X86InstrInfo.cpp revision 1ee29257428960fede862fcfdbe80d5d007927e9
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/LiveVariables.h"
22using namespace llvm;
23
24X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
25  : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])),
26    TM(tm), RI(tm, *this) {
27}
28
29bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
30                               unsigned& sourceReg,
31                               unsigned& destReg) const {
32  MachineOpCode oc = MI.getOpcode();
33  if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
34      oc == X86::MOV32rr || oc == X86::MOV64rr ||
35      oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
36      oc == X86::FpMOV  || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
37      oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
38      oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
39      oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
40      oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr) {
41      assert(MI.getNumOperands() == 2 &&
42             MI.getOperand(0).isRegister() &&
43             MI.getOperand(1).isRegister() &&
44             "invalid register-register move instruction");
45      sourceReg = MI.getOperand(1).getReg();
46      destReg = MI.getOperand(0).getReg();
47      return true;
48  }
49  return false;
50}
51
52unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
53                                           int &FrameIndex) const {
54  switch (MI->getOpcode()) {
55  default: break;
56  case X86::MOV8rm:
57  case X86::MOV16rm:
58  case X86::MOV16_rm:
59  case X86::MOV32rm:
60  case X86::MOV32_rm:
61  case X86::MOV64rm:
62  case X86::FpLD64m:
63  case X86::MOVSSrm:
64  case X86::MOVSDrm:
65  case X86::MOVAPSrm:
66  case X86::MOVAPDrm:
67    if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() &&
68        MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() &&
69        MI->getOperand(2).getImmedValue() == 1 &&
70        MI->getOperand(3).getReg() == 0 &&
71        MI->getOperand(4).getImmedValue() == 0) {
72      FrameIndex = MI->getOperand(1).getFrameIndex();
73      return MI->getOperand(0).getReg();
74    }
75    break;
76  }
77  return 0;
78}
79
80unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
81                                          int &FrameIndex) const {
82  switch (MI->getOpcode()) {
83  default: break;
84  case X86::MOV8mr:
85  case X86::MOV16mr:
86  case X86::MOV16_mr:
87  case X86::MOV32mr:
88  case X86::MOV32_mr:
89  case X86::MOV64mr:
90  case X86::FpSTP64m:
91  case X86::MOVSSmr:
92  case X86::MOVSDmr:
93  case X86::MOVAPSmr:
94  case X86::MOVAPDmr:
95    if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() &&
96        MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() &&
97        MI->getOperand(1).getImmedValue() == 1 &&
98        MI->getOperand(2).getReg() == 0 &&
99        MI->getOperand(3).getImmedValue() == 0) {
100      FrameIndex = MI->getOperand(0).getFrameIndex();
101      return MI->getOperand(4).getReg();
102    }
103    break;
104  }
105  return 0;
106}
107
108
109/// convertToThreeAddress - This method must be implemented by targets that
110/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
111/// may be able to convert a two-address instruction into a true
112/// three-address instruction on demand.  This allows the X86 target (for
113/// example) to convert ADD and SHL instructions into LEA instructions if they
114/// would require register copies due to two-addressness.
115///
116/// This method returns a null pointer if the transformation cannot be
117/// performed, otherwise it returns the new instruction.
118///
119MachineInstr *
120X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
121                                    MachineBasicBlock::iterator &MBBI,
122                                    LiveVariables &LV) const {
123  MachineInstr *MI = MBBI;
124  // All instructions input are two-addr instructions.  Get the known operands.
125  unsigned Dest = MI->getOperand(0).getReg();
126  unsigned Src = MI->getOperand(1).getReg();
127
128  MachineInstr *NewMI = NULL;
129  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
130  // we have subtarget support, enable the 16-bit LEA generation here.
