  if (MI->isBranch() && !MI->isBarrier())
2065    return true;
2066  if (!MI->isPredicable())
2067    return true;
2068  return !isPredicated(MI);
2069}
2070
2071bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
2072                                 MachineBasicBlock *&TBB,
2073                                 MachineBasicBlock *&FBB,
2074                                 SmallVectorImpl<MachineOperand> &Cond,
2075                                 bool AllowModify) const {
2076  // Start from the bottom of the block and work up, examining the
2077  // terminator instructions.
2078  MachineBasicBlock::iterator I = MBB.end();
2079  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2080  while (I != MBB.begin()) {
2081    --I;
2082    if (I->isDebugValue())
2083      continue;
2084
2085    // Working from the bottom, when we see a non-terminator instruction, we're
2086    // done.
2087    if (!isUnpredicatedTerminator(I))
2088      break;
2089
2090    // A terminator that isn't a branch can't easily be handled by this
2091    // analysis.
2092    if (!I->isBranch())
2093      return true;
2094
2095    // Handle unconditional branches.
2096    if (I->getOpcode() == X86::JMP_4) {
2097      UnCondBrIter = I;
2098
2099      if (!AllowModify) {
2100        TBB = I->getOperand(0).getMBB();
2101        continue;
2102      }
2103
2104      // If the block has any instructions after a JMP, delete them.
2105      while (llvm::next(I) != MBB.end())
2106        llvm::next(I)->eraseFromParent();
2107
2108      Cond.clear();
2109      FBB = 0;
2110
2111      // Delete the JMP if it's equivalent to a fall-through.
2112      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2113        TBB = 0;
2114        I->eraseFromParent();
2115        I = MBB.end();
2116        UnCondBrIter = MBB.end();
2117        continue;
2118      }
2119
2120      // TBB is used to indicate the unconditional destination.
2121      TBB = I->getOperand(0).getMBB();
2122      continue;
2123    }
2124
2125    // Handle conditional branches.
2126    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
2127    if (BranchCode == X86::COND_INVALID)
2128      return true;  // Can't handle indirect branch.
2129
2130    // Working from the bottom, handle the first conditional branch.
2131    if (Cond.empty()) {
2132      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2133      if (AllowModify && UnCondBrIter != MBB.end() &&
2134          MBB.isLayoutSuccessor(TargetBB)) {
2135        // If we can modify the code and it ends in something like:
2136        //
2137        //     jCC L1
2138        //     jmp L2
2139        //   L1:
2140        //     ...
2141        //   L2:
2142        //
2143        // Then we can change this to:
2144        //
2145        //     jnCC L2
2146        //   L1:
2147        //     ...
2148        //   L2:
2149        //
2150        // Which is a bit more efficient.
2151        // We conditionally jump to the fall-through block.
2152        BranchCode = GetOppositeBranchCondition(BranchCode);
2153        unsigned JNCC = GetCondBranchFromCond(BranchCode);
2154        MachineBasicBlock::iterator OldInst = I;
2155
2156        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2157          .addMBB(UnCondBrIter->getOperand(0).getMBB());
2158        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
2159          .addMBB(TargetBB);
2160
2161        OldInst->eraseFromParent();
2162        UnCondBrIter->eraseFromParent();
2163
2164        // Restart the analysis.
2165        UnCondBrIter = MBB.end();
2166        I = MBB.end();
2167        continue;
2168      }
2169
2170      FBB = TBB;
2171      TBB = I->getOperand(0).getMBB();
2172      Cond.push_back(MachineOperand::CreateImm(BranchCode));
2173      continue;
2174    }
2175
2176    // Handle subsequent conditional branches. Only handle the case where all
2177    // conditional branches branch to the same destination and their condition
2178    // opcodes fit one of the special multi-branch idioms.
2179    assert(Cond.size() == 1);
2180    assert(TBB);
2181
2182    // Only handle the case where all conditional branches branch to the same
2183    // destination.
2184    if (TBB != I->getOperand(0).getMBB())
2185      return true;
2186
2187    // If the conditions are the same, we can leave them alone.
2188    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2189    if (OldBranchCode == BranchCode)
2190      continue;
2191
2192    // If they differ, see if they fit one of the known patterns. Theoretically,
2193    // we could handle more patterns here, but we shouldn't expect to see them
2194    // if instruction selection has done a reasonable job.
2195    if ((OldBranchCode == X86::COND_NP &&
2196         BranchCode == X86::COND_E) ||
2197        (OldBranchCode == X86::COND_E &&
2198         BranchCode == X86::COND_NP))
2199      BranchCode = X86::COND_NP_OR_E;
2200    else if ((OldBranchCode == X86::COND_P &&
2201              BranchCode == X86::COND_NE) ||
2202             (OldBranchCode == X86::COND_NE &&
2203              BranchCode == X86::COND_P))
2204      BranchCode = X86::COND_NE_OR_P;
2205    else
2206      return true;
2207
2208    // Update the MachineOperand.
2209    Cond[0].setImm(BranchCode);
2210  }
2211
2212  return false;
2213}
2214
2215unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
2216  MachineBasicBlock::iterator I = MBB.end();
2217  unsigned Count = 0;
2218
2219  while (I != MBB.begin()) {
2220    --I;
2221    if (I->isDebugValue())
2222      continue;
2223    if (I->getOpcode() != X86::JMP_4 &&
2224        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2225      break;
2226    // Remove the branch.
2227    I->eraseFromParent();
2228    I = MBB.end();
2229    ++Count;
2230  }
2231
2232  return Count;
2233}
2234
2235unsigned
2236X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
2237                           MachineBasicBlock *FBB,
2238                           const SmallVectorImpl<MachineOperand> &Cond,
2239                           DebugLoc DL) const {
2240  // Shouldn't be a fall through.
2241  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
2242  assert((Cond.size() == 1 || Cond.size() == 0) &&
2243         "X86 branch conditions have one component!");
2244
2245  if (Cond.empty()) {
2246    // Unconditional branch?
2247    assert(!FBB && "Unconditional branch with multiple successors!");
2248    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
2249    return 1;
2250  }
2251
2252  // Conditional branch.
2253  unsigned Count = 0;
2254  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2255  switch (CC) {
2256  case X86::COND_NP_OR_E:
2257    // Synthesize NP_OR_E with two branches.
2258    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
2259    ++Count;
2260    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
2261    ++Count;
2262    break;
2263  case X86::COND_NE_OR_P:
2264    // Synthesize NE_OR_P with two branches.
2265    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
2266    ++Count;
2267    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
2268    ++Count;
2269    break;
2270  default: {
2271    unsigned Opc = GetCondBranchFromCond(CC);
2272    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2273    ++Count;
2274  }
2275  }
2276  if (FBB) {
2277    // Two-way Conditional branch. Insert the second branch.
2278    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
2279    ++Count;
2280  }
2281  return Count;
2282}
2283
2284/// isHReg - Test if the given register is a physical h register.
2285static bool isHReg(unsigned Reg) {
2286  return X86::GR8_ABCD_HRegClass.contains(Reg);
2287}
2288
2289// Try and copy between VR128/VR64 and GR64 registers.
