X86InstrInfo.cpp revision 07406346ebbf8a958a956eb05c1e04faedfe1e63
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Target/TargetAsmInfo.h"
34using namespace llvm;
35
36namespace {
37  cl::opt<bool>
38  NoFusing("disable-spill-fusing",
39           cl::desc("Disable fusing of spill code into instructions"));
40  cl::opt<bool>
41  PrintFailedFusing("print-failed-fuse-candidates",
42                    cl::desc("Print instructions that the allocator wants to"
43                             " fuse, but the X86 backend currently can't"),
44                    cl::Hidden);
45  cl::opt<bool>
46  ReMatPICStubLoad("remat-pic-stub-load",
47                   cl::desc("Re-materialize load from stub in PIC mode"),
48                   cl::init(false), cl::Hidden);
49}
50
51X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
52  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
53    TM(tm), RI(tm, *this) {
54  SmallVector<unsigned,16> AmbEntries;
55  static const unsigned OpTbl2Addr[][2] = {
56    { X86::ADC32ri,     X86::ADC32mi },
57    { X86::ADC32ri8,    X86::ADC32mi8 },
58    { X86::ADC32rr,     X86::ADC32mr },
59    { X86::ADC64ri32,   X86::ADC64mi32 },
60    { X86::ADC64ri8,    X86::ADC64mi8 },
61    { X86::ADC64rr,     X86::ADC64mr },
62    { X86::ADD16ri,     X86::ADD16mi },
63    { X86::ADD16ri8,    X86::ADD16mi8 },
64    { X86::ADD16rr,     X86::ADD16mr },
65    { X86::ADD32ri,     X86::ADD32mi },
66    { X86::ADD32ri8,    X86::ADD32mi8 },
67    { X86::ADD32rr,     X86::ADD32mr },
68    { X86::ADD64ri32,   X86::ADD64mi32 },
69    { X86::ADD64ri8,    X86::ADD64mi8 },
70    { X86::ADD64rr,     X86::ADD64mr },
71    { X86::ADD8ri,      X86::ADD8mi },
72    { X86::ADD8rr,      X86::ADD8mr },
73    { X86::AND16ri,     X86::AND16mi },
74    { X86::AND16ri8,    X86::AND16mi8 },
75    { X86::AND16rr,     X86::AND16mr },
76    { X86::AND32ri,     X86::AND32mi },
77    { X86::AND32ri8,    X86::AND32mi8 },
78    { X86::AND32rr,     X86::AND32mr },
79    { X86::AND64ri32,   X86::AND64mi32 },
80    { X86::AND64ri8,    X86::AND64mi8 },
81    { X86::AND64rr,     X86::AND64mr },
82    { X86::AND8ri,      X86::AND8mi },
83    { X86::AND8rr,      X86::AND8mr },
84    { X86::DEC16r,      X86::DEC16m },
85    { X86::DEC32r,      X86::DEC32m },
86    { X86::DEC64_16r,   X86::DEC64_16m },
87    { X86::DEC64_32r,   X86::DEC64_32m },
88    { X86::DEC64r,      X86::DEC64m },
89    { X86::DEC8r,       X86::DEC8m },
90    { X86::INC16r,      X86::INC16m },
91    { X86::INC32r,      X86::INC32m },
92    { X86::INC64_16r,   X86::INC64_16m },
93    { X86::INC64_32r,   X86::INC64_32m },
94    { X86::INC64r,      X86::INC64m },
95    { X86::INC8r,       X86::INC8m },
96    { X86::NEG16r,      X86::NEG16m },
97    { X86::NEG32r,      X86::NEG32m },
98    { X86::NEG64r,      X86::NEG64m },
99    { X86::NEG8r,       X86::NEG8m },
100    { X86::NOT16r,      X86::NOT16m },
101    { X86::NOT32r,      X86::NOT32m },
102    { X86::NOT64r,      X86::NOT64m },
103    { X86::NOT8r,       X86::NOT8m },
104    { X86::OR16ri,      X86::OR16mi },
105    { X86::OR16ri8,     X86::OR16mi8 },
106    { X86::OR16rr,      X86::OR16mr },
107    { X86::OR32ri,      X86::OR32mi },
108    { X86::OR32ri8,     X86::OR32mi8 },
109    { X86::OR32rr,      X86::OR32mr },
110    { X86::OR64ri32,    X86::OR64mi32 },
111    { X86::OR64ri8,     X86::OR64mi8 },
112    { X86::OR64rr,      X86::OR64mr },
113    { X86::OR8ri,       X86::OR8mi },
114    { X86::OR8rr,       X86::OR8mr },
115    { X86::ROL16r1,     X86::ROL16m1 },
116    { X86::ROL16rCL,    X86::ROL16mCL },
117    { X86::ROL16ri,     X86::ROL16mi },
118    { X86::ROL32r1,     X86::ROL32m1 },
119    { X86::ROL32rCL,    X86::ROL32mCL },
120    { X86::ROL32ri,     X86::ROL32mi },
121    { X86::ROL64r1,     X86::ROL64m1 },
122    { X86::ROL64rCL,    X86::ROL64mCL },
123    { X86::ROL64ri,     X86::ROL64mi },
124    { X86::ROL8r1,      X86::ROL8m1 },
125    { X86::ROL8rCL,     X86::ROL8mCL },
126    { X86::ROL8ri,      X86::ROL8mi },
127    { X86::ROR16r1,     X86::ROR16m1 },
128    { X86::ROR16rCL,    X86::ROR16mCL },
129    { X86::ROR16ri,     X86::ROR16mi },
130    { X86::ROR32r1,     X86::ROR32m1 },
131    { X86::ROR32rCL,    X86::ROR32mCL },
132    { X86::ROR32ri,     X86::ROR32mi },
133    { X86::ROR64r1,     X86::ROR64m1 },
134    { X86::ROR64rCL,    X86::ROR64mCL },
135    { X86::ROR64ri,     X86::ROR64mi },
136    { X86::ROR8r1,      X86::ROR8m1 },
137    { X86::ROR8rCL,     X86::ROR8mCL },
138    { X86::ROR8ri,      X86::ROR8mi },
139    { X86::SAR16r1,     X86::SAR16m1 },
140    { X86::SAR16rCL,    X86::SAR16mCL },
141    { X86::SAR16ri,     X86::SAR16mi },
142    { X86::SAR32r1,     X86::SAR32m1 },
143    { X86::SAR32rCL,    X86::SAR32mCL },
144    { X86::SAR32ri,     X86::SAR32mi },
145    { X86::SAR64r1,     X86::SAR64m1 },
146    { X86::SAR64rCL,    X86::SAR64mCL },
147    { X86::SAR64ri,     X86::SAR64mi },
148    { X86::SAR8r1,      X86::SAR8m1 },
149    { X86::SAR8rCL,     X86::SAR8mCL },
150    { X86::SAR8ri,      X86::SAR8mi },
151    { X86::SBB32ri,     X86::SBB32mi },
152    { X86::SBB32ri8,    X86::SBB32mi8 },
153    { X86::SBB32rr,     X86::SBB32mr },
154    { X86::SBB64ri32,   X86::SBB64mi32 },
155    { X86::SBB64ri8,    X86::SBB64mi8 },
156    { X86::SBB64rr,     X86::SBB64mr },
157    { X86::SHL16rCL,    X86::SHL16mCL },
158    { X86::SHL16ri,     X86::SHL16mi },
159    { X86::SHL32rCL,    X86::SHL32mCL },
160    { X86::SHL32ri,     X86::SHL32mi },
161    { X86::SHL64rCL,    X86::SHL64mCL },
162    { X86::SHL64ri,     X86::SHL64mi },
163    { X86::SHL8rCL,     X86::SHL8mCL },
164    { X86::SHL8ri,      X86::SHL8mi },
165    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
166    { X86::SHLD16rri8,  X86::SHLD16mri8 },
167    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
168    { X86::SHLD32rri8,  X86::SHLD32mri8 },
169    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
170    { X86::SHLD64rri8,  X86::SHLD64mri8 },
171    { X86::SHR16r1,     X86::SHR16m1 },
172    { X86::SHR16rCL,    X86::SHR16mCL },
173    { X86::SHR16ri,     X86::SHR16mi },
174    { X86::SHR32r1,     X86::SHR32m1 },
175    { X86::SHR32rCL,    X86::SHR32mCL },
176    { X86::SHR32ri,     X86::SHR32mi },
177    { X86::SHR64r1,     X86::SHR64m1 },
178    { X86::SHR64rCL,    X86::SHR64mCL },
179    { X86::SHR64ri,     X86::SHR64mi },
180    { X86::SHR8r1,      X86::SHR8m1 },
181    { X86::SHR8rCL,     X86::SHR8mCL },
182    { X86::SHR8ri,      X86::SHR8mi },
183    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
184    { X86::SHRD16rri8,  X86::SHRD16mri8 },
185    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
186    { X86::SHRD32rri8,  X86::SHRD32mri8 },
187    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
188    { X86::SHRD64rri8,  X86::SHRD64mri8 },
189    { X86::SUB16ri,     X86::SUB16mi },
190    { X86::SUB16ri8,    X86::SUB16mi8 },
191    { X86::SUB16rr,     X86::SUB16mr },
192    { X86::SUB32ri,     X86::SUB32mi },
193    { X86::SUB32ri8,    X86::SUB32mi8 },
194    { X86::SUB32rr,     X86::SUB32mr },
195    { X86::SUB64ri32,   X86::SUB64mi32 },
196    { X86::SUB64ri8,    X86::SUB64mi8 },
197    { X86::SUB64rr,     X86::SUB64mr },
198    { X86::SUB8ri,      X86::SUB8mi },
199    { X86::SUB8rr,      X86::SUB8mr },
200    { X86::XOR16ri,     X86::XOR16mi },
201    { X86::XOR16ri8,    X86::XOR16mi8 },
202    { X86::XOR16rr,     X86::XOR16mr },
203    { X86::XOR32ri,     X86::XOR32mi },
204    { X86::XOR32ri8,    X86::XOR32mi8 },
205    { X86::XOR32rr,     X86::XOR32mr },
206    { X86::XOR64ri32,   X86::XOR64mi32 },
207    { X86::XOR64ri8,    X86::XOR64mi8 },
208    { X86::XOR64rr,     X86::XOR64mr },
209    { X86::XOR8ri,      X86::XOR8mi },
210    { X86::XOR8rr,      X86::XOR8mr }
211  };
212
213  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
214    unsigned RegOp = OpTbl2Addr[i][0];
215    unsigned MemOp = OpTbl2Addr[i][1];
216    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
217                                                     MemOp)).second)
218      assert(false && "Duplicated entries?");
219    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
220    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
221                                                std::make_pair(RegOp,
222                                                              AuxInfo))).second)
223      AmbEntries.push_back(MemOp);
224  }
225
226  // If the third value is 1, then it's folding either a load or a store.
227  static const unsigned OpTbl0[][3] = {
228    { X86::BT16ri8,     X86::BT16mi8, 1 },
229    { X86::BT32ri8,     X86::BT32mi8, 1 },
230    { X86::BT64ri8,     X86::BT64mi8, 1 },
231    { X86::CALL32r,     X86::CALL32m, 1 },
232    { X86::CALL64r,     X86::CALL64m, 1 },
233    { X86::CMP16ri,     X86::CMP16mi, 1 },
234    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
235    { X86::CMP16rr,     X86::CMP16mr, 1 },
236    { X86::CMP32ri,     X86::CMP32mi, 1 },
237    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
238    { X86::CMP32rr,     X86::CMP32mr, 1 },
239    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
240    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
241    { X86::CMP64rr,     X86::CMP64mr, 1 },
242    { X86::CMP8ri,      X86::CMP8mi, 1 },
243    { X86::CMP8rr,      X86::CMP8mr, 1 },
244    { X86::DIV16r,      X86::DIV16m, 1 },
245    { X86::DIV32r,      X86::DIV32m, 1 },
246    { X86::DIV64r,      X86::DIV64m, 1 },
247    { X86::DIV8r,       X86::DIV8m, 1 },
248    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
249    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
250    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
251    { X86::IDIV16r,     X86::IDIV16m, 1 },
252    { X86::IDIV32r,     X86::IDIV32m, 1 },
253    { X86::IDIV64r,     X86::IDIV64m, 1 },
254    { X86::IDIV8r,      X86::IDIV8m, 1 },
255    { X86::IMUL16r,     X86::IMUL16m, 1 },
256    { X86::IMUL32r,     X86::IMUL32m, 1 },
257    { X86::IMUL64r,     X86::IMUL64m, 1 },
258    { X86::IMUL8r,      X86::IMUL8m, 1 },
259    { X86::JMP32r,      X86::JMP32m, 1 },
260    { X86::JMP64r,      X86::JMP64m, 1 },
261    { X86::MOV16ri,     X86::MOV16mi, 0 },
262    { X86::MOV16rr,     X86::MOV16mr, 0 },
263    { X86::MOV32ri,     X86::MOV32mi, 0 },
264    { X86::MOV32rr,     X86::MOV32mr, 0 },
265    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
266    { X86::MOV64rr,     X86::MOV64mr, 0 },
267    { X86::MOV8ri,      X86::MOV8mi, 0 },
268    { X86::MOV8rr,      X86::MOV8mr, 0 },
269    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
270    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
271    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
272    { X86::MOVDQArr,    X86::MOVDQAmr, 0 },
273    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
274    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
275    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
276    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
277    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
278    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
279    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
280    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
281    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
282    { X86::MUL16r,      X86::MUL16m, 1 },
283    { X86::MUL32r,      X86::MUL32m, 1 },
284    { X86::MUL64r,      X86::MUL64m, 1 },
285    { X86::MUL8r,       X86::MUL8m, 1 },
286    { X86::SETAEr,      X86::SETAEm, 0 },
287    { X86::SETAr,       X86::SETAm, 0 },
288    { X86::SETBEr,      X86::SETBEm, 0 },
289    { X86::SETBr,       X86::SETBm, 0 },
290    { X86::SETEr,       X86::SETEm, 0 },
291    { X86::SETGEr,      X86::SETGEm, 0 },
292    { X86::SETGr,       X86::SETGm, 0 },
293    { X86::SETLEr,      X86::SETLEm, 0 },
294    { X86::SETLr,       X86::SETLm, 0 },
295    { X86::SETNEr,      X86::SETNEm, 0 },
296    { X86::SETNOr,      X86::SETNOm, 0 },
297    { X86::SETNPr,      X86::SETNPm, 0 },
298    { X86::SETNSr,      X86::SETNSm, 0 },
299    { X86::SETOr,       X86::SETOm, 0 },
300    { X86::SETPr,       X86::SETPm, 0 },
301    { X86::SETSr,       X86::SETSm, 0 },
302    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
303    { X86::TEST16ri,    X86::TEST16mi, 1 },
304    { X86::TEST32ri,    X86::TEST32mi, 1 },
305    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
306    { X86::TEST8ri,     X86::TEST8mi, 1 }
307  };
308
309  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
310    unsigned RegOp = OpTbl0[i][0];
311    unsigned MemOp = OpTbl0[i][1];
312    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
313                                                 MemOp)).second)
314      assert(false && "Duplicated entries?");
315    unsigned FoldedLoad = OpTbl0[i][2];
316    // Index 0, folded load or store.