131  bool DisableLEA16 = true;
132
133  switch (MI->getOpcode()) {
134  default: break;
135  case X86::SHUFPSrri: {
136    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
137    const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
138    unsigned A = MI->getOperand(0).getReg();
139    unsigned B = MI->getOperand(1).getReg();
140    unsigned C = MI->getOperand(2).getReg();
141    unsigned M = MI->getOperand(3).getImmedValue();
142    if (!Subtarget->hasSSE2() || B != C) return 0;
143    NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
144    goto Done;
145  }
146  }
147
148  // FIXME: None of these instructions are promotable to LEAs without
149  // additional information.  In particular, LEA doesn't set the flags that
150  // add and inc do.  :(
151  return 0;
152
153  switch (MI->getOpcode()) {
154  case X86::INC32r:
155  case X86::INC64_32r:
156    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
157    NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, 1);
158    break;
159  case X86::INC16r:
160  case X86::INC64_16r:
161    if (DisableLEA16) return 0;
162    assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
163    NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
164    break;
165  case X86::DEC32r:
166  case X86::DEC64_32r:
167    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
168    NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, -1);
169    break;
170  case X86::DEC16r:
171  case X86::DEC64_16r:
172    if (DisableLEA16) return 0;
173    assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
174    NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
175    break;
176  case X86::ADD32rr:
177    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
178    NewMI = addRegReg(BuildMI(get(X86::LEA32r), Dest), Src,
179                     MI->getOperand(2).getReg());
180    break;
181  case X86::ADD16rr:
182    if (DisableLEA16) return 0;
183    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
184    NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
185                     MI->getOperand(2).getReg());
186    break;
187  case X86::ADD32ri:
188  case X86::ADD32ri8:
189    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
190    if (MI->getOperand(2).isImmediate())
191      NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src,
192                          MI->getOperand(2).getImmedValue());
193    break;
194  case X86::ADD16ri:
195  case X86::ADD16ri8:
196    if (DisableLEA16) return 0;
197    assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
198    if (MI->getOperand(2).isImmediate())
199      NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
200                          MI->getOperand(2).getImmedValue());
201    break;
202  case X86::SHL16ri:
203    if (DisableLEA16) return 0;
204  case X86::SHL32ri:
205    assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
206           "Unknown shl instruction!");
207    unsigned ShAmt = MI->getOperand(2).getImmedValue();
208    if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
209      X86AddressMode AM;
210      AM.Scale = 1 << ShAmt;
211      AM.IndexReg = Src;
212      unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
213      NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
214    }
215    break;
216  }
217
218Done:
219  if (NewMI) {
220    NewMI->copyKillDeadInfo(MI);
221    LV.instructionChanged(MI, NewMI);  // Update live variables
222    MFI->insert(MBBI, NewMI);          // Insert the new inst
223  }
224  return NewMI;
225}
226
227/// commuteInstruction - We have a few instructions that must be hacked on to
228/// commute them.
229///
230MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
231  // FIXME: Can commute cmoves by changing the condition!
232  switch (MI->getOpcode()) {
233  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
234  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
235  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
236  case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
237    unsigned Opc;
238    unsigned Size;
239    switch (MI->getOpcode()) {
240    default: assert(0 && "Unreachable!");
241    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
242    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
243    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
244    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
245    }
246    unsigned Amt = MI->getOperand(3).getImmedValue();
247    unsigned A = MI->getOperand(0).getReg();
248    unsigned B = MI->getOperand(1).getReg();
249    unsigned C = MI->getOperand(2).getReg();
250    bool BisKill = MI->getOperand(1).isKill();
251    bool CisKill = MI->getOperand(2).isKill();
252    return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
253      .addReg(B, false, false, BisKill).addImm(Size-Amt);
254  }
255  default:
256    return TargetInstrInfo::commuteInstruction(MI);
257  }
258}
259
260static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
261  switch (BrOpc) {
262  default: return X86::COND_INVALID;
263  case X86::JE:  return X86::COND_E;
264  case X86::JNE: return X86::COND_NE;
265  case X86::JL:  return X86::COND_L;
266  case X86::JLE: return X86::COND_LE;
267  case X86::JG:  return X86::COND_G;
268  case X86::JGE: return X86::COND_GE;
269  case X86::JB:  return X86::COND_B;
270  case X86::JBE: return X86::COND_BE;
271  case X86::JA:  return X86::COND_A;
272  case X86::JAE: return X86::COND_AE;
273  case X86::JS:  return X86::COND_S;
274  case X86::JNS: return X86::COND_NS;
275  case X86::JP:  return X86::COND_P;
276  case X86::JNP: return X86::COND_NP;
277  case X86::JO:  return X86::COND_O;
278  case X86::JNO: return X86::COND_NO;
279  }
280}
281
282unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
283  switch (CC) {
284  default: assert(0 && "Illegal condition code!");
285  case X86::COND_E:  return X86::JE;
286  case X86::COND_NE: return X86::JNE;
287  case X86::COND_L:  return X86::JL;
288  case X86::COND_LE: return X86::JLE;
289  case X86::COND_G:  return X86::JG;
290  case X86::COND_GE: return X86::JGE;
291  case X86::COND_B:  return X86::JB;
292  case X86::COND_BE: return X86::JBE;
293  case X86::COND_A:  return X86::JA;
294  case X86::COND_AE: return X86::JAE;
295  case X86::COND_S:  return X86::JS;
296  case X86::COND_NS: return X86::JNS;
297  case X86::COND_P:  return X86::JP;
298  case X86::COND_NP: return X86::JNP;
299  case X86::COND_O:  return X86::JO;
300  case X86::COND_NO: return X86::JNO;
301  }
302}
303
304/// GetOppositeBranchCondition - Return the inverse of the specified condition,
305/// e.g. turning COND_E to COND_NE.