2290static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2291                                        bool HasAVX) {
2292  // SrcReg(VR128) -> DestReg(GR64)
2293  // SrcReg(VR64)  -> DestReg(GR64)
2294  // SrcReg(GR64)  -> DestReg(VR128)
2295  // SrcReg(GR64)  -> DestReg(VR64)
2296
2297  if (X86::GR64RegClass.contains(DestReg)) {
2298    if (X86::VR128RegClass.contains(SrcReg)) {
2299      // Copy from a VR128 register to a GR64 register.
2300      return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
2301    } else if (X86::VR64RegClass.contains(SrcReg)) {
2302      // Copy from a VR64 register to a GR64 register.
2303      return X86::MOVSDto64rr;
2304    }
2305  } else if (X86::GR64RegClass.contains(SrcReg)) {
2306    // Copy from a GR64 register to a VR128 register.
2307    if (X86::VR128RegClass.contains(DestReg))
2308      return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
2309    // Copy from a GR64 register to a VR64 register.
2310    else if (X86::VR64RegClass.contains(DestReg))
2311      return X86::MOV64toSDrr;
2312  }
2313
2314  // SrcReg(FR32) -> DestReg(GR32)
2315  // SrcReg(GR32) -> DestReg(FR32)
2316
2317  if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
2318      // Copy from a FR32 register to a GR32 register.
2319      return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
2320
2321  if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
2322      // Copy from a GR32 register to a FR32 register.
2323      return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
2324
2325  return 0;
2326}
2327
2328void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
2329                               MachineBasicBlock::iterator MI, DebugLoc DL,
2330                               unsigned DestReg, unsigned SrcReg,
2331                               bool KillSrc) const {
2332  // First deal with the normal symmetric copies.
2333  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2334  unsigned Opc = 0;
2335  if (X86::GR64RegClass.contains(DestReg, SrcReg))
2336    Opc = X86::MOV64rr;
2337  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
2338    Opc = X86::MOV32rr;
2339  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
2340    Opc = X86::MOV16rr;
2341  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
2342    // Copying to or from a physical H register on x86-64 requires a NOREX
2343    // move.  Otherwise use a normal move.
2344    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
2345        TM.getSubtarget<X86Subtarget>().is64Bit()) {
2346      Opc = X86::MOV8rr_NOREX;
2347      // Both operands must be encodable without an REX prefix.
2348      assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
2349             "8-bit H register can not be copied outside GR8_NOREX");
2350    } else
2351      Opc = X86::MOV8rr;
2352  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
2353    Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
2354  else if (X86::VR256RegClass.contains(DestReg, SrcReg))
2355    Opc = X86::VMOVAPSYrr;
2356  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
2357    Opc = X86::MMX_MOVQ64rr;
2358  else
2359    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
2360
2361  if (Opc) {
2362    BuildMI(MBB, MI, DL, get(Opc), DestReg)
2363      .addReg(SrcReg, getKillRegState(KillSrc));
2364    return;
2365  }
2366
2367  // Moving EFLAGS to / from another register requires a push and a pop.
2368  if (SrcReg == X86::EFLAGS) {
2369    if (X86::GR64RegClass.contains(DestReg)) {
2370      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
2371      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
2372      return;
2373    } else if (X86::GR32RegClass.contains(DestReg)) {
2374      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
2375      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
2376      return;
2377    }
2378  }
2379  if (DestReg == X86::EFLAGS) {
2380    if (X86::GR64RegClass.contains(SrcReg)) {
2381      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
2382        .addReg(SrcReg, getKillRegState(KillSrc));
2383      BuildMI(MBB, MI, DL, get(X86::POPF64));
2384      return;
2385    } else if (X86::GR32RegClass.contains(SrcReg)) {
2386      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
2387        .addReg(SrcReg, getKillRegState(KillSrc));
2388      BuildMI(MBB, MI, DL, get(X86::POPF32));
2389      return;
2390    }
2391  }
2392
2393  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2394               << " to " << RI.getName(DestReg) << '\n');
2395  llvm_unreachable("Cannot emit physreg copy instruction");
2396}
2397
2398static unsigned getLoadStoreRegOpcode(unsigned Reg,
2399                                      const TargetRegisterClass *RC,
2400                                      bool isStackAligned,
2401                                      const TargetMachine &TM,
2402                                      bool load) {
2403  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2404  switch (RC->getSize()) {
2405  default:
2406    llvm_unreachable("Unknown spill size");
2407  case 1:
2408    assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
2409    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2410      // Copying to or from a physical H register on x86-64 requires a NOREX
2411      // move.  Otherwise use a normal move.
2412      if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2413        return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2414    return load ? X86::MOV8rm : X86::MOV8mr;
2415  case 2:
2416    assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2417    return load ? X86::MOV16rm : X86::MOV16mr;
2418  case 4:
2419    if (X86::GR32RegClass.hasSubClassEq(RC))
2420      return load ? X86::MOV32rm : X86::MOV32mr;
2421    if (X86::FR32RegClass.hasSubClassEq(RC))
2422      return load ?
2423        (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
2424        (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
2425    if (X86::RFP32RegClass.hasSubClassEq(RC))
2426      return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2427    llvm_unreachable("Unknown 4-byte regclass");
2428  case 8:
2429    if (X86::GR64RegClass.hasSubClassEq(RC))
2430      return load ? X86::MOV64rm : X86::MOV64mr;
2431    if (X86::FR64RegClass.hasSubClassEq(RC))
2432      return load ?
2433        (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
2434        (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
2435    if (X86::VR64RegClass.hasSubClassEq(RC))
2436      return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2437    if (X86::RFP64RegClass.hasSubClassEq(RC))
2438      return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2439    llvm_unreachable("Unknown 8-byte regclass");
2440  case 10:
2441    assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
2442    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
2443  case 16: {
2444    assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
2445    // If stack is realigned we can use aligned stores.
2446    if (isStackAligned)
2447      return load ?
2448        (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2449        (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
2450    else
2451      return load ?
2452        (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2453        (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2454  }
2455  case 32:
2456    assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2457    // If stack is realigned we can use aligned stores.