317    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
318    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
319      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
320                                     std::make_pair(RegOp, AuxInfo))).second)
321        AmbEntries.push_back(MemOp);
322  }
323
324  static const unsigned OpTbl1[][2] = {
325    { X86::CMP16rr,         X86::CMP16rm },
326    { X86::CMP32rr,         X86::CMP32rm },
327    { X86::CMP64rr,         X86::CMP64rm },
328    { X86::CMP8rr,          X86::CMP8rm },
329    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
330    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
331    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
332    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
333    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
334    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
335    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
336    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
337    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
338    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
339    { X86::FsMOVAPDrr,      X86::MOVSDrm },
340    { X86::FsMOVAPSrr,      X86::MOVSSrm },
341    { X86::IMUL16rri,       X86::IMUL16rmi },
342    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
343    { X86::IMUL32rri,       X86::IMUL32rmi },
344    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
345    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
346    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
347    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
348    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
349    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
350    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
351    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
352    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
353    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
354    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
355    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
356    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
357    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
358    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
359    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
360    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
361    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
362    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
363    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
364    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
365    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
366    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
367    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
368    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
369    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
370    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
371    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
372    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
373    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
374    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
375    { X86::MOV16rr,         X86::MOV16rm },
376    { X86::MOV32rr,         X86::MOV32rm },
377    { X86::MOV64rr,         X86::MOV64rm },
378    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
379    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
380    { X86::MOV8rr,          X86::MOV8rm },
381    { X86::MOVAPDrr,        X86::MOVAPDrm },
382    { X86::MOVAPSrr,        X86::MOVAPSrm },
383    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
384    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
385    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
386    { X86::MOVDQArr,        X86::MOVDQArm },
387    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
388    { X86::MOVSDrr,         X86::MOVSDrm },
389    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
390    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
391    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
392    { X86::MOVSSrr,         X86::MOVSSrm },
393    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
394    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
395    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
396    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
397    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
398    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
399    { X86::MOVUPDrr,        X86::MOVUPDrm },
400    { X86::MOVUPSrr,        X86::MOVUPSrm },
401    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
402    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
403    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
404    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
405    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
406    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
407    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
408    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
409    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
410    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
411    { X86::PSHUFDri,        X86::PSHUFDmi },
412    { X86::PSHUFHWri,       X86::PSHUFHWmi },
413    { X86::PSHUFLWri,       X86::PSHUFLWmi },
414    { X86::RCPPSr,          X86::RCPPSm },
415    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
416    { X86::RSQRTPSr,        X86::RSQRTPSm },
417    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
418    { X86::RSQRTSSr,        X86::RSQRTSSm },
419    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
420    { X86::SQRTPDr,         X86::SQRTPDm },
421    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
422    { X86::SQRTPSr,         X86::SQRTPSm },
423    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
424    { X86::SQRTSDr,         X86::SQRTSDm },
425    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
426    { X86::SQRTSSr,         X86::SQRTSSm },
427    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
428    { X86::TEST16rr,        X86::TEST16rm },
429    { X86::TEST32rr,        X86::TEST32rm },
430    { X86::TEST64rr,        X86::TEST64rm },
431    { X86::TEST8rr,         X86::TEST8rm },
432    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
433    { X86::UCOMISDrr,       X86::UCOMISDrm },
434    { X86::UCOMISSrr,       X86::UCOMISSrm }
435  };
436
437  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
438    unsigned RegOp = OpTbl1[i][0];
439    unsigned MemOp = OpTbl1[i][1];
440    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
441                                                 MemOp)).second)
442      assert(false && "Duplicated entries?");
443    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
444    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
445      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
446                                     std::make_pair(RegOp, AuxInfo))).second)
447        AmbEntries.push_back(MemOp);
448  }
449
450  static const unsigned OpTbl2[][2] = {
451    { X86::ADC32rr,         X86::ADC32rm },
452    { X86::ADC64rr,         X86::ADC64rm },
453    { X86::ADD16rr,         X86::ADD16rm },
454    { X86::ADD32rr,         X86::ADD32rm },
455    { X86::ADD64rr,         X86::ADD64rm },
456    { X86::ADD8rr,          X86::ADD8rm },
457    { X86::ADDPDrr,         X86::ADDPDrm },
458    { X86::ADDPSrr,         X86::ADDPSrm },
459    { X86::ADDSDrr,         X86::ADDSDrm },
460    { X86::ADDSSrr,         X86::ADDSSrm },
461    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
462    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
463    { X86::AND16rr,         X86::AND16rm },
464    { X86::AND32rr,         X86::AND32rm },
465    { X86::AND64rr,         X86::AND64rm },
466    { X86::AND8rr,          X86::AND8rm },
467    { X86::ANDNPDrr,        X86::ANDNPDrm },
468    { X86::ANDNPSrr,        X86::ANDNPSrm },
469    { X86::ANDPDrr,         X86::ANDPDrm },
470    { X86::ANDPSrr,         X86::ANDPSrm },
471    { X86::CMOVA16rr,       X86::CMOVA16rm },
472    { X86::CMOVA32rr,       X86::CMOVA32rm },
473    { X86::CMOVA64rr,       X86::CMOVA64rm },
474    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
475    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
476    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
477    { X86::CMOVB16rr,       X86::CMOVB16rm },
478    { X86::CMOVB32rr,       X86::CMOVB32rm },
479    { X86::CMOVB64rr,       X86::CMOVB64rm },
480    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
481    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
482    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
483    { X86::CMOVE16rr,       X86::CMOVE16rm },
484    { X86::CMOVE32rr,       X86::CMOVE32rm },
485    { X86::CMOVE64rr,       X86::CMOVE64rm },
486    { X86::CMOVG16rr,       X86::CMOVG16rm },
487    { X86::CMOVG32rr,       X86::CMOVG32rm },
488    { X86::CMOVG64rr,       X86::CMOVG64rm },
489    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
490    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
491    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
492    { X86::CMOVL16rr,       X86::CMOVL16rm },
493    { X86::CMOVL32rr,       X86::CMOVL32rm },
494    { X86::CMOVL64rr,       X86::CMOVL64rm },
495    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
496    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
497    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
498    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
499    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
500    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
501    { X86::CMOVNO16rr,      X86::CMOVNO16rm },
502    { X86::CMOVNO32rr,      X86::CMOVNO32rm },
503    { X86::CMOVNO64rr,      X86::CMOVNO64rm },
504    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
505    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
506    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
507    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
508    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
509    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
510    { X86::CMOVO16rr,       X86::CMOVO16rm },
511    { X86::CMOVO32rr,       X86::CMOVO32rm },
512    { X86::CMOVO64rr,       X86::CMOVO64rm },
513    { X86::CMOVP16rr,       X86::CMOVP16rm },
514    { X86::CMOVP32rr,       X86::CMOVP32rm },
515    { X86::CMOVP64rr,       X86::CMOVP64rm },
516    { X86::CMOVS16rr,       X86::CMOVS16rm },
517    { X86::CMOVS32rr,       X86::CMOVS32rm },
518    { X86::CMOVS64rr,       X86::CMOVS64rm },
519    { X86::CMPPDrri,        X86::CMPPDrmi },
520    { X86::CMPPSrri,        X86::CMPPSrmi },
521    { X86::CMPSDrr,         X86::CMPSDrm },
522    { X86::CMPSSrr,         X86::CMPSSrm },
523    { X86::DIVPDrr,         X86::DIVPDrm },
524    { X86::DIVPSrr,         X86::DIVPSrm },
525    { X86::DIVSDrr,         X86::DIVSDrm },
526    { X86::DIVSSrr,         X86::DIVSSrm },
527    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
528    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
529    { X86::FsANDPDrr,       X86::FsANDPDrm },
530    { X86::FsANDPSrr,       X86::FsANDPSrm },
531    { X86::FsORPDrr,        X86::FsORPDrm },
532    { X86::FsORPSrr,        X86::FsORPSrm },
533    { X86::FsXORPDrr,       X86::FsXORPDrm },
534    { X86::FsXORPSrr,       X86::FsXORPSrm },
535    { X86::HADDPDrr,        X86::HADDPDrm },
536    { X86::HADDPSrr,        X86::HADDPSrm },
537    { X86::HSUBPDrr,        X86::HSUBPDrm },
538    { X86::HSUBPSrr,        X86::HSUBPSrm },
539    { X86::IMUL16rr,        X86::IMUL16rm },
540    { X86::IMUL32rr,        X86::IMUL32rm },
541    { X86::IMUL64rr,        X86::IMUL64rm },
542    { X86::MAXPDrr,         X86::MAXPDrm },
543    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
544    { X86::MAXPSrr,         X86::MAXPSrm },
545    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
546    { X86::MAXSDrr,         X86::MAXSDrm },
547    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
548    { X86::MAXSSrr,         X86::MAXSSrm },
549    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
550    { X86::MINPDrr,         X86::MINPDrm },
551    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
552    { X86::MINPSrr,         X86::MINPSrm },
553    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
554    { X86::MINSDrr,         X86::MINSDrm },
555    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
556    { X86::MINSSrr,         X86::MINSSrm },
557    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
558    { X86::MULPDrr,         X86::MULPDrm },
559    { X86::MULPSrr,         X86::MULPSrm },
560    { X86::MULSDrr,         X86::MULSDrm },
561    { X86::MULSSrr,         X86::MULSSrm },
562    { X86::OR16rr,          X86::OR16rm },
563    { X86::OR32rr,          X86::OR32rm },
564    { X86::OR64rr,          X86::OR64rm },
565    { X86::OR8rr,           X86::OR8rm },
566    { X86::ORPDrr,          X86::ORPDrm },
567    { X86::ORPSrr,          X86::ORPSrm },
568    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
569    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
570    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
571    { X86::PADDBrr,         X86::PADDBrm },
572    { X86::PADDDrr,         X86::PADDDrm },
573    { X86::PADDQrr,         X86::PADDQrm },
574    { X86::PADDSBrr,        X86::PADDSBrm },
575    { X86::PADDSWrr,        X86::PADDSWrm },
576    { X86::PADDWrr,         X86::PADDWrm },
577    { X86::PANDNrr,         X86::PANDNrm },
578    { X86::PANDrr,          X86::PANDrm },
579    { X86::PAVGBrr,         X86::PAVGBrm },
580    { X86::PAVGWrr,         X86::PAVGWrm },
581    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
582    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
583    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
584    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
585    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
586    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
587    { X86::PINSRWrri,       X86::PINSRWrmi },
588    { X86::PMADDWDrr,       X86::PMADDWDrm },
589    { X86::PMAXSWrr,        X86::PMAXSWrm },
590    { X86::PMAXUBrr,        X86::PMAXUBrm },
591    { X86::PMINSWrr,        X86::PMINSWrm },
592    { X86::PMINUBrr,        X86::PMINUBrm },
593    { X86::PMULDQrr,        X86::PMULDQrm },
594    { X86::PMULHUWrr,       X86::PMULHUWrm },
595    { X86::PMULHWrr,        X86::PMULHWrm },
596    { X86::PMULLDrr,        X86::PMULLDrm },
597    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
598    { X86::PMULLWrr,        X86::PMULLWrm },
599    { X86::PMULUDQrr,       X86::PMULUDQrm },
600    { X86::PORrr,           X86::PORrm },
601    { X86::PSADBWrr,        X86::PSADBWrm },
602    { X86::PSLLDrr,         X86::PSLLDrm },
603    { X86::PSLLQrr,         X86::PSLLQrm },
604    { X86::PSLLWrr,         X86::PSLLWrm },
605    { X86::PSRADrr,         X86::PSRADrm },
606    { X86::PSRAWrr,         X86::PSRAWrm },
607    { X86::PSRLDrr,         X86::PSRLDrm },
608    { X86::PSRLQrr,         X86::PSRLQrm },
609    { X86::PSRLWrr,         X86::PSRLWrm },
610    { X86::PSUBBrr,         X86::PSUBBrm },
611    { X86::PSUBDrr,         X86::PSUBDrm },
612    { X86::PSUBSBrr,        X86::PSUBSBrm },
613    { X86::PSUBSWrr,        X86::PSUBSWrm },
614    { X86::PSUBWrr,         X86::PSUBWrm },
615    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
616    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
617    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
618    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
619    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
620    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
621    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
622    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
623    { X86::PXORrr,          X86::PXORrm },
624    { X86::SBB32rr,         X86::SBB32rm },
625    { X86::SBB64rr,         X86::SBB64rm },
626    { X86::SHUFPDrri,       X86::SHUFPDrmi },
627    { X86::SHUFPSrri,       X86::SHUFPSrmi },
628    { X86::SUB16rr,         X86::SUB16rm },
629    { X86::SUB32rr,         X86::SUB32rm },
630    { X86::SUB64rr,         X86::SUB64rm },
631    { X86::SUB8rr,          X86::SUB8rm },
632    { X86::SUBPDrr,         X86::SUBPDrm },
633    { X86::SUBPSrr,         X86::SUBPSrm },
634    { X86::SUBSDrr,         X86::SUBSDrm },
635    { X86::SUBSSrr,         X86::SUBSSrm },
636    // FIXME: TEST*rr -> swapped operand of TEST*mr.
637    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
638    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
639    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
640    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
641    { X86::XOR16rr,         X86::XOR16rm },
642    { X86::XOR32rr,         X86::XOR32rm },
643    { X86::XOR64rr,         X86::XOR64rm },
644    { X86::XOR8rr,          X86::XOR8rm },
645    { X86::XORPDrr,         X86::XORPDrm },
646    { X86::XORPSrr,         X86::XORPSrm }
647  };
648
649  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
650    unsigned RegOp = OpTbl2[i][0];
651    unsigned MemOp = OpTbl2[i][1];
652    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
653                                                 MemOp)).second)
654      assert(false && "Duplicated entries?");
655    unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
656    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
657                                   std::make_pair(RegOp, AuxInfo))).second)
658      AmbEntries.push_back(MemOp);
659  }
660
661  // Remove ambiguous entries.
