X86InstrInfo.cpp revision 0c04e4f58f8d1ad4604de17324170fa1f4e43418
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/MC/MCAsmInfo.h"
37
38#include <limits>
39
40using namespace llvm;
41
42static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44         cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47                  cl::desc("Print instructions that the allocator wants to"
48                           " fuse, but the X86 backend currently can't"),
49                  cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52                 cl::desc("Re-materialize load from stub in PIC mode"),
53                 cl::init(false), cl::Hidden);
54
55X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
56  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
57    TM(tm), RI(tm, *this) {
58  SmallVector<unsigned,16> AmbEntries;
59  static const unsigned OpTbl2Addr[][2] = {
60    { X86::ADC32ri,     X86::ADC32mi },
61    { X86::ADC32ri8,    X86::ADC32mi8 },
62    { X86::ADC32rr,     X86::ADC32mr },
63    { X86::ADC64ri32,   X86::ADC64mi32 },
64    { X86::ADC64ri8,    X86::ADC64mi8 },
65    { X86::ADC64rr,     X86::ADC64mr },
66    { X86::ADD16ri,     X86::ADD16mi },
67    { X86::ADD16ri8,    X86::ADD16mi8 },
68    { X86::ADD16rr,     X86::ADD16mr },
69    { X86::ADD32ri,     X86::ADD32mi },
70    { X86::ADD32ri8,    X86::ADD32mi8 },
71    { X86::ADD32rr,     X86::ADD32mr },
72    { X86::ADD64ri32,   X86::ADD64mi32 },
73    { X86::ADD64ri8,    X86::ADD64mi8 },
74    { X86::ADD64rr,     X86::ADD64mr },
75    { X86::ADD8ri,      X86::ADD8mi },
76    { X86::ADD8rr,      X86::ADD8mr },
77    { X86::AND16ri,     X86::AND16mi },
78    { X86::AND16ri8,    X86::AND16mi8 },
79    { X86::AND16rr,     X86::AND16mr },
80    { X86::AND32ri,     X86::AND32mi },
81    { X86::AND32ri8,    X86::AND32mi8 },
82    { X86::AND32rr,     X86::AND32mr },
83    { X86::AND64ri32,   X86::AND64mi32 },
84    { X86::AND64ri8,    X86::AND64mi8 },
85    { X86::AND64rr,     X86::AND64mr },
86    { X86::AND8ri,      X86::AND8mi },
87    { X86::AND8rr,      X86::AND8mr },
88    { X86::DEC16r,      X86::DEC16m },
89    { X86::DEC32r,      X86::DEC32m },
90    { X86::DEC64_16r,   X86::DEC64_16m },
91    { X86::DEC64_32r,   X86::DEC64_32m },
92    { X86::DEC64r,      X86::DEC64m },
93    { X86::DEC8r,       X86::DEC8m },
94    { X86::INC16r,      X86::INC16m },
95    { X86::INC32r,      X86::INC32m },
96    { X86::INC64_16r,   X86::INC64_16m },
97    { X86::INC64_32r,   X86::INC64_32m },
98    { X86::INC64r,      X86::INC64m },
99    { X86::INC8r,       X86::INC8m },
100    { X86::NEG16r,      X86::NEG16m },
101    { X86::NEG32r,      X86::NEG32m },
102    { X86::NEG64r,      X86::NEG64m },
103    { X86::NEG8r,       X86::NEG8m },
104    { X86::NOT16r,      X86::NOT16m },
105    { X86::NOT32r,      X86::NOT32m },
106    { X86::NOT64r,      X86::NOT64m },
107    { X86::NOT8r,       X86::NOT8m },
108    { X86::OR16ri,      X86::OR16mi },
109    { X86::OR16ri8,     X86::OR16mi8 },
110    { X86::OR16rr,      X86::OR16mr },
111    { X86::OR32ri,      X86::OR32mi },
112    { X86::OR32ri8,     X86::OR32mi8 },
113    { X86::OR32rr,      X86::OR32mr },
114    { X86::OR64ri32,    X86::OR64mi32 },
115    { X86::OR64ri8,     X86::OR64mi8 },
116    { X86::OR64rr,      X86::OR64mr },
117    { X86::OR8ri,       X86::OR8mi },
118    { X86::OR8rr,       X86::OR8mr },
119    { X86::ROL16r1,     X86::ROL16m1 },
120    { X86::ROL16rCL,    X86::ROL16mCL },
121    { X86::ROL16ri,     X86::ROL16mi },
122    { X86::ROL32r1,     X86::ROL32m1 },
123    { X86::ROL32rCL,    X86::ROL32mCL },
124    { X86::ROL32ri,     X86::ROL32mi },
125    { X86::ROL64r1,     X86::ROL64m1 },
126    { X86::ROL64rCL,    X86::ROL64mCL },
127    { X86::ROL64ri,     X86::ROL64mi },
128    { X86::ROL8r1,      X86::ROL8m1 },
129    { X86::ROL8rCL,     X86::ROL8mCL },
130    { X86::ROL8ri,      X86::ROL8mi },
131    { X86::ROR16r1,     X86::ROR16m1 },
132    { X86::ROR16rCL,    X86::ROR16mCL },
133    { X86::ROR16ri,     X86::ROR16mi },
134    { X86::ROR32r1,     X86::ROR32m1 },
135    { X86::ROR32rCL,    X86::ROR32mCL },
136    { X86::ROR32ri,     X86::ROR32mi },
137    { X86::ROR64r1,     X86::ROR64m1 },
138    { X86::ROR64rCL,    X86::ROR64mCL },
139    { X86::ROR64ri,     X86::ROR64mi },
140    { X86::ROR8r1,      X86::ROR8m1 },
141    { X86::ROR8rCL,     X86::ROR8mCL },
142    { X86::ROR8ri,      X86::ROR8mi },
143    { X86::SAR16r1,     X86::SAR16m1 },
144    { X86::SAR16rCL,    X86::SAR16mCL },
145    { X86::SAR16ri,     X86::SAR16mi },
146    { X86::SAR32r1,     X86::SAR32m1 },
147    { X86::SAR32rCL,    X86::SAR32mCL },
148    { X86::SAR32ri,     X86::SAR32mi },
149    { X86::SAR64r1,     X86::SAR64m1 },
150    { X86::SAR64rCL,    X86::SAR64mCL },
151    { X86::SAR64ri,     X86::SAR64mi },
152    { X86::SAR8r1,      X86::SAR8m1 },
153    { X86::SAR8rCL,     X86::SAR8mCL },
154    { X86::SAR8ri,      X86::SAR8mi },
155    { X86::SBB32ri,     X86::SBB32mi },
156    { X86::SBB32ri8,    X86::SBB32mi8 },
157    { X86::SBB32rr,     X86::SBB32mr },
158    { X86::SBB64ri32,   X86::SBB64mi32 },
159    { X86::SBB64ri8,    X86::SBB64mi8 },
160    { X86::SBB64rr,     X86::SBB64mr },
161    { X86::SHL16rCL,    X86::SHL16mCL },
162    { X86::SHL16ri,     X86::SHL16mi },
163    { X86::SHL32rCL,    X86::SHL32mCL },
164    { X86::SHL32ri,     X86::SHL32mi },
165    { X86::SHL64rCL,    X86::SHL64mCL },
166    { X86::SHL64ri,     X86::SHL64mi },
167    { X86::SHL8rCL,     X86::SHL8mCL },
168    { X86::SHL8ri,      X86::SHL8mi },
169    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
170    { X86::SHLD16rri8,  X86::SHLD16mri8 },
171    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
172    { X86::SHLD32rri8,  X86::SHLD32mri8 },
173    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
174    { X86::SHLD64rri8,  X86::SHLD64mri8 },
175    { X86::SHR16r1,     X86::SHR16m1 },
176    { X86::SHR16rCL,    X86::SHR16mCL },
177    { X86::SHR16ri,     X86::SHR16mi },
178    { X86::SHR32r1,     X86::SHR32m1 },
179    { X86::SHR32rCL,    X86::SHR32mCL },
180    { X86::SHR32ri,     X86::SHR32mi },
181    { X86::SHR64r1,     X86::SHR64m1 },
182    { X86::SHR64rCL,    X86::SHR64mCL },
183    { X86::SHR64ri,     X86::SHR64mi },
184    { X86::SHR8r1,      X86::SHR8m1 },
185    { X86::SHR8rCL,     X86::SHR8mCL },
186    { X86::SHR8ri,      X86::SHR8mi },
187    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
188    { X86::SHRD16rri8,  X86::SHRD16mri8 },
189    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
190    { X86::SHRD32rri8,  X86::SHRD32mri8 },
191    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
192    { X86::SHRD64rri8,  X86::SHRD64mri8 },
193    { X86::SUB16ri,     X86::SUB16mi },
194    { X86::SUB16ri8,    X86::SUB16mi8 },
195    { X86::SUB16rr,     X86::SUB16mr },
196    { X86::SUB32ri,     X86::SUB32mi },
197    { X86::SUB32ri8,    X86::SUB32mi8 },
198    { X86::SUB32rr,     X86::SUB32mr },
199    { X86::SUB64ri32,   X86::SUB64mi32 },
200    { X86::SUB64ri8,    X86::SUB64mi8 },
201    { X86::SUB64rr,     X86::SUB64mr },
202    { X86::SUB8ri,      X86::SUB8mi },
203    { X86::SUB8rr,      X86::SUB8mr },
204    { X86::XOR16ri,     X86::XOR16mi },
205    { X86::XOR16ri8,    X86::XOR16mi8 },
206    { X86::XOR16rr,     X86::XOR16mr },
207    { X86::XOR32ri,     X86::XOR32mi },
208    { X86::XOR32ri8,    X86::XOR32mi8 },
209    { X86::XOR32rr,     X86::XOR32mr },
210    { X86::XOR64ri32,   X86::XOR64mi32 },
211    { X86::XOR64ri8,    X86::XOR64mi8 },
212    { X86::XOR64rr,     X86::XOR64mr },
213    { X86::XOR8ri,      X86::XOR8mi },
214    { X86::XOR8rr,      X86::XOR8mr }
215  };
216
217  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
218    unsigned RegOp = OpTbl2Addr[i][0];
219    unsigned MemOp = OpTbl2Addr[i][1];
220    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
221                                               std::make_pair(MemOp,0))).second)
222      assert(false && "Duplicated entries?");
223    // Index 0, folded load and store, no alignment requirement.
224    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
225    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
226                                                std::make_pair(RegOp,
227                                                              AuxInfo))).second)
228      AmbEntries.push_back(MemOp);
229  }
230
231  // If the third value is 1, then it's folding either a load or a store.
232  static const unsigned OpTbl0[][4] = {
233    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
234    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
235    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
236    { X86::CALL32r,     X86::CALL32m, 1, 0 },
237    { X86::CALL64r,     X86::CALL64m, 1, 0 },
238    { X86::WINCALL64r,  X86::WINCALL64m, 1, 0 },
239    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
240    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
241    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
242    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
243    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
244    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
245    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
246    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
247    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
248    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
249    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
250    { X86::DIV16r,      X86::DIV16m, 1, 0 },
251    { X86::DIV32r,      X86::DIV32m, 1, 0 },
252    { X86::DIV64r,      X86::DIV64m, 1, 0 },
253    { X86::DIV8r,       X86::DIV8m, 1, 0 },
254    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
255    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
256    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
257    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
258    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
259    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
260    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
261    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
262    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
263    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
264    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
265    { X86::JMP32r,      X86::JMP32m, 1, 0 },
266    { X86::JMP64r,      X86::JMP64m, 1, 0 },
267    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
268    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
269    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
270    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
271    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
272    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
273    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
274    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
275    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
276    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
277    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
278    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
279    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
280    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
281    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
282    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
283    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
284    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
285    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
286    { X86::MUL16r,      X86::MUL16m, 1, 0 },
287    { X86::MUL32r,      X86::MUL32m, 1, 0 },
288    { X86::MUL64r,      X86::MUL64m, 1, 0 },
289    { X86::MUL8r,       X86::MUL8m, 1, 0 },
290    { X86::SETAEr,      X86::SETAEm, 0, 0 },
291    { X86::SETAr,       X86::SETAm, 0, 0 },
292    { X86::SETBEr,      X86::SETBEm, 0, 0 },
293    { X86::SETBr,       X86::SETBm, 0, 0 },
294    { X86::SETEr,       X86::SETEm, 0, 0 },
295    { X86::SETGEr,      X86::SETGEm, 0, 0 },
296    { X86::SETGr,       X86::SETGm, 0, 0 },
297    { X86::SETLEr,      X86::SETLEm, 0, 0 },
298    { X86::SETLr,       X86::SETLm, 0, 0 },
299    { X86::SETNEr,      X86::SETNEm, 0, 0 },
300    { X86::SETNOr,      X86::SETNOm, 0, 0 },
301    { X86::SETNPr,      X86::SETNPm, 0, 0 },
302    { X86::SETNSr,      X86::SETNSm, 0, 0 },
303    { X86::SETOr,       X86::SETOm, 0, 0 },
304    { X86::SETPr,       X86::SETPm, 0, 0 },
305    { X86::SETSr,       X86::SETSm, 0, 0 },
306    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
307    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
308    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
309    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
310    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
311    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
312  };
313
314  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
315    unsigned RegOp = OpTbl0[i][0];
316    unsigned MemOp = OpTbl0[i][1];
317    unsigned Align = OpTbl0[i][3];
318    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
319                                           std::make_pair(MemOp,Align))).second)
320      assert(false && "Duplicated entries?");
321    unsigned FoldedLoad = OpTbl0[i][2];
322    // Index 0, folded load or store.