2458    if (isStackAligned)
2459      return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2460    else
2461      return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
2462  }
2463}
2464
2465static unsigned getStoreRegOpcode(unsigned SrcReg,
2466                                  const TargetRegisterClass *RC,
2467                                  bool isStackAligned,
2468                                  TargetMachine &TM) {
2469  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2470}
2471
2472
2473static unsigned getLoadRegOpcode(unsigned DestReg,
2474                                 const TargetRegisterClass *RC,
2475                                 bool isStackAligned,
2476                                 const TargetMachine &TM) {
2477  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2478}
2479
2480void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2481                                       MachineBasicBlock::iterator MI,
2482                                       unsigned SrcReg, bool isKill, int FrameIdx,
2483                                       const TargetRegisterClass *RC,
2484                                       const TargetRegisterInfo *TRI) const {
2485  const MachineFunction &MF = *MBB.getParent();
2486  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2487         "Stack slot too small for store");
2488  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2489  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2490    RI.canRealignStack(MF);
2491  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2492  DebugLoc DL = MBB.findDebugLoc(MI);
2493  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2494    .addReg(SrcReg, getKillRegState(isKill));
2495}
2496
2497void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2498                                  bool isKill,
2499                                  SmallVectorImpl<MachineOperand> &Addr,
2500                                  const TargetRegisterClass *RC,
2501                                  MachineInstr::mmo_iterator MMOBegin,
2502                                  MachineInstr::mmo_iterator MMOEnd,
2503                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2504  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2505  bool isAligned = MMOBegin != MMOEnd &&
2506                   (*MMOBegin)->getAlignment() >= Alignment;
2507  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2508  DebugLoc DL;
2509  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2510  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2511    MIB.addOperand(Addr[i]);
2512  MIB.addReg(SrcReg, getKillRegState(isKill));
2513  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2514  NewMIs.push_back(MIB);
2515}
2516
2517
2518void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2519                                        MachineBasicBlock::iterator MI,
2520                                        unsigned DestReg, int FrameIdx,
2521                                        const TargetRegisterClass *RC,
2522                                        const TargetRegisterInfo *TRI) const {
2523  const MachineFunction &MF = *MBB.getParent();
2524  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2525  bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
2526    RI.canRealignStack(MF);
2527  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2528  DebugLoc DL = MBB.findDebugLoc(MI);
2529  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2530}
2531
2532void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2533                                 SmallVectorImpl<MachineOperand> &Addr,
2534                                 const TargetRegisterClass *RC,
2535                                 MachineInstr::mmo_iterator MMOBegin,
2536                                 MachineInstr::mmo_iterator MMOEnd,
2537                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2538  unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
2539  bool isAligned = MMOBegin != MMOEnd &&
2540                   (*MMOBegin)->getAlignment() >= Alignment;
2541  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2542  DebugLoc DL;
2543  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2544  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2545    MIB.addOperand(Addr[i]);
2546  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2547  NewMIs.push_back(MIB);
2548}
2549
2550/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
2551/// instruction with two undef reads of the register being defined.  This is
2552/// used for mapping:
2553///   %xmm4 = V_SET0
2554/// to:
2555///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
2556///
2557static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
2558  assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
2559  unsigned Reg = MI->getOperand(0).getReg();
2560  MI->setDesc(Desc);
2561
2562  // MachineInstr::addOperand() will insert explicit operands before any
2563  // implicit operands.
2564  MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
2565                         .addReg(Reg, RegState::Undef);
2566  // But we don't trust that.
2567  assert(MI->getOperand(1).getReg() == Reg &&
2568         MI->getOperand(2).getReg() == Reg && "Misplaced operand");
2569  return true;
2570}
2571
2572bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
2573  bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2574  switch (MI->getOpcode()) {
2575  case X86::V_SET0:
2576  case X86::FsFLD0SS:
2577  case X86::FsFLD0SD:
2578    return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
2579  case X86::TEST8ri_NOREX:
2580    MI->setDesc(get(X86::TEST8ri));
2581    return true;
2582  }
2583  return false;
2584}
2585
2586MachineInstr*
2587X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2588                                       int FrameIx, uint64_t Offset,
2589                                       const MDNode *MDPtr,
2590                                       DebugLoc DL) const {
2591  X86AddressMode AM;
2592  AM.BaseType = X86AddressMode::FrameIndexBase;
2593  AM.Base.FrameIndex = FrameIx;
2594  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2595  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2596  return &*MIB;
2597}
2598
2599static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2600                                     const SmallVectorImpl<MachineOperand> &MOs,
2601                                     MachineInstr *MI,
2602                                     const TargetInstrInfo &TII) {
2603  // Create the base instruction with the memory operand as the first part.
2604  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2605                                              MI->getDebugLoc(), true);
2606  MachineInstrBuilder MIB(NewMI);
2607  unsigned NumAddrOps = MOs.size();
2608  for (unsigned i = 0; i != NumAddrOps; ++i)
2609    MIB.addOperand(MOs[i]);
2610  if (NumAddrOps < 4)  // FrameIndex only
2611    addOffset(MIB, 0);
2612
2613  // Loop over the rest of the ri operands, converting them over.
2614  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2615  for (unsigned i = 0; i != NumOps; ++i) {
2616    MachineOperand &MO = MI->getOperand(i+2);
2617    MIB.addOperand(MO);
2618  }
2619  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2620    MachineOperand &MO = MI->getOperand(i);
2621    MIB.addOperand(MO);
2622  }
2623  return MIB;
2624}
2625
2626static MachineInstr *FuseInst(MachineFunction &MF,
2627                              unsigned Opcode, unsigned OpNo,
2628                              const SmallVectorImpl<MachineOperand> &MOs,
2629                              MachineInstr *MI, const TargetInstrInfo &TII) {
2630  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2631                                              MI->getDebugLoc(), true);
2632  MachineInstrBuilder MIB(NewMI);
2633
2634  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2635    MachineOperand &MO = MI->getOperand(i);
2636    if (i == OpNo) {
2637      assert(MO.isReg() && "Expected to fold into reg operand!");
2638      unsigned NumAddrOps = MOs.size();
2639      for (unsigned i = 0; i != NumAddrOps; ++i)
2640        MIB.addOperand(MOs[i]);
2641      if (NumAddrOps < 4)  // FrameIndex only
2642        addOffset(MIB, 0);
2643    } else {
2644      MIB.addOperand(MO);
2645    }
2646  }
2647  return MIB;
2648}
2649
2650static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2651                                const SmallVectorImpl<MachineOperand> &MOs,
2652                                MachineInstr *MI) {
2653  MachineFunction &MF = *MI->getParent()->getParent();
2654  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2655
2656  unsigned NumAddrOps = MOs.size();
2657  for (unsigned i = 0; i != NumAddrOps; ++i)
2658    MIB.addOperand(MOs[i]);
2659  if (NumAddrOps < 4)  // FrameIndex only
2660    addOffset(MIB, 0);
2661  return MIB.addImm(0);
2662}
2663
2664MachineInstr*
2665X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2666                                    MachineInstr *MI, unsigned i,
2667                                    const SmallVectorImpl<MachineOperand> &MOs,
2668                                    unsigned Size, unsigned Align) const {
2669  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
2670  bool isTwoAddrFold = false;
2671  unsigned NumOps = MI->getDesc().getNumOperands();
2672  bool isTwoAddr = NumOps > 1 &&
2673    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
2674
2675  // FIXME: AsmPrinter doesn't know how to handle
2676  // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2677  if (MI->getOpcode() == X86::ADD32ri &&
2678      MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2679    return NULL;
2680
2681  MachineInstr *NewMI = NULL;
2682  // Folding a memory location into the two-address part of a two-address
2683  // instruction is different than folding it other places.  It requires
2684  // replacing the *two* registers with the memory location.
2685  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2686      MI->getOperand(0).isReg() &&
2687      MI->getOperand(1).isReg() &&
2688      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2689    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2690    isTwoAddrFold = true;
2691  } else if (i == 0) { // If operand 0
2692    if (MI->getOpcode() == X86::MOV64r0)
2693      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2694    else if (MI->getOpcode() == X86::MOV32r0)
2695      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2696    else if (MI->getOpcode() == X86::MOV16r0)
2697      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2698    else if (MI->getOpcode() == X86::MOV8r0)
2699      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2700    if (NewMI)
2701      return NewMI;
2702
2703    OpcodeTablePtr = &RegOp2MemOpTable0;
2704  } else if (i == 1) {
2705    OpcodeTablePtr = &RegOp2MemOpTable1;
2706  } else if (i == 2) {
2707    OpcodeTablePtr = &RegOp2MemOpTable2;
2708  }
2709
2710  // If table selected...