662  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
663}
664
665bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
666                               unsigned &SrcReg, unsigned &DstReg,
667                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
668  switch (MI.getOpcode()) {
669  default:
670    return false;
671  case X86::MOV8rr:
672  case X86::MOV8rr_NOREX:
673  case X86::MOV16rr:
674  case X86::MOV32rr:
675  case X86::MOV64rr:
676  case X86::MOVSSrr:
677  case X86::MOVSDrr:
678
679  // FP Stack register class copies
680  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
681  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
682  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
683
684  case X86::FsMOVAPSrr:
685  case X86::FsMOVAPDrr:
686  case X86::MOVAPSrr:
687  case X86::MOVAPDrr:
688  case X86::MOVDQArr:
689  case X86::MOVSS2PSrr:
690  case X86::MOVSD2PDrr:
691  case X86::MOVPS2SSrr:
692  case X86::MOVPD2SDrr:
693  case X86::MMX_MOVQ64rr:
694    assert(MI.getNumOperands() >= 2 &&
695           MI.getOperand(0).isReg() &&
696           MI.getOperand(1).isReg() &&
697           "invalid register-register move instruction");
698    SrcReg = MI.getOperand(1).getReg();
699    DstReg = MI.getOperand(0).getReg();
700    SrcSubIdx = MI.getOperand(1).getSubReg();
701    DstSubIdx = MI.getOperand(0).getSubReg();
702    return true;
703  }
704}
705
706unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
707                                           int &FrameIndex) const {
708  switch (MI->getOpcode()) {
709  default: break;
710  case X86::MOV8rm:
711  case X86::MOV16rm:
712  case X86::MOV32rm:
713  case X86::MOV64rm:
714  case X86::LD_Fp64m:
715  case X86::MOVSSrm:
716  case X86::MOVSDrm:
717  case X86::MOVAPSrm:
718  case X86::MOVAPDrm:
719  case X86::MOVDQArm:
720  case X86::MMX_MOVD64rm:
721  case X86::MMX_MOVQ64rm:
722    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
723        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
724        MI->getOperand(2).getImm() == 1 &&
725        MI->getOperand(3).getReg() == 0 &&
726        MI->getOperand(4).getImm() == 0) {
727      FrameIndex = MI->getOperand(1).getIndex();
728      return MI->getOperand(0).getReg();
729    }
730    break;
731  }
732  return 0;
733}
734
735unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
736                                          int &FrameIndex) const {
737  switch (MI->getOpcode()) {
738  default: break;
739  case X86::MOV8mr:
740  case X86::MOV16mr:
741  case X86::MOV32mr:
742  case X86::MOV64mr:
743  case X86::ST_FpP64m:
744  case X86::MOVSSmr:
745  case X86::MOVSDmr:
746  case X86::MOVAPSmr:
747  case X86::MOVAPDmr:
748  case X86::MOVDQAmr:
749  case X86::MMX_MOVD64mr:
750  case X86::MMX_MOVQ64mr:
751  case X86::MMX_MOVNTQmr:
752    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
753        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
754        MI->getOperand(1).getImm() == 1 &&
755        MI->getOperand(2).getReg() == 0 &&
756        MI->getOperand(3).getImm() == 0) {
757      FrameIndex = MI->getOperand(0).getIndex();
758      return MI->getOperand(X86AddrNumOperands).getReg();
759    }
760    break;
761  }
762  return 0;
763}
764
765/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
766/// X86::MOVPC32r.
767static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
768  bool isPICBase = false;
769  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
770         E = MRI.def_end(); I != E; ++I) {
771    MachineInstr *DefMI = I.getOperand().getParent();
772    if (DefMI->getOpcode() != X86::MOVPC32r)
773      return false;
774    assert(!isPICBase && "More than one PIC base?");
775    isPICBase = true;
776  }
777  return isPICBase;
778}
779
780/// CanRematLoadWithDispOperand - Return true if a load with the specified
781/// operand is a candidate for remat: for this to be true we need to know that
782/// the load will always return the same value, even if moved.
783static bool CanRematLoadWithDispOperand(const MachineOperand &MO,
784                                        X86TargetMachine &TM) {
785  // Loads from constant pool entries can be remat'd.
786  if (MO.isCPI()) return true;
787
788  // We can remat globals in some cases.
789  if (MO.isGlobal()) {
790    // If this is a load of a stub, not of the global, we can remat it.  This
791    // access will always return the address of the global.
792    if (isGlobalStubReference(MO))
793      return true;
794
795    // If the global itself is constant, we can remat the load.
796    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal()))
797      if (GV->isConstant())
798        return true;
799  }
800  return false;
801}
802
803bool
804X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
805  switch (MI->getOpcode()) {
806  default: break;
807    case X86::MOV8rm:
808    case X86::MOV16rm:
809    case X86::MOV32rm:
810    case X86::MOV64rm:
811    case X86::LD_Fp64m:
812    case X86::MOVSSrm:
813    case X86::MOVSDrm:
814    case X86::MOVAPSrm:
815    case X86::MOVAPDrm:
816    case X86::MOVDQArm:
817    case X86::MMX_MOVD64rm:
818    case X86::MMX_MOVQ64rm: {
819      // Loads from constant pools are trivially rematerializable.
820      if (MI->getOperand(1).isReg() &&
821          MI->getOperand(2).isImm() &&
822          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
823          CanRematLoadWithDispOperand(MI->getOperand(4), TM)) {
824        unsigned BaseReg = MI->getOperand(1).getReg();
825        if (BaseReg == 0 || BaseReg == X86::RIP)
826          return true;
827        // Allow re-materialization of PIC load.
828        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
829          return false;
830        const MachineFunction &MF = *MI->getParent()->getParent();
831        const MachineRegisterInfo &MRI = MF.getRegInfo();
832        bool isPICBase = false;
833        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
834               E = MRI.def_end(); I != E; ++I) {
835          MachineInstr *DefMI = I.getOperand().getParent();
836          if (DefMI->getOpcode() != X86::MOVPC32r)
837            return false;
838          assert(!isPICBase && "More than one PIC base?");
839          isPICBase = true;
840        }
841        return isPICBase;
842      }
843      return false;
844    }
845
846     case X86::LEA32r:
847     case X86::LEA64r: {
848       if (MI->getOperand(2).isImm() &&
849           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
850           !MI->getOperand(4).isReg()) {
851         // lea fi#, lea GV, etc. are all rematerializable.
852         if (!MI->getOperand(1).isReg())
853           return true;
854         unsigned BaseReg = MI->getOperand(1).getReg();
855         if (BaseReg == 0)
856           return true;
857         // Allow re-materialization of lea PICBase + x.
858         const MachineFunction &MF = *MI->getParent()->getParent();
859         const MachineRegisterInfo &MRI = MF.getRegInfo();
860         return regIsPICBase(BaseReg, MRI);
861       }
862       return false;
863     }
864  }
865
866  // All other instructions marked M_REMATERIALIZABLE are always trivially
867  // rematerializable.
868  return true;
869}
870
871/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
872/// would clobber the EFLAGS condition register. Note the result may be
873/// conservative. If it cannot definitely determine the safety after visiting
874/// two instructions it assumes it's not safe.
875static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
876                                  MachineBasicBlock::iterator I) {
877  // It's always safe to clobber EFLAGS at the end of a block.
878  if (I == MBB.end())
879    return true;
880
881  // For compile time consideration, if we are not able to determine the
882  // safety after visiting 2 instructions, we will assume it's not safe.
883  for (unsigned i = 0; i < 2; ++i) {
884    bool SeenDef = false;
885    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
886      MachineOperand &MO = I->getOperand(j);
887      if (!MO.isReg())
888        continue;
889      if (MO.getReg() == X86::EFLAGS) {
890        if (MO.isUse())
891          return false;
892        SeenDef = true;
893      }
894    }
895
896    if (SeenDef)
897      // This instruction defines EFLAGS, no need to look any further.
898      return true;
899    ++I;
900
901    // If we make it to the end of the block, it's safe to clobber EFLAGS.
902    if (I == MBB.end())
903      return true;
904  }
905
906  // Conservative answer.
907  return false;
908}
909
910void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
911                                 MachineBasicBlock::iterator I,
912                                 unsigned DestReg,
913                                 const MachineInstr *Orig) const {
914  DebugLoc DL = DebugLoc::getUnknownLoc();
915  if (I != MBB.end()) DL = I->getDebugLoc();
916
917  unsigned SubIdx = Orig->getOperand(0).isReg()
918    ? Orig->getOperand(0).getSubReg() : 0;
919  bool ChangeSubIdx = SubIdx != 0;
920  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
921    DestReg = RI.getSubReg(DestReg, SubIdx);
922    SubIdx = 0;
923  }
924
925  // MOV32r0 etc. are implemented with xor which clobbers condition code.
926  // Re-materialize them as movri instructions to avoid side effects.
927  bool Emitted = false;
928  switch (Orig->getOpcode()) {
929  default: break;
930  case X86::MOV8r0:
931  case X86::MOV16r0:
932  case X86::MOV32r0:
933  case X86::MOV64r0: {
934    if (!isSafeToClobberEFLAGS(MBB, I)) {
935      unsigned Opc = 0;
936      switch (Orig->getOpcode()) {
937      default: break;
938      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
939      case X86::MOV16r0: Opc = X86::MOV16ri; break;
940      case X86::MOV32r0: Opc = X86::MOV32ri; break;
941      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
942      }
943      BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
944      Emitted = true;
945    }
946    break;
947  }
948  }
949
950  if (!Emitted) {
951    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
952    MI->getOperand(0).setReg(DestReg);
953    MBB.insert(I, MI);
954  }
955
956  if (ChangeSubIdx) {
957    MachineInstr *NewMI = prior(I);
958    NewMI->getOperand(0).setSubReg(SubIdx);
959  }
960}
961
962/// isInvariantLoad - Return true if the specified instruction (which is marked
963/// mayLoad) is loading from a location whose value is invariant across the
964/// function.  For example, loading a value from the constant pool or from
965/// from the argument area of a function if it does not change.  This should
966/// only return true of *all* loads the instruction does are invariant (if it
967/// does multiple loads).
968bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
969  // This code cares about loads from three cases: constant pool entries,
970  // invariant argument slots, and global stubs.  In order to handle these cases
971  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
972  // operand and base our analysis on it.  This is safe because the address of
973  // none of these three cases is ever used as anything other than a load base
974  // and X86 doesn't have any instructions that load from multiple places.
975
976  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
977    const MachineOperand &MO = MI->getOperand(i);
978    // Loads from constant pools are trivially invariant.
979    if (MO.isCPI())
980      return true;
981
982    if (MO.isGlobal())
983      return isGlobalStubReference(MO);
984
985    // If this is a load from an invariant stack slot, the load is a constant.
986    if (MO.isFI()) {
987      const MachineFrameInfo &MFI =
988        *MI->getParent()->getParent()->getFrameInfo();
989      int Idx = MO.getIndex();
990      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
991    }
992  }
993
994  // All other instances of these instructions are presumed to have other
995  // issues.
996  return false;
997}
998
999/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1000/// is not marked dead.
1001static bool hasLiveCondCodeDef(MachineInstr *MI) {
1002  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1003    MachineOperand &MO = MI->getOperand(i);
1004    if (MO.isReg() && MO.isDef() &&
1005        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1006      return true;
1007    }
1008  }
1009  return false;
1010}
1011
1012/// convertToThreeAddress - This method must be implemented by targets that
1013/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1014/// may be able to convert a two-address instruction into a true
1015/// three-address instruction on demand.  This allows the X86 target (for
1016/// example) to convert ADD and SHL instructions into LEA instructions if they
1017/// would require register copies due to two-addressness.
1018///
1019/// This method returns a null pointer if the transformation cannot be
1020/// performed, otherwise it returns the new instruction.
1021///
1022MachineInstr *
1023X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1024                                    MachineBasicBlock::iterator &MBBI,
1025                                    LiveVariables *LV) const {
1026  MachineInstr *MI = MBBI;
1027  MachineFunction &MF = *MI->getParent()->getParent();
1028  // All instructions input are two-addr instructions.  Get the known operands.
1029  unsigned Dest = MI->getOperand(0).getReg();
1030  unsigned Src = MI->getOperand(1).getReg();
1031  bool isDead = MI->getOperand(0).isDead();
1032  bool isKill = MI->getOperand(1).isKill();
1033
1034  MachineInstr *NewMI = NULL;
1035  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1036  // we have better subtarget support, enable the 16-bit LEA generation here.
1037  bool DisableLEA16 = true;
1038
1039  unsigned MIOpc = MI->getOpcode();
1040  switch (MIOpc) {
1041  case X86::SHUFPSrri: {
1042    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1043    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1044
1045    unsigned B = MI->getOperand(1).getReg();
1046    unsigned C = MI->getOperand(2).getReg();
1047    if (B != C) return 0;
1048    unsigned A = MI->getOperand(0).getReg();
1049    unsigned M = MI->getOperand(3).getImm();
1050    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1051      .addReg(A, RegState::Define | getDeadRegState(isDead))
1052      .addReg(B, getKillRegState(isKill)).addImm(M);
1053    break;
1054  }
1055  case X86::SHL64ri: {
1056    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1057    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1058    // the flags produced by a shift yet, so this is safe.
1059    unsigned ShAmt = MI->getOperand(2).getImm();
1060    if (ShAmt == 0 || ShAmt >= 4) return 0;
1061
1062    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1063      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1064      .addReg(0).addImm(1 << ShAmt)
1065      .addReg(Src, getKillRegState(isKill))
1066      .addImm(0);
1067    break;
1068  }
1069  case X86::SHL32ri: {
1070    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1071    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1072    // the flags produced by a shift yet, so this is safe.
1073    unsigned ShAmt = MI->getOperand(2).getImm();
1074    if (ShAmt == 0 || ShAmt >= 4) return 0;
1075
1076    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1077      X86::LEA64_32r : X86::LEA32r;
1078    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1079      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1080      .addReg(0).addImm(1 << ShAmt)
1081      .addReg(Src, getKillRegState(isKill)).addImm(0);
1082    break;
1083  }
1084  case X86::SHL16ri: {
1085    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1086    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1087    // the flags produced by a shift yet, so this is safe.
1088    unsigned ShAmt = MI->getOperand(2).getImm();
1089    if (ShAmt == 0 || ShAmt >= 4) return 0;
1090
1091    if (DisableLEA16) {
1092      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1093      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1094      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1095        ? X86::LEA64_32r : X86::LEA32r;
1096      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1097      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1098
1099      // Build and insert into an implicit UNDEF value. This is OK because
1100      // well be shifting and then extracting the lower 16-bits.