323    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
324    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
325      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
326                                     std::make_pair(RegOp, AuxInfo))).second)
327        AmbEntries.push_back(MemOp);
328  }
329
330  static const unsigned OpTbl1[][3] = {
331    { X86::CMP16rr,         X86::CMP16rm, 0 },
332    { X86::CMP32rr,         X86::CMP32rm, 0 },
333    { X86::CMP64rr,         X86::CMP64rm, 0 },
334    { X86::CMP8rr,          X86::CMP8rm, 0 },
335    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
336    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
337    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
338    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
339    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
340    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
341    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
342    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
343    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
344    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
345    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
346    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
347    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
348    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
349    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
350    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
351    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
352    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
353    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
354    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
355    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
356    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
357    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
358    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
359    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
360    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
361    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
362    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
363    { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm, 0 },
364    { X86::CVTSD2SIrr,      X86::CVTSD2SIrm, 0 },
365    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
366    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
367    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
368    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
369    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
370    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
371    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
372    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
373    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
374    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
375    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
376    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
377    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
378    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
379    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
380    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
381    { X86::MOV16rr,         X86::MOV16rm, 0 },
382    { X86::MOV32rr,         X86::MOV32rm, 0 },
383    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
384    { X86::MOV64rr,         X86::MOV64rm, 0 },
385    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
386    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
387    { X86::MOV8rr,          X86::MOV8rm, 0 },
388    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
389    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
390    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
391    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
392    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
393    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
394    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
395    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
396    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
397    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
398    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
399    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
400    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
401    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
402    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
403    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
404    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
405    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
406    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
407    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
408    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
409    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
410    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
411    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
412    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
413    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
414    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
415    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
416    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
417    { X86::RCPPSr,          X86::RCPPSm, 16 },
418    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
419    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
420    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
421    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
422    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
423    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
424    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
425    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
426    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
427    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
428    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
429    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
430    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
431    { X86::TEST16rr,        X86::TEST16rm, 0 },
432    { X86::TEST32rr,        X86::TEST32rm, 0 },
433    { X86::TEST64rr,        X86::TEST64rm, 0 },
434    { X86::TEST8rr,         X86::TEST8rm, 0 },
435    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
436    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
437    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
438  };
439
440  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
441    unsigned RegOp = OpTbl1[i][0];
442    unsigned MemOp = OpTbl1[i][1];
443    unsigned Align = OpTbl1[i][2];
444    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
445                                           std::make_pair(MemOp,Align))).second)
446      assert(false && "Duplicated entries?");
447    // Index 1, folded load
448    unsigned AuxInfo = 1 | (1 << 4);
449    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
450      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
451                                     std::make_pair(RegOp, AuxInfo))).second)
452        AmbEntries.push_back(MemOp);
453  }
454
455  static const unsigned OpTbl2[][3] = {
456    { X86::ADC32rr,         X86::ADC32rm, 0 },
457    { X86::ADC64rr,         X86::ADC64rm, 0 },
458    { X86::ADD16rr,         X86::ADD16rm, 0 },
459    { X86::ADD32rr,         X86::ADD32rm, 0 },
460    { X86::ADD64rr,         X86::ADD64rm, 0 },
461    { X86::ADD8rr,          X86::ADD8rm, 0 },
462    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
463    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
464    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
465    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
466    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
467    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
468    { X86::AND16rr,         X86::AND16rm, 0 },
469    { X86::AND32rr,         X86::AND32rm, 0 },
470    { X86::AND64rr,         X86::AND64rm, 0 },
471    { X86::AND8rr,          X86::AND8rm, 0 },
472    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
473    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
474    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
475    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
476    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
477    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
478    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
479    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
480    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
481    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
482    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
483    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
484    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
485    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
486    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
487    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
488    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
489    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
490    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
491    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
492    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
493    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
494    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
495    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
496    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
497    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
498    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
499    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
500    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
501    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
502    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
503    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
504    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
505    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
506    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
507    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
508    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
509    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
510    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
511    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
512    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
513    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
514    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
515    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
516    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
517    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
518    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
519    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
520    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
521    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
522    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
523    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
524    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
525    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
526    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
527    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
528    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
529    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
530    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
531    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
532    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
533    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
534    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
535    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
536    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
537    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
538    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
539    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
540    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
541    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
542    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
543    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
544    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
545    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
546    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
547    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
548    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
549    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
550    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
551    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
552    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
553    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
554    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
555    { X86::MINPDrr,         X86::MINPDrm, 16 },
556    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
557    { X86::MINPSrr,         X86::MINPSrm, 16 },
558    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
559    { X86::MINSDrr,         X86::MINSDrm, 0 },
560    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
561    { X86::MINSSrr,         X86::MINSSrm, 0 },
562    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
563    { X86::MULPDrr,         X86::MULPDrm, 16 },
564    { X86::MULPSrr,         X86::MULPSrm, 16 },
565    { X86::MULSDrr,         X86::MULSDrm, 0 },
566    { X86::MULSSrr,         X86::MULSSrm, 0 },
567    { X86::OR16rr,          X86::OR16rm, 0 },
568    { X86::OR32rr,          X86::OR32rm, 0 },
569    { X86::OR64rr,          X86::OR64rm, 0 },
570    { X86::OR8rr,           X86::OR8rm, 0 },
571    { X86::ORPDrr,          X86::ORPDrm, 16 },
572    { X86::ORPSrr,          X86::ORPSrm, 16 },
573    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
574    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
575    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
576    { X86::PADDBrr,         X86::PADDBrm, 16 },
577    { X86::PADDDrr,         X86::PADDDrm, 16 },
578    { X86::PADDQrr,         X86::PADDQrm, 16 },
579    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
580    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
581    { X86::PADDWrr,         X86::PADDWrm, 16 },
582    { X86::PANDNrr,         X86::PANDNrm, 16 },
583    { X86::PANDrr,          X86::PANDrm, 16 },
584    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
585    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
586    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
587    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
588    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
589    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
590    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
591    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
592    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
593    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
594    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
595    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
596    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
597    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
598    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
599    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
600    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
601    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
602    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
603    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
604    { X86::PORrr,           X86::PORrm, 16 },
605    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
606    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
607    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
608    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
609    { X86::PSRADrr,         X86::PSRADrm, 16 },
610    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
611    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
612    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
613    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
614    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
615    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
616    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
617    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
618    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
619    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
620    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
621    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
622    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
623    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
624    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
625    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
626    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
627    { X86::PXORrr,          X86::PXORrm, 16 },
628    { X86::SBB32rr,         X86::SBB32rm, 0 },
629    { X86::SBB64rr,         X86::SBB64rm, 0 },
630    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
631    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
632    { X86::SUB16rr,         X86::SUB16rm, 0 },
633    { X86::SUB32rr,         X86::SUB32rm, 0 },
634    { X86::SUB64rr,         X86::SUB64rm, 0 },
635    { X86::SUB8rr,          X86::SUB8rm, 0 },
636    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
637    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
638    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
639    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
640    // FIXME: TEST*rr -> swapped operand of TEST*mr.
641    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
642    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
643    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
644    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
645    { X86::XOR16rr,         X86::XOR16rm, 0 },
646    { X86::XOR32rr,         X86::XOR32rm, 0 },
647    { X86::XOR64rr,         X86::XOR64rm, 0 },
648    { X86::XOR8rr,          X86::XOR8rm, 0 },
649    { X86::XORPDrr,         X86::XORPDrm, 16 },
650    { X86::XORPSrr,         X86::XORPSrm, 16 }
651  };
652
653  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
654    unsigned RegOp = OpTbl2[i][0];
655    unsigned MemOp = OpTbl2[i][1];
656    unsigned Align = OpTbl2[i][2];
657    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
658                                           std::make_pair(MemOp,Align))).second)
659      assert(false && "Duplicated entries?");
660    // Index 2, folded load
661    unsigned AuxInfo = 2 | (1 << 4);
662    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
663                                   std::make_pair(RegOp, AuxInfo))).second)
664      AmbEntries.push_back(MemOp);
665  }
666
667  // Remove ambiguous entries.
668  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
669}
670
671bool
672X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
673                                    unsigned &SrcReg, unsigned &DstReg,
674                                    unsigned &SubIdx) const {
675  switch (MI.getOpcode()) {
676  default: break;
677  case X86::MOVSX16rr8:
678  case X86::MOVZX16rr8:
679  case X86::MOVSX32rr8:
680  case X86::MOVZX32rr8:
681  case X86::MOVSX64rr8:
682  case X86::MOVZX64rr8:
683    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
684      // It's not always legal to reference the low 8-bit of the larger
685      // register in 32-bit mode.
686      return false;
687  case X86::MOVSX32rr16:
688  case X86::MOVZX32rr16:
689  case X86::MOVSX64rr16:
690  case X86::MOVZX64rr16:
691  case X86::MOVSX64rr32:
692  case X86::MOVZX64rr32: {
693    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
694      // Be conservative.
695      return false;
696    SrcReg = MI.getOperand(1).getReg();
697    DstReg = MI.getOperand(0).getReg();
698    switch (MI.getOpcode()) {
699    default:
700      llvm_unreachable(0);
701      break;
702    case X86::MOVSX16rr8:
703    case X86::MOVZX16rr8:
704    case X86::MOVSX32rr8:
705    case X86::MOVZX32rr8:
706    case X86::MOVSX64rr8:
707    case X86::MOVZX64rr8:
708      SubIdx = X86::sub_8bit;
709      break;
710    case X86::MOVSX32rr16:
711    case X86::MOVZX32rr16:
712    case X86::MOVSX64rr16:
713    case X86::MOVZX64rr16:
714      SubIdx = X86::sub_16bit;
715      break;
716    case X86::MOVSX64rr32:
717    case X86::MOVZX64rr32:
718      SubIdx = X86::sub_32bit;
719      break;
720    }
721    return true;
722  }
723  }
724  return false;
725}
726
727/// isFrameOperand - Return true and the FrameIndex if the specified
728/// operand and follow operands form a reference to the stack frame.
729bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
730                                  int &FrameIndex) const {
731  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
732      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
733      MI->getOperand(Op+1).getImm() == 1 &&
734      MI->getOperand(Op+2).getReg() == 0 &&
735      MI->getOperand(Op+3).getImm() == 0) {
736    FrameIndex = MI->getOperand(Op).getIndex();
737    return true;
738  }
739  return false;
740}
741
742static bool isFrameLoadOpcode(int Opcode) {
743  switch (Opcode) {
744  default: break;
745  case X86::MOV8rm:
746  case X86::MOV16rm:
747  case X86::MOV32rm:
748  case X86::MOV32rm_TC:
749  case X86::MOV64rm:
750  case X86::MOV64rm_TC:
751  case X86::LD_Fp64m:
752  case X86::MOVSSrm:
753  case X86::MOVSDrm:
754  case X86::MOVAPSrm:
755  case X86::MOVAPDrm:
756  case X86::MOVDQArm:
757  case X86::MMX_MOVD64rm:
758  case X86::MMX_MOVQ64rm:
759    return true;
760    break;
761  }
762  return false;
763}
764
765static bool isFrameStoreOpcode(int Opcode) {
766  switch (Opcode) {
767  default: break;
768  case X86::MOV8mr:
769  case X86::MOV16mr:
770  case X86::MOV32mr:
771  case X86::MOV32mr_TC:
772  case X86::MOV64mr:
773  case X86::MOV64mr_TC:
774  case X86::ST_FpP64m:
775  case X86::MOVSSmr:
776  case X86::MOVSDmr:
777  case X86::MOVAPSmr:
778  case X86::MOVAPDmr:
779  case X86::MOVDQAmr:
780  case X86::MMX_MOVD64mr:
781  case X86::MMX_MOVQ64mr:
782  case X86::MMX_MOVNTQmr:
783    return true;
784  }
785  return false;
786}
787
788unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
789                                           int &FrameIndex) const {
790  if (isFrameLoadOpcode(MI->getOpcode()))
791    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
792      return MI->getOperand(0).getReg();
793  return 0;
794}
795
796unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
797                                                 int &FrameIndex) const {
798  if (isFrameLoadOpcode(MI->getOpcode())) {
799    unsigned Reg;
800    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
801      return Reg;
802    // Check for post-frame index elimination operations
803    const MachineMemOperand *Dummy;
804    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
805  }
806  return 0;
807}
808
809bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
810                                        const MachineMemOperand *&MMO,
811                                        int &FrameIndex) const {
812  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
813         oe = MI->memoperands_end();
814       o != oe;
815       ++o) {
816    if ((*o)->isLoad() && (*o)->getValue())
817      if (const FixedStackPseudoSourceValue *Value =
818          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
819        FrameIndex = Value->getFrameIndex();
820        MMO = *o;
821        return true;
822      }
823  }
824  return false;
825}
826
827unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
828                                          int &FrameIndex) const {
829  if (isFrameStoreOpcode(MI->getOpcode()))
830    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
831        isFrameOperand(MI, 0, FrameIndex))
832      return MI->getOperand(X86::AddrNumOperands).getReg();
833  return 0;
834}
835
836unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
837                                                int &FrameIndex) const {
838  if (isFrameStoreOpcode(MI->getOpcode())) {
839    unsigned Reg;
840    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
841      return Reg;
842    // Check for post-frame index elimination operations
843    const MachineMemOperand *Dummy;
844    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
845  }
846  return 0;
847}
848
849bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
850                                       const MachineMemOperand *&MMO,
851                                       int &FrameIndex) const {
852  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
853         oe = MI->memoperands_end();
854       o != oe;
855       ++o) {
856    if ((*o)->isStore() && (*o)->getValue())
857      if (const FixedStackPseudoSourceValue *Value =
858          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
859        FrameIndex = Value->getFrameIndex();
860        MMO = *o;
861        return true;
862      }
863  }
864  return false;
865}
866
867/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
868/// X86::MOVPC32r.
869static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
870  bool isPICBase = false;
871  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
872         E = MRI.def_end(); I != E; ++I) {
873    MachineInstr *DefMI = I.getOperand().getParent();
874    if (DefMI->getOpcode() != X86::MOVPC32r)
875      return false;
876    assert(!isPICBase && "More than one PIC base?");
877    isPICBase = true;
878  }
879  return isPICBase;
880}
881
882bool
883X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
884                                                AliasAnalysis *AA) const {
885  switch (MI->getOpcode()) {
886  default: break;
887    case X86::MOV8rm:
888    case X86::MOV16rm:
889    case X86::MOV32rm:
890    case X86::MOV64rm:
891    case X86::LD_Fp64m:
892    case X86::MOVSSrm:
893    case X86::MOVSDrm:
894    case X86::MOVAPSrm:
895    case X86::MOVUPSrm:
896    case X86::MOVUPSrm_Int:
897    case X86::MOVAPDrm:
898    case X86::MOVDQArm:
899    case X86::MMX_MOVD64rm:
900    case X86::MMX_MOVQ64rm:
901    case X86::FsMOVAPSrm:
902    case X86::FsMOVAPDrm: {
903      // Loads from constant pools are trivially rematerializable.
904      if (MI->getOperand(1).isReg() &&
905          MI->getOperand(2).isImm() &&
906          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
907          MI->isInvariantLoad(AA)) {
908        unsigned BaseReg = MI->getOperand(1).getReg();
909        if (BaseReg == 0 || BaseReg == X86::RIP)
910          return true;
911        // Allow re-materialization of PIC load.
912        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
913          return false;
914        const MachineFunction &MF = *MI->getParent()->getParent();
915        const MachineRegisterInfo &MRI = MF.getRegInfo();
916        bool isPICBase = false;
917        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
918               E = MRI.def_end(); I != E; ++I) {
919          MachineInstr *DefMI = I.getOperand().getParent();
920          if (DefMI->getOpcode() != X86::MOVPC32r)
921            return false;
922          assert(!isPICBase && "More than one PIC base?");
923          isPICBase = true;
924        }
925        return isPICBase;
926      }
927      return false;
928    }
929
930     case X86::LEA32r:
931     case X86::LEA64r: {
932       if (MI->getOperand(2).isImm() &&
933           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
934           !MI->getOperand(4).isReg()) {
935         // lea fi#, lea GV, etc. are all rematerializable.
936         if (!MI->getOperand(1).isReg())
937           return true;
938         unsigned BaseReg = MI->getOperand(1).getReg();
939         if (BaseReg == 0)
940           return true;
941         // Allow re-materialization of lea PICBase + x.
942         const MachineFunction &MF = *MI->getParent()->getParent();
943         const MachineRegisterInfo &MRI = MF.getRegInfo();
944         return regIsPICBase(BaseReg, MRI);
945       }
946       return false;
947     }
948  }
949
950  // All other instructions marked M_REMATERIALIZABLE are always trivially
951  // rematerializable.
952  return true;
953}
954
955/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
956/// would clobber the EFLAGS condition register. Note the result may be
957/// conservative. If it cannot definitely determine the safety after visiting
958/// a few instructions in each direction it assumes it's not safe.
959static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
960                                  MachineBasicBlock::iterator I) {
961  MachineBasicBlock::iterator E = MBB.end();
962
963  // It's always safe to clobber EFLAGS at the end of a block.
964  if (I == E)
965    return true;
966
967  // For compile time consideration, if we are not able to determine the
968  // safety after visiting 4 instructions in each direction, we will assume
969  // it's not safe.
970  MachineBasicBlock::iterator Iter = I;
971  for (unsigned i = 0; i < 4; ++i) {
972    bool SeenDef = false;
973    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
974      MachineOperand &MO = Iter->getOperand(j);
975      if (!MO.isReg())
976        continue;
977      if (MO.getReg() == X86::EFLAGS) {
978        if (MO.isUse())
979          return false;
980        SeenDef = true;
981      }
982    }
983
984    if (SeenDef)
985      // This instruction defines EFLAGS, no need to look any further.
986      return true;
987    ++Iter;
988    // Skip over DBG_VALUE.
989    while (Iter != E && Iter->isDebugValue())
990      ++Iter;
991
992    // If we make it to the end of the block, it's safe to clobber EFLAGS.
993    if (Iter == E)
994      return true;
995  }
996
997  MachineBasicBlock::iterator B = MBB.begin();
998  Iter = I;
999  for (unsigned i = 0; i < 4; ++i) {
1000    // If we make it to the beginning of the block, it's safe to clobber
1001    // EFLAGS iff EFLAGS is not live-in.
1002    if (Iter == B)
1003      return !MBB.isLiveIn(X86::EFLAGS);
1004
1005    --Iter;
1006    // Skip over DBG_VALUE.
1007    while (Iter != B && Iter->isDebugValue())
1008      --Iter;
1009
1010    bool SawKill = false;
1011    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1012      MachineOperand &MO = Iter->getOperand(j);
1013      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1014        if (MO.isDef()) return MO.isDead();
1015        if (MO.isKill()) SawKill = true;
1016      }
1017    }
1018
1019    if (SawKill)
1020      // This instruction kills EFLAGS and doesn't redefine it, so
1021      // there's no need to look further.
1022      return true;
1023  }
1024
1025  // Conservative answer.
1026  return false;
1027}
1028
1029void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1030                                 MachineBasicBlock::iterator I,
1031                                 unsigned DestReg, unsigned SubIdx,
1032                                 const MachineInstr *Orig,
1033                                 const TargetRegisterInfo &TRI) const {
1034  DebugLoc DL = Orig->getDebugLoc();
1035
1036  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1037  // Re-materialize them as movri instructions to avoid side effects.
1038  bool Clone = true;
1039  unsigned Opc = Orig->getOpcode();
1040  switch (Opc) {
1041  default: break;
1042  case X86::MOV8r0:
1043  case X86::MOV16r0:
1044  case X86::MOV32r0:
1045  case X86::MOV64r0: {
1046    if (!isSafeToClobberEFLAGS(MBB, I)) {
1047      switch (Opc) {
1048      default: break;
1049      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1050      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1051      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1052      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1053      }
1054      Clone = false;
1055    }
1056    break;
1057  }
1058  }
1059
1060  if (Clone) {
1061    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1062    MBB.insert(I, MI);
1063  } else {
1064    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1065  }
1066
1067  MachineInstr *NewMI = prior(I);
1068  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1069}
1070
1071/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1072/// is not marked dead.
1073static bool hasLiveCondCodeDef(MachineInstr *MI) {
1074  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1075    MachineOperand &MO = MI->getOperand(i);
1076    if (MO.isReg() && MO.isDef() &&
1077        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1078      return true;
1079    }
1080  }
1081  return false;
1082}
1083
1084/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1085/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1086/// to a 32-bit superregister and then truncating back down to a 16-bit
1087/// subregister.
1088MachineInstr *
1089X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1090                                           MachineFunction::iterator &MFI,
1091                                           MachineBasicBlock::iterator &MBBI,
1092                                           LiveVariables *LV) const {
1093  MachineInstr *MI = MBBI;
1094  unsigned Dest = MI->getOperand(0).getReg();
1095  unsigned Src = MI->getOperand(1).getReg();
1096  bool isDead = MI->getOperand(0).isDead();
1097  bool isKill = MI->getOperand(1).isKill();
1098
1099  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1100    ? X86::LEA64_32r : X86::LEA32r;
1101  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1102  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1103  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1104
1105  // Build and insert into an implicit UNDEF value. This is OK because
1106  // well be shifting and then extracting the lower 16-bits.
1107  // This has the potential to cause partial register stall. e.g.
1108  //   movw    (%rbp,%rcx,2), %dx
1109  //   leal    -65(%rdx), %esi
1110  // But testing has shown this *does* help performance in 64-bit mode (at
1111  // least on modern x86 machines).
1112  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1113  MachineInstr *InsMI =
1114    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1115    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1116    .addReg(Src, getKillRegState(isKill));
1117
1118  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1119                                    get(Opc), leaOutReg);
1120  switch (MIOpc) {
1121  default:
1122    llvm_unreachable(0);
1123    break;
1124  case X86::SHL16ri: {
1125    unsigned ShAmt = MI->getOperand(2).getImm();
1126    MIB.addReg(0).addImm(1 << ShAmt)
1127       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1128    break;
1129  }
1130  case X86::INC16r:
1131  case X86::INC64_16r:
1132    addRegOffset(MIB, leaInReg, true, 1);
1133    break;
1134  case X86::DEC16r:
1135  case X86::DEC64_16r:
1136    addRegOffset(MIB, leaInReg, true, -1);
1137    break;
1138  case X86::ADD16ri:
1139  case X86::ADD16ri8:
1140    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1141    break;
1142  case X86::ADD16rr: {
1143    unsigned Src2 = MI->getOperand(2).getReg();
1144    bool isKill2 = MI->getOperand(2).isKill();
1145    unsigned leaInReg2 = 0;
1146    MachineInstr *InsMI2 = 0;
1147    if (Src == Src2) {
1148      // ADD16rr %reg1028<kill>, %reg1028
1149      // just a single insert_subreg.
1150      addRegReg(MIB, leaInReg, true, leaInReg, false);
1151    } else {
1152      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1153      // Build and insert into an implicit UNDEF value. This is OK because
1154      // well be shifting and then extracting the lower 16-bits.
1155      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1156      InsMI2 =
1157        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1158        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1159        .addReg(Src2, getKillRegState(isKill2));
1160      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1161    }
1162    if (LV && isKill2 && InsMI2)
1163      LV->replaceKillInstruction(Src2, MI, InsMI2);
1164    break;
1165  }
1166  }
1167
1168  MachineInstr *NewMI = MIB;
1169  MachineInstr *ExtMI =
1170    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1171    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1172    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1173
1174  if (LV) {
1175    // Update live variables
1176    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1177    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1178    if (isKill)
1179      LV->replaceKillInstruction(Src, MI, InsMI);
1180    if (isDead)
1181      LV->replaceKillInstruction(Dest, MI, ExtMI);
1182  }
1183
1184  return ExtMI;
1185}
1186
1187/// convertToThreeAddress - This method must be implemented by targets that
1188/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1189/// may be able to convert a two-address instruction into a true
1190/// three-address instruction on demand.  This allows the X86 target (for
1191/// example) to convert ADD and SHL instructions into LEA instructions if they
1192/// would require register copies due to two-addressness.
1193///
1194/// This method returns a null pointer if the transformation cannot be
1195/// performed, otherwise it returns the new instruction.
1196///
1197MachineInstr *
1198X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1199                                    MachineBasicBlock::iterator &MBBI,
1200                                    LiveVariables *LV) const {
1201  MachineInstr *MI = MBBI;
1202  MachineFunction &MF = *MI->getParent()->getParent();
1203  // All instructions input are two-addr instructions.  Get the known operands.