2711  if (OpcodeTablePtr) {
2712    // Find the Opcode to fuse
2713    DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2714      OpcodeTablePtr->find(MI->getOpcode());
2715    if (I != OpcodeTablePtr->end()) {
2716      unsigned Opcode = I->second.first;
2717      unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
2718      if (Align < MinAlign)
2719        return NULL;
2720      bool NarrowToMOV32rm = false;
2721      if (Size) {
2722        unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
2723        if (Size < RCSize) {
2724          // Check if it's safe to fold the load. If the size of the object is
2725          // narrower than the load width, then it's not.
2726          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2727            return NULL;
2728          // If this is a 64-bit load, but the spill slot is 32, then we can do
2729          // a 32-bit load which is implicitly zero-extended. This likely is due
2730          // to liveintervalanalysis remat'ing a load from stack slot.
2731          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2732            return NULL;
2733          Opcode = X86::MOV32rm;
2734          NarrowToMOV32rm = true;
2735        }
2736      }
2737
2738      if (isTwoAddrFold)
2739        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2740      else
2741        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2742
2743      if (NarrowToMOV32rm) {
2744        // If this is the special case where we use a MOV32rm to load a 32-bit
2745        // value and zero-extend the top bits. Change the destination register
2746        // to a 32-bit one.
2747        unsigned DstReg = NewMI->getOperand(0).getReg();
2748        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2749          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2750                                                   X86::sub_32bit));
2751        else
2752          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2753      }
2754      return NewMI;
2755    }
2756  }
2757
2758  // No fusion
2759  if (PrintFailedFusing && !MI->isCopy())
2760    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2761  return NULL;
2762}
2763
2764/// hasPartialRegUpdate - Return true for all instructions that only update
2765/// the first 32 or 64-bits of the destination register and leave the rest
2766/// unmodified. This can be used to avoid folding loads if the instructions
2767/// only update part of the destination register, and the non-updated part is
2768/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
2769/// instructions breaks the partial register dependency and it can improve
2770/// performance. e.g.:
2771///
2772///   movss (%rdi), %xmm0
2773///   cvtss2sd %xmm0, %xmm0
2774///
2775/// Instead of
2776///   cvtss2sd (%rdi), %xmm0
2777///
2778/// FIXME: This should be turned into a TSFlags.
2779///
2780static bool hasPartialRegUpdate(unsigned Opcode) {
2781  switch (Opcode) {
2782  case X86::CVTSI2SSrr:
2783  case X86::CVTSI2SS64rr:
2784  case X86::CVTSI2SDrr:
2785  case X86::CVTSI2SD64rr:
2786  case X86::CVTSD2SSrr:
2787  case X86::Int_CVTSD2SSrr:
2788  case X86::CVTSS2SDrr:
2789  case X86::Int_CVTSS2SDrr:
2790  case X86::RCPSSr:
2791  case X86::RCPSSr_Int:
2792  case X86::ROUNDSDr:
2793  case X86::ROUNDSDr_Int:
2794  case X86::ROUNDSSr:
2795  case X86::ROUNDSSr_Int:
2796  case X86::RSQRTSSr:
2797  case X86::RSQRTSSr_Int:
2798  case X86::SQRTSSr:
2799  case X86::SQRTSSr_Int:
2800  // AVX encoded versions
2801  case X86::VCVTSD2SSrr:
2802  case X86::Int_VCVTSD2SSrr:
2803  case X86::VCVTSS2SDrr:
2804  case X86::Int_VCVTSS2SDrr:
2805  case X86::VRCPSSr:
2806  case X86::VROUNDSDr:
2807  case X86::VROUNDSDr_Int:
2808  case X86::VROUNDSSr:
2809  case X86::VROUNDSSr_Int:
2810  case X86::VRSQRTSSr:
2811  case X86::VSQRTSSr:
2812    return true;
2813  }
2814
2815  return false;
2816}
2817
2818/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
2819/// instructions we would like before a partial register update.
2820unsigned X86InstrInfo::
2821getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
2822                             const TargetRegisterInfo *TRI) const {
2823  if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
2824    return 0;
2825
2826  // If MI is marked as reading Reg, the partial register update is wanted.
2827  const MachineOperand &MO = MI->getOperand(0);
2828  unsigned Reg = MO.getReg();
2829  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2830    if (MO.readsReg() || MI->readsVirtualRegister(Reg))
2831      return 0;
2832  } else {
2833    if (MI->readsRegister(Reg, TRI))
2834      return 0;
2835  }
2836
2837  // If any of the preceding 16 instructions are reading Reg, insert a
2838  // dependency breaking instruction.  The magic number is based on a few
2839  // Nehalem experiments.
2840  return 16;
2841}
2842
2843void X86InstrInfo::
2844breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
2845                          const TargetRegisterInfo *TRI) const {
2846  unsigned Reg = MI->getOperand(OpNum).getReg();
2847  if (X86::VR128RegClass.contains(Reg)) {
2848    // These instructions are all floating point domain, so xorps is the best
2849    // choice.
2850    bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
2851    unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
2852    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
2853      .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
2854  } else if (X86::VR256RegClass.contains(Reg)) {
2855    // Use vxorps to clear the full ymm register.
2856    // It wants to read and write the xmm sub-register.
2857    unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
2858    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
2859      .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
2860      .addReg(Reg, RegState::ImplicitDefine);
2861  } else
2862    return;
2863  MI->addRegisterKilled(Reg, TRI, true);
2864}
2865
2866MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2867                                                  MachineInstr *MI,
2868                                           const SmallVectorImpl<unsigned> &Ops,
2869                                                  int FrameIndex) const {
2870  // Check switch flag
2871  if (NoFusing) return NULL;
2872
2873  // Unless optimizing for size, don't fold to avoid partial
2874  // register update stalls
2875  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2876      hasPartialRegUpdate(MI->getOpcode()))
2877    return 0;
2878
2879  const MachineFrameInfo *MFI = MF.getFrameInfo();
2880  unsigned Size = MFI->getObjectSize(FrameIndex);
2881  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2882  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2883    unsigned NewOpc = 0;
2884    unsigned RCSize = 0;
2885    switch (MI->getOpcode()) {
2886    default: return NULL;
2887    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2888    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2889    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2890    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2891    }
2892    // Check if it's safe to fold the load. If the size of the object is
2893    // narrower than the load width, then it's not.
2894    if (Size < RCSize)
2895      return NULL;
2896    // Change to CMPXXri r, 0 first.