1101      BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1102      MachineInstr *InsMI =
1103        BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1104        .addReg(leaInReg)
1105        .addReg(Src, getKillRegState(isKill))
1106        .addImm(X86::SUBREG_16BIT);
1107
1108      NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1109        .addReg(0).addImm(1 << ShAmt)
1110        .addReg(leaInReg, RegState::Kill)
1111        .addImm(0);
1112
1113      MachineInstr *ExtMI =
1114        BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1115        .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1116        .addReg(leaOutReg, RegState::Kill)
1117        .addImm(X86::SUBREG_16BIT);
1118
1119      if (LV) {
1120        // Update live variables
1121        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1122        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1123        if (isKill)
1124          LV->replaceKillInstruction(Src, MI, InsMI);
1125        if (isDead)
1126          LV->replaceKillInstruction(Dest, MI, ExtMI);
1127      }
1128      return ExtMI;
1129    } else {
1130      NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1131        .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1132        .addReg(0).addImm(1 << ShAmt)
1133        .addReg(Src, getKillRegState(isKill))
1134        .addImm(0);
1135    }
1136    break;
1137  }
1138  default: {
1139    // The following opcodes also sets the condition code register(s). Only
1140    // convert them to equivalent lea if the condition code register def's
1141    // are dead!
1142    if (hasLiveCondCodeDef(MI))
1143      return 0;
1144
1145    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1146    switch (MIOpc) {
1147    default: return 0;
1148    case X86::INC64r:
1149    case X86::INC32r:
1150    case X86::INC64_32r: {
1151      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1152      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1153        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1154      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1155                              .addReg(Dest, RegState::Define |
1156                                      getDeadRegState(isDead)),
1157                              Src, isKill, 1);
1158      break;
1159    }
1160    case X86::INC16r:
1161    case X86::INC64_16r:
1162      if (DisableLEA16) return 0;
1163      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1164      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1165                           .addReg(Dest, RegState::Define |
1166                                   getDeadRegState(isDead)),
1167                           Src, isKill, 1);
1168      break;
1169    case X86::DEC64r:
1170    case X86::DEC32r:
1171    case X86::DEC64_32r: {
1172      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1173      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1174        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1175      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1176                              .addReg(Dest, RegState::Define |
1177                                      getDeadRegState(isDead)),
1178                              Src, isKill, -1);
1179      break;
1180    }
1181    case X86::DEC16r:
1182    case X86::DEC64_16r:
1183      if (DisableLEA16) return 0;
1184      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1185      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1186                           .addReg(Dest, RegState::Define |
1187                                   getDeadRegState(isDead)),
1188                           Src, isKill, -1);
1189      break;
1190    case X86::ADD64rr:
1191    case X86::ADD32rr: {
1192      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1193      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1194        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1195      unsigned Src2 = MI->getOperand(2).getReg();
1196      bool isKill2 = MI->getOperand(2).isKill();
1197      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1198                        .addReg(Dest, RegState::Define |
1199                                getDeadRegState(isDead)),
1200                        Src, isKill, Src2, isKill2);
1201      if (LV && isKill2)
1202        LV->replaceKillInstruction(Src2, MI, NewMI);
1203      break;
1204    }
1205    case X86::ADD16rr: {
1206      if (DisableLEA16) return 0;
1207      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1208      unsigned Src2 = MI->getOperand(2).getReg();
1209      bool isKill2 = MI->getOperand(2).isKill();
1210      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1211                        .addReg(Dest, RegState::Define |
1212                                getDeadRegState(isDead)),
1213                        Src, isKill, Src2, isKill2);
1214      if (LV && isKill2)
1215        LV->replaceKillInstruction(Src2, MI, NewMI);
1216      break;
1217    }
1218    case X86::ADD64ri32:
1219    case X86::ADD64ri8:
1220      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1221      if (MI->getOperand(2).isImm())
1222        NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1223                                .addReg(Dest, RegState::Define |
1224                                        getDeadRegState(isDead)),
1225                                Src, isKill, MI->getOperand(2).getImm());
1226      break;
1227    case X86::ADD32ri:
1228    case X86::ADD32ri8:
1229      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1230      if (MI->getOperand(2).isImm()) {
1231        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1232        NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1233                                .addReg(Dest, RegState::Define |
1234                                        getDeadRegState(isDead)),
1235                                Src, isKill, MI->getOperand(2).getImm());
1236      }
1237      break;
1238    case X86::ADD16ri:
1239    case X86::ADD16ri8:
1240      if (DisableLEA16) return 0;
1241      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1242      if (MI->getOperand(2).isImm())
1243        NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1244                             .addReg(Dest, RegState::Define |
1245                                     getDeadRegState(isDead)),
1246                             Src, isKill, MI->getOperand(2).getImm());
1247      break;
1248    case X86::SHL16ri:
1249      if (DisableLEA16) return 0;
1250    case X86::SHL32ri:
1251    case X86::SHL64ri: {
1252      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1253             "Unknown shl instruction!");
1254      unsigned ShAmt = MI->getOperand(2).getImm();
1255      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1256        X86AddressMode AM;
1257        AM.Scale = 1 << ShAmt;
1258        AM.IndexReg = Src;
1259        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1260          : (MIOpc == X86::SHL32ri
1261             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1262        NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1263                               .addReg(Dest, RegState::Define |
1264                                       getDeadRegState(isDead)), AM);
1265        if (isKill)
1266          NewMI->getOperand(3).setIsKill(true);
1267      }
1268      break;
1269    }
1270    }
1271  }
1272  }
1273
1274  if (!NewMI) return 0;
1275
1276  if (LV) {  // Update live variables
1277    if (isKill)
1278      LV->replaceKillInstruction(Src, MI, NewMI);
1279    if (isDead)
1280      LV->replaceKillInstruction(Dest, MI, NewMI);
1281  }
1282
1283  MFI->insert(MBBI, NewMI);          // Insert the new inst
1284  return NewMI;
1285}
1286
1287/// commuteInstruction - We have a few instructions that must be hacked on to
1288/// commute them.
1289///
1290MachineInstr *
1291X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1292  switch (MI->getOpcode()) {
1293  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1294  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1295  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1296  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1297  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1298  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1299    unsigned Opc;
1300    unsigned Size;
1301    switch (MI->getOpcode()) {
1302    default: assert(0 && "Unreachable!");
1303    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1304    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1305    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1306    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1307    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1308    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1309    }
1310    unsigned Amt = MI->getOperand(3).getImm();
1311    if (NewMI) {
1312      MachineFunction &MF = *MI->getParent()->getParent();
1313      MI = MF.CloneMachineInstr(MI);
1314      NewMI = false;
1315    }
1316    MI->setDesc(get(Opc));
1317    MI->getOperand(3).setImm(Size-Amt);
1318    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1319  }
1320  case X86::CMOVB16rr:
1321  case X86::CMOVB32rr:
1322  case X86::CMOVB64rr:
1323  case X86::CMOVAE16rr:
1324  case X86::CMOVAE32rr:
1325  case X86::CMOVAE64rr:
1326  case X86::CMOVE16rr:
1327  case X86::CMOVE32rr:
1328  case X86::CMOVE64rr:
1329  case X86::CMOVNE16rr:
1330  case X86::CMOVNE32rr:
1331  case X86::CMOVNE64rr:
1332  case X86::CMOVBE16rr:
1333  case X86::CMOVBE32rr:
1334  case X86::CMOVBE64rr:
1335  case X86::CMOVA16rr:
1336  case X86::CMOVA32rr:
1337  case X86::CMOVA64rr:
1338  case X86::CMOVL16rr:
1339  case X86::CMOVL32rr:
1340  case X86::CMOVL64rr:
1341  case X86::CMOVGE16rr:
1342  case X86::CMOVGE32rr:
1343  case X86::CMOVGE64rr:
1344  case X86::CMOVLE16rr:
1345  case X86::CMOVLE32rr:
1346  case X86::CMOVLE64rr:
1347  case X86::CMOVG16rr:
1348  case X86::CMOVG32rr:
1349  case X86::CMOVG64rr:
1350  case X86::CMOVS16rr:
1351  case X86::CMOVS32rr:
1352  case X86::CMOVS64rr:
1353  case X86::CMOVNS16rr:
1354  case X86::CMOVNS32rr:
1355  case X86::CMOVNS64rr:
1356  case X86::CMOVP16rr:
1357  case X86::CMOVP32rr:
1358  case X86::CMOVP64rr:
1359  case X86::CMOVNP16rr:
1360  case X86::CMOVNP32rr:
1361  case X86::CMOVNP64rr:
1362  case X86::CMOVO16rr:
1363  case X86::CMOVO32rr:
1364  case X86::CMOVO64rr:
1365  case X86::CMOVNO16rr:
1366  case X86::CMOVNO32rr:
1367  case X86::CMOVNO64rr: {
1368    unsigned Opc = 0;
1369    switch (MI->getOpcode()) {
1370    default: break;
1371    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1372    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1373    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1374    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1375    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1376    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1377    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1378    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1379    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1380    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1381    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1382    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1383    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1384    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1385    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1386    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1387    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1388    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1389    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1390    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1391    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1392    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1393    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1394    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1395    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1396    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1397    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1398    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1399    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1400    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1401    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1402    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1403    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1404    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1405    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1406    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1407    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1408    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1409    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1410    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1411    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1412    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1413    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1414    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1415    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1416    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1417    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1418    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1419    }
1420    if (NewMI) {
1421      MachineFunction &MF = *MI->getParent()->getParent();
1422      MI = MF.CloneMachineInstr(MI);
1423      NewMI = false;
1424    }
1425    MI->setDesc(get(Opc));
1426    // Fallthrough intended.
1427  }
1428  default:
1429    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1430  }
1431}
1432
1433static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1434  switch (BrOpc) {
1435  default: return X86::COND_INVALID;
1436  case X86::JE:  return X86::COND_E;
1437  case X86::JNE: return X86::COND_NE;
1438  case X86::JL:  return X86::COND_L;
1439  case X86::JLE: return X86::COND_LE;
1440  case X86::JG:  return X86::COND_G;
1441  case X86::JGE: return X86::COND_GE;
1442  case X86::JB:  return X86::COND_B;
1443  case X86::JBE: return X86::COND_BE;
1444  case X86::JA:  return X86::COND_A;
1445  case X86::JAE: return X86::COND_AE;
1446  case X86::JS:  return X86::COND_S;
1447  case X86::JNS: return X86::COND_NS;
1448  case X86::JP:  return X86::COND_P;
1449  case X86::JNP: return X86::COND_NP;
1450  case X86::JO:  return X86::COND_O;
1451  case X86::JNO: return X86::COND_NO;
1452  }
1453}
1454
1455unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1456  switch (CC) {
1457  default: assert(0 && "Illegal condition code!");
1458  case X86::COND_E:  return X86::JE;
1459  case X86::COND_NE: return X86::JNE;
1460  case X86::COND_L:  return X86::JL;
1461  case X86::COND_LE: return X86::JLE;
1462  case X86::COND_G:  return X86::JG;
1463  case X86::COND_GE: return X86::JGE;
1464  case X86::COND_B:  return X86::JB;
1465  case X86::COND_BE: return X86::JBE;
1466  case X86::COND_A:  return X86::JA;
1467  case X86::COND_AE: return X86::JAE;
1468  case X86::COND_S:  return X86::JS;
1469  case X86::COND_NS: return X86::JNS;
1470  case X86::COND_P:  return X86::JP;
1471  case X86::COND_NP: return X86::JNP;
1472  case X86::COND_O:  return X86::JO;
1473  case X86::COND_NO: return X86::JNO;
1474  }
1475}
1476
1477/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1478/// e.g. turning COND_E to COND_NE.
1479X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1480  switch (CC) {
1481  default: assert(0 && "Illegal condition code!");
1482  case X86::COND_E:  return X86::COND_NE;
1483  case X86::COND_NE: return X86::COND_E;
1484  case X86::COND_L:  return X86::COND_GE;
1485  case X86::COND_LE: return X86::COND_G;
1486  case X86::COND_G:  return X86::COND_LE;
1487  case X86::COND_GE: return X86::COND_L;
1488  case X86::COND_B:  return X86::COND_AE;
1489  case X86::COND_BE: return X86::COND_A;
1490  case X86::COND_A:  return X86::COND_BE;
1491  case X86::COND_AE: return X86::COND_B;
1492  case X86::COND_S:  return X86::COND_NS;
1493  case X86::COND_NS: return X86::COND_S;
1494  case X86::COND_P:  return X86::COND_NP;
1495  case X86::COND_NP: return X86::COND_P;
1496  case X86::COND_O:  return X86::COND_NO;
1497  case X86::COND_NO: return X86::COND_O;
1498  }
1499}
1500
1501bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1502  const TargetInstrDesc &TID = MI->getDesc();
1503  if (!TID.isTerminator()) return false;
1504
1505  // Conditional branch is a special case.
1506  if (TID.isBranch() && !TID.isBarrier())
1507    return true;
1508  if (!TID.isPredicable())
1509    return true;
1510  return !isPredicated(MI);
1511}
1512
1513// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1514static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1515                                               const X86InstrInfo &TII) {
1516  if (MI->getOpcode() == X86::FP_REG_KILL)
1517    return false;
1518  return TII.isUnpredicatedTerminator(MI);
1519}
1520
1521bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1522                                 MachineBasicBlock *&TBB,
1523                                 MachineBasicBlock *&FBB,
1524                                 SmallVectorImpl<MachineOperand> &Cond,
1525                                 bool AllowModify) const {
1526  // Start from the bottom of the block and work up, examining the
1527  // terminator instructions.
1528  MachineBasicBlock::iterator I = MBB.end();
1529  while (I != MBB.begin()) {
1530    --I;
1531    // Working from the bottom, when we see a non-terminator
1532    // instruction, we're done.
1533    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1534      break;
1535    // A terminator that isn't a branch can't easily be handled
1536    // by this analysis.
1537    if (!I->getDesc().isBranch())
1538      return true;
1539    // Handle unconditional branches.
1540    if (I->getOpcode() == X86::JMP) {
1541      if (!AllowModify) {
1542        TBB = I->getOperand(0).getMBB();
1543        continue;
1544      }
1545
1546      // If the block has any instructions after a JMP, delete them.
1547      while (next(I) != MBB.end())
1548        next(I)->eraseFromParent();
1549      Cond.clear();
1550      FBB = 0;
1551      // Delete the JMP if it's equivalent to a fall-through.