1204  unsigned Dest = MI->getOperand(0).getReg();
1205  unsigned Src = MI->getOperand(1).getReg();
1206  bool isDead = MI->getOperand(0).isDead();
1207  bool isKill = MI->getOperand(1).isKill();
1208
1209  MachineInstr *NewMI = NULL;
1210  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1211  // we have better subtarget support, enable the 16-bit LEA generation here.
1212  // 16-bit LEA is also slow on Core2.
1213  bool DisableLEA16 = true;
1214  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1215
1216  unsigned MIOpc = MI->getOpcode();
1217  switch (MIOpc) {
1218  case X86::SHUFPSrri: {
1219    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1220    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1221
1222    unsigned B = MI->getOperand(1).getReg();
1223    unsigned C = MI->getOperand(2).getReg();
1224    if (B != C) return 0;
1225    unsigned A = MI->getOperand(0).getReg();
1226    unsigned M = MI->getOperand(3).getImm();
1227    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1228      .addReg(A, RegState::Define | getDeadRegState(isDead))
1229      .addReg(B, getKillRegState(isKill)).addImm(M);
1230    break;
1231  }
1232  case X86::SHL64ri: {
1233    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1234    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1235    // the flags produced by a shift yet, so this is safe.
1236    unsigned ShAmt = MI->getOperand(2).getImm();
1237    if (ShAmt == 0 || ShAmt >= 4) return 0;
1238
1239    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1240      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1241      .addReg(0).addImm(1 << ShAmt)
1242      .addReg(Src, getKillRegState(isKill))
1243      .addImm(0).addReg(0);
1244    break;
1245  }
1246  case X86::SHL32ri: {
1247    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1248    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1249    // the flags produced by a shift yet, so this is safe.
1250    unsigned ShAmt = MI->getOperand(2).getImm();
1251    if (ShAmt == 0 || ShAmt >= 4) return 0;
1252
1253    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1254    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1255      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1256      .addReg(0).addImm(1 << ShAmt)
1257      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1258    break;
1259  }
1260  case X86::SHL16ri: {
1261    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1262    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1263    // the flags produced by a shift yet, so this is safe.
1264    unsigned ShAmt = MI->getOperand(2).getImm();
1265    if (ShAmt == 0 || ShAmt >= 4) return 0;
1266
1267    if (DisableLEA16)
1268      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1269    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1270      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1271      .addReg(0).addImm(1 << ShAmt)
1272      .addReg(Src, getKillRegState(isKill))
1273      .addImm(0).addReg(0);
1274    break;
1275  }
1276  default: {
1277    // The following opcodes also sets the condition code register(s). Only
1278    // convert them to equivalent lea if the condition code register def's
1279    // are dead!
1280    if (hasLiveCondCodeDef(MI))
1281      return 0;
1282
1283    switch (MIOpc) {
1284    default: return 0;
1285    case X86::INC64r:
1286    case X86::INC32r:
1287    case X86::INC64_32r: {
1288      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1289      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1290        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1291      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1292                              .addReg(Dest, RegState::Define |
1293                                      getDeadRegState(isDead)),
1294                              Src, isKill, 1);
1295      break;
1296    }
1297    case X86::INC16r:
1298    case X86::INC64_16r:
1299      if (DisableLEA16)
1300        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1301      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1302      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1303                           .addReg(Dest, RegState::Define |
1304                                   getDeadRegState(isDead)),
1305                           Src, isKill, 1);
1306      break;
1307    case X86::DEC64r:
1308    case X86::DEC32r:
1309    case X86::DEC64_32r: {
1310      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1311      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1312        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1313      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1314                              .addReg(Dest, RegState::Define |
1315                                      getDeadRegState(isDead)),
1316                              Src, isKill, -1);
1317      break;
1318    }
1319    case X86::DEC16r:
1320    case X86::DEC64_16r:
1321      if (DisableLEA16)
1322        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1323      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1324      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1325                           .addReg(Dest, RegState::Define |
1326                                   getDeadRegState(isDead)),
1327                           Src, isKill, -1);
1328      break;
1329    case X86::ADD64rr:
1330    case X86::ADD32rr: {
1331      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1332      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1333        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1334      unsigned Src2 = MI->getOperand(2).getReg();
1335      bool isKill2 = MI->getOperand(2).isKill();
1336      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1337                        .addReg(Dest, RegState::Define |
1338                                getDeadRegState(isDead)),
1339                        Src, isKill, Src2, isKill2);
1340      if (LV && isKill2)
1341        LV->replaceKillInstruction(Src2, MI, NewMI);
1342      break;
1343    }
1344    case X86::ADD16rr: {
1345      if (DisableLEA16)
1346        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1347      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1348      unsigned Src2 = MI->getOperand(2).getReg();
1349      bool isKill2 = MI->getOperand(2).isKill();
1350      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1351                        .addReg(Dest, RegState::Define |
1352                                getDeadRegState(isDead)),
1353                        Src, isKill, Src2, isKill2);
1354      if (LV && isKill2)
1355        LV->replaceKillInstruction(Src2, MI, NewMI);
1356      break;
1357    }
1358    case X86::ADD64ri32:
1359    case X86::ADD64ri8:
1360      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1361      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1362                              .addReg(Dest, RegState::Define |
1363                                      getDeadRegState(isDead)),
1364                              Src, isKill, MI->getOperand(2).getImm());
1365      break;
1366    case X86::ADD32ri:
1367    case X86::ADD32ri8: {
1368      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1369      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1370      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1371                              .addReg(Dest, RegState::Define |
1372                                      getDeadRegState(isDead)),
1373                                Src, isKill, MI->getOperand(2).getImm());
1374      break;
1375    }
1376    case X86::ADD16ri:
1377    case X86::ADD16ri8:
1378      if (DisableLEA16)
1379        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1380      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1381      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1382                              .addReg(Dest, RegState::Define |
1383                                      getDeadRegState(isDead)),
1384                              Src, isKill, MI->getOperand(2).getImm());
1385      break;
1386    }
1387  }
1388  }
1389
1390  if (!NewMI) return 0;
1391
1392  if (LV) {  // Update live variables
1393    if (isKill)
1394      LV->replaceKillInstruction(Src, MI, NewMI);
1395    if (isDead)
1396      LV->replaceKillInstruction(Dest, MI, NewMI);
1397  }
1398
1399  MFI->insert(MBBI, NewMI);          // Insert the new inst
1400  return NewMI;
1401}
1402
1403/// commuteInstruction - We have a few instructions that must be hacked on to
1404/// commute them.
1405///
1406MachineInstr *
1407X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1408  switch (MI->getOpcode()) {
1409  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1410  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1411  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1412  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1413  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1414  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1415    unsigned Opc;
1416    unsigned Size;
1417    switch (MI->getOpcode()) {
1418    default: llvm_unreachable("Unreachable!");
1419    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1420    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1421    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1422    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1423    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1424    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1425    }
1426    unsigned Amt = MI->getOperand(3).getImm();
1427    if (NewMI) {
1428      MachineFunction &MF = *MI->getParent()->getParent();
1429      MI = MF.CloneMachineInstr(MI);
1430      NewMI = false;
1431    }
1432    MI->setDesc(get(Opc));
1433    MI->getOperand(3).setImm(Size-Amt);
1434    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1435  }
1436  case X86::CMOVB16rr:
1437  case X86::CMOVB32rr:
1438  case X86::CMOVB64rr:
1439  case X86::CMOVAE16rr:
1440  case X86::CMOVAE32rr:
1441  case X86::CMOVAE64rr:
1442  case X86::CMOVE16rr:
1443  case X86::CMOVE32rr:
1444  case X86::CMOVE64rr:
1445  case X86::CMOVNE16rr:
1446  case X86::CMOVNE32rr:
1447  case X86::CMOVNE64rr:
1448  case X86::CMOVBE16rr:
1449  case X86::CMOVBE32rr:
1450  case X86::CMOVBE64rr:
1451  case X86::CMOVA16rr:
1452  case X86::CMOVA32rr:
1453  case X86::CMOVA64rr:
1454  case X86::CMOVL16rr:
1455  case X86::CMOVL32rr:
1456  case X86::CMOVL64rr:
1457  case X86::CMOVGE16rr:
1458  case X86::CMOVGE32rr:
1459  case X86::CMOVGE64rr:
1460  case X86::CMOVLE16rr:
1461  case X86::CMOVLE32rr:
1462  case X86::CMOVLE64rr:
1463  case X86::CMOVG16rr:
1464  case X86::CMOVG32rr:
1465  case X86::CMOVG64rr:
1466  case X86::CMOVS16rr:
1467  case X86::CMOVS32rr:
1468  case X86::CMOVS64rr:
1469  case X86::CMOVNS16rr:
1470  case X86::CMOVNS32rr:
1471  case X86::CMOVNS64rr:
1472  case X86::CMOVP16rr:
1473  case X86::CMOVP32rr:
1474  case X86::CMOVP64rr:
1475  case X86::CMOVNP16rr:
1476  case X86::CMOVNP32rr:
1477  case X86::CMOVNP64rr:
1478  case X86::CMOVO16rr:
1479  case X86::CMOVO32rr:
1480  case X86::CMOVO64rr:
1481  case X86::CMOVNO16rr:
1482  case X86::CMOVNO32rr:
1483  case X86::CMOVNO64rr: {
1484    unsigned Opc = 0;
1485    switch (MI->getOpcode()) {
1486    default: break;
1487    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1488    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1489    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1490    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1491    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1492    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1493    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1494    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1495    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1496    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1497    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1498    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1499    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1500    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1501    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1502    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1503    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1504    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1505    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1506    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1507    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1508    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1509    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1510    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1511    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1512    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1513    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1514    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1515    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1516    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1517    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1518    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1519    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1520    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1521    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1522    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1523    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1524    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1525    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1526    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1527    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1528    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1529    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1530    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1531    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1532    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1533    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1534    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1535    }
1536    if (NewMI) {
1537      MachineFunction &MF = *MI->getParent()->getParent();
1538      MI = MF.CloneMachineInstr(MI);
1539      NewMI = false;
1540    }
1541    MI->setDesc(get(Opc));
1542    // Fallthrough intended.
1543  }
1544  default:
1545    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1546  }
1547}
1548
1549static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1550  switch (BrOpc) {
1551  default: return X86::COND_INVALID;
1552  case X86::JE_4:  return X86::COND_E;
1553  case X86::JNE_4: return X86::COND_NE;
1554  case X86::JL_4:  return X86::COND_L;
1555  case X86::JLE_4: return X86::COND_LE;
1556  case X86::JG_4:  return X86::COND_G;
1557  case X86::JGE_4: return X86::COND_GE;
1558  case X86::JB_4:  return X86::COND_B;
1559  case X86::JBE_4: return X86::COND_BE;
1560  case X86::JA_4:  return X86::COND_A;
1561  case X86::JAE_4: return X86::COND_AE;
1562  case X86::JS_4:  return X86::COND_S;
1563  case X86::JNS_4: return X86::COND_NS;
1564  case X86::JP_4:  return X86::COND_P;
1565  case X86::JNP_4: return X86::COND_NP;
1566  case X86::JO_4:  return X86::COND_O;
1567  case X86::JNO_4: return X86::COND_NO;
1568  }
1569}
1570
1571unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1572  switch (CC) {
1573  default: llvm_unreachable("Illegal condition code!");
1574  case X86::COND_E:  return X86::JE_4;
1575  case X86::COND_NE: return X86::JNE_4;
1576  case X86::COND_L:  return X86::JL_4;
1577  case X86::COND_LE: return X86::JLE_4;
1578  case X86::COND_G:  return X86::JG_4;
1579  case X86::COND_GE: return X86::JGE_4;
1580  case X86::COND_B:  return X86::JB_4;
1581  case X86::COND_BE: return X86::JBE_4;
1582  case X86::COND_A:  return X86::JA_4;
1583  case X86::COND_AE: return X86::JAE_4;
1584  case X86::COND_S:  return X86::JS_4;
1585  case X86::COND_NS: return X86::JNS_4;
1586  case X86::COND_P:  return X86::JP_4;
1587  case X86::COND_NP: return X86::JNP_4;
1588  case X86::COND_O:  return X86::JO_4;
1589  case X86::COND_NO: return X86::JNO_4;
1590  }
1591}
1592
1593/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1594/// e.g. turning COND_E to COND_NE.