2897    MI->setDesc(get(NewOpc));
2898    MI->getOperand(1).ChangeToImmediate(0);
2899  } else if (Ops.size() != 1)
2900    return NULL;
2901
2902  SmallVector<MachineOperand,4> MOs;
2903  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2904  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2905}
2906
2907MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2908                                                  MachineInstr *MI,
2909                                           const SmallVectorImpl<unsigned> &Ops,
2910                                                  MachineInstr *LoadMI) const {
2911  // Check switch flag
2912  if (NoFusing) return NULL;
2913
2914  // Unless optimizing for size, don't fold to avoid partial
2915  // register update stalls
2916  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
2917      hasPartialRegUpdate(MI->getOpcode()))
2918    return 0;
2919
2920  // Determine the alignment of the load.
2921  unsigned Alignment = 0;
2922  if (LoadMI->hasOneMemOperand())
2923    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2924  else
2925    switch (LoadMI->getOpcode()) {
2926    case X86::AVX_SET0PSY:
2927    case X86::AVX_SET0PDY:
2928    case X86::AVX2_SETALLONES:
2929    case X86::AVX2_SET0:
2930      Alignment = 32;
2931      break;
2932    case X86::V_SET0:
2933    case X86::V_SETALLONES:
2934    case X86::AVX_SETALLONES:
2935      Alignment = 16;
2936      break;
2937    case X86::FsFLD0SD:
2938      Alignment = 8;
2939      break;
2940    case X86::FsFLD0SS:
2941      Alignment = 4;
2942      break;
2943    default:
2944      return 0;
2945    }
2946  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2947    unsigned NewOpc = 0;
2948    switch (MI->getOpcode()) {
2949    default: return NULL;
2950    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2951    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2952    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2953    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2954    }
2955    // Change to CMPXXri r, 0 first.
2956    MI->setDesc(get(NewOpc));
2957    MI->getOperand(1).ChangeToImmediate(0);
2958  } else if (Ops.size() != 1)
2959    return NULL;
2960
2961  // Make sure the subregisters match.
2962  // Otherwise we risk changing the size of the load.
2963  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2964    return NULL;
2965
2966  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2967  switch (LoadMI->getOpcode()) {
2968  case X86::V_SET0:
2969  case X86::V_SETALLONES:
2970  case X86::AVX_SET0PSY:
2971  case X86::AVX_SET0PDY:
2972  case X86::AVX_SETALLONES:
2973  case X86::AVX2_SETALLONES:
2974  case X86::AVX2_SET0:
2975  case X86::FsFLD0SD:
2976  case X86::FsFLD0SS: {
2977    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2978    // Create a constant-pool entry and operands to load from it.
2979
2980    // Medium and large mode can't fold loads this way.
2981    if (TM.getCodeModel() != CodeModel::Small &&
2982        TM.getCodeModel() != CodeModel::Kernel)
2983      return NULL;
2984
2985    // x86-32 PIC requires a PIC base register for constant pools.
2986    unsigned PICBase = 0;
2987    if (TM.getRelocationModel() == Reloc::PIC_) {
2988      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2989        PICBase = X86::RIP;
2990      else
2991        // FIXME: PICBase = getGlobalBaseReg(&MF);
2992        // This doesn't work for several reasons.
2993        // 1. GlobalBaseReg may have been spilled.
2994        // 2. It may not be live at MI.
2995        return NULL;
2996    }
2997
2998    // Create a constant-pool entry.
2999    MachineConstantPool &MCP = *MF.getConstantPool();
3000    Type *Ty;
3001    unsigned Opc = LoadMI->getOpcode();
3002    if (Opc == X86::FsFLD0SS)
3003      Ty = Type::getFloatTy(MF.getFunction()->getContext());
3004    else if (Opc == X86::FsFLD0SD)
3005      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
3006    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
3007      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
3008    else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
3009      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
3010    else
3011      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
3012
3013    bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
3014                      Opc == X86::AVX2_SETALLONES);
3015    const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
3016                                    Constant::getNullValue(Ty);
3017    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
3018
3019    // Create operands to load from the constant pool entry.
3020    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
3021    MOs.push_back(MachineOperand::CreateImm(1));
3022    MOs.push_back(MachineOperand::CreateReg(0, false));
3023    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
3024    MOs.push_back(MachineOperand::CreateReg(0, false));
3025    break;
3026  }
3027  default: {
3028    // Folding a normal load. Just copy the load's address operands.
3029    unsigned NumOps = LoadMI->getDesc().getNumOperands();
3030    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
3031      MOs.push_back(LoadMI->getOperand(i));
3032    break;
3033  }
3034  }
3035  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
3036}
3037
3038
3039bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
3040                                  const SmallVectorImpl<unsigned> &Ops) const {
3041  // Check switch flag
3042  if (NoFusing) return 0;
3043
3044  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
3045    switch (MI->getOpcode()) {
3046    default: return false;
3047    case X86::TEST8rr:
3048    case X86::TEST16rr:
3049    case X86::TEST32rr:
3050    case X86::TEST64rr:
3051      return true;
3052    case X86::ADD32ri:
3053      // FIXME: AsmPrinter doesn't know how to handle
3054      // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
3055      if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
3056        return false;
3057      break;
3058    }
3059  }
3060
3061  if (Ops.size() != 1)
3062    return false;
3063
3064  unsigned OpNum = Ops[0];
3065  unsigned Opc = MI->getOpcode();
3066  unsigned NumOps = MI->getDesc().getNumOperands();
3067  bool isTwoAddr = NumOps > 1 &&
3068    MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
3069
3070  // Folding a memory location into the two-address part of a two-address
3071  // instruction is different than folding it other places.  It requires
3072  // replacing the *two* registers with the memory location.
3073  const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
3074  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
3075    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
3076  } else if (OpNum == 0) { // If operand 0
3077    switch (Opc) {
3078    case X86::MOV8r0:
3079    case X86::MOV16r0:
3080    case X86::MOV32r0:
3081    case X86::MOV64r0: return true;
3082    default: break;
3083    }
3084    OpcodeTablePtr = &RegOp2MemOpTable0;
3085  } else if (OpNum == 1) {
3086    OpcodeTablePtr = &RegOp2MemOpTable1;
3087  } else if (OpNum == 2) {
3088    OpcodeTablePtr = &RegOp2MemOpTable2;
3089  }
3090
3091  if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
3092    return true;
3093  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
3094}
3095
3096bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
3097                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
3098                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
3099  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3100    MemOp2RegOpTable.find(MI->getOpcode());
3101  if (I == MemOp2RegOpTable.end())
3102    return false;
3103  unsigned Opc = I->second.first;
3104  unsigned Index = I->second.second & TB_INDEX_MASK;
3105  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3106  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3107  if (UnfoldLoad && !FoldedLoad)
3108    return false;
3109  UnfoldLoad &= FoldedLoad;
3110  if (UnfoldStore && !FoldedStore)
3111    return false;
3112  UnfoldStore &= FoldedStore;
3113
3114  const MCInstrDesc &MCID = get(Opc);
3115  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
3116  if (!MI->hasOneMemOperand() &&
3117      RC == &X86::VR128RegClass &&
3118      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3119    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
3120    // conservatively assume the address is unaligned. That's bad for
3121    // performance.