1552      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1553        TBB = 0;
1554        I->eraseFromParent();
1555        I = MBB.end();
1556        continue;
1557      }
1558      // TBB is used to indicate the unconditinal destination.
1559      TBB = I->getOperand(0).getMBB();
1560      continue;
1561    }
1562    // Handle conditional branches.
1563    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1564    if (BranchCode == X86::COND_INVALID)
1565      return true;  // Can't handle indirect branch.
1566    // Working from the bottom, handle the first conditional branch.
1567    if (Cond.empty()) {
1568      FBB = TBB;
1569      TBB = I->getOperand(0).getMBB();
1570      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1571      continue;
1572    }
1573    // Handle subsequent conditional branches. Only handle the case
1574    // where all conditional branches branch to the same destination
1575    // and their condition opcodes fit one of the special
1576    // multi-branch idioms.
1577    assert(Cond.size() == 1);
1578    assert(TBB);
1579    // Only handle the case where all conditional branches branch to
1580    // the same destination.
1581    if (TBB != I->getOperand(0).getMBB())
1582      return true;
1583    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1584    // If the conditions are the same, we can leave them alone.
1585    if (OldBranchCode == BranchCode)
1586      continue;
1587    // If they differ, see if they fit one of the known patterns.
1588    // Theoretically we could handle more patterns here, but
1589    // we shouldn't expect to see them if instruction selection
1590    // has done a reasonable job.
1591    if ((OldBranchCode == X86::COND_NP &&
1592         BranchCode == X86::COND_E) ||
1593        (OldBranchCode == X86::COND_E &&
1594         BranchCode == X86::COND_NP))
1595      BranchCode = X86::COND_NP_OR_E;
1596    else if ((OldBranchCode == X86::COND_P &&
1597              BranchCode == X86::COND_NE) ||
1598             (OldBranchCode == X86::COND_NE &&
1599              BranchCode == X86::COND_P))
1600      BranchCode = X86::COND_NE_OR_P;
1601    else
1602      return true;
1603    // Update the MachineOperand.
1604    Cond[0].setImm(BranchCode);
1605  }
1606
1607  return false;
1608}
1609
1610unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1611  MachineBasicBlock::iterator I = MBB.end();
1612  unsigned Count = 0;
1613
1614  while (I != MBB.begin()) {
1615    --I;
1616    if (I->getOpcode() != X86::JMP &&
1617        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1618      break;
1619    // Remove the branch.
1620    I->eraseFromParent();
1621    I = MBB.end();
1622    ++Count;
1623  }
1624
1625  return Count;
1626}
1627
1628unsigned
1629X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1630                           MachineBasicBlock *FBB,
1631                           const SmallVectorImpl<MachineOperand> &Cond) const {
1632  // FIXME this should probably have a DebugLoc operand
1633  DebugLoc dl = DebugLoc::getUnknownLoc();
1634  // Shouldn't be a fall through.
1635  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1636  assert((Cond.size() == 1 || Cond.size() == 0) &&
1637         "X86 branch conditions have one component!");
1638
1639  if (Cond.empty()) {
1640    // Unconditional branch?
1641    assert(!FBB && "Unconditional branch with multiple successors!");
1642    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1643    return 1;
1644  }
1645
1646  // Conditional branch.
1647  unsigned Count = 0;
1648  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1649  switch (CC) {
1650  case X86::COND_NP_OR_E:
1651    // Synthesize NP_OR_E with two branches.
1652    BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1653    ++Count;
1654    BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1655    ++Count;
1656    break;
1657  case X86::COND_NE_OR_P:
1658    // Synthesize NE_OR_P with two branches.
1659    BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1660    ++Count;
1661    BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1662    ++Count;
1663    break;
1664  default: {
1665    unsigned Opc = GetCondBranchFromCond(CC);
1666    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1667    ++Count;
1668  }
1669  }
1670  if (FBB) {
1671    // Two-way Conditional branch. Insert the second branch.
1672    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1673    ++Count;
1674  }
1675  return Count;
1676}
1677
1678/// isHReg - Test if the given register is a physical h register.
1679static bool isHReg(unsigned Reg) {
1680  return X86::GR8_ABCD_HRegClass.contains(Reg);
1681}
1682
1683bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1684                                MachineBasicBlock::iterator MI,
1685                                unsigned DestReg, unsigned SrcReg,
1686                                const TargetRegisterClass *DestRC,
1687                                const TargetRegisterClass *SrcRC) const {
1688  DebugLoc DL = DebugLoc::getUnknownLoc();
1689  if (MI != MBB.end()) DL = MI->getDebugLoc();
1690
1691  // Determine if DstRC and SrcRC have a common superclass in common.
1692  const TargetRegisterClass *CommonRC = DestRC;
1693  if (DestRC == SrcRC)
1694    /* Source and destination have the same register class. */;
1695  else if (CommonRC->hasSuperClass(SrcRC))
1696    CommonRC = SrcRC;
1697  else if (!DestRC->hasSubClass(SrcRC))
1698    CommonRC = 0;
1699
1700  if (CommonRC) {
1701    unsigned Opc;
1702    if (CommonRC == &X86::GR64RegClass) {
1703      Opc = X86::MOV64rr;
1704    } else if (CommonRC == &X86::GR32RegClass) {
1705      Opc = X86::MOV32rr;
1706    } else if (CommonRC == &X86::GR16RegClass) {
1707      Opc = X86::MOV16rr;
1708    } else if (CommonRC == &X86::GR8RegClass) {
1709      // Copying to or from a physical H register on x86-64 requires a NOREX
1710      // move.  Otherwise use a normal move.
1711      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1712          TM.getSubtarget<X86Subtarget>().is64Bit())
1713        Opc = X86::MOV8rr_NOREX;
1714      else
1715        Opc = X86::MOV8rr;
1716    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1717      Opc = X86::MOV64rr;
1718    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1719      Opc = X86::MOV32rr;
1720    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1721      Opc = X86::MOV16rr;
1722    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1723      Opc = X86::MOV8rr;
1724    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1725      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1726        Opc = X86::MOV8rr_NOREX;
1727      else
1728        Opc = X86::MOV8rr;
1729    } else if (CommonRC == &X86::GR64_NOREXRegClass) {
1730      Opc = X86::MOV64rr;
1731    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1732      Opc = X86::MOV32rr;
1733    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1734      Opc = X86::MOV16rr;
1735    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1736      Opc = X86::MOV8rr;
1737    } else if (CommonRC == &X86::RFP32RegClass) {
1738      Opc = X86::MOV_Fp3232;
1739    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1740      Opc = X86::MOV_Fp6464;
1741    } else if (CommonRC == &X86::RFP80RegClass) {
1742      Opc = X86::MOV_Fp8080;
1743    } else if (CommonRC == &X86::FR32RegClass) {
1744      Opc = X86::FsMOVAPSrr;
1745    } else if (CommonRC == &X86::FR64RegClass) {
1746      Opc = X86::FsMOVAPDrr;
1747    } else if (CommonRC == &X86::VR128RegClass) {
1748      Opc = X86::MOVAPSrr;
1749    } else if (CommonRC == &X86::VR64RegClass) {
1750      Opc = X86::MMX_MOVQ64rr;
1751    } else {
1752      return false;
1753    }
1754    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1755    return true;
1756  }
1757
1758  // Moving EFLAGS to / from another register requires a push and a pop.
1759  if (SrcRC == &X86::CCRRegClass) {
1760    if (SrcReg != X86::EFLAGS)
1761      return false;
1762    if (DestRC == &X86::GR64RegClass) {
1763      BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1764      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1765      return true;
1766    } else if (DestRC == &X86::GR32RegClass) {
1767      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1768      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1769      return true;
1770    }
1771  } else if (DestRC == &X86::CCRRegClass) {
1772    if (DestReg != X86::EFLAGS)
1773      return false;
1774    if (SrcRC == &X86::GR64RegClass) {
1775      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1776      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1777      return true;
1778    } else if (SrcRC == &X86::GR32RegClass) {
1779      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1780      BuildMI(MBB, MI, DL, get(X86::POPFD));
1781      return true;
1782    }
1783  }
1784
1785  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1786  if (SrcRC == &X86::RSTRegClass) {
1787    // Copying from ST(0)/ST(1).
1788    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1789      // Can only copy from ST(0)/ST(1) right now
1790      return false;
1791    bool isST0 = SrcReg == X86::ST0;
1792    unsigned Opc;
1793    if (DestRC == &X86::RFP32RegClass)
1794      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1795    else if (DestRC == &X86::RFP64RegClass)
1796      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1797    else {
1798      if (DestRC != &X86::RFP80RegClass)
1799        return false;
1800      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1801    }
1802    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1803    return true;
1804  }
1805
1806  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1807  if (DestRC == &X86::RSTRegClass) {
1808    // Copying to ST(0) / ST(1).
1809    if (DestReg != X86::ST0 && DestReg != X86::ST1)
1810      // Can only copy to TOS right now
1811      return false;
1812    bool isST0 = DestReg == X86::ST0;
1813    unsigned Opc;
1814    if (SrcRC == &X86::RFP32RegClass)
1815      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1816    else if (SrcRC == &X86::RFP64RegClass)
1817      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1818    else {
1819      if (SrcRC != &X86::RFP80RegClass)
1820        return false;
1821      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
1822    }
1823    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
1824    return true;
1825  }
1826
1827  // Not yet supported!
1828  return false;
1829}
1830
1831static unsigned getStoreRegOpcode(unsigned SrcReg,
1832                                  const TargetRegisterClass *RC,
1833                                  bool isStackAligned,
1834                                  TargetMachine &TM) {
1835  unsigned Opc = 0;
1836  if (RC == &X86::GR64RegClass) {
1837    Opc = X86::MOV64mr;
1838  } else if (RC == &X86::GR32RegClass) {
1839    Opc = X86::MOV32mr;
1840  } else if (RC == &X86::GR16RegClass) {
1841    Opc = X86::MOV16mr;
1842  } else if (RC == &X86::GR8RegClass) {
1843    // Copying to or from a physical H register on x86-64 requires a NOREX
1844    // move.  Otherwise use a normal move.
1845    if (isHReg(SrcReg) &&
1846        TM.getSubtarget<X86Subtarget>().is64Bit())
1847      Opc = X86::MOV8mr_NOREX;
1848    else
1849      Opc = X86::MOV8mr;
1850  } else if (RC == &X86::GR64_ABCDRegClass) {
1851    Opc = X86::MOV64mr;
1852  } else if (RC == &X86::GR32_ABCDRegClass) {
1853    Opc = X86::MOV32mr;
1854  } else if (RC == &X86::GR16_ABCDRegClass) {
1855    Opc = X86::MOV16mr;
1856  } else if (RC == &X86::GR8_ABCD_LRegClass) {
1857    Opc = X86::MOV8mr;
1858  } else if (RC == &X86::GR8_ABCD_HRegClass) {
1859    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1860      Opc = X86::MOV8mr_NOREX;
1861    else
1862      Opc = X86::MOV8mr;
1863  } else if (RC == &X86::GR64_NOREXRegClass) {
1864    Opc = X86::MOV64mr;
1865  } else if (RC == &X86::GR32_NOREXRegClass) {
1866    Opc = X86::MOV32mr;
1867  } else if (RC == &X86::GR16_NOREXRegClass) {
1868    Opc = X86::MOV16mr;
1869  } else if (RC == &X86::GR8_NOREXRegClass) {
1870    Opc = X86::MOV8mr;
1871  } else if (RC == &X86::RFP80RegClass) {
1872    Opc = X86::ST_FpP80m;   // pops
1873  } else if (RC == &X86::RFP64RegClass) {
1874    Opc = X86::ST_Fp64m;
1875  } else if (RC == &X86::RFP32RegClass) {
1876    Opc = X86::ST_Fp32m;
1877  } else if (RC == &X86::FR32RegClass) {
1878    Opc = X86::MOVSSmr;
1879  } else if (RC == &X86::FR64RegClass) {
1880    Opc = X86::MOVSDmr;
1881  } else if (RC == &X86::VR128RegClass) {
1882    // If stack is realigned we can use aligned stores.
1883    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1884  } else if (RC == &X86::VR64RegClass) {
1885    Opc = X86::MMX_MOVQ64mr;
1886  } else {
1887    LLVM_UNREACHABLE("Unknown regclass");
1888  }
1889
1890  return Opc;
1891}
1892
1893void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1894                                       MachineBasicBlock::iterator MI,
1895                                       unsigned SrcReg, bool isKill, int FrameIdx,
1896                                       const TargetRegisterClass *RC) const {
1897  const MachineFunction &MF = *MBB.getParent();
1898  bool isAligned = (RI.getStackAlignment() >= 16) ||
1899    RI.needsStackRealignment(MF);
1900  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1901  DebugLoc DL = DebugLoc::getUnknownLoc();
1902  if (MI != MBB.end()) DL = MI->getDebugLoc();
1903  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1904    .addReg(SrcReg, getKillRegState(isKill));
1905}
1906
1907void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1908                                  bool isKill,
1909                                  SmallVectorImpl<MachineOperand> &Addr,
1910                                  const TargetRegisterClass *RC,
1911                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1912  bool isAligned = (RI.getStackAlignment() >= 16) ||
1913    RI.needsStackRealignment(MF);
1914  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
1915  DebugLoc DL = DebugLoc::getUnknownLoc();
1916  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
1917  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1918    MIB.addOperand(Addr[i]);
1919  MIB.addReg(SrcReg, getKillRegState(isKill));
1920  NewMIs.push_back(MIB);
1921}
1922
1923static unsigned getLoadRegOpcode(unsigned DestReg,
1924                                 const TargetRegisterClass *RC,
1925                                 bool isStackAligned,
1926                                 const TargetMachine &TM) {
1927  unsigned Opc = 0;
1928  if (RC == &X86::GR64RegClass) {
1929    Opc = X86::MOV64rm;
1930  } else if (RC == &X86::GR32RegClass) {
1931    Opc = X86::MOV32rm;
1932  } else if (RC == &X86::GR16RegClass) {
1933    Opc = X86::MOV16rm;
1934  } else if (RC == &X86::GR8RegClass) {
1935    // Copying to or from a physical H register on x86-64 requires a NOREX
1936    // move.  Otherwise use a normal move.