1595X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1596  switch (CC) {
1597  default: llvm_unreachable("Illegal condition code!");
1598  case X86::COND_E:  return X86::COND_NE;
1599  case X86::COND_NE: return X86::COND_E;
1600  case X86::COND_L:  return X86::COND_GE;
1601  case X86::COND_LE: return X86::COND_G;
1602  case X86::COND_G:  return X86::COND_LE;
1603  case X86::COND_GE: return X86::COND_L;
1604  case X86::COND_B:  return X86::COND_AE;
1605  case X86::COND_BE: return X86::COND_A;
1606  case X86::COND_A:  return X86::COND_BE;
1607  case X86::COND_AE: return X86::COND_B;
1608  case X86::COND_S:  return X86::COND_NS;
1609  case X86::COND_NS: return X86::COND_S;
1610  case X86::COND_P:  return X86::COND_NP;
1611  case X86::COND_NP: return X86::COND_P;
1612  case X86::COND_O:  return X86::COND_NO;
1613  case X86::COND_NO: return X86::COND_O;
1614  }
1615}
1616
1617bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1618  const TargetInstrDesc &TID = MI->getDesc();
1619  if (!TID.isTerminator()) return false;
1620
1621  // Conditional branch is a special case.
1622  if (TID.isBranch() && !TID.isBarrier())
1623    return true;
1624  if (!TID.isPredicable())
1625    return true;
1626  return !isPredicated(MI);
1627}
1628
1629bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1630                                 MachineBasicBlock *&TBB,
1631                                 MachineBasicBlock *&FBB,
1632                                 SmallVectorImpl<MachineOperand> &Cond,
1633                                 bool AllowModify) const {
1634  // Start from the bottom of the block and work up, examining the
1635  // terminator instructions.
1636  MachineBasicBlock::iterator I = MBB.end();
1637  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1638  while (I != MBB.begin()) {
1639    --I;
1640    if (I->isDebugValue())
1641      continue;
1642
1643    // Working from the bottom, when we see a non-terminator instruction, we're
1644    // done.
1645    if (!isUnpredicatedTerminator(I))
1646      break;
1647
1648    // A terminator that isn't a branch can't easily be handled by this
1649    // analysis.
1650    if (!I->getDesc().isBranch())
1651      return true;
1652
1653    // Handle unconditional branches.
1654    if (I->getOpcode() == X86::JMP_4) {
1655      UnCondBrIter = I;
1656
1657      if (!AllowModify) {
1658        TBB = I->getOperand(0).getMBB();
1659        continue;
1660      }
1661
1662      // If the block has any instructions after a JMP, delete them.
1663      while (llvm::next(I) != MBB.end())
1664        llvm::next(I)->eraseFromParent();
1665
1666      Cond.clear();
1667      FBB = 0;
1668
1669      // Delete the JMP if it's equivalent to a fall-through.
1670      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1671        TBB = 0;
1672        I->eraseFromParent();
1673        I = MBB.end();
1674        UnCondBrIter = MBB.end();
1675        continue;
1676      }
1677
1678      // TBB is used to indicate the unconditional destination.
1679      TBB = I->getOperand(0).getMBB();
1680      continue;
1681    }
1682
1683    // Handle conditional branches.
1684    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1685    if (BranchCode == X86::COND_INVALID)
1686      return true;  // Can't handle indirect branch.
1687
1688    // Working from the bottom, handle the first conditional branch.
1689    if (Cond.empty()) {
1690      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1691      if (AllowModify && UnCondBrIter != MBB.end() &&
1692          MBB.isLayoutSuccessor(TargetBB)) {
1693        // If we can modify the code and it ends in something like:
1694        //
1695        //     jCC L1
1696        //     jmp L2
1697        //   L1:
1698        //     ...
1699        //   L2:
1700        //
1701        // Then we can change this to:
1702        //
1703        //     jnCC L2
1704        //   L1:
1705        //     ...
1706        //   L2:
1707        //
1708        // Which is a bit more efficient.
1709        // We conditionally jump to the fall-through block.
1710        BranchCode = GetOppositeBranchCondition(BranchCode);
1711        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1712        MachineBasicBlock::iterator OldInst = I;
1713
1714        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1715          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1716        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1717          .addMBB(TargetBB);
1718        MBB.addSuccessor(TargetBB);
1719
1720        OldInst->eraseFromParent();
1721        UnCondBrIter->eraseFromParent();
1722
1723        // Restart the analysis.
1724        UnCondBrIter = MBB.end();
1725        I = MBB.end();
1726        continue;
1727      }
1728
1729      FBB = TBB;
1730      TBB = I->getOperand(0).getMBB();
1731      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1732      continue;
1733    }
1734
1735    // Handle subsequent conditional branches. Only handle the case where all
1736    // conditional branches branch to the same destination and their condition
1737    // opcodes fit one of the special multi-branch idioms.
1738    assert(Cond.size() == 1);
1739    assert(TBB);
1740
1741    // Only handle the case where all conditional branches branch to the same
1742    // destination.
1743    if (TBB != I->getOperand(0).getMBB())
1744      return true;
1745
1746    // If the conditions are the same, we can leave them alone.
1747    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1748    if (OldBranchCode == BranchCode)
1749      continue;
1750
1751    // If they differ, see if they fit one of the known patterns. Theoretically,
1752    // we could handle more patterns here, but we shouldn't expect to see them
1753    // if instruction selection has done a reasonable job.
1754    if ((OldBranchCode == X86::COND_NP &&
1755         BranchCode == X86::COND_E) ||
1756        (OldBranchCode == X86::COND_E &&
1757         BranchCode == X86::COND_NP))
1758      BranchCode = X86::COND_NP_OR_E;
1759    else if ((OldBranchCode == X86::COND_P &&
1760              BranchCode == X86::COND_NE) ||
1761             (OldBranchCode == X86::COND_NE &&
1762              BranchCode == X86::COND_P))
1763      BranchCode = X86::COND_NE_OR_P;
1764    else
1765      return true;
1766
1767    // Update the MachineOperand.
1768    Cond[0].setImm(BranchCode);
1769  }
1770
1771  return false;
1772}
1773
1774unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1775  MachineBasicBlock::iterator I = MBB.end();
1776  unsigned Count = 0;
1777
1778  while (I != MBB.begin()) {
1779    --I;
1780    if (I->isDebugValue())
1781      continue;
1782    if (I->getOpcode() != X86::JMP_4 &&
1783        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1784      break;
1785    // Remove the branch.
1786    I->eraseFromParent();
1787    I = MBB.end();
1788    ++Count;
1789  }
1790
1791  return Count;
1792}
1793
1794unsigned
1795X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1796                           MachineBasicBlock *FBB,
1797                           const SmallVectorImpl<MachineOperand> &Cond,
1798                           DebugLoc DL) const {
1799  // Shouldn't be a fall through.
1800  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1801  assert((Cond.size() == 1 || Cond.size() == 0) &&
1802         "X86 branch conditions have one component!");
1803
1804  if (Cond.empty()) {
1805    // Unconditional branch?
1806    assert(!FBB && "Unconditional branch with multiple successors!");
1807    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1808    return 1;
1809  }
1810
1811  // Conditional branch.
1812  unsigned Count = 0;
1813  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1814  switch (CC) {
1815  case X86::COND_NP_OR_E:
1816    // Synthesize NP_OR_E with two branches.
1817    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1818    ++Count;
1819    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1820    ++Count;
1821    break;
1822  case X86::COND_NE_OR_P:
1823    // Synthesize NE_OR_P with two branches.
1824    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1825    ++Count;
1826    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1827    ++Count;
1828    break;
1829  default: {
1830    unsigned Opc = GetCondBranchFromCond(CC);
1831    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1832    ++Count;
1833  }
1834  }
1835  if (FBB) {
1836    // Two-way Conditional branch. Insert the second branch.
1837    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1838    ++Count;
1839  }
1840  return Count;
1841}
1842
1843/// isHReg - Test if the given register is a physical h register.
1844static bool isHReg(unsigned Reg) {
1845  return X86::GR8_ABCD_HRegClass.contains(Reg);
1846}
1847
1848// Try and copy between VR128/VR64 and GR64 registers.
1849static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
1850  // SrcReg(VR128) -> DestReg(GR64)
1851  // SrcReg(VR64)  -> DestReg(GR64)
1852  // SrcReg(GR64)  -> DestReg(VR128)
1853  // SrcReg(GR64)  -> DestReg(VR64)
1854
1855  if (X86::GR64RegClass.contains(DestReg)) {
1856    if (X86::VR128RegClass.contains(SrcReg)) {
1857      // Copy from a VR128 register to a GR64 register.
1858      return X86::MOVPQIto64rr;
1859    } else if (X86::VR64RegClass.contains(SrcReg)) {
1860      // Copy from a VR64 register to a GR64 register.
1861      return X86::MOVSDto64rr;
1862    }
1863  } else if (X86::GR64RegClass.contains(SrcReg)) {
1864    // Copy from a GR64 register to a VR128 register.
1865    if (X86::VR128RegClass.contains(DestReg))
1866      return X86::MOV64toPQIrr;
1867    // Copy from a GR64 register to a VR64 register.
1868    else if (X86::VR64RegClass.contains(DestReg))
1869      return X86::MOV64toSDrr;
1870  }
1871
1872  return 0;
1873}
1874
1875void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1876                               MachineBasicBlock::iterator MI, DebugLoc DL,
1877                               unsigned DestReg, unsigned SrcReg,
1878                               bool KillSrc) const {
1879  // First deal with the normal symmetric copies.
1880  unsigned Opc = 0;
1881  if (X86::GR64RegClass.contains(DestReg, SrcReg))
1882    Opc = X86::MOV64rr;
1883  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1884    Opc = X86::MOV32rr;
1885  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1886    Opc = X86::MOV16rr;
1887  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1888    // Copying to or from a physical H register on x86-64 requires a NOREX
1889    // move.  Otherwise use a normal move.
1890    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1891        TM.getSubtarget<X86Subtarget>().is64Bit())
1892      Opc = X86::MOV8rr_NOREX;
1893    else
1894      Opc = X86::MOV8rr;
1895  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1896    Opc = X86::MOVAPSrr;
1897  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1898    Opc = X86::MMX_MOVQ64rr;
1899  else
1900    Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
1901
1902  if (Opc) {
1903    BuildMI(MBB, MI, DL, get(Opc), DestReg)
1904      .addReg(SrcReg, getKillRegState(KillSrc));
1905    return;
1906  }
1907
1908  // Moving EFLAGS to / from another register requires a push and a pop.
1909  if (SrcReg == X86::EFLAGS) {
1910    if (X86::GR64RegClass.contains(DestReg)) {
1911      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1912      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1913      return;
1914    } else if (X86::GR32RegClass.contains(DestReg)) {
1915      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1916      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1917      return;
1918    }
1919  }
1920  if (DestReg == X86::EFLAGS) {
1921    if (X86::GR64RegClass.contains(SrcReg)) {
1922      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1923        .addReg(SrcReg, getKillRegState(KillSrc));
1924      BuildMI(MBB, MI, DL, get(X86::POPF64));
1925      return;
1926    } else if (X86::GR32RegClass.contains(SrcReg)) {
1927      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
1928        .addReg(SrcReg, getKillRegState(KillSrc));
1929      BuildMI(MBB, MI, DL, get(X86::POPF32));
1930      return;
1931    }
1932  }
1933
1934  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
1935               << " to " << RI.getName(DestReg) << '\n');
1936  llvm_unreachable("Cannot emit physreg copy instruction");
1937}
1938
1939static unsigned getLoadStoreRegOpcode(unsigned Reg,
1940                                      const TargetRegisterClass *RC,
1941                                      bool isStackAligned,
1942                                      const TargetMachine &TM,
1943                                      bool load) {
1944  switch (RC->getID()) {
1945  default:
1946    llvm_unreachable("Unknown regclass");
1947  case X86::GR64RegClassID:
1948  case X86::GR64_NOSPRegClassID:
1949    return load ? X86::MOV64rm : X86::MOV64mr;
1950  case X86::GR32RegClassID:
1951  case X86::GR32_NOSPRegClassID:
1952  case X86::GR32_ADRegClassID:
1953    return load ? X86::MOV32rm : X86::MOV32mr;
1954  case X86::GR16RegClassID:
1955    return load ? X86::MOV16rm : X86::MOV16mr;
1956  case X86::GR8RegClassID:
1957    // Copying to or from a physical H register on x86-64 requires a NOREX
1958    // move.  Otherwise use a normal move.