3122    return false;
3123  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
3124  SmallVector<MachineOperand,2> BeforeOps;
3125  SmallVector<MachineOperand,2> AfterOps;
3126  SmallVector<MachineOperand,4> ImpOps;
3127  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
3128    MachineOperand &Op = MI->getOperand(i);
3129    if (i >= Index && i < Index + X86::AddrNumOperands)
3130      AddrOps.push_back(Op);
3131    else if (Op.isReg() && Op.isImplicit())
3132      ImpOps.push_back(Op);
3133    else if (i < Index)
3134      BeforeOps.push_back(Op);
3135    else if (i > Index)
3136      AfterOps.push_back(Op);
3137  }
3138
3139  // Emit the load instruction.
3140  if (UnfoldLoad) {
3141    std::pair<MachineInstr::mmo_iterator,
3142              MachineInstr::mmo_iterator> MMOs =
3143      MF.extractLoadMemRefs(MI->memoperands_begin(),
3144                            MI->memoperands_end());
3145    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
3146    if (UnfoldStore) {
3147      // Address operands cannot be marked isKill.
3148      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
3149        MachineOperand &MO = NewMIs[0]->getOperand(i);
3150        if (MO.isReg())
3151          MO.setIsKill(false);
3152      }
3153    }
3154  }
3155
3156  // Emit the data processing instruction.
3157  MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
3158  MachineInstrBuilder MIB(DataMI);
3159
3160  if (FoldedStore)
3161    MIB.addReg(Reg, RegState::Define);
3162  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
3163    MIB.addOperand(BeforeOps[i]);
3164  if (FoldedLoad)
3165    MIB.addReg(Reg);
3166  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
3167    MIB.addOperand(AfterOps[i]);
3168  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
3169    MachineOperand &MO = ImpOps[i];
3170    MIB.addReg(MO.getReg(),
3171               getDefRegState(MO.isDef()) |
3172               RegState::Implicit |
3173               getKillRegState(MO.isKill()) |
3174               getDeadRegState(MO.isDead()) |
3175               getUndefRegState(MO.isUndef()));
3176  }
3177  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
3178  unsigned NewOpc = 0;
3179  switch (DataMI->getOpcode()) {
3180  default: break;
3181  case X86::CMP64ri32:
3182  case X86::CMP64ri8:
3183  case X86::CMP32ri:
3184  case X86::CMP32ri8:
3185  case X86::CMP16ri:
3186  case X86::CMP16ri8:
3187  case X86::CMP8ri: {
3188    MachineOperand &MO0 = DataMI->getOperand(0);
3189    MachineOperand &MO1 = DataMI->getOperand(1);
3190    if (MO1.getImm() == 0) {
3191      switch (DataMI->getOpcode()) {
3192      default: break;
3193      case X86::CMP64ri8:
3194      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
3195      case X86::CMP32ri8:
3196      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
3197      case X86::CMP16ri8:
3198      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
3199      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
3200      }
3201      DataMI->setDesc(get(NewOpc));
3202      MO1.ChangeToRegister(MO0.getReg(), false);
3203    }
3204  }
3205  }
3206  NewMIs.push_back(DataMI);
3207
3208  // Emit the store instruction.
3209  if (UnfoldStore) {
3210    const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
3211    std::pair<MachineInstr::mmo_iterator,
3212              MachineInstr::mmo_iterator> MMOs =
3213      MF.extractStoreMemRefs(MI->memoperands_begin(),
3214                             MI->memoperands_end());
3215    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
3216  }
3217
3218  return true;
3219}
3220
3221bool
3222X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
3223                                  SmallVectorImpl<SDNode*> &NewNodes) const {
3224  if (!N->isMachineOpcode())
3225    return false;
3226
3227  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3228    MemOp2RegOpTable.find(N->getMachineOpcode());
3229  if (I == MemOp2RegOpTable.end())
3230    return false;
3231  unsigned Opc = I->second.first;
3232  unsigned Index = I->second.second & TB_INDEX_MASK;
3233  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3234  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3235  const MCInstrDesc &MCID = get(Opc);
3236  const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
3237  unsigned NumDefs = MCID.NumDefs;
3238  std::vector<SDValue> AddrOps;
3239  std::vector<SDValue> BeforeOps;
3240  std::vector<SDValue> AfterOps;
3241  DebugLoc dl = N->getDebugLoc();
3242  unsigned NumOps = N->getNumOperands();
3243  for (unsigned i = 0; i != NumOps-1; ++i) {
3244    SDValue Op = N->getOperand(i);
3245    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
3246      AddrOps.push_back(Op);
3247    else if (i < Index-NumDefs)
3248      BeforeOps.push_back(Op);
3249    else if (i > Index-NumDefs)
3250      AfterOps.push_back(Op);
3251  }
3252  SDValue Chain = N->getOperand(NumOps-1);
3253  AddrOps.push_back(Chain);
3254
3255  // Emit the load instruction.
3256  SDNode *Load = 0;
3257  MachineFunction &MF = DAG.getMachineFunction();
3258  if (FoldedLoad) {
3259    EVT VT = *RC->vt_begin();
3260    std::pair<MachineInstr::mmo_iterator,
3261              MachineInstr::mmo_iterator> MMOs =
3262      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3263                            cast<MachineSDNode>(N)->memoperands_end());
3264    if (!(*MMOs.first) &&
3265        RC == &X86::VR128RegClass &&
3266        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3267      // Do not introduce a slow unaligned load.
3268      return false;
3269    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3270    bool isAligned = (*MMOs.first) &&
3271                     (*MMOs.first)->getAlignment() >= Alignment;
3272    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
3273                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
3274    NewNodes.push_back(Load);
3275
3276    // Preserve memory reference information.
3277    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
3278  }
3279
3280  // Emit the data processing instruction.
3281  std::vector<EVT> VTs;
3282  const TargetRegisterClass *DstRC = 0;
3283  if (MCID.getNumDefs() > 0) {
3284    DstRC = getRegClass(MCID, 0, &RI);
3285    VTs.push_back(*DstRC->vt_begin());
3286  }
3287  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
3288    EVT VT = N->getValueType(i);
3289    if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
3290      VTs.push_back(VT);
3291  }
3292  if (Load)
3293    BeforeOps.push_back(SDValue(Load, 0));
3294  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
3295  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
3296                                      BeforeOps.size());
3297  NewNodes.push_back(NewNode);
3298
3299  // Emit the store instruction.
3300  if (FoldedStore) {
3301    AddrOps.pop_back();
3302    AddrOps.push_back(SDValue(NewNode, 0));
3303    AddrOps.push_back(Chain);
3304    std::pair<MachineInstr::mmo_iterator,
3305              MachineInstr::mmo_iterator> MMOs =
3306      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
3307                             cast<MachineSDNode>(N)->memoperands_end());
3308    if (!(*MMOs.first) &&
3309        RC == &X86::VR128RegClass &&
3310        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
3311      // Do not introduce a slow unaligned store.
3312      return false;
3313    unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
3314    bool isAligned = (*MMOs.first) &&
3315                     (*MMOs.first)->getAlignment() >= Alignment;
3316    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
3317                                                         isAligned, TM),
3318                                       dl, MVT::Other,
3319                                       &AddrOps[0], AddrOps.size());
3320    NewNodes.push_back(Store);
3321
3322    // Preserve memory reference information.