1937    if (isHReg(DestReg) &&
1938        TM.getSubtarget<X86Subtarget>().is64Bit())
1939      Opc = X86::MOV8rm_NOREX;
1940    else
1941      Opc = X86::MOV8rm;
1942  } else if (RC == &X86::GR64_ABCDRegClass) {
1943    Opc = X86::MOV64rm;
1944  } else if (RC == &X86::GR32_ABCDRegClass) {
1945    Opc = X86::MOV32rm;
1946  } else if (RC == &X86::GR16_ABCDRegClass) {
1947    Opc = X86::MOV16rm;
1948  } else if (RC == &X86::GR8_ABCD_LRegClass) {
1949    Opc = X86::MOV8rm;
1950  } else if (RC == &X86::GR8_ABCD_HRegClass) {
1951    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1952      Opc = X86::MOV8rm_NOREX;
1953    else
1954      Opc = X86::MOV8rm;
1955  } else if (RC == &X86::GR64_NOREXRegClass) {
1956    Opc = X86::MOV64rm;
1957  } else if (RC == &X86::GR32_NOREXRegClass) {
1958    Opc = X86::MOV32rm;
1959  } else if (RC == &X86::GR16_NOREXRegClass) {
1960    Opc = X86::MOV16rm;
1961  } else if (RC == &X86::GR8_NOREXRegClass) {
1962    Opc = X86::MOV8rm;
1963  } else if (RC == &X86::RFP80RegClass) {
1964    Opc = X86::LD_Fp80m;
1965  } else if (RC == &X86::RFP64RegClass) {
1966    Opc = X86::LD_Fp64m;
1967  } else if (RC == &X86::RFP32RegClass) {
1968    Opc = X86::LD_Fp32m;
1969  } else if (RC == &X86::FR32RegClass) {
1970    Opc = X86::MOVSSrm;
1971  } else if (RC == &X86::FR64RegClass) {
1972    Opc = X86::MOVSDrm;
1973  } else if (RC == &X86::VR128RegClass) {
1974    // If stack is realigned we can use aligned loads.
1975    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1976  } else if (RC == &X86::VR64RegClass) {
1977    Opc = X86::MMX_MOVQ64rm;
1978  } else {
1979    LLVM_UNREACHABLE("Unknown regclass");
1980  }
1981
1982  return Opc;
1983}
1984
1985void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1986                                        MachineBasicBlock::iterator MI,
1987                                        unsigned DestReg, int FrameIdx,
1988                                        const TargetRegisterClass *RC) const{
1989  const MachineFunction &MF = *MBB.getParent();
1990  bool isAligned = (RI.getStackAlignment() >= 16) ||
1991    RI.needsStackRealignment(MF);
1992  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
1993  DebugLoc DL = DebugLoc::getUnknownLoc();
1994  if (MI != MBB.end()) DL = MI->getDebugLoc();
1995  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
1996}
1997
1998void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1999                                 SmallVectorImpl<MachineOperand> &Addr,
2000                                 const TargetRegisterClass *RC,
2001                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2002  bool isAligned = (RI.getStackAlignment() >= 16) ||
2003    RI.needsStackRealignment(MF);
2004  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2005  DebugLoc DL = DebugLoc::getUnknownLoc();
2006  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2007  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2008    MIB.addOperand(Addr[i]);
2009  NewMIs.push_back(MIB);
2010}
2011
2012bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2013                                             MachineBasicBlock::iterator MI,
2014                                const std::vector<CalleeSavedInfo> &CSI) const {
2015  if (CSI.empty())
2016    return false;
2017
2018  DebugLoc DL = DebugLoc::getUnknownLoc();
2019  if (MI != MBB.end()) DL = MI->getDebugLoc();
2020
2021  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2022  unsigned SlotSize = is64Bit ? 8 : 4;
2023
2024  MachineFunction &MF = *MBB.getParent();
2025  unsigned FPReg = RI.getFrameRegister(MF);
2026  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2027  unsigned CalleeFrameSize = 0;
2028
2029  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2030  for (unsigned i = CSI.size(); i != 0; --i) {
2031    unsigned Reg = CSI[i-1].getReg();
2032    const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
2033    // Add the callee-saved register as live-in. It's killed at the spill.
2034    MBB.addLiveIn(Reg);
2035    if (Reg == FPReg)
2036      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2037      continue;
2038    if (RegClass != &X86::VR128RegClass) {
2039      CalleeFrameSize += SlotSize;
2040      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2041    } else {
2042      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2043    }
2044  }
2045
2046  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2047  return true;
2048}
2049
2050bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2051                                               MachineBasicBlock::iterator MI,
2052                                const std::vector<CalleeSavedInfo> &CSI) const {
2053  if (CSI.empty())
2054    return false;
2055
2056  DebugLoc DL = DebugLoc::getUnknownLoc();
2057  if (MI != MBB.end()) DL = MI->getDebugLoc();
2058
2059  MachineFunction &MF = *MBB.getParent();
2060  unsigned FPReg = RI.getFrameRegister(MF);
2061  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2062  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2063  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2064    unsigned Reg = CSI[i].getReg();
2065    if (Reg == FPReg)
2066      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2067      continue;
2068    const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2069    if (RegClass != &X86::VR128RegClass) {
2070      BuildMI(MBB, MI, DL, get(Opc), Reg);
2071    } else {
2072      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2073    }
2074  }
2075  return true;
2076}
2077
2078static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2079                                     const SmallVectorImpl<MachineOperand> &MOs,
2080                                     MachineInstr *MI,
2081                                     const TargetInstrInfo &TII) {
2082  // Create the base instruction with the memory operand as the first part.
2083  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2084                                              MI->getDebugLoc(), true);
2085  MachineInstrBuilder MIB(NewMI);
2086  unsigned NumAddrOps = MOs.size();
2087  for (unsigned i = 0; i != NumAddrOps; ++i)
2088    MIB.addOperand(MOs[i]);
2089  if (NumAddrOps < 4)  // FrameIndex only
2090    addOffset(MIB, 0);
2091
2092  // Loop over the rest of the ri operands, converting them over.
2093  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2094  for (unsigned i = 0; i != NumOps; ++i) {
2095    MachineOperand &MO = MI->getOperand(i+2);
2096    MIB.addOperand(MO);
2097  }
2098  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2099    MachineOperand &MO = MI->getOperand(i);
2100    MIB.addOperand(MO);
2101  }
2102  return MIB;
2103}
2104
2105static MachineInstr *FuseInst(MachineFunction &MF,
2106                              unsigned Opcode, unsigned OpNo,
2107                              const SmallVectorImpl<MachineOperand> &MOs,
2108                              MachineInstr *MI, const TargetInstrInfo &TII) {
2109  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2110                                              MI->getDebugLoc(), true);
2111  MachineInstrBuilder MIB(NewMI);
2112
2113  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2114    MachineOperand &MO = MI->getOperand(i);
2115    if (i == OpNo) {
2116      assert(MO.isReg() && "Expected to fold into reg operand!");
2117      unsigned NumAddrOps = MOs.size();
2118      for (unsigned i = 0; i != NumAddrOps; ++i)
2119        MIB.addOperand(MOs[i]);
2120      if (NumAddrOps < 4)  // FrameIndex only
2121        addOffset(MIB, 0);
2122    } else {
2123      MIB.addOperand(MO);
2124    }
2125  }
2126  return MIB;
2127}
2128
2129static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2130                                const SmallVectorImpl<MachineOperand> &MOs,
2131                                MachineInstr *MI) {
2132  MachineFunction &MF = *MI->getParent()->getParent();
2133  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2134
2135  unsigned NumAddrOps = MOs.size();
2136  for (unsigned i = 0; i != NumAddrOps; ++i)
2137    MIB.addOperand(MOs[i]);
2138  if (NumAddrOps < 4)  // FrameIndex only
2139    addOffset(MIB, 0);
2140  return MIB.addImm(0);
2141}
2142
2143MachineInstr*
2144X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2145                                    MachineInstr *MI, unsigned i,
2146                                    const SmallVectorImpl<MachineOperand> &MOs) const{
2147  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2148  bool isTwoAddrFold = false;
2149  unsigned NumOps = MI->getDesc().getNumOperands();
2150  bool isTwoAddr = NumOps > 1 &&
2151    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2152
2153  MachineInstr *NewMI = NULL;
2154  // Folding a memory location into the two-address part of a two-address
2155  // instruction is different than folding it other places.  It requires
2156  // replacing the *two* registers with the memory location.
2157  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2158      MI->getOperand(0).isReg() &&
2159      MI->getOperand(1).isReg() &&
2160      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2161    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2162    isTwoAddrFold = true;
2163  } else if (i == 0) { // If operand 0
2164    if (MI->getOpcode() == X86::MOV16r0)
2165      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2166    else if (MI->getOpcode() == X86::MOV32r0)
2167      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2168    else if (MI->getOpcode() == X86::MOV64r0)
2169      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2170    else if (MI->getOpcode() == X86::MOV8r0)
2171      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2172    if (NewMI)
2173      return NewMI;
2174
2175    OpcodeTablePtr = &RegOp2MemOpTable0;
2176  } else if (i == 1) {
2177    OpcodeTablePtr = &RegOp2MemOpTable1;
2178  } else if (i == 2) {
2179    OpcodeTablePtr = &RegOp2MemOpTable2;
2180  }
2181
2182  // If table selected...
2183  if (OpcodeTablePtr) {
2184    // Find the Opcode to fuse
2185    DenseMap<unsigned*, unsigned>::iterator I =
2186      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2187    if (I != OpcodeTablePtr->end()) {
2188      if (isTwoAddrFold)
2189        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2190      else
2191        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2192      return NewMI;
2193    }
2194  }
2195
2196  // No fusion
2197  if (PrintFailedFusing)
2198    cerr << "We failed to fuse operand " << i << " in " << *MI;
2199  return NULL;
2200}
2201
2202
2203MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2204                                                  MachineInstr *MI,
2205                                                  const SmallVectorImpl<unsigned> &Ops,
2206                                                  int FrameIndex) const {
2207  // Check switch flag
2208  if (NoFusing) return NULL;
2209
2210  const MachineFrameInfo *MFI = MF.getFrameInfo();
2211  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2212  // FIXME: Move alignment requirement into tables?
2213  if (Alignment < 16) {
2214    switch (MI->getOpcode()) {
2215    default: break;
2216    // Not always safe to fold movsd into these instructions since their load
2217    // folding variants expects the address to be 16 byte aligned.
2218    case X86::FsANDNPDrr:
2219    case X86::FsANDNPSrr:
2220    case X86::FsANDPDrr:
2221    case X86::FsANDPSrr:
2222    case X86::FsORPDrr:
2223    case X86::FsORPSrr:
2224    case X86::FsXORPDrr:
2225    case X86::FsXORPSrr:
2226      return NULL;
2227    }
2228  }
2229
2230  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2231    unsigned NewOpc = 0;
2232    switch (MI->getOpcode()) {
2233    default: return NULL;
2234    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2235    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2236    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2237    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2238    }
2239    // Change to CMPXXri r, 0 first.
2240    MI->setDesc(get(NewOpc));
2241    MI->getOperand(1).ChangeToImmediate(0);
2242  } else if (Ops.size() != 1)
2243    return NULL;
2244
2245  SmallVector<MachineOperand,4> MOs;
2246  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2247  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2248}
2249
2250MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2251                                                  MachineInstr *MI,
2252                                            const SmallVectorImpl<unsigned> &Ops,
2253                                                  MachineInstr *LoadMI) const {
2254  // Check switch flag
2255  if (NoFusing) return NULL;
2256
2257  // Determine the alignment of the load.
2258  unsigned Alignment = 0;
2259  if (LoadMI->hasOneMemOperand())
2260    Alignment = LoadMI->memoperands_begin()->getAlignment();
2261
2262  // FIXME: Move alignment requirement into tables?
2263  if (Alignment < 16) {
2264    switch (MI->getOpcode()) {
2265    default: break;
2266    // Not always safe to fold movsd into these instructions since their load
2267    // folding variants expects the address to be 16 byte aligned.
2268    case X86::FsANDNPDrr:
2269    case X86::FsANDNPSrr:
2270    case X86::FsANDPDrr:
2271    case X86::FsANDPSrr:
2272    case X86::FsORPDrr:
2273    case X86::FsORPSrr:
2274    case X86::FsXORPDrr:
2275    case X86::FsXORPSrr:
2276      return NULL;
2277    }
2278  }
2279
2280  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2281    unsigned NewOpc = 0;
2282    switch (MI->getOpcode()) {
2283    default: return NULL;
2284    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2285    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2286    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2287    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2288    }
2289    // Change to CMPXXri r, 0 first.
2290    MI->setDesc(get(NewOpc));
2291    MI->getOperand(1).ChangeToImmediate(0);
2292  } else if (Ops.size() != 1)
2293    return NULL;
2294
2295  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2296  if (LoadMI->getOpcode() == X86::V_SET0 ||
2297      LoadMI->getOpcode() == X86::V_SETALLONES) {
2298    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2299    // Create a constant-pool entry and operands to load from it.
2300
2301    // x86-32 PIC requires a PIC base register for constant pools.
2302    unsigned PICBase = 0;
2303    if (TM.getRelocationModel() == Reloc::PIC_ &&
2304        !TM.getSubtarget<X86Subtarget>().is64Bit())
2305      // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2306      // This doesn't work for several reasons.
2307      // 1. GlobalBaseReg may have been spilled.
2308      // 2. It may not be live at MI.
2309      return false;
2310
2311    // Create a v4i32 constant-pool entry.
2312    MachineConstantPool &MCP = *MF.getConstantPool();
2313    const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2314    Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2315                    ConstantVector::getNullValue(Ty) :
2316                    ConstantVector::getAllOnesValue(Ty);
2317    unsigned CPI = MCP.getConstantPoolIndex(C, 16);
2318
2319    // Create operands to load from the constant pool entry.
2320    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2321    MOs.push_back(MachineOperand::CreateImm(1));
2322    MOs.push_back(MachineOperand::CreateReg(0, false));
2323    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2324    MOs.push_back(MachineOperand::CreateReg(0, false));
2325  } else {
2326    // Folding a normal load. Just copy the load's address operands.
2327    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2328    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2329      MOs.push_back(LoadMI->getOperand(i));
2330  }
2331  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2332}
2333
2334
2335bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2336                                  const SmallVectorImpl<unsigned> &Ops) const {
2337  // Check switch flag
2338  if (NoFusing) return 0;
2339
2340  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2341    switch (MI->getOpcode()) {
2342    default: return false;
2343    case X86::TEST8rr:
2344    case X86::TEST16rr:
2345    case X86::TEST32rr:
2346    case X86::TEST64rr:
2347      return true;
2348    }
2349  }
2350
2351  if (Ops.size() != 1)
2352    return false;
2353
2354  unsigned OpNum = Ops[0];
2355  unsigned Opc = MI->getOpcode();
2356  unsigned NumOps = MI->getDesc().getNumOperands();
2357  bool isTwoAddr = NumOps > 1 &&
2358    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2359
2360  // Folding a memory location into the two-address part of a two-address
2361  // instruction is different than folding it other places.  It requires
2362  // replacing the *two* registers with the memory location.