1959    if (isHReg(Reg) &&
1960        TM.getSubtarget<X86Subtarget>().is64Bit())
1961      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1962    else
1963      return load ? X86::MOV8rm : X86::MOV8mr;
1964  case X86::GR64_ABCDRegClassID:
1965    return load ? X86::MOV64rm : X86::MOV64mr;
1966  case X86::GR32_ABCDRegClassID:
1967    return load ? X86::MOV32rm : X86::MOV32mr;
1968  case X86::GR16_ABCDRegClassID:
1969    return load ? X86::MOV16rm : X86::MOV16mr;
1970  case X86::GR8_ABCD_LRegClassID:
1971    return load ? X86::MOV8rm :X86::MOV8mr;
1972  case X86::GR8_ABCD_HRegClassID:
1973    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1974      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1975    else
1976      return load ? X86::MOV8rm : X86::MOV8mr;
1977  case X86::GR64_NOREXRegClassID:
1978  case X86::GR64_NOREX_NOSPRegClassID:
1979    return load ? X86::MOV64rm : X86::MOV64mr;
1980  case X86::GR32_NOREXRegClassID:
1981    return load ? X86::MOV32rm : X86::MOV32mr;
1982  case X86::GR16_NOREXRegClassID:
1983    return load ? X86::MOV16rm : X86::MOV16mr;
1984  case X86::GR8_NOREXRegClassID:
1985    return load ? X86::MOV8rm : X86::MOV8mr;
1986  case X86::GR64_TCRegClassID:
1987    return load ? X86::MOV64rm_TC : X86::MOV64mr_TC;
1988  case X86::GR32_TCRegClassID:
1989    return load ? X86::MOV32rm_TC : X86::MOV32mr_TC;
1990  case X86::RFP80RegClassID:
1991    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
1992  case X86::RFP64RegClassID:
1993    return load ? X86::LD_Fp64m : X86::ST_Fp64m;
1994  case X86::RFP32RegClassID:
1995    return load ? X86::LD_Fp32m : X86::ST_Fp32m;
1996  case X86::FR32RegClassID:
1997    return load ? X86::MOVSSrm : X86::MOVSSmr;
1998  case X86::FR64RegClassID:
1999    return load ? X86::MOVSDrm : X86::MOVSDmr;
2000  case X86::VR128RegClassID:
2001    // If stack is realigned we can use aligned stores.
2002    if (isStackAligned)
2003      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
2004    else
2005      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
2006  case X86::VR64RegClassID:
2007    return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2008  }
2009}
2010
2011static unsigned getStoreRegOpcode(unsigned SrcReg,
2012                                  const TargetRegisterClass *RC,
2013                                  bool isStackAligned,
2014                                  TargetMachine &TM) {
2015  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2016}
2017
2018
2019static unsigned getLoadRegOpcode(unsigned DestReg,
2020                                 const TargetRegisterClass *RC,
2021                                 bool isStackAligned,
2022                                 const TargetMachine &TM) {
2023  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
2024}
2025
2026void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2027                                       MachineBasicBlock::iterator MI,
2028                                       unsigned SrcReg, bool isKill, int FrameIdx,
2029                                       const TargetRegisterClass *RC,
2030                                       const TargetRegisterInfo *TRI) const {
2031  const MachineFunction &MF = *MBB.getParent();
2032  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2033         "Stack slot too small for store");
2034  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2035  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2036  DebugLoc DL = MBB.findDebugLoc(MI);
2037  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2038    .addReg(SrcReg, getKillRegState(isKill));
2039}
2040
2041void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2042                                  bool isKill,
2043                                  SmallVectorImpl<MachineOperand> &Addr,
2044                                  const TargetRegisterClass *RC,
2045                                  MachineInstr::mmo_iterator MMOBegin,
2046                                  MachineInstr::mmo_iterator MMOEnd,
2047                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2048  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2049  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2050  DebugLoc DL;
2051  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2052  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2053    MIB.addOperand(Addr[i]);
2054  MIB.addReg(SrcReg, getKillRegState(isKill));
2055  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2056  NewMIs.push_back(MIB);
2057}
2058
2059
2060void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2061                                        MachineBasicBlock::iterator MI,
2062                                        unsigned DestReg, int FrameIdx,
2063                                        const TargetRegisterClass *RC,
2064                                        const TargetRegisterInfo *TRI) const {
2065  const MachineFunction &MF = *MBB.getParent();
2066  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2067  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2068  DebugLoc DL = MBB.findDebugLoc(MI);
2069  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2070}
2071
2072void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2073                                 SmallVectorImpl<MachineOperand> &Addr,
2074                                 const TargetRegisterClass *RC,
2075                                 MachineInstr::mmo_iterator MMOBegin,
2076                                 MachineInstr::mmo_iterator MMOEnd,
2077                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2078  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2079  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2080  DebugLoc DL;
2081  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2082  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2083    MIB.addOperand(Addr[i]);
2084  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2085  NewMIs.push_back(MIB);
2086}
2087
2088bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2089                                             MachineBasicBlock::iterator MI,
2090                                        const std::vector<CalleeSavedInfo> &CSI,
2091                                          const TargetRegisterInfo *TRI) const {
2092  if (CSI.empty())
2093    return false;
2094
2095  DebugLoc DL = MBB.findDebugLoc(MI);
2096
2097  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2098  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2099  unsigned SlotSize = is64Bit ? 8 : 4;
2100
2101  MachineFunction &MF = *MBB.getParent();
2102  unsigned FPReg = RI.getFrameRegister(MF);
2103  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2104  unsigned CalleeFrameSize = 0;
2105
2106  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2107  for (unsigned i = CSI.size(); i != 0; --i) {
2108    unsigned Reg = CSI[i-1].getReg();
2109    // Add the callee-saved register as live-in. It's killed at the spill.
2110    MBB.addLiveIn(Reg);
2111    if (Reg == FPReg)
2112      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2113      continue;
2114    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2115      CalleeFrameSize += SlotSize;
2116      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2117    } else {
2118      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2119      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
2120                          RC, &RI);
2121    }
2122  }
2123
2124  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2125  return true;
2126}
2127
2128bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2129                                               MachineBasicBlock::iterator MI,
2130                                        const std::vector<CalleeSavedInfo> &CSI,
2131                                          const TargetRegisterInfo *TRI) const {
2132  if (CSI.empty())
2133    return false;
2134
2135  DebugLoc DL = MBB.findDebugLoc(MI);
2136
2137  MachineFunction &MF = *MBB.getParent();
2138  unsigned FPReg = RI.getFrameRegister(MF);
2139  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2140  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2141  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2142  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2143    unsigned Reg = CSI[i].getReg();
2144    if (Reg == FPReg)
2145      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2146      continue;
2147    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2148      BuildMI(MBB, MI, DL, get(Opc), Reg);
2149    } else {
2150      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2151      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
2152                           RC, &RI);
2153    }
2154  }
2155  return true;
2156}
2157
2158MachineInstr*
2159X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2160                                       int FrameIx, uint64_t Offset,
2161                                       const MDNode *MDPtr,
2162                                       DebugLoc DL) const {
2163  X86AddressMode AM;
2164  AM.BaseType = X86AddressMode::FrameIndexBase;
2165  AM.Base.FrameIndex = FrameIx;
2166  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2167  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2168  return &*MIB;
2169}
2170
2171static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2172                                     const SmallVectorImpl<MachineOperand> &MOs,
2173                                     MachineInstr *MI,
2174                                     const TargetInstrInfo &TII) {
2175  // Create the base instruction with the memory operand as the first part.
2176  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2177                                              MI->getDebugLoc(), true);
2178  MachineInstrBuilder MIB(NewMI);
2179  unsigned NumAddrOps = MOs.size();
2180  for (unsigned i = 0; i != NumAddrOps; ++i)
2181    MIB.addOperand(MOs[i]);
2182  if (NumAddrOps < 4)  // FrameIndex only
2183    addOffset(MIB, 0);
2184
2185  // Loop over the rest of the ri operands, converting them over.
2186  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2187  for (unsigned i = 0; i != NumOps; ++i) {
2188    MachineOperand &MO = MI->getOperand(i+2);
2189    MIB.addOperand(MO);
2190  }
2191  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2192    MachineOperand &MO = MI->getOperand(i);
2193    MIB.addOperand(MO);
2194  }
2195  return MIB;
2196}
2197
2198static MachineInstr *FuseInst(MachineFunction &MF,
2199                              unsigned Opcode, unsigned OpNo,
2200                              const SmallVectorImpl<MachineOperand> &MOs,
2201                              MachineInstr *MI, const TargetInstrInfo &TII) {
2202  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2203                                              MI->getDebugLoc(), true);
2204  MachineInstrBuilder MIB(NewMI);
2205
2206  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2207    MachineOperand &MO = MI->getOperand(i);
2208    if (i == OpNo) {
2209      assert(MO.isReg() && "Expected to fold into reg operand!");
2210      unsigned NumAddrOps = MOs.size();
2211      for (unsigned i = 0; i != NumAddrOps; ++i)
2212        MIB.addOperand(MOs[i]);
2213      if (NumAddrOps < 4)  // FrameIndex only
2214        addOffset(MIB, 0);
2215    } else {
2216      MIB.addOperand(MO);
2217    }
2218  }
2219  return MIB;
2220}
2221
2222static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2223                                const SmallVectorImpl<MachineOperand> &MOs,
2224                                MachineInstr *MI) {
2225  MachineFunction &MF = *MI->getParent()->getParent();
2226  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2227
2228  unsigned NumAddrOps = MOs.size();
2229  for (unsigned i = 0; i != NumAddrOps; ++i)
2230    MIB.addOperand(MOs[i]);
2231  if (NumAddrOps < 4)  // FrameIndex only
2232    addOffset(MIB, 0);
2233  return MIB.addImm(0);
2234}
2235
2236MachineInstr*
2237X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2238                                    MachineInstr *MI, unsigned i,
2239                                    const SmallVectorImpl<MachineOperand> &MOs,
2240                                    unsigned Size, unsigned Align) const {
2241  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2242  bool isTwoAddrFold = false;
2243  unsigned NumOps = MI->getDesc().getNumOperands();
2244  bool isTwoAddr = NumOps > 1 &&
2245    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2246
2247  MachineInstr *NewMI = NULL;
2248  // Folding a memory location into the two-address part of a two-address
2249  // instruction is different than folding it other places.  It requires
2250  // replacing the *two* registers with the memory location.
2251  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2252      MI->getOperand(0).isReg() &&
2253      MI->getOperand(1).isReg() &&
2254      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2255    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2256    isTwoAddrFold = true;
2257  } else if (i == 0) { // If operand 0
2258    if (MI->getOpcode() == X86::MOV64r0)
2259      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2260    else if (MI->getOpcode() == X86::MOV32r0)
2261      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2262    else if (MI->getOpcode() == X86::MOV16r0)
2263      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2264    else if (MI->getOpcode() == X86::MOV8r0)
2265      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2266    if (NewMI)
2267      return NewMI;
2268
2269    OpcodeTablePtr = &RegOp2MemOpTable0;
2270  } else if (i == 1) {
2271    OpcodeTablePtr = &RegOp2MemOpTable1;
2272  } else if (i == 2) {
2273    OpcodeTablePtr = &RegOp2MemOpTable2;
2274  }
2275
2276  // If table selected...
2277  if (OpcodeTablePtr) {
2278    // Find the Opcode to fuse
2279    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2280      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2281    if (I != OpcodeTablePtr->end()) {
2282      unsigned Opcode = I->second.first;
2283      unsigned MinAlign = I->second.second;
2284      if (Align < MinAlign)
2285        return NULL;
2286      bool NarrowToMOV32rm = false;
2287      if (Size) {
2288        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2289        if (Size < RCSize) {
2290          // Check if it's safe to fold the load. If the size of the object is
2291          // narrower than the load width, then it's not.
2292          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2293            return NULL;
2294          // If this is a 64-bit load, but the spill slot is 32, then we can do
2295          // a 32-bit load which is implicitly zero-extended. This likely is due
2296          // to liveintervalanalysis remat'ing a load from stack slot.
2297          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2298            return NULL;
2299          Opcode = X86::MOV32rm;
2300          NarrowToMOV32rm = true;
2301        }
2302      }
2303
2304      if (isTwoAddrFold)
2305        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2306      else
2307        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2308
2309      if (NarrowToMOV32rm) {
2310        // If this is the special case where we use a MOV32rm to load a 32-bit
2311        // value and zero-extend the top bits. Change the destination register
2312        // to a 32-bit one.