3323    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
3324  }
3325
3326  return true;
3327}
3328
3329unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
3330                                      bool UnfoldLoad, bool UnfoldStore,
3331                                      unsigned *LoadRegIndex) const {
3332  DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
3333    MemOp2RegOpTable.find(Opc);
3334  if (I == MemOp2RegOpTable.end())
3335    return 0;
3336  bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
3337  bool FoldedStore = I->second.second & TB_FOLDED_STORE;
3338  if (UnfoldLoad && !FoldedLoad)
3339    return 0;
3340  if (UnfoldStore && !FoldedStore)
3341    return 0;
3342  if (LoadRegIndex)
3343    *LoadRegIndex = I->second.second & TB_INDEX_MASK;
3344  return I->second.first;
3345}
3346
3347bool
3348X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
3349                                     int64_t &Offset1, int64_t &Offset2) const {
3350  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
3351    return false;
3352  unsigned Opc1 = Load1->getMachineOpcode();
3353  unsigned Opc2 = Load2->getMachineOpcode();
3354  switch (Opc1) {
3355  default: return false;
3356  case X86::MOV8rm:
3357  case X86::MOV16rm:
3358  case X86::MOV32rm:
3359  case X86::MOV64rm:
3360  case X86::LD_Fp32m:
3361  case X86::LD_Fp64m:
3362  case X86::LD_Fp80m:
3363  case X86::MOVSSrm:
3364  case X86::MOVSDrm:
3365  case X86::MMX_MOVD64rm:
3366  case X86::MMX_MOVQ64rm:
3367  case X86::FsMOVAPSrm:
3368  case X86::FsMOVAPDrm:
3369  case X86::MOVAPSrm:
3370  case X86::MOVUPSrm:
3371  case X86::MOVAPDrm:
3372  case X86::MOVDQArm:
3373  case X86::MOVDQUrm:
3374  // AVX load instructions
3375  case X86::VMOVSSrm:
3376  case X86::VMOVSDrm:
3377  case X86::FsVMOVAPSrm:
3378  case X86::FsVMOVAPDrm:
3379  case X86::VMOVAPSrm:
3380  case X86::VMOVUPSrm:
3381  case X86::VMOVAPDrm:
3382  case X86::VMOVDQArm:
3383  case X86::VMOVDQUrm:
3384  case X86::VMOVAPSYrm:
3385  case X86::VMOVUPSYrm:
3386  case X86::VMOVAPDYrm:
3387  case X86::VMOVDQAYrm:
3388  case X86::VMOVDQUYrm:
3389    break;
3390  }
3391  switch (Opc2) {
3392  default: return false;
3393  case X86::MOV8rm:
3394  case X86::MOV16rm:
3395  case X86::MOV32rm:
3396  case X86::MOV64rm:
3397  case X86::LD_Fp32m:
3398  case X86::LD_Fp64m:
3399  case X86::LD_Fp80m:
3400  case X86::MOVSSrm:
3401  case X86::MOVSDrm:
3402  case X86::MMX_MOVD64rm:
3403  case X86::MMX_MOVQ64rm:
3404  case X86::FsMOVAPSrm:
3405  case X86::FsMOVAPDrm:
3406  case X86::MOVAPSrm:
3407  case X86::MOVUPSrm:
3408  case X86::MOVAPDrm:
3409  case X86::MOVDQArm:
3410  case X86::MOVDQUrm:
3411  // AVX load instructions
3412  case X86::VMOVSSrm:
3413  case X86::VMOVSDrm:
3414  case X86::FsVMOVAPSrm:
3415  case X86::FsVMOVAPDrm:
3416  case X86::VMOVAPSrm:
3417  case X86::VMOVUPSrm:
3418  case X86::VMOVAPDrm:
3419  case X86::VMOVDQArm:
3420  case X86::VMOVDQUrm:
3421  case X86::VMOVAPSYrm:
3422  case X86::VMOVUPSYrm:
3423  case X86::VMOVAPDYrm:
3424  case X86::VMOVDQAYrm:
3425  case X86::VMOVDQUYrm:
3426    break;
3427  }
3428
3429  // Check if chain operands and base addresses match.
3430  if (Load1->getOperand(0) != Load2->getOperand(0) ||
3431      Load1->getOperand(5) != Load2->getOperand(5))
3432    return false;
3433  // Segment operands should match as well.
3434  if (Load1->getOperand(4) != Load2->getOperand(4))
3435    return false;
3436  // Scale should be 1, Index should be Reg0.
3437  if (Load1->getOperand(1) == Load2->getOperand(1) &&
3438      Load1->getOperand(2) == Load2->getOperand(2)) {
3439    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
3440      return false;
3441
3442    // Now let's examine the displacements.
3443    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
3444        isa<ConstantSDNode>(Load2->getOperand(3))) {
3445      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
3446      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
3447      return true;
3448    }
3449  }
3450  return false;
3451}
3452
3453bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
3454                                           int64_t Offset1, int64_t Offset2,
3455                                           unsigned NumLoads) const {
3456  assert(Offset2 > Offset1);
3457  if ((Offset2 - Offset1) / 8 > 64)
3458    return false;
3459
3460  unsigned Opc1 = Load1->getMachineOpcode();
3461  unsigned Opc2 = Load2->getMachineOpcode();
3462  if (Opc1 != Opc2)
3463    return false;  // FIXME: overly conservative?
3464
3465  switch (Opc1) {
3466  default: break;
3467  case X86::LD_Fp32m:
3468  case X86::LD_Fp64m:
3469  case X86::LD_Fp80m:
3470  case X86::MMX_MOVD64rm:
3471  case X86::MMX_MOVQ64rm:
3472    return false;
3473  }
3474
3475  EVT VT = Load1->getValueType(0);
3476  switch (VT.getSimpleVT().SimpleTy) {
3477  default:
3478    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
3479    // have 16 of them to play with.
3480    if (TM.getSubtargetImpl()->is64Bit()) {
3481      if (NumLoads >= 3)
3482        return false;
3483    } else if (NumLoads) {
3484      return false;
3485    }
3486    break;
3487  case MVT::i8:
3488  case MVT::i16:
3489  case MVT::i32:
3490  case MVT::i64:
3491  case MVT::f32:
3492  case MVT::f64:
3493    if (NumLoads)
3494      return false;
3495    break;
3496  }
3497
3498  return true;
3499}
3500
3501
3502bool X86InstrInfo::
3503ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3504  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3505  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3506  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3507    return true;
3508  Cond[0].setImm(GetOppositeBranchCondition(CC));
3509  return false;
3510}
3511
3512bool X86InstrInfo::
3513isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3514  // FIXME: Return false for x87 stack register classes for now. We can't
3515  // allow any loads of these registers before FpGet_ST0_80.
3516  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3517           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3518}
3519
3520/// getGlobalBaseReg - Return a virtual register initialized with the
3521/// the global base register value. Output instructions required to
3522/// initialize the register in the function entry block, if necessary.
3523///
3524/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3525///
3526unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3527  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3528         "X86-64 PIC uses RIP relative addressing");
3529
3530  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3531  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3532  if (GlobalBaseReg != 0)
3533    return GlobalBaseReg;
3534
3535  // Create the register. The code to initialize it is inserted
3536  // later, by the CGBR pass (below).