2363  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2364  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2365    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2366  } else if (OpNum == 0) { // If operand 0
2367    switch (Opc) {
2368    case X86::MOV16r0:
2369    case X86::MOV32r0:
2370    case X86::MOV64r0:
2371    case X86::MOV8r0:
2372      return true;
2373    default: break;
2374    }
2375    OpcodeTablePtr = &RegOp2MemOpTable0;
2376  } else if (OpNum == 1) {
2377    OpcodeTablePtr = &RegOp2MemOpTable1;
2378  } else if (OpNum == 2) {
2379    OpcodeTablePtr = &RegOp2MemOpTable2;
2380  }
2381
2382  if (OpcodeTablePtr) {
2383    // Find the Opcode to fuse
2384    DenseMap<unsigned*, unsigned>::iterator I =
2385      OpcodeTablePtr->find((unsigned*)Opc);
2386    if (I != OpcodeTablePtr->end())
2387      return true;
2388  }
2389  return false;
2390}
2391
2392bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2393                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2394                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2395  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2396    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2397  if (I == MemOp2RegOpTable.end())
2398    return false;
2399  DebugLoc dl = MI->getDebugLoc();
2400  unsigned Opc = I->second.first;
2401  unsigned Index = I->second.second & 0xf;
2402  bool FoldedLoad = I->second.second & (1 << 4);
2403  bool FoldedStore = I->second.second & (1 << 5);
2404  if (UnfoldLoad && !FoldedLoad)
2405    return false;
2406  UnfoldLoad &= FoldedLoad;
2407  if (UnfoldStore && !FoldedStore)
2408    return false;
2409  UnfoldStore &= FoldedStore;
2410
2411  const TargetInstrDesc &TID = get(Opc);
2412  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2413  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2414    ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2415  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2416  SmallVector<MachineOperand,2> BeforeOps;
2417  SmallVector<MachineOperand,2> AfterOps;
2418  SmallVector<MachineOperand,4> ImpOps;
2419  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2420    MachineOperand &Op = MI->getOperand(i);
2421    if (i >= Index && i < Index + X86AddrNumOperands)
2422      AddrOps.push_back(Op);
2423    else if (Op.isReg() && Op.isImplicit())
2424      ImpOps.push_back(Op);
2425    else if (i < Index)
2426      BeforeOps.push_back(Op);
2427    else if (i > Index)
2428      AfterOps.push_back(Op);
2429  }
2430
2431  // Emit the load instruction.
2432  if (UnfoldLoad) {
2433    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2434    if (UnfoldStore) {
2435      // Address operands cannot be marked isKill.
2436      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2437        MachineOperand &MO = NewMIs[0]->getOperand(i);
2438        if (MO.isReg())
2439          MO.setIsKill(false);
2440      }
2441    }
2442  }
2443
2444  // Emit the data processing instruction.
2445  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2446  MachineInstrBuilder MIB(DataMI);
2447
2448  if (FoldedStore)
2449    MIB.addReg(Reg, RegState::Define);
2450  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2451    MIB.addOperand(BeforeOps[i]);
2452  if (FoldedLoad)
2453    MIB.addReg(Reg);
2454  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2455    MIB.addOperand(AfterOps[i]);
2456  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2457    MachineOperand &MO = ImpOps[i];
2458    MIB.addReg(MO.getReg(),
2459               getDefRegState(MO.isDef()) |
2460               RegState::Implicit |
2461               getKillRegState(MO.isKill()) |
2462               getDeadRegState(MO.isDead()) |
2463               getUndefRegState(MO.isUndef()));
2464  }
2465  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2466  unsigned NewOpc = 0;
2467  switch (DataMI->getOpcode()) {
2468  default: break;
2469  case X86::CMP64ri32:
2470  case X86::CMP32ri:
2471  case X86::CMP16ri:
2472  case X86::CMP8ri: {
2473    MachineOperand &MO0 = DataMI->getOperand(0);
2474    MachineOperand &MO1 = DataMI->getOperand(1);
2475    if (MO1.getImm() == 0) {
2476      switch (DataMI->getOpcode()) {
2477      default: break;
2478      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2479      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2480      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2481      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2482      }
2483      DataMI->setDesc(get(NewOpc));
2484      MO1.ChangeToRegister(MO0.getReg(), false);
2485    }
2486  }
2487  }
2488  NewMIs.push_back(DataMI);
2489
2490  // Emit the store instruction.
2491  if (UnfoldStore) {
2492    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2493    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2494      ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2495    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2496  }
2497
2498  return true;
2499}
2500
2501bool
2502X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2503                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2504  if (!N->isMachineOpcode())
2505    return false;
2506
2507  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2508    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2509  if (I == MemOp2RegOpTable.end())
2510    return false;
2511  unsigned Opc = I->second.first;
2512  unsigned Index = I->second.second & 0xf;
2513  bool FoldedLoad = I->second.second & (1 << 4);
2514  bool FoldedStore = I->second.second & (1 << 5);
2515  const TargetInstrDesc &TID = get(Opc);
2516  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2517  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2518    ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2519  unsigned NumDefs = TID.NumDefs;
2520  std::vector<SDValue> AddrOps;
2521  std::vector<SDValue> BeforeOps;
2522  std::vector<SDValue> AfterOps;
2523  DebugLoc dl = N->getDebugLoc();
2524  unsigned NumOps = N->getNumOperands();
2525  for (unsigned i = 0; i != NumOps-1; ++i) {
2526    SDValue Op = N->getOperand(i);
2527    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2528      AddrOps.push_back(Op);
2529    else if (i < Index-NumDefs)
2530      BeforeOps.push_back(Op);
2531    else if (i > Index-NumDefs)
2532      AfterOps.push_back(Op);
2533  }
2534  SDValue Chain = N->getOperand(NumOps-1);
2535  AddrOps.push_back(Chain);
2536
2537  // Emit the load instruction.
2538  SDNode *Load = 0;
2539  const MachineFunction &MF = DAG.getMachineFunction();
2540  if (FoldedLoad) {
2541    MVT VT = *RC->vt_begin();
2542    bool isAligned = (RI.getStackAlignment() >= 16) ||
2543      RI.needsStackRealignment(MF);
2544    Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2545                             VT, MVT::Other, &AddrOps[0], AddrOps.size());
2546    NewNodes.push_back(Load);
2547  }
2548
2549  // Emit the data processing instruction.
2550  std::vector<MVT> VTs;
2551  const TargetRegisterClass *DstRC = 0;
2552  if (TID.getNumDefs() > 0) {
2553    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2554    DstRC = DstTOI.isLookupPtrRegClass()
2555      ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2556    VTs.push_back(*DstRC->vt_begin());
2557  }
2558  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2559    MVT VT = N->getValueType(i);
2560    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2561      VTs.push_back(VT);
2562  }
2563  if (Load)
2564    BeforeOps.push_back(SDValue(Load, 0));
2565  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2566  SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2567                                     BeforeOps.size());
2568  NewNodes.push_back(NewNode);
2569
2570  // Emit the store instruction.
2571  if (FoldedStore) {
2572    AddrOps.pop_back();
2573    AddrOps.push_back(SDValue(NewNode, 0));
2574    AddrOps.push_back(Chain);
2575    bool isAligned = (RI.getStackAlignment() >= 16) ||
2576      RI.needsStackRealignment(MF);
2577    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC,
2578                                                        isAligned, TM),
2579                                      dl, MVT::Other,
2580                                      &AddrOps[0], AddrOps.size());
2581    NewNodes.push_back(Store);
2582  }
2583
2584  return true;
2585}
2586
2587unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2588                                      bool UnfoldLoad, bool UnfoldStore) const {
2589  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2590    MemOp2RegOpTable.find((unsigned*)Opc);
2591  if (I == MemOp2RegOpTable.end())
2592    return 0;
2593  bool FoldedLoad = I->second.second & (1 << 4);
2594  bool FoldedStore = I->second.second & (1 << 5);
2595  if (UnfoldLoad && !FoldedLoad)
2596    return 0;
2597  if (UnfoldStore && !FoldedStore)
2598    return 0;
2599  return I->second.first;
2600}
2601
2602bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2603  if (MBB.empty()) return false;
2604
2605  switch (MBB.back().getOpcode()) {
2606  case X86::TCRETURNri:
2607  case X86::TCRETURNdi:
2608  case X86::RET:     // Return.
2609  case X86::RETI:
2610  case X86::TAILJMPd:
2611  case X86::TAILJMPr:
2612  case X86::TAILJMPm:
2613  case X86::JMP:     // Uncond branch.
2614  case X86::JMP32r:  // Indirect branch.
2615  case X86::JMP64r:  // Indirect branch (64-bit).
2616  case X86::JMP32m:  // Indirect branch through mem.
2617  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2618    return true;
2619  default: return false;
2620  }
2621}
2622
2623bool X86InstrInfo::
2624ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2625  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2626  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2627  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2628    return true;
2629  Cond[0].setImm(GetOppositeBranchCondition(CC));
2630  return false;
2631}
2632
2633bool X86InstrInfo::
2634isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2635  // FIXME: Return false for x87 stack register classes for now. We can't
2636  // allow any loads of these registers before FpGet_ST0_80.
2637  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2638           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2639}
2640
2641unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2642  switch (Desc->TSFlags & X86II::ImmMask) {
2643  case X86II::Imm8:   return 1;
2644  case X86II::Imm16:  return 2;
2645  case X86II::Imm32:  return 4;
2646  case X86II::Imm64:  return 8;
2647  default: assert(0 && "Immediate size not set!");
2648    return 0;
2649  }
2650}
2651
2652/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2653/// e.g. r8, xmm8, etc.
2654bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2655  if (!MO.isReg()) return false;
2656  switch (MO.getReg()) {
2657  default: break;
2658  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2659  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2660  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2661  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2662  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2663  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2664  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2665  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2666  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2667  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2668    return true;
2669  }
2670  return false;
2671}
2672
2673
2674/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2675/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2676/// size, and 3) use of X86-64 extended registers.
2677unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2678  unsigned REX = 0;
2679  const TargetInstrDesc &Desc = MI.getDesc();
2680
2681  // Pseudo instructions do not need REX prefix byte.
2682  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2683    return 0;
2684  if (Desc.TSFlags & X86II::REX_W)
2685    REX |= 1 << 3;
2686
2687  unsigned NumOps = Desc.getNumOperands();
2688  if (NumOps) {
2689    bool isTwoAddr = NumOps > 1 &&
2690      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2691
2692    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2693    unsigned i = isTwoAddr ? 1 : 0;
2694    for (unsigned e = NumOps; i != e; ++i) {
2695      const MachineOperand& MO = MI.getOperand(i);
2696      if (MO.isReg()) {
2697        unsigned Reg = MO.getReg();
2698        if (isX86_64NonExtLowByteReg(Reg))
2699          REX |= 0x40;
2700      }
2701    }
2702
2703    switch (Desc.TSFlags & X86II::FormMask) {
2704    case X86II::MRMInitReg:
2705      if (isX86_64ExtendedReg(MI.getOperand(0)))
2706        REX |= (1 << 0) | (1 << 2);
2707      break;
2708    case X86II::MRMSrcReg: {
2709      if (isX86_64ExtendedReg(MI.getOperand(0)))
2710        REX |= 1 << 2;
2711      i = isTwoAddr ? 2 : 1;
2712      for (unsigned e = NumOps; i != e; ++i) {
2713        const MachineOperand& MO = MI.getOperand(i);
2714        if (isX86_64ExtendedReg(MO))
2715          REX |= 1 << 0;
2716      }
2717      break;
2718    }
2719    case X86II::MRMSrcMem: {
2720      if (isX86_64ExtendedReg(MI.getOperand(0)))
2721        REX |= 1 << 2;
2722      unsigned Bit = 0;
2723      i = isTwoAddr ? 2 : 1;
2724      for (; i != NumOps; ++i) {
2725        const MachineOperand& MO = MI.getOperand(i);
2726        if (MO.isReg()) {
2727          if (isX86_64ExtendedReg(MO))
2728            REX |= 1 << Bit;
2729          Bit++;
2730        }
2731      }
2732      break;
2733    }
2734    case X86II::MRM0m: case X86II::MRM1m:
2735    case X86II::MRM2m: case X86II::MRM3m:
2736    case X86II::MRM4m: case X86II::MRM5m:
2737    case X86II::MRM6m: case X86II::MRM7m:
2738    case X86II::MRMDestMem: {
2739      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
2740      i = isTwoAddr ? 1 : 0;
2741      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2742        REX |= 1 << 2;
2743      unsigned Bit = 0;
2744      for (; i != e; ++i) {
2745        const MachineOperand& MO = MI.getOperand(i);
2746        if (MO.isReg()) {
2747          if (isX86_64ExtendedReg(MO))
2748            REX |= 1 << Bit;
2749          Bit++;
2750        }
2751      }
2752      break;
2753    }
2754    default: {
2755      if (isX86_64ExtendedReg(MI.getOperand(0)))
2756        REX |= 1 << 0;
2757      i = isTwoAddr ? 2 : 1;
2758      for (unsigned e = NumOps; i != e; ++i) {
2759        const MachineOperand& MO = MI.getOperand(i);
2760        if (isX86_64ExtendedReg(MO))
2761          REX |= 1 << 2;
2762      }
2763      break;
2764    }
2765    }
2766  }
2767  return REX;
2768}
2769
2770/// sizePCRelativeBlockAddress - This method returns the size of a PC
2771/// relative block address instruction
2772///
2773static unsigned sizePCRelativeBlockAddress() {
2774  return 4;
2775}
2776
2777/// sizeGlobalAddress - Give the size of the emission of this global address
2778///
2779static unsigned sizeGlobalAddress(bool dword) {
2780  return dword ? 8 : 4;
2781}
2782
2783/// sizeConstPoolAddress - Give the size of the emission of this constant
2784/// pool address
2785///
2786static unsigned sizeConstPoolAddress(bool dword) {
2787  return dword ? 8 : 4;
2788}
2789
2790/// sizeExternalSymbolAddress - Give the size of the emission of this external
2791/// symbol
2792///
2793static unsigned sizeExternalSymbolAddress(bool dword) {
2794  return dword ? 8 : 4;
2795}
2796
2797/// sizeJumpTableAddress - Give the size of the emission of this jump
2798/// table address
2799///
2800static unsigned sizeJumpTableAddress(bool dword) {
2801  return dword ? 8 : 4;
2802}
2803
2804static unsigned sizeConstant(unsigned Size) {
2805  return Size;
2806}
2807
2808static unsigned sizeRegModRMByte(){
2809  return 1;
2810}
2811
2812static unsigned sizeSIBByte(){
2813  return 1;
2814}
2815
2816static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2817  unsigned FinalSize = 0;
2818  // If this is a simple integer displacement that doesn't require a relocation.