2313        unsigned DstReg = NewMI->getOperand(0).getReg();
2314        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2315          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2316                                                   X86::sub_32bit));
2317        else
2318          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2319      }
2320      return NewMI;
2321    }
2322  }
2323
2324  // No fusion
2325  if (PrintFailedFusing && !MI->isCopy())
2326    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2327  return NULL;
2328}
2329
2330
2331MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2332                                                  MachineInstr *MI,
2333                                           const SmallVectorImpl<unsigned> &Ops,
2334                                                  int FrameIndex) const {
2335  // Check switch flag
2336  if (NoFusing) return NULL;
2337
2338  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2339    switch (MI->getOpcode()) {
2340    case X86::CVTSD2SSrr:
2341    case X86::Int_CVTSD2SSrr:
2342    case X86::CVTSS2SDrr:
2343    case X86::Int_CVTSS2SDrr:
2344    case X86::RCPSSr:
2345    case X86::RCPSSr_Int:
2346    case X86::ROUNDSDr_Int:
2347    case X86::ROUNDSSr_Int:
2348    case X86::RSQRTSSr:
2349    case X86::RSQRTSSr_Int:
2350    case X86::SQRTSSr:
2351    case X86::SQRTSSr_Int:
2352      return 0;
2353    }
2354
2355  const MachineFrameInfo *MFI = MF.getFrameInfo();
2356  unsigned Size = MFI->getObjectSize(FrameIndex);
2357  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2358  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2359    unsigned NewOpc = 0;
2360    unsigned RCSize = 0;
2361    switch (MI->getOpcode()) {
2362    default: return NULL;
2363    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2364    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2365    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2366    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2367    }
2368    // Check if it's safe to fold the load. If the size of the object is
2369    // narrower than the load width, then it's not.
2370    if (Size < RCSize)
2371      return NULL;
2372    // Change to CMPXXri r, 0 first.
2373    MI->setDesc(get(NewOpc));
2374    MI->getOperand(1).ChangeToImmediate(0);
2375  } else if (Ops.size() != 1)
2376    return NULL;
2377
2378  SmallVector<MachineOperand,4> MOs;
2379  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2380  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2381}
2382
2383MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2384                                                  MachineInstr *MI,
2385                                           const SmallVectorImpl<unsigned> &Ops,
2386                                                  MachineInstr *LoadMI) const {
2387  // Check switch flag
2388  if (NoFusing) return NULL;
2389
2390  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2391    switch (MI->getOpcode()) {
2392    case X86::CVTSD2SSrr:
2393    case X86::Int_CVTSD2SSrr:
2394    case X86::CVTSS2SDrr:
2395    case X86::Int_CVTSS2SDrr:
2396    case X86::RCPSSr:
2397    case X86::RCPSSr_Int:
2398    case X86::ROUNDSDr_Int:
2399    case X86::ROUNDSSr_Int:
2400    case X86::RSQRTSSr:
2401    case X86::RSQRTSSr_Int:
2402    case X86::SQRTSSr:
2403    case X86::SQRTSSr_Int:
2404      return 0;
2405    }
2406
2407  // Determine the alignment of the load.
2408  unsigned Alignment = 0;
2409  if (LoadMI->hasOneMemOperand())
2410    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2411  else
2412    switch (LoadMI->getOpcode()) {
2413    case X86::AVX_SET0PSY:
2414    case X86::AVX_SET0PDY:
2415      Alignment = 32;
2416      break;
2417    case X86::V_SET0PS:
2418    case X86::V_SET0PD:
2419    case X86::V_SET0PI:
2420    case X86::V_SETALLONES:
2421    case X86::AVX_SET0PS:
2422    case X86::AVX_SET0PD:
2423    case X86::AVX_SET0PI:
2424      Alignment = 16;
2425      break;
2426    case X86::FsFLD0SD:
2427      Alignment = 8;
2428      break;
2429    case X86::FsFLD0SS:
2430      Alignment = 4;
2431      break;
2432    default:
2433      llvm_unreachable("Don't know how to fold this instruction!");
2434    }
2435  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2436    unsigned NewOpc = 0;
2437    switch (MI->getOpcode()) {
2438    default: return NULL;
2439    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2440    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2441    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2442    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2443    }
2444    // Change to CMPXXri r, 0 first.
2445    MI->setDesc(get(NewOpc));
2446    MI->getOperand(1).ChangeToImmediate(0);
2447  } else if (Ops.size() != 1)
2448    return NULL;
2449
2450  // Make sure the subregisters match.
2451  // Otherwise we risk changing the size of the load.
2452  if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2453    return NULL;
2454
2455  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2456  switch (LoadMI->getOpcode()) {
2457  case X86::V_SET0PS:
2458  case X86::V_SET0PD:
2459  case X86::V_SET0PI:
2460  case X86::V_SETALLONES:
2461  case X86::AVX_SET0PS:
2462  case X86::AVX_SET0PD:
2463  case X86::AVX_SET0PI:
2464  case X86::AVX_SET0PSY:
2465  case X86::AVX_SET0PDY:
2466  case X86::FsFLD0SD:
2467  case X86::FsFLD0SS: {
2468    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2469    // Create a constant-pool entry and operands to load from it.
2470
2471    // Medium and large mode can't fold loads this way.
2472    if (TM.getCodeModel() != CodeModel::Small &&
2473        TM.getCodeModel() != CodeModel::Kernel)
2474      return NULL;
2475
2476    // x86-32 PIC requires a PIC base register for constant pools.
2477    unsigned PICBase = 0;
2478    if (TM.getRelocationModel() == Reloc::PIC_) {
2479      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2480        PICBase = X86::RIP;
2481      else
2482        // FIXME: PICBase = getGlobalBaseReg(&MF);
2483        // This doesn't work for several reasons.
2484        // 1. GlobalBaseReg may have been spilled.
2485        // 2. It may not be live at MI.
2486        return NULL;
2487    }
2488
2489    // Create a constant-pool entry.
2490    MachineConstantPool &MCP = *MF.getConstantPool();
2491    const Type *Ty;
2492    unsigned Opc = LoadMI->getOpcode();
2493    if (Opc == X86::FsFLD0SS)
2494      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2495    else if (Opc == X86::FsFLD0SD)
2496      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2497    else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2498      Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
2499    else
2500      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2501    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2502                    Constant::getAllOnesValue(Ty) :
2503                    Constant::getNullValue(Ty);
2504    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2505
2506    // Create operands to load from the constant pool entry.
2507    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2508    MOs.push_back(MachineOperand::CreateImm(1));
2509    MOs.push_back(MachineOperand::CreateReg(0, false));
2510    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2511    MOs.push_back(MachineOperand::CreateReg(0, false));
2512    break;
2513  }
2514  default: {
2515    // Folding a normal load. Just copy the load's address operands.
2516    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2517    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2518      MOs.push_back(LoadMI->getOperand(i));
2519    break;
2520  }
2521  }
2522  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2523}
2524
2525
2526bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2527                                  const SmallVectorImpl<unsigned> &Ops) const {
2528  // Check switch flag
2529  if (NoFusing) return 0;
2530
2531  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2532    switch (MI->getOpcode()) {
2533    default: return false;
2534    case X86::TEST8rr:
2535    case X86::TEST16rr:
2536    case X86::TEST32rr:
2537    case X86::TEST64rr:
2538      return true;
2539    }
2540  }
2541
2542  if (Ops.size() != 1)
2543    return false;
2544
2545  unsigned OpNum = Ops[0];
2546  unsigned Opc = MI->getOpcode();
2547  unsigned NumOps = MI->getDesc().getNumOperands();
2548  bool isTwoAddr = NumOps > 1 &&
2549    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2550
2551  // Folding a memory location into the two-address part of a two-address
2552  // instruction is different than folding it other places.  It requires
2553  // replacing the *two* registers with the memory location.
2554  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2555  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2556    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2557  } else if (OpNum == 0) { // If operand 0
2558    switch (Opc) {
2559    case X86::MOV8r0:
2560    case X86::MOV16r0:
2561    case X86::MOV32r0:
2562    case X86::MOV64r0:
2563      return true;
2564    default: break;
2565    }
2566    OpcodeTablePtr = &RegOp2MemOpTable0;
2567  } else if (OpNum == 1) {
2568    OpcodeTablePtr = &RegOp2MemOpTable1;
2569  } else if (OpNum == 2) {
2570    OpcodeTablePtr = &RegOp2MemOpTable2;
2571  }
2572
2573  if (OpcodeTablePtr) {
2574    // Find the Opcode to fuse
2575    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2576      OpcodeTablePtr->find((unsigned*)Opc);
2577    if (I != OpcodeTablePtr->end())
2578      return true;
2579  }
2580  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2581}
2582
2583bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2584                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2585                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2586  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2587    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2588  if (I == MemOp2RegOpTable.end())
2589    return false;
2590  unsigned Opc = I->second.first;
2591  unsigned Index = I->second.second & 0xf;
2592  bool FoldedLoad = I->second.second & (1 << 4);
2593  bool FoldedStore = I->second.second & (1 << 5);
2594  if (UnfoldLoad && !FoldedLoad)
2595    return false;
2596  UnfoldLoad &= FoldedLoad;
2597  if (UnfoldStore && !FoldedStore)
2598    return false;
2599  UnfoldStore &= FoldedStore;
2600
2601  const TargetInstrDesc &TID = get(Opc);
2602  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2603  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2604  if (!MI->hasOneMemOperand() &&
2605      RC == &X86::VR128RegClass &&
2606      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2607    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2608    // conservatively assume the address is unaligned. That's bad for
2609    // performance.
2610    return false;
2611  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2612  SmallVector<MachineOperand,2> BeforeOps;
2613  SmallVector<MachineOperand,2> AfterOps;
2614  SmallVector<MachineOperand,4> ImpOps;
2615  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2616    MachineOperand &Op = MI->getOperand(i);
2617    if (i >= Index && i < Index + X86::AddrNumOperands)
2618      AddrOps.push_back(Op);
2619    else if (Op.isReg() && Op.isImplicit())
2620      ImpOps.push_back(Op);
2621    else if (i < Index)
2622      BeforeOps.push_back(Op);
2623    else if (i > Index)
2624      AfterOps.push_back(Op);
2625  }
2626
2627  // Emit the load instruction.
2628  if (UnfoldLoad) {
2629    std::pair<MachineInstr::mmo_iterator,
2630              MachineInstr::mmo_iterator> MMOs =
2631      MF.extractLoadMemRefs(MI->memoperands_begin(),
2632                            MI->memoperands_end());
2633    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2634    if (UnfoldStore) {
2635      // Address operands cannot be marked isKill.
2636      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2637        MachineOperand &MO = NewMIs[0]->getOperand(i);
2638        if (MO.isReg())
2639          MO.setIsKill(false);
2640      }
2641    }
2642  }
2643
2644  // Emit the data processing instruction.
2645  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2646  MachineInstrBuilder MIB(DataMI);
2647
2648  if (FoldedStore)
2649    MIB.addReg(Reg, RegState::Define);
2650  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2651    MIB.addOperand(BeforeOps[i]);
2652  if (FoldedLoad)
2653    MIB.addReg(Reg);
2654  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2655    MIB.addOperand(AfterOps[i]);
2656  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2657    MachineOperand &MO = ImpOps[i];
2658    MIB.addReg(MO.getReg(),
2659               getDefRegState(MO.isDef()) |
2660               RegState::Implicit |
2661               getKillRegState(MO.isKill()) |
2662               getDeadRegState(MO.isDead()) |
2663               getUndefRegState(MO.isUndef()));
2664  }
2665  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2666  unsigned NewOpc = 0;
2667  switch (DataMI->getOpcode()) {
2668  default: break;
2669  case X86::CMP64ri32:
2670  case X86::CMP64ri8:
2671  case X86::CMP32ri:
2672  case X86::CMP32ri8:
2673  case X86::CMP16ri:
2674  case X86::CMP16ri8:
2675  case X86::CMP8ri: {
2676    MachineOperand &MO0 = DataMI->getOperand(0);
2677    MachineOperand &MO1 = DataMI->getOperand(1);
2678    if (MO1.getImm() == 0) {
2679      switch (DataMI->getOpcode()) {
2680      default: break;
2681      case X86::CMP64ri8:
2682      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2683      case X86::CMP32ri8:
2684      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2685      case X86::CMP16ri8:
2686      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2687      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2688      }
2689      DataMI->setDesc(get(NewOpc));
2690      MO1.ChangeToRegister(MO0.getReg(), false);
2691    }
2692  }
2693  }
2694  NewMIs.push_back(DataMI);
2695
2696  // Emit the store instruction.
2697  if (UnfoldStore) {
2698    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2699    std::pair<MachineInstr::mmo_iterator,
2700              MachineInstr::mmo_iterator> MMOs =
2701      MF.extractStoreMemRefs(MI->memoperands_begin(),
2702                             MI->memoperands_end());
2703    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2704  }
2705
2706  return true;
2707}
2708
2709bool
2710X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2711                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2712  if (!N->isMachineOpcode())
2713    return false;
2714
2715  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2716    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2717  if (I == MemOp2RegOpTable.end())
2718    return false;
2719  unsigned Opc = I->second.first;
2720  unsigned Index = I->second.second & 0xf;
2721  bool FoldedLoad = I->second.second & (1 << 4);
2722  bool FoldedStore = I->second.second & (1 << 5);
2723  const TargetInstrDesc &TID = get(Opc);
2724  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2725  unsigned NumDefs = TID.NumDefs;
2726  std::vector<SDValue> AddrOps;
2727  std::vector<SDValue> BeforeOps;
2728  std::vector<SDValue> AfterOps;
2729  DebugLoc dl = N->getDebugLoc();
2730  unsigned NumOps = N->getNumOperands();
2731  for (unsigned i = 0; i != NumOps-1; ++i) {
2732    SDValue Op = N->getOperand(i);
2733    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2734      AddrOps.push_back(Op);
2735    else if (i < Index-NumDefs)
2736      BeforeOps.push_back(Op);
2737    else if (i > Index-NumDefs)
2738      AfterOps.push_back(Op);
2739  }
2740  SDValue Chain = N->getOperand(NumOps-1);
2741  AddrOps.push_back(Chain);
2742
2743  // Emit the load instruction.