306X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
307  switch (CC) {
308  default: assert(0 && "Illegal condition code!");
309  case X86::COND_E:  return X86::COND_NE;
310  case X86::COND_NE: return X86::COND_E;
311  case X86::COND_L:  return X86::COND_GE;
312  case X86::COND_LE: return X86::COND_G;
313  case X86::COND_G:  return X86::COND_LE;
314  case X86::COND_GE: return X86::COND_L;
315  case X86::COND_B:  return X86::COND_AE;
316  case X86::COND_BE: return X86::COND_A;
317  case X86::COND_A:  return X86::COND_BE;
318  case X86::COND_AE: return X86::COND_B;
319  case X86::COND_S:  return X86::COND_NS;
320  case X86::COND_NS: return X86::COND_S;
321  case X86::COND_P:  return X86::COND_NP;
322  case X86::COND_NP: return X86::COND_P;
323  case X86::COND_O:  return X86::COND_NO;
324  case X86::COND_NO: return X86::COND_O;
325  }
326}
327
328
329bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
330                                 MachineBasicBlock *&TBB,
331                                 MachineBasicBlock *&FBB,
332                                 std::vector<MachineOperand> &Cond) const {
333  // TODO: If FP_REG_KILL is around, ignore it.
334
335  // If the block has no terminators, it just falls into the block after it.
336  MachineBasicBlock::iterator I = MBB.end();
337  if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode()))
338    return false;
339
340  // Get the last instruction in the block.
341  MachineInstr *LastInst = I;
342
343  // If there is only one terminator instruction, process it.
344  if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) {
345    if (!isBranch(LastInst->getOpcode()))
346      return true;
347
348    // If the block ends with a branch there are 3 possibilities:
349    // it's an unconditional, conditional, or indirect branch.
350
351    if (LastInst->getOpcode() == X86::JMP) {
352      TBB = LastInst->getOperand(0).getMachineBasicBlock();
353      return false;
354    }
355    X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
356    if (BranchCode == X86::COND_INVALID)
357      return true;  // Can't handle indirect branch.
358
359    // Otherwise, block ends with fall-through condbranch.
360    TBB = LastInst->getOperand(0).getMachineBasicBlock();
361    Cond.push_back(MachineOperand::CreateImm(BranchCode));
362    return false;
363  }
364
365  // Get the instruction before it if it's a terminator.
366  MachineInstr *SecondLastInst = I;
367
368  // If there are three terminators, we don't know what sort of block this is.
369  if (SecondLastInst && I != MBB.begin() &&
370      isTerminatorInstr((--I)->getOpcode()))
371    return true;
372
373  // If the block ends with X86::JMP and a conditional branch, handle it.
374  X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
375  if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
376    TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
377    Cond.push_back(MachineOperand::CreateImm(BranchCode));
378    FBB = LastInst->getOperand(0).getMachineBasicBlock();
379    return false;
380  }
381
382  // Otherwise, can't handle this.
383  return true;
384}
385
386void X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
387  MachineBasicBlock::iterator I = MBB.end();
388  if (I == MBB.begin()) return;
389  --I;
390  if (I->getOpcode() != X86::JMP &&
391      GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
392    return;
393
394  // Remove the branch.
395  I->eraseFromParent();
396
397  I = MBB.end();
398
399  if (I == MBB.begin()) return;
400  --I;
401  if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
402    return;
403
404  // Remove the branch.
405  I->eraseFromParent();
406}
407
408void X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
409                                MachineBasicBlock *FBB,
410                                const std::vector<MachineOperand> &Cond) const {
411  // Shouldn't be a fall through.
412  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
413  assert((Cond.size() == 1 || Cond.size() == 0) &&
414         "X86 branch conditions have one component!");
415
416  if (FBB == 0) { // One way branch.
417    if (Cond.empty()) {
418      // Unconditional branch?
419      BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
420    } else {
421      // Conditional branch.
422      unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
423      BuildMI(&MBB, get(Opc)).addMBB(TBB);
424    }
425    return;
426  }
427
428  // Two-way Conditional branch.
429  unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
430  BuildMI(&MBB, get(Opc)).addMBB(TBB);
431  BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
432}
433
434bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
435  if (MBB.empty()) return false;
436
437  switch (MBB.back().getOpcode()) {
438  case X86::JMP:     // Uncond branch.
439  case X86::JMP32r:  // Indirect branch.
440  case X86::JMP32m:  // Indirect branch through mem.
441    return true;
442  default: return false;
443  }
444}
445
446bool X86InstrInfo::
447ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
448  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
449  Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
450  return false;
451}
452
453const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
454  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
455  if (Subtarget->is64Bit())
456    return &X86::GR64RegClass;
457  else
458    return &X86::GR32RegClass;
459}
460