3537  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3538  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3539  X86FI->setGlobalBaseReg(GlobalBaseReg);
3540  return GlobalBaseReg;
3541}
3542
3543// These are the replaceable SSE instructions. Some of these have Int variants
3544// that we don't include here. We don't want to replace instructions selected
3545// by intrinsics.
3546static const unsigned ReplaceableInstrs[][3] = {
3547  //PackedSingle     PackedDouble    PackedInt
3548  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3549  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3550  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3551  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3552  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3553  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3554  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3555  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3556  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3557  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3558  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3559  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3560  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3561  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3562  // AVX 128-bit support
3563  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
3564  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
3565  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
3566  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
3567  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
3568  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3569  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
3570  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
3571  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
3572  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
3573  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
3574  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
3575  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
3576  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
3577  // AVX 256-bit support
3578  { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
3579  { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
3580  { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
3581  { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
3582  { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
3583  { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
3584};
3585
3586static const unsigned ReplaceableInstrsAVX2[][3] = {
3587  //PackedSingle       PackedDouble       PackedInt
3588  { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
3589  { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
3590  { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
3591  { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
3592  { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
3593  { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
3594  { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
3595  { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
3596  { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
3597  { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
3598  { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
3599  { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
3600  { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
3601  { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
3602};
3603
3604// FIXME: Some shuffle and unpack instructions have equivalents in different
3605// domains, but they require a bit more work than just switching opcodes.
3606
3607static const unsigned *lookup(unsigned opcode, unsigned domain) {
3608  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3609    if (ReplaceableInstrs[i][domain-1] == opcode)
3610      return ReplaceableInstrs[i];
3611  return 0;
3612}
3613
3614static const unsigned *lookupAVX2(unsigned opcode, unsigned domain) {
3615  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
3616    if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
3617      return ReplaceableInstrsAVX2[i];
3618  return 0;
3619}
3620
3621std::pair<uint16_t, uint16_t>
3622X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
3623  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3624  bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
3625  uint16_t validDomains = 0;
3626  if (domain && lookup(MI->getOpcode(), domain))
3627    validDomains = 0xe;
3628  else if (domain && lookupAVX2(MI->getOpcode(), domain))
3629    validDomains = hasAVX2 ? 0xe : 0x6;
3630  return std::make_pair(domain, validDomains);
3631}
3632
3633void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
3634  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3635  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3636  assert(dom && "Not an SSE instruction");
3637  const unsigned *table = lookup(MI->getOpcode(), dom);
3638  if (!table) { // try the other table
3639    assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
3640           "256-bit vector operations only available in AVX2");
3641    table = lookupAVX2(MI->getOpcode(), dom);
3642  }
3643  assert(table && "Cannot change domain");
3644  MI->setDesc(get(table[Domain-1]));
3645}
3646
3647/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3648void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3649  NopInst.setOpcode(X86::NOOP);
3650}
3651
3652bool X86InstrInfo::isHighLatencyDef(int opc) const {
3653  switch (opc) {
3654  default: return false;
3655  case X86::DIVSDrm:
3656  case X86::DIVSDrm_Int:
3657  case X86::DIVSDrr:
3658  case X86::DIVSDrr_Int:
3659  case X86::DIVSSrm:
3660  case X86::DIVSSrm_Int:
3661  case X86::DIVSSrr:
3662  case X86::DIVSSrr_Int:
3663  case X86::SQRTPDm:
3664  case X86::SQRTPDm_Int:
3665  case X86::SQRTPDr:
3666  case X86::SQRTPDr_Int:
3667  case X86::SQRTPSm:
3668  case X86::SQRTPSm_Int:
3669  case X86::SQRTPSr:
3670  case X86::SQRTPSr_Int:
3671  case X86::SQRTSDm:
3672  case X86::SQRTSDm_Int:
3673  case X86::SQRTSDr:
3674  case X86::SQRTSDr_Int:
3675  case X86::SQRTSSm:
3676  case X86::SQRTSSm_Int:
3677  case X86::SQRTSSr:
3678  case X86::SQRTSSr_Int:
3679  // AVX instructions with high latency
3680  case X86::VDIVSDrm:
3681  case X86::VDIVSDrm_Int:
3682  case X86::VDIVSDrr:
3683  case X86::VDIVSDrr_Int:
3684  case X86::VDIVSSrm:
3685  case X86::VDIVSSrm_Int:
3686  case X86::VDIVSSrr:
3687  case X86::VDIVSSrr_Int:
3688  case X86::VSQRTPDm:
3689  case X86::VSQRTPDm_Int:
3690  case X86::VSQRTPDr:
3691  case X86::VSQRTPDr_Int:
3692  case X86::VSQRTPSm:
3693  case X86::VSQRTPSm_Int:
3694  case X86::VSQRTPSr:
3695  case X86::VSQRTPSr_Int:
3696  case X86::VSQRTSDm:
3697  case X86::VSQRTSDm_Int:
3698  case X86::VSQRTSDr:
3699  case X86::VSQRTSSm:
3700  case X86::VSQRTSSm_Int:
3701  case X86::VSQRTSSr:
3702    return true;
3703  }
3704}
3705
3706bool X86InstrInfo::
3707hasHighOperandLatency(const InstrItineraryData *ItinData,
3708                      const MachineRegisterInfo *MRI,
3709                      const MachineInstr *DefMI, unsigned DefIdx,
3710                      const MachineInstr *UseMI, unsigned UseIdx) const {
3711  return isHighLatencyDef(DefMI->getOpcode());
3712}
3713
3714namespace {
3715  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3716  /// global base register for x86-32.
3717  struct CGBR : public MachineFunctionPass {
3718    static char ID;
3719    CGBR() : MachineFunctionPass(ID) {}
3720
3721    virtual bool runOnMachineFunction(MachineFunction &MF) {
3722      const X86TargetMachine *TM =
3723        static_cast<const X86TargetMachine *>(&MF.getTarget());
3724
3725      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3726             "X86-64 PIC uses RIP relative addressing");
3727
3728      // Only emit a global base reg in PIC mode.
3729      if (TM->getRelocationModel() != Reloc::PIC_)
3730        return false;
3731
3732      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3733      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3734
3735      // If we didn't need a GlobalBaseReg, don't insert code.
3736      if (GlobalBaseReg == 0)
3737        return false;
3738
3739      // Insert the set of GlobalBaseReg into the first MBB of the function
3740      MachineBasicBlock &FirstMBB = MF.front();
3741      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3742      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3743      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3744      const X86InstrInfo *TII = TM->getInstrInfo();
3745
3746      unsigned PC;
3747      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3748        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3749      else
3750        PC = GlobalBaseReg;
3751
3752      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3753      // only used in JIT code emission as displacement to pc.
3754      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3755
3756      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3757      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3758      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3759        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3760        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3761          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3762                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3763      }
3764
3765      return true;
3766    }
3767
3768    virtual const char *getPassName() const {
3769      return "X86 PIC Global Base Reg Initialization";
3770    }
3771
3772    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3773      AU.setPreservesCFG();
3774      MachineFunctionPass::getAnalysisUsage(AU);
3775    }
3776  };
3777}
3778
3779char CGBR::ID = 0;
3780FunctionPass*
3781llvm::createGlobalBaseRegPass() { return new CGBR(); }
3782