2744  SDNode *Load = 0;
2745  MachineFunction &MF = DAG.getMachineFunction();
2746  if (FoldedLoad) {
2747    EVT VT = *RC->vt_begin();
2748    std::pair<MachineInstr::mmo_iterator,
2749              MachineInstr::mmo_iterator> MMOs =
2750      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2751                            cast<MachineSDNode>(N)->memoperands_end());
2752    if (!(*MMOs.first) &&
2753        RC == &X86::VR128RegClass &&
2754        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2755      // Do not introduce a slow unaligned load.
2756      return false;
2757    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2758    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2759                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2760    NewNodes.push_back(Load);
2761
2762    // Preserve memory reference information.
2763    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2764  }
2765
2766  // Emit the data processing instruction.
2767  std::vector<EVT> VTs;
2768  const TargetRegisterClass *DstRC = 0;
2769  if (TID.getNumDefs() > 0) {
2770    DstRC = TID.OpInfo[0].getRegClass(&RI);
2771    VTs.push_back(*DstRC->vt_begin());
2772  }
2773  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2774    EVT VT = N->getValueType(i);
2775    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2776      VTs.push_back(VT);
2777  }
2778  if (Load)
2779    BeforeOps.push_back(SDValue(Load, 0));
2780  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2781  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2782                                      BeforeOps.size());
2783  NewNodes.push_back(NewNode);
2784
2785  // Emit the store instruction.
2786  if (FoldedStore) {
2787    AddrOps.pop_back();
2788    AddrOps.push_back(SDValue(NewNode, 0));
2789    AddrOps.push_back(Chain);
2790    std::pair<MachineInstr::mmo_iterator,
2791              MachineInstr::mmo_iterator> MMOs =
2792      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2793                             cast<MachineSDNode>(N)->memoperands_end());
2794    if (!(*MMOs.first) &&
2795        RC == &X86::VR128RegClass &&
2796        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2797      // Do not introduce a slow unaligned store.
2798      return false;
2799    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2800    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2801                                                         isAligned, TM),
2802                                       dl, MVT::Other,
2803                                       &AddrOps[0], AddrOps.size());
2804    NewNodes.push_back(Store);
2805
2806    // Preserve memory reference information.
2807    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2808  }
2809
2810  return true;
2811}
2812
2813unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2814                                      bool UnfoldLoad, bool UnfoldStore,
2815                                      unsigned *LoadRegIndex) const {
2816  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2817    MemOp2RegOpTable.find((unsigned*)Opc);
2818  if (I == MemOp2RegOpTable.end())
2819    return 0;
2820  bool FoldedLoad = I->second.second & (1 << 4);
2821  bool FoldedStore = I->second.second & (1 << 5);
2822  if (UnfoldLoad && !FoldedLoad)
2823    return 0;
2824  if (UnfoldStore && !FoldedStore)
2825    return 0;
2826  if (LoadRegIndex)
2827    *LoadRegIndex = I->second.second & 0xf;
2828  return I->second.first;
2829}
2830
2831bool
2832X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2833                                     int64_t &Offset1, int64_t &Offset2) const {
2834  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2835    return false;
2836  unsigned Opc1 = Load1->getMachineOpcode();
2837  unsigned Opc2 = Load2->getMachineOpcode();
2838  switch (Opc1) {
2839  default: return false;
2840  case X86::MOV8rm:
2841  case X86::MOV16rm:
2842  case X86::MOV32rm:
2843  case X86::MOV64rm:
2844  case X86::LD_Fp32m:
2845  case X86::LD_Fp64m:
2846  case X86::LD_Fp80m:
2847  case X86::MOVSSrm:
2848  case X86::MOVSDrm:
2849  case X86::MMX_MOVD64rm:
2850  case X86::MMX_MOVQ64rm:
2851  case X86::FsMOVAPSrm:
2852  case X86::FsMOVAPDrm:
2853  case X86::MOVAPSrm:
2854  case X86::MOVUPSrm:
2855  case X86::MOVUPSrm_Int:
2856  case X86::MOVAPDrm:
2857  case X86::MOVDQArm:
2858  case X86::MOVDQUrm:
2859  case X86::MOVDQUrm_Int:
2860    break;
2861  }
2862  switch (Opc2) {
2863  default: return false;
2864  case X86::MOV8rm:
2865  case X86::MOV16rm:
2866  case X86::MOV32rm:
2867  case X86::MOV64rm:
2868  case X86::LD_Fp32m:
2869  case X86::LD_Fp64m:
2870  case X86::LD_Fp80m:
2871  case X86::MOVSSrm:
2872  case X86::MOVSDrm:
2873  case X86::MMX_MOVD64rm:
2874  case X86::MMX_MOVQ64rm:
2875  case X86::FsMOVAPSrm:
2876  case X86::FsMOVAPDrm:
2877  case X86::MOVAPSrm:
2878  case X86::MOVUPSrm:
2879  case X86::MOVUPSrm_Int:
2880  case X86::MOVAPDrm:
2881  case X86::MOVDQArm:
2882  case X86::MOVDQUrm:
2883  case X86::MOVDQUrm_Int:
2884    break;
2885  }
2886
2887  // Check if chain operands and base addresses match.
2888  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2889      Load1->getOperand(5) != Load2->getOperand(5))
2890    return false;
2891  // Segment operands should match as well.
2892  if (Load1->getOperand(4) != Load2->getOperand(4))
2893    return false;
2894  // Scale should be 1, Index should be Reg0.
2895  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2896      Load1->getOperand(2) == Load2->getOperand(2)) {
2897    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2898      return false;
2899
2900    // Now let's examine the displacements.
2901    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2902        isa<ConstantSDNode>(Load2->getOperand(3))) {
2903      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2904      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2905      return true;
2906    }
2907  }
2908  return false;
2909}
2910
2911bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2912                                           int64_t Offset1, int64_t Offset2,
2913                                           unsigned NumLoads) const {
2914  assert(Offset2 > Offset1);
2915  if ((Offset2 - Offset1) / 8 > 64)
2916    return false;
2917
2918  unsigned Opc1 = Load1->getMachineOpcode();
2919  unsigned Opc2 = Load2->getMachineOpcode();
2920  if (Opc1 != Opc2)
2921    return false;  // FIXME: overly conservative?
2922
2923  switch (Opc1) {
2924  default: break;
2925  case X86::LD_Fp32m:
2926  case X86::LD_Fp64m:
2927  case X86::LD_Fp80m:
2928  case X86::MMX_MOVD64rm:
2929  case X86::MMX_MOVQ64rm:
2930    return false;
2931  }
2932
2933  EVT VT = Load1->getValueType(0);
2934  switch (VT.getSimpleVT().SimpleTy) {
2935  default:
2936    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2937    // have 16 of them to play with.
2938    if (TM.getSubtargetImpl()->is64Bit()) {
2939      if (NumLoads >= 3)
2940        return false;
2941    } else if (NumLoads) {
2942      return false;
2943    }
2944    break;
2945  case MVT::i8:
2946  case MVT::i16:
2947  case MVT::i32:
2948  case MVT::i64:
2949  case MVT::f32:
2950  case MVT::f64:
2951    if (NumLoads)
2952      return false;
2953    break;
2954  }
2955
2956  return true;
2957}
2958
2959
2960bool X86InstrInfo::
2961ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2962  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2963  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2964  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2965    return true;
2966  Cond[0].setImm(GetOppositeBranchCondition(CC));
2967  return false;
2968}
2969
2970bool X86InstrInfo::
2971isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2972  // FIXME: Return false for x87 stack register classes for now. We can't
2973  // allow any loads of these registers before FpGet_ST0_80.
2974  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2975           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2976}
2977
2978
2979/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
2980/// register?  e.g. r8, xmm8, xmm13, etc.
2981bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
2982  switch (RegNo) {
2983  default: break;
2984  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2985  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2986  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2987  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2988  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2989  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2990  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2991  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2992  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2993  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2994  case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
2995  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
2996  case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
2997  case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
2998    return true;
2999  }
3000  return false;
3001}
3002
3003/// getGlobalBaseReg - Return a virtual register initialized with the
3004/// the global base register value. Output instructions required to
3005/// initialize the register in the function entry block, if necessary.
3006///
3007/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3008///
3009unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3010  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3011         "X86-64 PIC uses RIP relative addressing");
3012
3013  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3014  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3015  if (GlobalBaseReg != 0)
3016    return GlobalBaseReg;
3017
3018  // Create the register. The code to initialize it is inserted
3019  // later, by the CGBR pass (below).
3020  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3021  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3022  X86FI->setGlobalBaseReg(GlobalBaseReg);
3023  return GlobalBaseReg;
3024}
3025
3026// These are the replaceable SSE instructions. Some of these have Int variants
3027// that we don't include here. We don't want to replace instructions selected
3028// by intrinsics.
3029static const unsigned ReplaceableInstrs[][3] = {
3030  //PackedSingle     PackedDouble    PackedInt
3031  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
3032  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
3033  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
3034  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
3035  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
3036  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
3037  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
3038  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
3039  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
3040  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
3041  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
3042  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
3043  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
3044  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
3045  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
3046  // AVX 128-bit support
3047  { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
3048  { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
3049  { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
3050  { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
3051  { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
3052  { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3053  { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
3054  { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
3055  { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
3056  { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
3057  { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
3058  { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
3059  { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
3060  { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
3061  { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
3062};
3063
3064// FIXME: Some shuffle and unpack instructions have equivalents in different
3065// domains, but they require a bit more work than just switching opcodes.
3066
3067static const unsigned *lookup(unsigned opcode, unsigned domain) {
3068  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3069    if (ReplaceableInstrs[i][domain-1] == opcode)
3070      return ReplaceableInstrs[i];
3071  return 0;
3072}
3073
3074std::pair<uint16_t, uint16_t>
3075X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3076  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3077  return std::make_pair(domain,
3078                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3079}
3080
3081void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3082  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3083  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3084  assert(dom && "Not an SSE instruction");
3085  const unsigned *table = lookup(MI->getOpcode(), dom);
3086  assert(table && "Cannot change domain");
3087  MI->setDesc(get(table[Domain-1]));
3088}
3089
3090/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3091void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3092  NopInst.setOpcode(X86::NOOP);
3093}
3094
3095namespace {
3096  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3097  /// global base register for x86-32.
3098  struct CGBR : public MachineFunctionPass {
3099    static char ID;
3100    CGBR() : MachineFunctionPass(ID) {}
3101
3102    virtual bool runOnMachineFunction(MachineFunction &MF) {
3103      const X86TargetMachine *TM =
3104        static_cast<const X86TargetMachine *>(&MF.getTarget());
3105
3106      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3107             "X86-64 PIC uses RIP relative addressing");
3108
3109      // Only emit a global base reg in PIC mode.
3110      if (TM->getRelocationModel() != Reloc::PIC_)
3111        return false;
3112
3113      X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3114      unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3115
3116      // If we didn't need a GlobalBaseReg, don't insert code.
3117      if (GlobalBaseReg == 0)
3118        return false;
3119
3120      // Insert the set of GlobalBaseReg into the first MBB of the function
3121      MachineBasicBlock &FirstMBB = MF.front();
3122      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3123      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3124      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3125      const X86InstrInfo *TII = TM->getInstrInfo();
3126
3127      unsigned PC;
3128      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3129        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3130      else
3131        PC = GlobalBaseReg;
3132
3133      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3134      // only used in JIT code emission as displacement to pc.
3135      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3136
3137      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3138      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3139      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3140        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3141        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3142          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3143                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3144      }
3145
3146      return true;
3147    }
3148
3149    virtual const char *getPassName() const {
3150      return "X86 PIC Global Base Reg Initialization";
3151    }
3152
3153    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3154      AU.setPreservesCFG();
3155      MachineFunctionPass::getAnalysisUsage(AU);
3156    }
3157  };
3158}
3159
3160char CGBR::ID = 0;
3161FunctionPass*
3162llvm::createGlobalBaseRegPass() { return new CGBR(); }
3163