2819  if (!RelocOp) {
2820    FinalSize += sizeConstant(4);
2821    return FinalSize;
2822  }
2823
2824  // Otherwise, this is something that requires a relocation.
2825  if (RelocOp->isGlobal()) {
2826    FinalSize += sizeGlobalAddress(false);
2827  } else if (RelocOp->isCPI()) {
2828    FinalSize += sizeConstPoolAddress(false);
2829  } else if (RelocOp->isJTI()) {
2830    FinalSize += sizeJumpTableAddress(false);
2831  } else {
2832    assert(0 && "Unknown value to relocate!");
2833  }
2834  return FinalSize;
2835}
2836
2837static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2838                                    bool IsPIC, bool Is64BitMode) {
2839  const MachineOperand &Op3 = MI.getOperand(Op+3);
2840  int DispVal = 0;
2841  const MachineOperand *DispForReloc = 0;
2842  unsigned FinalSize = 0;
2843
2844  // Figure out what sort of displacement we have to handle here.
2845  if (Op3.isGlobal()) {
2846    DispForReloc = &Op3;
2847  } else if (Op3.isCPI()) {
2848    if (Is64BitMode || IsPIC) {
2849      DispForReloc = &Op3;
2850    } else {
2851      DispVal = 1;
2852    }
2853  } else if (Op3.isJTI()) {
2854    if (Is64BitMode || IsPIC) {
2855      DispForReloc = &Op3;
2856    } else {
2857      DispVal = 1;
2858    }
2859  } else {
2860    DispVal = 1;
2861  }
2862
2863  const MachineOperand &Base     = MI.getOperand(Op);
2864  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2865
2866  unsigned BaseReg = Base.getReg();
2867
2868  // Is a SIB byte needed?
2869  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2870      IndexReg.getReg() == 0 &&
2871      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2872    if (BaseReg == 0) {  // Just a displacement?
2873      // Emit special case [disp32] encoding
2874      ++FinalSize;
2875      FinalSize += getDisplacementFieldSize(DispForReloc);
2876    } else {
2877      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2878      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2879        // Emit simple indirect register encoding... [EAX] f.e.
2880        ++FinalSize;
2881      // Be pessimistic and assume it's a disp32, not a disp8
2882      } else {
2883        // Emit the most general non-SIB encoding: [REG+disp32]
2884        ++FinalSize;
2885        FinalSize += getDisplacementFieldSize(DispForReloc);
2886      }
2887    }
2888
2889  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2890    assert(IndexReg.getReg() != X86::ESP &&
2891           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2892
2893    bool ForceDisp32 = false;
2894    if (BaseReg == 0 || DispForReloc) {
2895      // Emit the normal disp32 encoding.
2896      ++FinalSize;
2897      ForceDisp32 = true;
2898    } else {
2899      ++FinalSize;
2900    }
2901
2902    FinalSize += sizeSIBByte();
2903
2904    // Do we need to output a displacement?
2905    if (DispVal != 0 || ForceDisp32) {
2906      FinalSize += getDisplacementFieldSize(DispForReloc);
2907    }
2908  }
2909  return FinalSize;
2910}
2911
2912
2913static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2914                                    const TargetInstrDesc *Desc,
2915                                    bool IsPIC, bool Is64BitMode) {
2916
2917  unsigned Opcode = Desc->Opcode;
2918  unsigned FinalSize = 0;
2919
2920  // Emit the lock opcode prefix as needed.
2921  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2922
2923  // Emit segment override opcode prefix as needed.
2924  switch (Desc->TSFlags & X86II::SegOvrMask) {
2925  case X86II::FS:
2926  case X86II::GS:
2927   ++FinalSize;
2928   break;
2929  default: assert(0 && "Invalid segment!");
2930  case 0: break;  // No segment override!
2931  }
2932
2933  // Emit the repeat opcode prefix as needed.
2934  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2935
2936  // Emit the operand size opcode prefix as needed.
2937  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2938
2939  // Emit the address size opcode prefix as needed.
2940  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2941
2942  bool Need0FPrefix = false;
2943  switch (Desc->TSFlags & X86II::Op0Mask) {
2944  case X86II::TB:  // Two-byte opcode prefix
2945  case X86II::T8:  // 0F 38
2946  case X86II::TA:  // 0F 3A
2947    Need0FPrefix = true;
2948    break;
2949  case X86II::REP: break; // already handled.
2950  case X86II::XS:   // F3 0F
2951    ++FinalSize;
2952    Need0FPrefix = true;
2953    break;
2954  case X86II::XD:   // F2 0F
2955    ++FinalSize;
2956    Need0FPrefix = true;
2957    break;
2958  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2959  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2960    ++FinalSize;
2961    break; // Two-byte opcode prefix
2962  default: assert(0 && "Invalid prefix!");
2963  case 0: break;  // No prefix!
2964  }
2965
2966  if (Is64BitMode) {
2967    // REX prefix
2968    unsigned REX = X86InstrInfo::determineREX(MI);
2969    if (REX)
2970      ++FinalSize;
2971  }
2972
2973  // 0x0F escape code must be emitted just before the opcode.
2974  if (Need0FPrefix)
2975    ++FinalSize;
2976
2977  switch (Desc->TSFlags & X86II::Op0Mask) {
2978  case X86II::T8:  // 0F 38
2979    ++FinalSize;
2980    break;
2981  case X86II::TA:  // 0F 3A
2982    ++FinalSize;
2983    break;
2984  }
2985
2986  // If this is a two-address instruction, skip one of the register operands.
2987  unsigned NumOps = Desc->getNumOperands();
2988  unsigned CurOp = 0;
2989  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2990    CurOp++;
2991  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
2992    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
2993    --NumOps;
2994
2995  switch (Desc->TSFlags & X86II::FormMask) {
2996  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2997  case X86II::Pseudo:
2998    // Remember the current PC offset, this is the PIC relocation
2999    // base address.
3000    switch (Opcode) {
3001    default:
3002      break;
3003    case TargetInstrInfo::INLINEASM: {
3004      const MachineFunction *MF = MI.getParent()->getParent();
3005      const char *AsmStr = MI.getOperand(0).getSymbolName();
3006      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
3007      FinalSize += AI->getInlineAsmLength(AsmStr);
3008      break;
3009    }
3010    case TargetInstrInfo::DBG_LABEL:
3011    case TargetInstrInfo::EH_LABEL:
3012      break;
3013    case TargetInstrInfo::IMPLICIT_DEF:
3014    case TargetInstrInfo::DECLARE:
3015    case X86::DWARF_LOC:
3016    case X86::FP_REG_KILL:
3017      break;
3018    case X86::MOVPC32r: {
3019      // This emits the "call" portion of this pseudo instruction.
3020      ++FinalSize;
3021      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3022      break;
3023    }
3024    }
3025    CurOp = NumOps;
3026    break;
3027  case X86II::RawFrm:
3028    ++FinalSize;
3029
3030    if (CurOp != NumOps) {
3031      const MachineOperand &MO = MI.getOperand(CurOp++);
3032      if (MO.isMBB()) {
3033        FinalSize += sizePCRelativeBlockAddress();
3034      } else if (MO.isGlobal()) {
3035        FinalSize += sizeGlobalAddress(false);
3036      } else if (MO.isSymbol()) {
3037        FinalSize += sizeExternalSymbolAddress(false);
3038      } else if (MO.isImm()) {
3039        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3040      } else {
3041        assert(0 && "Unknown RawFrm operand!");
3042      }
3043    }
3044    break;
3045
3046  case X86II::AddRegFrm:
3047    ++FinalSize;
3048    ++CurOp;
3049
3050    if (CurOp != NumOps) {
3051      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3052      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3053      if (MO1.isImm())
3054        FinalSize += sizeConstant(Size);
3055      else {
3056        bool dword = false;
3057        if (Opcode == X86::MOV64ri)
3058          dword = true;
3059        if (MO1.isGlobal()) {
3060          FinalSize += sizeGlobalAddress(dword);
3061        } else if (MO1.isSymbol())
3062          FinalSize += sizeExternalSymbolAddress(dword);
3063        else if (MO1.isCPI())
3064          FinalSize += sizeConstPoolAddress(dword);
3065        else if (MO1.isJTI())
3066          FinalSize += sizeJumpTableAddress(dword);
3067      }
3068    }
3069    break;
3070
3071  case X86II::MRMDestReg: {
3072    ++FinalSize;
3073    FinalSize += sizeRegModRMByte();
3074    CurOp += 2;
3075    if (CurOp != NumOps) {
3076      ++CurOp;
3077      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3078    }
3079    break;
3080  }
3081  case X86II::MRMDestMem: {
3082    ++FinalSize;
3083    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3084    CurOp +=  X86AddrNumOperands + 1;
3085    if (CurOp != NumOps) {
3086      ++CurOp;
3087      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3088    }
3089    break;
3090  }
3091
3092  case X86II::MRMSrcReg:
3093    ++FinalSize;
3094    FinalSize += sizeRegModRMByte();
3095    CurOp += 2;
3096    if (CurOp != NumOps) {
3097      ++CurOp;
3098      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3099    }
3100    break;
3101
3102  case X86II::MRMSrcMem: {
3103    int AddrOperands;
3104    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3105        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3106      AddrOperands = X86AddrNumOperands - 1; // No segment register
3107    else
3108      AddrOperands = X86AddrNumOperands;
3109
3110    ++FinalSize;
3111    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3112    CurOp += AddrOperands + 1;
3113    if (CurOp != NumOps) {
3114      ++CurOp;
3115      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3116    }
3117    break;
3118  }
3119
3120  case X86II::MRM0r: case X86II::MRM1r:
3121  case X86II::MRM2r: case X86II::MRM3r:
3122  case X86II::MRM4r: case X86II::MRM5r:
3123  case X86II::MRM6r: case X86II::MRM7r:
3124    ++FinalSize;
3125    if (Desc->getOpcode() == X86::LFENCE ||
3126        Desc->getOpcode() == X86::MFENCE) {
3127      // Special handling of lfence and mfence;
3128      FinalSize += sizeRegModRMByte();
3129    } else if (Desc->getOpcode() == X86::MONITOR ||
3130               Desc->getOpcode() == X86::MWAIT) {
3131      // Special handling of monitor and mwait.
3132      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3133    } else {
3134      ++CurOp;
3135      FinalSize += sizeRegModRMByte();
3136    }
3137
3138    if (CurOp != NumOps) {
3139      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3140      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3141      if (MO1.isImm())
3142        FinalSize += sizeConstant(Size);
3143      else {
3144        bool dword = false;
3145        if (Opcode == X86::MOV64ri32)
3146          dword = true;
3147        if (MO1.isGlobal()) {
3148          FinalSize += sizeGlobalAddress(dword);
3149        } else if (MO1.isSymbol())
3150          FinalSize += sizeExternalSymbolAddress(dword);
3151        else if (MO1.isCPI())
3152          FinalSize += sizeConstPoolAddress(dword);
3153        else if (MO1.isJTI())
3154          FinalSize += sizeJumpTableAddress(dword);
3155      }
3156    }
3157    break;
3158
3159  case X86II::MRM0m: case X86II::MRM1m:
3160  case X86II::MRM2m: case X86II::MRM3m:
3161  case X86II::MRM4m: case X86II::MRM5m:
3162  case X86II::MRM6m: case X86II::MRM7m: {
3163
3164    ++FinalSize;
3165    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3166    CurOp += X86AddrNumOperands;
3167
3168    if (CurOp != NumOps) {
3169      const MachineOperand &MO = MI.getOperand(CurOp++);
3170      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3171      if (MO.isImm())
3172        FinalSize += sizeConstant(Size);
3173      else {
3174        bool dword = false;
3175        if (Opcode == X86::MOV64mi32)
3176          dword = true;
3177        if (MO.isGlobal()) {
3178          FinalSize += sizeGlobalAddress(dword);
3179        } else if (MO.isSymbol())
3180          FinalSize += sizeExternalSymbolAddress(dword);
3181        else if (MO.isCPI())
3182          FinalSize += sizeConstPoolAddress(dword);
3183        else if (MO.isJTI())
3184          FinalSize += sizeJumpTableAddress(dword);
3185      }
3186    }
3187    break;
3188  }
3189
3190  case X86II::MRMInitReg:
3191    ++FinalSize;
3192    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3193    FinalSize += sizeRegModRMByte();
3194    ++CurOp;
3195    break;
3196  }
3197
3198  if (!Desc->isVariadic() && CurOp != NumOps) {
3199    std::string msg;
3200    raw_string_ostream Msg(msg);
3201    Msg << "Cannot determine size: " << MI;
3202    llvm_report_error(Msg.str());
3203  }
3204
3205
3206  return FinalSize;
3207}
3208
3209
3210unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3211  const TargetInstrDesc &Desc = MI->getDesc();
3212  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
3213  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3214  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3215  if (Desc.getOpcode() == X86::MOVPC32r)
3216    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3217  return Size;
3218}
3219
3220/// getGlobalBaseReg - Return a virtual register initialized with the
3221/// the global base register value. Output instructions required to
3222/// initialize the register in the function entry block, if necessary.
3223///
3224unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3225  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3226         "X86-64 PIC uses RIP relative addressing");
3227
3228  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3229  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3230  if (GlobalBaseReg != 0)
3231    return GlobalBaseReg;
3232
3233  // Insert the set of GlobalBaseReg into the first MBB of the function
3234  MachineBasicBlock &FirstMBB = MF->front();
3235  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3236  DebugLoc DL = DebugLoc::getUnknownLoc();
3237  if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3238  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3239  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3240
3241  const TargetInstrInfo *TII = TM.getInstrInfo();
3242  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3243  // only used in JIT code emission as displacement to pc.
3244  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3245
3246  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3247  // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3248  if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3249    GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3250    // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3251    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3252      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 0,
3253                                    X86II::MO_GOT_ABSOLUTE_ADDRESS);
3254  } else {
3255    GlobalBaseReg = PC;
3256  }
3257
3258  X86FI->setGlobalBaseReg(GlobalBaseReg);
3259  return GlobalBaseReg;
3260}
3261